# ANEXO A

# PRECIPITACIÓN MÁXIMA EN 24 HORAS

| IÓN<br>METRO<br>JENCI | : CO. HI<br>: Precip<br>A : Mes/A | UANCANÉ (:<br>bitación Máx<br>Año | 115037)<br>ima en 24 H | lrs (mm) | LA<br>LO<br>AL | TITUD<br>NGITUD<br>TURA | : 15°12<br>: 69°45<br>: 3842 r | '24.70"<br>'29.90"<br>nsnm | DE<br>PR<br>DIS | PARTAMEN<br>OVINCIA<br>STRITO | ITO: Puno<br>: Huanca<br>: Huanca | né        |
|-----------------------|-----------------------------------|-----------------------------------|------------------------|----------|----------------|-------------------------|--------------------------------|----------------------------|-----------------|-------------------------------|-----------------------------------|-----------|
| AÑO                   | Enero                             | Febrero                           | Marzo                  | Abril    | Mayo           | Junio                   | Julio                          | Agosto                     | Setiembre       | Octubre                       | Noviembre                         | Diciembre |
| 1985                  | 22.8                              | 9.8                               | 26.4                   | 42.2     | 6.2            | 10.4                    | 0.0                            | 2.2                        | 29.6            | 15.6                          | 39.0                              | 31.8      |
| 1986                  | 35.8                              | 39.4                              | 35.2                   | 14.4     | 4.8            | 0.0                     | 5.6                            | 16.2                       | 13.8            | 8.4                           | 20.2                              | 19.8      |
| 1987                  | 58.0                              | 7.2                               | 25.2                   | 7.9      | 7.9            | 8.8                     | 8.8                            | 9.8                        | 5.4             | 21.2                          | 32.3                              | 15.2      |
| 1988                  | 52.4                              | 18.2                              | 43.2                   | 30.2     | 19.2           | 0.0                     | 0.0                            | 0.0                        | 6.3             | 15.8                          | 4.0                               | 19.6      |
| 1989                  | 32.0                              | 31.2                              | 15.2                   | 15.8     | 1.8            | 2.0                     | 1.0                            | 7.4                        | 9.0             | 6.0                           | 13.6                              | 35.0      |
| 1990                  | 21.6                              | 23.6                              | 15.2                   | 6.9      | 9.6            | 23.2                    | 0.0                            | 16.2                       | 16.1            | 13.6                          | 21.2                              | 23.8      |
| 1991                  | 23.9                              | 58.0                              | 44.2                   | 6.6      | 12.8           | 24.6                    | 1.0                            | 0.6                        | 12.6            | 5.4                           | 20.4                              | 38.0      |
| 1992                  | 15.3                              | 14.0                              | 29.8                   | 3.8      | 0.0            | 9.6                     | 8.8                            | 48.5                       | 10.6            | 24.6                          | 14.3                              | 27.9      |
| 1993                  | 25.5                              | 17.8                              | 21.5                   | 19.1     | 7.2            | 2.1                     | 0.0                            | 4.6                        | 3.6             | 21.5                          | 32.0                              | 31.2      |
| 1994                  | 20.0                              | 24.0                              | 68.7                   | 15.2     | 14.0           | 1.8                     | 0.0                            | 0.0                        | 6.6             | 10.2                          | 15.9                              | 41.1      |
| 1995                  | 16.2                              | 22.9                              | 16.8                   | 9.7      | 1.2            | 0.0                     | 0.8                            | 1.2                        | 8.3             | 11.0                          | 35.0                              | 15.6      |
| 1996                  | 50.2                              | 10.5                              | 19.3                   | 9.2      | 1.3            | 0.0                     | 7.6                            | 2.7                        | 4.7             | 7.4                           | 19.2                              | 51.6      |
| 1997                  | 35.6                              | 34.0                              | 30.2                   | 24.3     | 7.4            | 0.0                     | 0.0                            | 11.0                       | 13.1            | 8.6                           | 28.1                              | 15.0      |
| 1998                  | 28.5                              | 17.2                              | 24.0                   | 14.8     | 0.0            | 2.9                     | 0.0                            | 0.5                        | 2.3             | 14.1                          | 54.5                              | 21.1      |
| 1999                  | 26.1                              | 11.6                              | 45.0                   | 43.7     | 9.2            | 0.5                     | 1.3                            | 0.9                        | 10.8            | 15.9                          | 25.3                              | 13.4      |
| 2000                  | 13.0                              | 14.6                              | 19.6                   | 5.5      | 7.8            | 3.0                     | 0.5                            | 9.4                        | 10.5            | 17.8                          | 13.7                              | , 28.4    |
| 2001                  | 24.8                              | 24.9                              | 29.7                   | 5.9      | 10.5           | 3.5                     | 2.8                            | 5.9                        | 2.3             | 28.2                          | 12.0                              | 25.7      |
| 2002                  | 15.0                              | 30.9                              | 22.6                   | 32.0     | 5.9            | 4.8                     | 10.0                           | 2.0                        | 8.3             | 29.6                          | 20.0                              | 25.3      |
| 2003                  | 26.8                              | 32.3                              | 31.3                   | 19.0     | 1.6            | 11.0                    | 1.1                            | 1.6                        | 6.9             | 27.2                          | 19.9                              | 39.2      |
| 2004                  | 33.1                              | 32.2                              | 23.5                   | 11.4     | 2.5            | 2.3                     | 5.4                            | 19.0                       | 7.8             | 13.6                          | 32.7                              | 35.9      |
| 2005                  | 15.2                              | 19.3                              | 26.4                   | 4.5      | 0.5            | 0.0                     | 0.0                            | 4.6                        | 12.6            | 18.5                          | 13.8                              | 25.0      |
| 2006                  | 31.6                              | 14.9                              | 19.4                   | 20.2     | 0.5            | 1.0                     | 0.0                            | 2.6                        | 8.3             | 26.5                          | 11.0                              | 22.0      |
| 2007                  | 29.2                              | 22.2                              | 34.6                   | 18.9     | 2.6            | 0.0                     | 1.4                            | 0.7                        | 21.8            | 3.6                           | 19.6                              | 25.7      |
| 2008                  | 23.0                              | 36.6                              | 15.9                   | 3.3      | 7.3            | 0.0                     | 0.0                            | 0.0                        | 2.6             | 16.6                          | 13.5                              | 43.9      |
| 2009                  | 21.0                              | 25.3                              | 16.5                   | 6.7      | 0.5            | 0.0                     | 1.6                            | 0.0                        | 10.0            | 4.5                           | 18.0                              | 16.8      |
| 2010                  | 20.6                              | 13.1                              | 9.5                    | 10.5     | 13.5           | 0.0                     | 0.0                            | 0.0                        | 0.3             | 12.6                          | 0.4                               | 19.7      |
| 2011                  | 15.1                              | 32.2                              | 15.9                   | 15.6     | 3.9            | 0.0                     | 3.0                            | 0.9                        | 8.3             | 10.9                          | 13.0                              | 12.7      |
| 2012                  | 20.8                              | 22.4                              | 27.4                   | 10.7     | 0.2            | 0.0                     | 0.3                            | 1.6                        | 9.8             | 6.9                           | 19.8                              | 23.8      |
| 2013                  | 17.4                              | 44.1                              | 6.6                    | 6.6      | 9.2            | 4.1                     | 4.7                            | 6.9                        | 1.5             | 28.1                          | 17.4                              | 20.3      |
| 2014                  | 27.4                              | 26.2                              | 24.4                   | 5.0      | 8.3            | 0.8                     | 7.6                            | 3.6                        | 22.9            | 12.4                          | 43                                | 24 4      |

#### "SENAMHI ÓRGANO OFICIAL Y RECTOR DEL SISTEMA HIDROMETEOROLÓGICO NACIONAL AL SERVICIO DEL DESARROLLO SOCIO ECONÓMICO DEL RAÍS"

S/D = Sin Dato.

INFORMACIÓN PROCESADA PARA: OSWALDO DARIO MAMANI SUCASAIRE BOLETA DE VENTA ELECTRÓNICA : EB01-530



Firms Digital Firmado digitalmente por FLORES SANCHO Soto FAU 20131366028 hard Motivo: Soy el autor del documento Fecha: 18.12.2020 12:05:56 -05:00 Senamhi

**FECHA** 

: 17 de diciembre de 2020

Elaborado por Técnico en Digitación

ZAPATA

Vº Bº Dirección Zonal 13

| IÓN<br>METRO<br>JENCI/ | : CO. PL<br>: Precip | JTINA (1140<br>litación Máx                                             | 093)<br>ima en 24 H | lrs (mm) | LA<br>LO<br>AL | TITUD<br>NGITUD<br>TURA | : 14°54<br>: 69°52<br>: 3878 n | '52.6"<br>'03.9"<br>nsnm | DEPARTAMENTO: Puno<br>PROVINCIA : San Antonio de<br>DISTRITO : Putina |         |                 |           |  |
|------------------------|----------------------|-------------------------------------------------------------------------|---------------------|----------|----------------|-------------------------|--------------------------------|--------------------------|-----------------------------------------------------------------------|---------|-----------------|-----------|--|
| AÑO                    | Enero                | Febrero                                                                 | Marzo               | Abril    | Mayo           | Junio                   | Julio                          | Agosto                   | Setiembre                                                             | Octubre | Noviembre       | Diciembre |  |
| 1985                   | 18.0                 | 24.3                                                                    | 16.0                | 24.1     | 5.8            | 2.8                     | 0.0                            | 2.1                      | 11.0                                                                  | 16.3    | 36.3            | 23.9      |  |
| 1986                   | 20.6                 | 21.1                                                                    | 19.1                | 30.2     | 4.9            | 0.0                     | MCIO NAC1.7                    | or were 4.1              | 11.0                                                                  | 6.1     | 19.1            | 25.7      |  |
| 1987                   | 18.1                 | 10.5                                                                    | 19.7                | 20.3     | 2.0            | 2.0                     | 13.4                           | 4.5                      | 2.6                                                                   | 12.0    | 33.2            | 8.4       |  |
| 1988                   | 25.8                 | 19.6                                                                    | 24.3                | 18.0     | 5.4            | 0.0                     | 0.0                            | DE MOTO 5.1              | DAT MORO 3.4                                                          | 13.4    | CIC 44 CIC/ 5.7 | 24.3      |  |
| 1989                   | 16.4                 | 17.3                                                                    | 21.2                | 13.6     | 0.0            | 4.2                     | 0.0                            | 6.5                      | 13.5                                                                  | 8.2     | 8.0             | 18.9      |  |
| 1990                   | 21.9                 | 21.4                                                                    | 18.5                | 5.3      | 3.2            | 21.0                    | 0.0                            | 0.8                      | 7.2                                                                   | 26.7    | 16.9            | 16.9      |  |
| 1991                   | 20.2                 | 16.6                                                                    | 28.9                | 9.7      | 5.7            | 19.6                    | 9.8                            | 0.8                      | 4.0                                                                   | 9.4     | 14.6            | 33.0      |  |
| 1992                   | 24.1                 | 24.1         24.8         12.4           33.7         16.9         17.4 |                     |          | 0.0            | 1.2                     | 4.0                            | 23.5                     | 9.8                                                                   | 10.1    | 19.8            | 26.0      |  |
| 1993                   | 33.7                 | 16.9                                                                    | 17.4                | 36.4     | 9.1            | 0.0                     | 1.2                            | 6.0                      | 11.5                                                                  | 12.4    | 22.7            | 19.3      |  |
| 1994                   | 20.6                 | 25.3                                                                    | 25.5                | 28.0     | 14.7           | 5.2                     | 0.0                            | 17.5                     | 11.1                                                                  | 6.5     | 22.1            | 14.9      |  |
| 1995                   | 7.9                  | 22.5                                                                    | 20.5                | 7.7      | 0.5            | 0.0                     | 3.4                            | 0.0                      | 2.2                                                                   | 7.9     | 32.0            | 12.8      |  |
| 1996                   | 23.7                 | 12.0                                                                    | 46.1                | 6.7      | 11.7           | 0.0                     | 0.9                            | 2.8                      | 12.6                                                                  | 8.1     | 20.5            | 18.3      |  |
| 1997                   | 28.3                 | 14.6                                                                    | 46.5                | 40.3     | 2.5            | 0.0                     | VICIO NACI,1A                  | 11.4                     | 9.2                                                                   | 8.1     | 42.4            | 14.5      |  |
| 1998                   | 44.5                 | 21.5                                                                    | 18.5                | 12.2     | 0.0            | 8.7                     | 0.0                            | 1.6                      | 0.5                                                                   | 11.0    | 12.6            | 7.5       |  |
| 1999                   | 17.7                 | 10.0                                                                    | 31.6                | 4.8      | 11.1           | 0.0                     | 0.7                            | 0.0                      | 10.5                                                                  | 11.3    | 11.8            | 26.7      |  |
| 2000                   | 37.7                 | 21.0                                                                    | 11.0                | 8.3      | 1.1            | 15.3                    | 0.0                            | 5.8                      | 7.2                                                                   | 19.8    | 9.6             | 15.9      |  |
| 2001                   | 31.1                 | 19.5                                                                    | 36.5                | 15.5     | 17.2           | 3.0                     | 1.5                            | 3.4                      | 7.6                                                                   | 15.3    | 18.7            | 41.5      |  |
| 2002                   | 16.2                 | 25.2                                                                    | 17.8                | 12.7     | 5.8            | 0.6                     | 7.7                            | 3.4                      | 10.0                                                                  | 29.0    | 16.4            | 24.3      |  |
| 2003                   | 26.8                 | 34.0                                                                    | 18.9                | 25.7     | 1.0            | 7.2                     | 2.0                            | 4.1                      | 8.1                                                                   | 14.7    | 10.7            | 43.5      |  |
| 2004                   | 20.6                 | 37.9                                                                    | 15.5                | 17.5     | 5.2            | 0.0                     | 1.2                            | 14.3                     | 6.3                                                                   | 3.9     | 19.6            | 14.0      |  |
| 2005                   | 14.1                 | 26.2                                                                    | 14.2                | 10.3     | 2.3            | 0.0                     | 1.0                            | 3.8                      | 9.0                                                                   | 8.2     | 10.1            | 16.4      |  |
| 2006                   | 29.8                 | 8.3                                                                     | 6.4                 | 16.9     | 2.2            | 5.8                     | 0.0                            | 1.1                      | 14.3                                                                  | 12.7    | 17.5            | 18.7      |  |
| 2007                   | 20.5                 | 10.0                                                                    | 20.4                | 9.6      | 16.2           | 2.1                     | 0.0                            | 0.0                      | 7.0                                                                   | 13.8    | 14.6            | 10.5      |  |
| 2008                   | 16.2                 | 28.5                                                                    | 21.2                | 0.8      | 5.1            | 0.0                     | 0.0                            | 0.0                      | 11.4                                                                  | 12.1    | 30.8            | 29.0      |  |
| 2009                   | 22.5                 | 14.6                                                                    | 15.5                | 2.9      | 5.0            | 0.0                     | 1.8                            | 0.0                      | 6.2 MORO 6.2                                                          | 12.8    | 24.9            | 20.7      |  |
| 2010                   | 33.4                 | 19.2                                                                    | 29.2                | 20.0     | 7.0            | 0.0                     | 0.6                            | 2.3                      | 0.0                                                                   | 13.9    | 5.7             | 21.3      |  |
| 2011                   | 10.6                 | 20.6                                                                    | 9.4                 | 30.5     | 0.4            | 0.0                     | 2.3                            | 6.1                      | 9.9                                                                   | 10.9    | 15.0            | 19.6      |  |
| 2012                   | 18.2                 | 18.1                                                                    | 29.9                | 17.9     | 14.4           | 0.0                     | 0.0                            | 4.7                      | 4.2                                                                   | 8.8     | 8.2             | 14.9      |  |
| 2013                   | 24.5                 | 21.9                                                                    | 17.1                | 5.8      | 32.0           | 1.7                     | 1.8                            | 4.7                      | 1.0                                                                   | 18.3    | 16.1            | 16.7      |  |
| 2014                   | 29.5                 | 24.0                                                                    | 34.2                | 11.1     | 3.2            | 0.0                     | 1.3                            | 7.6                      | 13.1                                                                  | 2.7     | 6.4             | 15.4      |  |

INFORMACIÓN PROCESADA PARA: OSWALDO DARIO MAMANI SUCASAIRE BOLETA DE VENTA ELECTRÓNICA : EB01-530 FECHA

: 17 de diciembre de 2020



hard Motivo: Soy el autor del documento Fecha: 18.12.2020 12:07:38 -05:00 Senamhi

Elaborado por Técnico en Digitación

Vº Bº Dirección Zonal 13

| CIÓN<br>METRO<br>UENCI | : CO. MI<br>: Precip<br>A : Mes/A | JÑANI (114<br>itación Máxi<br>ño | 1042)<br>ima en 24 H | rs (mm) | LA<br>LO<br>AL | TITUD<br>NGITUD<br>TURA | : 14°46<br>: 69°57<br>: 3948 n | '01"<br>'06.5"<br>nsnm | DEPARTAMENTO: Puno<br>PROVINCIA : Azangaro<br>DISTRITO : Muñani |         |                |            |
|------------------------|-----------------------------------|----------------------------------|----------------------|---------|----------------|-------------------------|--------------------------------|------------------------|-----------------------------------------------------------------|---------|----------------|------------|
| AÑO                    | Enero                             | Febrero                          | Marzo                | Abril   | Mayo           | Junio                   | Julio                          | Agosto                 | Setiembre                                                       | Octubre | Noviembre      | Diciembr   |
| 1985                   | 11.8                              | 23.2                             | 16.0                 | 22.4    | 3.7            | 4.3                     | 0.0                            | 0.0                    | 17.2                                                            | 20.3    | 20.3           | 23         |
| 1986                   | 15.5                              | 27.6                             | 20.1                 | 13.6    | 6.7            | 0.0                     | 2.3                            | 0.0                    | 9.6                                                             | 0.0     | 27.3           | mereoro.15 |
| 1987                   | 24.2                              | 24.3                             | 11.6                 | 24.1    | 0.0            | 6.2                     | 11.3                           | 3.4                    | 1.2                                                             | 10.8    | 21.4           | 10         |
| 1988                   | 27.7                              | 22.3                             | 12.3                 | 18.9    | 13.4           | 0.0                     | 0.0                            | 0.0                    | 0.0                                                             | 17.0    | 2.8            | 21         |
| 1989                   | 21.0                              | 26.6                             | 18.1                 | 24.1    | 0.0            | 7.4                     | 0.0                            | 4.8                    | 6.8                                                             | 12.4    | 16.6           | 13         |
| 1990                   | 31.0                              | 13.6                             | 13.2                 | 3.2     | 0.0            | 13.7                    | 0.0                            | 0.0                    | 5.6                                                             | 12.1    | 29.8           | 13         |
| 1991                   | 20.2                              | 28.3                             | 24.2                 | 18.2    | 6.2            | 15.2                    | 0.0                            | 0.0                    | 3.8                                                             | 6.8     | 18.7           | 20         |
| 1992                   | 31.0                              | 22.7                             | 13.7                 | 13.8    | 0.0            | 4.3                     | 0.0                            | 12.4                   | 8.2                                                             | 10.8    | 1.4            | 22         |
| 1993                   | 20.8                              | 17.6                             | 16.4                 | 7.7     | 3.8            | 0.0                     | 6.8                            | 8.0                    | 11.3                                                            | 16.1    | 13.0           | 14         |
| 1994                   | 15.1                              | 20.2                             | 11.0                 | 22.0    | 19.6           | 3.1                     | 0.0                            | 0.0                    | 4.7                                                             | 6.3     | 12.4           | 24         |
| 1995                   | 22.3                              | 26.0                             | 16.9                 | 2.1     | 0.0            | 0.0                     | 0.0                            | 0.0                    | BIA E HIDRO 0.0 A                                               | 5.7     | 16.7           | 22         |
| 1996                   | 24.2                              | 13.2                             | 19.9                 | 14.9    | 10.2           | 0.0                     | 0.0                            | 3.5                    | 6.3                                                             | 8.6     | 15.1           | 12         |
| 1997                   | 22.5                              | 32.0                             | 38.2                 | 15.3    | 3.2            | 0.0                     | 0.0                            | 22.3                   | 12.5                                                            | 14.9    | 16.0           | METROROL 9 |
| 1998                   | 13.1                              | 17.2                             | 21.8                 | 13.4    | 0.0            | 1.8                     | 0.0                            | 0.0                    | 0.0                                                             | 9.8     | 16.0           | 20         |
| 1999                   | 14.7                              | 10.9                             | 21.8                 | 14.0    | 15.9           | 0.0                     | 0.0                            | 0.0                    | 9.2                                                             | 9.2     | 12.6           | 30         |
| 2000                   | 16.0                              | 12.9                             | 15.8                 | 4.3     | 0.0            | 7.8                     | 0.0                            | 3.6                    | 6.4                                                             | 18.8    | 11.3           | 20         |
| 2001                   | 13.8                              | 15.0                             | 32.7                 | 7.4     | 15.9           | 3.2                     | 8.2                            | 4.3                    | 4.5                                                             | 19.5    | 21.3           | 19         |
| 2002                   | LOOIA # 11.1                      | 12.4                             | 11.7                 | 12.9    | 5.7            | 2.3                     | 9.6                            | 3.1                    | 6.9                                                             | 18.9    | CON NACIO 12.1 | 20         |
| 2003                   | 29.6                              | 28.4                             | 26.4                 | 11.2    | 1.8            | 9.1                     | 0.0                            | 4.2                    | 14.3                                                            | 23.8    | 15.4           | 23         |
| 2004                   | 31.9                              | 32.2                             | 27.1                 | 14.1    | 18.2           | 1.8                     | 0.8                            | 14.2                   | 6.2                                                             | 16.0    | 24.7           | 19         |
| 2005                   | 14.8                              | 30.1                             | 18.4                 | 13.2    | 2.3            | 0.0                     | 1.2                            | 1.0                    | 2.3                                                             | 15.4    | 24.2           | 14         |
| 2006                   | 29.2                              | 14.2                             | 20.8                 | 27.7    | 0.0            | 0.0                     | 0.0                            | 3.4                    | 18.4                                                            | 23.6    | 10.8           | 23         |
| 2007                   | 17.2                              | 4.8                              | 22.2                 | 11.6    | 8.6            | 0.0                     | 0.0                            | 0.0                    | 10.4                                                            | 4.0     | 12.4           | 16         |
| 2008                   | 21.5                              | 9.5                              | 8.0                  | 7.0     | 1.9            | 0.0                     | 0.0                            | 0.0                    | 8.2                                                             | 33.4    | 7.9            | 30         |
| 2009                   | 20.0                              | 10.9                             | 17.7                 | 10.8    | 0.0            | 0.0                     | 4.4                            | 0.0                    | 6.2                                                             | 9.5     | 14.6           | METEOROLII |
| 2010                   | 15.2                              | 20.0                             | 22.2                 | 11.4    | 6.2            | 0.0                     | 0.0                            | 3.7                    | 0.0                                                             | 20.8    | 6.2            | 15         |
| 2011                   | 35.8                              | 16.5                             | 14.6                 | 6.0     | 2.0            | 0.0                     | 7.2                            | 6.4                    | 14.7                                                            | 13.1    | 13.8           | 20         |
| 2012                   | 37.9                              | 12.8                             | 18.6                 | 23.2    | 0.0            | 1.8                     | 0.2                            | 0.0                    | 5.0                                                             | 10.3    | 14.0           | 22         |
| 2013                   | 32.0                              | 14.3                             | 11.5                 | 11.5    | 2.4            | 2.4                     | 1.0                            | 4.9                    | 4.2                                                             | 20.8    | 27.1           | 10         |
| 2014                   | 32.3                              | 17.0                             | 15.4                 | 11.0    | 32             | 0.0                     | 5.5                            | 46                     | 17.5                                                            | 7.5     | 13.8           | 1          |

INFORMACIÓN PROCESADA PARA: OSWALDO DARIO MAMANI SUCASAIRE BOLETA DE VENTA ELECTRÓNICA : EB01-530



SANCHO Sixto FAU 20131366028 hard Motivo: Soy el autor del documento Fecha: 18.12.2020 12:08:19 -05:00 Senamhi

FECHA

Elaborado por : 17 de diciembre de 2020 Técnico en Digitación

Vº Bº Dirección Zonal 13

| CIÓN<br>METRO<br>UENCL | : CO. TA<br>) : Precip<br>A : Mes/A | RACO (115<br>itación Máx | 6047)<br>ima en 24 H | lrs (mm) | LA<br>LO<br>AL | TITUD<br>NGITUD<br>TURA | : 15°18<br>: 69°58<br>: 3849 m | '42.0"<br>'20.9"<br>nsnm | DEPARTAMENTO: Puno<br>PROVINCIA : Huano<br>DISTRITO : Taraco |         |             | né        |
|------------------------|-------------------------------------|--------------------------|----------------------|----------|----------------|-------------------------|--------------------------------|--------------------------|--------------------------------------------------------------|---------|-------------|-----------|
| AÑO                    | Enero                               | Febrero                  | Marzo                | Abril    | Mayo           | Junio                   | Julio                          | Agosto                   | Setiembre                                                    | Octubre | Noviembre   | Diciembre |
| 1985                   | 47.0                                | 17.0                     | 24.7                 | 37.6     | 8.0            | 13.4                    | 0.0                            | 4.7                      | 24.0                                                         | 19.0    | 49.5        | 44.(      |
| 1986                   | 31.5                                | 53.0                     | 40.5                 | 31.4     | 0.0            | 0.0                     | 0.0                            | 18.4                     | 12.2                                                         | 10.6    | 21.7        | 22.5      |
| 1987                   | 40.0                                | 30.0                     | 15.0                 | 17.0     | 2.7            | 0.8                     | 13.4                           | 3.0                      | 6.0                                                          | 9.6     | 22.9        | 17.0      |
| 1988                   | 14.0                                | 17.5                     | 31.5                 | 30.0     | 19.5           | 0.0                     | 0.0                            | 0.0                      | 0.0                                                          | 19.5    | 3.0         | 20.5      |
| 1989                   | 19.4                                | 21.5                     | 17.7                 | 36.0     | 0.4            | 12.0                    | 0.0                            | 6.0                      | 5.2                                                          | 8.2     | 11.0        | 13.0      |
| 1990                   | 28.0                                | 48.1                     | 18.2                 | 8.7      | 3.0            | 28.0                    | 0.0                            | 6.8                      | 4.5                                                          | 29.0    | 13.8        | 34.6      |
| 1991                   | 26.8                                | 25.4                     | 17.3                 | 12.0     | 15.0           | 24.0                    | 0.0                            | 0.0                      | 9.1                                                          | 8.5     | 10.6        | 21.8      |
| 1992                   | 29.2                                | 20.9                     | 6.5                  | 9.3      | 0.0            | 0.0                     | 6.0                            | 43.0                     | 2.1                                                          | 16.2    | 18.0        | 22.0      |
| 1993                   | 19.5                                | 15.8                     | 17.2                 | 14.1     | 11.5           | 4.6                     | 0.0                            | 4.3                      | 10.8                                                         | 8.4     | 15.0        | 20.4      |
| 1994                   | 25.0                                | 33.2                     | 16.4                 | 12.4     | 6.8            | 0.0                     | 0.0                            | 0.0                      | 2.4                                                          | 4.2     | 5.4         | 34.2      |
| 1995                   | 45.2                                | 66.4                     | 28.4                 | 9.0      | . 3.2          | 0.0                     | 0.0                            | 0.0                      | 12.6                                                         | 18.4    | 12.8        | 32.8      |
| 1996                   | 22.4                                | 14.0                     | 14.0                 | 10.0     | 3.8            | 0.0                     | 0.0                            | 7.6                      | 14.8                                                         | 20.0    | 10.4        | 16.8      |
| 1997                   | 31.8                                | 52.2                     | 30.2                 | 6.4      | 0.0            | 0.0                     | 0.0                            | 6.6                      | 14.0                                                         | 9.0     | 15.8        | 19.0      |
| 1998                   | 40.2                                | 21.2                     | 21.4                 | 55.8     | 0.0            | 4.8                     | 0.0                            | 0.0                      | 0.0                                                          | 22,4    | 15.7        | 14.4      |
| 1999                   | 23.6                                | 13.8                     | 16.0                 | 12.4     | 5.8            | 0.0                     | 0.0                            | 0.0                      | 11.6                                                         | 11.8    | 15.6        | 15.2      |
| 2000                   | 20.8                                | 16.8                     | 20.2                 | 2.4      | 8.0            | 15.8                    | 0.0                            | 4.4                      | 3.2                                                          | 26.0    | 1.8         | 14.4      |
| 2001                   | 22.4                                | 14.6                     | 28.0                 | 7.4      | 5.2            | 2.8                     | 0.0                            | 2.2                      | 4.2                                                          | 12.8    | 14.8        | 20.2      |
| 2002                   | 20.2                                | 20.2                     | 20.4                 | 10.4     | 4.4            | 0.0                     | 8.8                            | 0.0                      | 15.8                                                         | 18,4    | COMAGE 11.8 | 9.8       |
| 2003                   | 24.6                                | 24.4                     | 15.2                 | 4.4      | 4.4            | 4.8                     | 0.0                            | 2.0                      | 10.0                                                         | 7.6     | 12.2        | 13.2      |
| 2004                   | 19.4                                | 22.0                     | 43.0                 | 11.4     | 5.6            | 2.9                     | 2.4                            | 12.0                     | 8.4                                                          | 6.4     | 18.2        | 12.0      |
| 2005                   | 20.2                                | 15.0                     | 64.0                 | 13.2     | 0.0            | 0.0                     | 0.0                            | 1.0                      | 9.2                                                          | 13.4    | 22.2        | 18.0      |
| 2006                   | 32.4                                | 19.4                     | 20.4                 | 7.0      | 0.8            | 2.0                     | 0.0                            | 1.4                      | 12.2                                                         | 28,4    | 9.4         | 48.8      |
| 2007                   | 23.4                                | 10.2                     | 19.4                 | 16.6     | 3.4            | 1.2                     | 0.4                            | 1.8                      | 10.0                                                         | 10.4    | 46.8        | 14.0      |
| 2008                   | 28.6                                | 14.8                     | 15.4                 | 0.0      | 1.4            | 0.0                     | 0.0                            | 0.0                      | 3.8                                                          | 10.2    | 16.2        | 24.2      |
| 2009                   | 22.6                                | 50.2                     | 18.8                 | 4.0      | 0.0            | 0.0                     | 3.0                            | 0.0                      | 10.0                                                         | 10.2    | 16.2        | 12.3      |
| 2010                   | 13.4                                | 21.4                     | 16.4                 | 19.2     | 13.0           | 0.0                     | 0.0                            | 0.0                      | 2.4                                                          | 9.6     | 7.4         | 19.6      |
| 2011                   | 12.2                                | 23.6                     | 15.2                 | 1.2      | 6.4            | 1.2                     | 5.4                            | 4.4                      | 8.4                                                          | 12.4    | 10.8        | 23.       |
| 2012                   | 18.0                                | 21.8                     | 28.4                 | 10.4     | 0.0            | 0.0                     | 0.0                            | 1.8                      | 5.0                                                          | 13.4    | 19.4        | 18.       |
| 2013                   | 22.6                                | 23.8                     | 23.4                 | 10.6     | 6.0            | 1.8                     | 11.8                           | 7.8                      | 2.2                                                          | 15.2    | 8.8         | 32.0      |
| 2014                   | 36.8                                | 32.4                     | 13.2                 | 6.2      | 1.6            | 0.0                     | 15.4                           | 17.4                     | 22.4                                                         | 8.8     | 10.6        | 32.       |

S/D = Sin Dato.

FECHA

INFORMACIÓN PROCESADA PARA: OSWALDO DARIO MAMANI SUCASAIRE BOLETA DE VENTA ELECTRÓNICA : EB01-530





Firmado digitalmente por FLORES SANCHO Sixto FAU 20131366028 hard o: Soy el autor del documento a: 18.12.2020 12:09:06 -05:00

: 17 de diciembre de 2020

Elaborado por Técnico en Digitación

Vº Bº Dirección Zonal 13

110

| ACIÓN<br>ÁMETRO<br>CUENCI | : CO. HU<br>) : Precip<br>A : Mes/A | JARAYA MOH<br>itación Máxi<br>Nio | HO (11503)<br>ima en 24 H | 8)<br>rs (mm) | LA<br>LO<br>AL | TITUD<br>NGITUD<br>TURA | : 15°23<br>: 69°29<br>: 3890 r | '17.8"<br>'03.4"<br>nsnm | DEI<br>PRO<br>DIS | PARTAMEN<br>OVINCIA<br>TRITO | TO: Puno<br>: Moho<br>: Moho |          |
|---------------------------|-------------------------------------|-----------------------------------|---------------------------|---------------|----------------|-------------------------|--------------------------------|--------------------------|-------------------|------------------------------|------------------------------|----------|
| AÑO                       | Enero                               | Febrero                           | Marzo                     | Abril         | Mayo           | Junio                   | Julio                          | Agosto                   | Setiembre         | Octubre                      | Noviembre                    | Diciembr |
| 1985                      | 41.8                                | 23.3                              | 33.5                      | 38.6          | 8.5            | 10.7                    | 0.2                            | 1.0                      | 25.2              | 22.0                         | 48.4                         | 51.      |
| 1986                      | 30.0                                | 37.8                              | 22.6                      | 14.6          | 30.5           | 0.0                     | 15.1                           | 27.3                     | 13.5              | 11.6                         | 31.0                         | 34.      |
| 1987                      | 27.9                                | 21.1                              | 38.0                      | 15.0          | 7.0            | 4.6                     | 17.7                           | 12.3                     | 4.8               | 14.6                         | 22.1                         | 34.      |
| 1988                      | 63.2                                | 49.3                              | 54.7                      | 22.2          | 20.3           | 0.0                     | 0.0                            | 0.0                      | SIA E HIORO 1.7 4 | 16.7                         | 5.8                          | 13.      |
| 1989                      | 21.7                                | 31.4                              | 18.0                      | 21.2          | 21.0           | 5.2                     | 3.0                            | 12.8                     | 6.6               | 14.6                         | 10.8                         | 10.      |
| 1990                      | 25.5                                | 24.8                              | 21.9                      | 19.0          | 3.4            | 26.4                    | 0.0                            | 7.2                      | 12.3              | 24.7                         | 24.5                         | 20.      |
| 1991                      | 29.2                                | 45.2                              | 32.3                      | 10.2          | 13.0           | 24.5                    | 0.0                            | 6.8                      | 10.4              | 6.4                          | 25.4                         | 37.      |
| 1992                      | 21.3                                | 17.2                              | 19.0                      | 10.5          | 0.0            | 20.2                    | 1.5                            | 51.0                     | 2.8               | 21.5                         | 8.5                          | 32.      |
| 1993                      | 45.3                                | 11.7                              | 12.2                      | 19.7          | 10.9           | 15.6                    | 1.4                            | 4.2                      | 8.5               | 14.7                         | 19.7                         | 20.      |
| 1994                      | 33.8                                | 23.1                              | 26.5                      | 28.2          | 21.2           | 1.8                     | 0.0                            | 2.0                      | 2.0               | 10.7                         | 15.4                         | 41       |
| 1995                      | 17.8                                | 33.4                              | 20.7                      | 4.3           | 10.0           | 0.0                     | 0.0                            | DE MATEO1.4              | BA 6 HOR 11.8 A   | 12.7                         | CIO NACIO 28.4               | 28.      |
| 1996                      | 37.0                                | 19.6                              | 38.7                      | 11.0          | 3.0            | 0.0                     | 6.0                            | 2.6                      | 9.6               | 6.2                          | 24.6                         | 27.      |
| 1997                      | 46.0                                | 24.0                              | 24.3                      | 23.4          | 7.2            | 0.0                     | 0.2                            | 15.2                     | 15.6              | 13.4                         | 31.2                         | 24       |
| 1998                      | 28.7                                | 31.6                              | 34.5                      | 15.0          | 0.0            | 11.0                    | 0.0                            | 2.0                      | 1.6               | 8.8                          | 17.6                         | 11.      |
| 1999                      | 13.6                                | 12.6                              | 50.5                      | 17.5          | 4.0            | 0.5                     | 0.4                            | 8.0                      | 12.4              | 15.6                         | 15.0                         | 10       |
| 2000                      | 29.8                                | 16.5                              | 39.5                      | 18.0          | 5.9            | 4.4                     | 0.0                            | 14.2                     | 6.5               | 26.6                         | 18.5                         | 33       |
| 2001                      | 62.0                                | 30.4                              | 27.0                      | 20.4          | 13.8           | 5.1                     | 18.3                           | 4.3                      | 3.4               | 25.5                         | 15.6                         | 45       |
| 2002                      | 38.6                                | 43.8                              | 41.2                      | 10.4          | 9.3            | 2.0                     | 10.2                           | 5.8                      | 15.3              | 23.1                         | 35.3                         | 16       |
| 2003                      | 39.4                                | 40.1                              | 36.4                      | 18.5          | 10.2           | 10.6                    | 7.2                            | 7.8                      | 17.7              | 17.4                         | 7.2                          | 74       |
| 2004                      | 52.4                                | 22.5                              | 35.5                      | 13.8          | 3.1            | 5.8                     | 8.4                            | 25.9                     | 7.2               | 7.3                          | 35.3                         | 15       |
| 2005                      | 24.7                                | 27.8                              | 6.2                       | 34.9          | 0.5            | 0.0                     | 0.0                            | 9.0                      | 17.2              | 22.8                         | 33.2                         | 35       |
| 2006                      | 34.8                                | 26.8                              | 22.1                      | 11.9          | 2.4            | 0.0                     | 0.0                            | 0.9                      | 26.7              | 9.6                          | 24.0                         | 22       |
| 2007                      | 26.4                                | 28.5                              | S/D                       | 25.6          | 3.6            | 0.0                     | 2.2                            | 0.0                      | 16.9              | 21.1                         | 24.4                         | 23       |
| 2008                      | 34.5                                | 30.5                              | 42.0                      | 3.0           | 18.0           | 0.0                     | 0.0                            | 0.0                      | 3.6               | 26.6                         | 6.3                          | 33       |
| 2009                      | 21.3                                | 20.2                              | 21.4                      | 6.6           | 2.2            | 0.0                     | 4.6                            | 0.0                      | 3.6               | 37.6                         | 38.6                         | 23       |
| 2010                      | 29.8                                | 42.6                              | 30.3                      | 12.2          | 20.6           | 0.9                     | 0.0                            | 4.7                      | 1.4               | 20.4                         | 0.5                          | 48       |
| 2011                      | 10.6                                | 29.5                              | 22.0                      | 5.0           | 6.2            | 0.0                     | 4.1                            | 2.0                      | E HO 17.4         | 17.0                         | 16.7                         | 29       |
| 2012                      | 37.2                                | 40.7                              | 33.6                      | 31.0          | 0.3            | 2.2                     | 0.0                            | 3.3                      | 13.2              | 29.0                         | 24.5                         | 51       |
| 2012                      | 23.6                                | 38.9                              | 26.3                      | 11.0          | 15.7           | 12.0                    | 3.2                            | 4.9                      | 0.0               | 23.2                         | 13.0                         | 31       |
| 2013                      | 22.2                                | 25.0                              | 24.5                      | 20.6          | 13.7           | 1.0                     | 9.5                            | 9.2                      | 20.8              | 8.5                          | 5.5                          | 15       |

S/D = Sin Dato.

INFORMACIÓN PROCESADA PARA: OSWALDO DARIO MAMANI SUCASAIRE BOLETA DE VENTA ELECTRÓNICA : EB01-530



Finna Dipital Senamhi

Firmado digitalmente por FLORES SANCHO Sixto FAU 20131366028 hard Motivo: Soy el autor del documento Fecha: 18.12.2020 12:09:50-05:00

Elaborado por Vº Bº FECHA : 17 de diciembre de 2020 Dirección Zonal 13 Técnico en Digitación

# ANEXO B ✓PRECIPITACIONES MÁXIMAS EN 24 HORAS ✓ANÁLISIS DOBLE MASA ✓ANÁLISIS ESTADÍSTICO ✓ANÁLISIS DE TENDENCIA MEDIA Y ESTANADAR (DATOS CORREGIDOS)

|           |          |          | PRE   | CIPITACIO | NES MÁXII | MOS EN 24 | HORAS C | ORREGIDC | ) - ESTACIÓ | ΌΝ ΗUANC | ANÉ   |       |       |                        |
|-----------|----------|----------|-------|-----------|-----------|-----------|---------|----------|-------------|----------|-------|-------|-------|------------------------|
| N⁰<br>REG | AÑO      | ENE      | FEB   | MAR       | ABR       | MAY       | JUN     | JUL      | AGO         | SET      | ост   | NOV   | DIC   | PREC.<br>MAX.<br>ANUAL |
| 1         | 1985     | 18.25    | 8.26  | 21.01     | 33.15     | 5.49      | 8.72    | 0.73     | 2.42        | 23.47    | 12.71 | 30.69 | 25.16 | 33.15                  |
| 2         | 1986     | 28.23    | 31.00 | 27.77     | 11.79     | 4.42      | 0.73    | 5.03     | 13.18       | 11.33    | 7.18  | 16.25 | 15.94 | 31.00                  |
| 3         | 1987     | 45.29    | 6.26  | 20.09     | 6.80      | 6.80      | 7.49    | 7.49     | 8.26        | 4.88     | 17.02 | 25.54 | 12.41 | 45.29                  |
| 4         | 1988     | 40.99    | 14.71 | 33.92     | 23.93     | 15.48     | 0.73    | 0.73     | 0.73        | 5.57     | 12.87 | 3.80  | 15.79 | 40.99                  |
| 5         | 1989     | 25.31    | 24.70 | 12.41     | 12.87     | 2.11      | 2.27    | 1.50     | 6.41        | 7.64     | 5.34  | 11.18 | 27.62 | 27.62                  |
| 6         | 1990     | 17.32    | 18.86 | 12.41     | 6.03      | 8.10      | 18.55   | 0.73     | 13.18       | 13.10    | 11.18 | 17.02 | 19.01 | 19.01                  |
| 7         | 1991     | 19.09    | 45.29 | 34.69     | 5.80      | 10.56     | 19.63   | 1.50     | 1.19        | 10.41    | 4.88  | 16.40 | 29.92 | 45.29                  |
| 8         | 1992     | 12.48    | 11.48 | 23.62     | 3.65      | 0.73      | 8.10    | 7.49     | 37.99       | 8.87     | 19.63 | 11.72 | 22.16 | 37.99                  |
| 9         | 1993     | 20.32    | 14.40 | 17.25     | 15.40     | 6.26      | 2.34    | 0.73     | 4.26        | 3.49     | 17.25 | 25.31 | 24.70 | 25.31                  |
| 10        | 1994     | 16.09    | 19.17 | 53.51     | 12.41     | 11.48     | 2.11    | 0.73     | 0.73        | 5.80     | 8.57  | 12.94 | 32.31 | 53.51                  |
| 11        | 1995     | 13.18    | 18.32 | 13.64     | 8.18      | 1.65      | 0.73    | 1.34     | 1.65        | 7.11     | 9.18  | 27.62 | 12.71 | 27.62                  |
| 12        | 1996     | 39.30    | 8.80  | 15.56     | 7.80      | 1.73      | 0.73    | 6.57     | 2.80        | 4.34     | 6.41  | 15.48 | 40.37 | 40.37                  |
| 13        | 1997     | 28.08    | 26.85 | 23.93     | 19.40     | 6.41      | 0.73    | 0.73     | 9.18        | 10.79    | 7.34  | 22.32 | 12.25 | 28.08                  |
| 14        | 1998     | 22.62    | 13.94 | 19.17     | 12.10     | 0.73      | 2.96    | 0.73     | 1.11        | 2.50     | 11.56 | 42.60 | 16.94 | 42.60                  |
| 15        | 1999     | 20.78    | 9.64  | 35.30     | 34.30     | 7.80      | 1.11    | 1.73     | 1.42        | 9.03     | 12.94 | 20.17 | 11.02 | 35.30                  |
| 16        | 2000     | 13.00    | 14.60 | 19.60     | 5.50      | 7.80      | 3.00    | 0.50     | 9.40        | 10.50    | 17.80 | 13.70 | 28.40 | 28.40                  |
| 17        | 2001     | 24.80    | 24.90 | 29.70     | 5.90      | 10.50     | 3.50    | 2.80     | 5.90        | 2.30     | 28.20 | 12.00 | 25.70 | 29.70                  |
| 18        | 2002     | 15.00    | 30.90 | 22.60     | 32.00     | 5.90      | 4.80    | 10.00    | 2.00        | 8.30     | 29.60 | 20.00 | 25.30 | 32.00                  |
| 19        | 2003     | 26.80    | 32.30 | 31.30     | 19.00     | 1.60      | 11.00   | 1.10     | 1.60        | 6.90     | 27.20 | 19.90 | 39.20 | 39.20                  |
| 20        | 2004     | 33.10    | 32.20 | 23.50     | 11.40     | 2.50      | 2.30    | 5.40     | 19.00       | 7.80     | 13.60 | 32.70 | 35.90 | 35.90                  |
| 21        | 2005     | 15.20    | 19.30 | 26.40     | 4.50      | 0.50      | 0.00    | 0.00     | 4.60        | 12.60    | 18.50 | 13.80 | 25.00 | 26.40                  |
| 22        | 2006     | 31.60    | 14.90 | 19.40     | 20.20     | 0.50      | 1.00    | 0.00     | 2.60        | 8.30     | 26.50 | 11.00 | 22.00 | 31.60                  |
| 23        | 2007     | 29.20    | 22.20 | 34.60     | 18.90     | 2.60      | 0.00    | 1.40     | 0.70        | 21.80    | 3.60  | 19.60 | 25.70 | 34.60                  |
| 24        | 2008     | 23.00    | 36.60 | 15.90     | 3.30      | 7.30      | 0.00    | 0.00     | 0.00        | 2.60     | 16.60 | 13.50 | 43.90 | 43.90                  |
| 25        | 2009     | 21.00    | 25.30 | 16.50     | 6.70      | 0.50      | 0.00    | 1.60     | 0.00        | 10.00    | 4.50  | 18.00 | 16.80 | 25.30                  |
| 26        | 2010     | 20.60    | 13.10 | 9.50      | 10.50     | 13.50     | 0.00    | 0.00     | 0.00        | 0.30     | 12.60 | 0.40  | 19.70 | 20.60                  |
| 27        | 2011     | 15.10    | 32.20 | 15.90     | 15.60     | 3.90      | 0.00    | 3.00     | 0.90        | 8.30     | 10.90 | 13.00 | 12.70 | 32.20                  |
| 28        | 2012     | 20.80    | 22.40 | 27.40     | 10.70     | 0.20      | 0.00    | 0.30     | 1.60        | 9.80     | 6.90  | 19.80 | 23.80 | 27.40                  |
| 29        | 2013     | 17.40    | 44.10 | 6.60      | 6.60      | 9.20      | 4.10    | 4.70     | 6.90        | 1.50     | 28.10 | 17.40 | 20.30 | 44.10                  |
| 30        | 2014     | 27.40    | 26.20 | 24.40     | 5.00      | 8.30      | 0.80    | 7.60     | 3.60        | 22.90    | 12.40 | 4.30  | 24.40 | 27.40                  |
|           |          |          |       |           |           |           |         |          |             |          |       |       |       |                        |
|           | Datos co | rregidos |       |           |           |           |         |          |             |          |       |       |       |                        |

|           |          |           | PR    | FCIPITACI | ΟΝΕς Μάλ |       |       | CORREGIE | O - ESTAC | ΙΟΝ ΤΑΡΑ | 0     |       |       |                        |
|-----------|----------|-----------|-------|-----------|----------|-------|-------|----------|-----------|----------|-------|-------|-------|------------------------|
| N⁰<br>REG | AÑO      | ENE       | FEB   | MAR       | ABR      | MAY   | JUN   | JUL      | AGO       | SET      | ост   | NOV   | DIC   | PREC.<br>MAX.<br>ANUAL |
| 1         | 1985     | 47.00     | 17.00 | 24.70     | 37.60    | 8.00  | 13.40 | 0.00     | 4.70      | 24.00    | 19.00 | 49.50 | 44.00 | 49.50                  |
| 2         | 1986     | 31.50     | 53.00 | 40.50     | 31.40    | 0.00  | 0.00  | 0.00     | 18.40     | 12.20    | 10.60 | 21.70 | 22.50 | 53.00                  |
| 3         | 1987     | 40.00     | 30.00 | 15.00     | 17.00    | 2.70  | 0.80  | 13.40    | 3.00      | 6.00     | 9.60  | 22.90 | 17.60 | 40.00                  |
| 4         | 1988     | 14.00     | 17.50 | 31.50     | 30.00    | 19.50 | 0.00  | 0.00     | 0.00      | 0.00     | 19.50 | 3.00  | 20.50 | 31.50                  |
| 5         | 1989     | 19.40     | 21.50 | 17.70     | 36.00    | 0.40  | 12.00 | 0.00     | 6.00      | 5.20     | 8.20  | 11.00 | 13.00 | 36.00                  |
| 6         | 1990     | 28.00     | 48.10 | 18.20     | 8.70     | 3.00  | 28.00 | 0.00     | 6.80      | 4.50     | 29.00 | 13.80 | 34.60 | 48.10                  |
| 7         | 1991     | 26.80     | 25.40 | 17.30     | 12.00    | 15.00 | 24.00 | 0.00     | 0.00      | 9.10     | 8.50  | 10.60 | 21.80 | 26.80                  |
| 8         | 1992     | 29.20     | 20.90 | 6.50      | 9.30     | 0.00  | 0.00  | 6.00     | 43.00     | 2.10     | 16.20 | 18.00 | 22.00 | 43.00                  |
| 9         | 1993     | 19.50     | 15.80 | 17.20     | 14.10    | 11.50 | 4.60  | 0.00     | 4.30      | 10.80    | 8.40  | 15.00 | 20.40 | 20.40                  |
| 10        | 1994     | 25.00     | 33.20 | 16.40     | 12.40    | 6.80  | 0.00  | 0.00     | 0.00      | 2.40     | 4.20  | 5.40  | 34.20 | 34.20                  |
| 11        | 1995     | 45.20     | 66.40 | 28.40     | 9.00     | 3.20  | 0.00  | 0.00     | 0.00      | 12.60    | 18.40 | 12.80 | 32.80 | 66.40                  |
| 12        | 1996     | 22.40     | 14.00 | 14.00     | 10.00    | 3.80  | 0.00  | 0.00     | 7.60      | 14.80    | 20.00 | 10.40 | 16.80 | 22.40                  |
| 13        | 1997     | 31.80     | 52.20 | 30.30     | 6.40     | 0.00  | 0.00  | 0.00     | 6.60      | 14.00    | 9.00  | 15.80 | 19.00 | 52.20                  |
| 14        | 1998     | 40.20     | 21.20 | 21.40     | 55.80    | 0.00  | 4.80  | 0.00     | 0.00      | 0.00     | 22.40 | 15.70 | 14.40 | 55.80                  |
| 15        | 1999     | 23.60     | 13.80 | 16.00     | 12.40    | 5.80  | 0.00  | 0.00     | 0.00      | 11.60    | 11.80 | 15.60 | 15.20 | 23.60                  |
| 16        | 2000     | 31.31     | 24.68 | 30.31     | 0.80     | 10.09 | 23.02 | -3.18    | 4.12      | 2.13     | 39.93 | -0.19 | 20.70 | 39.93                  |
| 17        | 2001     | 33.96     | 21.03 | 43.25     | 9.09     | 5.44  | 1.46  | -3.18    | 0.47      | 3.79     | 18.04 | 21.36 | 30.31 | 43.25                  |
| 18        | 2002     | 30.31     | 30.31 | 30.65     | 14.07    | 4.12  | -3.18 | 11.41    | -3.18     | 23.02    | 27.33 | 16.39 | 13.07 | 30.65                  |
| 19        | 2003     | 37.61     | 37.28 | 22.02     | 4.12     | 4.12  | 4.78  | -3.18    | 0.14      | 13.40    | 9.42  | 17.05 | 18.71 | 37.61                  |
| 20        | 2004     | 22.71     | 25.67 | 49.62     | 13.59    | 6.97  | 3.89  | 3.32     | 14.27     | 10.17    | 7.88  | 21.34 | 14.27 | 49.62                  |
| 21        | 2005     | 23.62     | 17.69 | 73.56     | 15.64    | 0.59  | 0.59  | 0.59     | 1.73      | 11.08    | 15.87 | 25.90 | 21.11 | 73.56                  |
| 22        | 2006     | 37.53     | 22.71 | 23.85     | 8.57     | 1.50  | 2.87  | 0.59     | 2.18      | 14.50    | 32.97 | 11.31 | 56.23 | 56.23                  |
| 23        | 2007     | 27.27     | 12.22 | 22.71     | 19.51    | 4.46  | 1.96  | 1.04     | 2.64      | 11.99    | 12.45 | 53.95 | 16.55 | 53.95                  |
| 24        | 2008     | 33.20     | 17.46 | 18.15     | 0.59     | 2.18  | 0.59  | 0.59     | 0.59      | 4.92     | 12.22 | 19.06 | 28.18 | 33.20                  |
| 25        | 2009     | 26.36     | 57.83 | 22.02     | 5.15     | 0.59  | 0.59  | 4.01     | 0.59      | 11.99    | 12.22 | 19.06 | 14.50 | 57.83                  |
| 26        | 2010     | 15.87     | 24.99 | 19.29     | 22.48    | 15.41 | 0.59  | 0.59     | 0.59      | 3.32     | 11.53 | 9.03  | 22.94 | 24.99                  |
| 27        | 2011     | 14.50     | 27.50 | 17.92     | 1.96     | 7.88  | 1.96  | 6.74     | 5.60      | 10.17    | 14.73 | 12.90 | 27.04 | 27.50                  |
| 28        | 2012     | 21.11     | 25.44 | 32.97     | 12.45    | 0.59  | 0.59  | 0.59     | 2.64      | 6.29     | 15.87 | 22.71 | 22.02 | 32.97                  |
| 29        | 2013     | 26.36     | 27.72 | 27.27     | 12.67    | 7.43  | 2.64  | 14.04    | 9.48      | 3.10     | 17.92 | 10.62 | 37.76 | 37.76                  |
| 30        | 2014     | 42.55     | 37.53 | 15.64     | 7.66     | 2.41  | 0.59  | 18.15    | 20.43     | 26.13    | 10.62 | 12.67 | 37.53 | 42.55                  |
|           |          |           |       |           |          |       |       |          |           |          |       |       |       |                        |
|           | Datos co | rregidos: |       |           |          |       |       |          |           |          |       |       |       |                        |
|           | Perio    | odo 1     |       |           |          |       |       |          |           |          |       |       |       |                        |



| ESTACIÓN   | N° TRAMO | PERK | DDOS | N° DATOS | MEDIA   | MEDIA DESV.<br>EST. |         | STADÍST | FICA CON L<br>SIGNIFICA | INA PROBA<br>CIÓN DEL 5 | ABILIDAD D<br>5% (α/2 = 0. | EL 95%,<br>025) |  |
|------------|----------|------|------|----------|---------|---------------------|---------|---------|-------------------------|-------------------------|----------------------------|-----------------|--|
|            |          |      |      |          |         | 2011                | Sp      | Sd      | tc                      | G.L.                    | tt                         | MEDIA           |  |
| Huancané   | 1        | 1986 | 1999 | 180      | 13.5311 | 10.9353             | 10.0252 | 1 15 27 | 0.0000                  | 250                     | 1.0666                     | Cin calta       |  |
| Huaricarie | 2        | 2000 | 2014 | 180      | 13.5311 | 10.9353             | 10.9555 | 1.1527  | 0.0000                  | 220                     | 1.9000                     | SITISAILO       |  |
|            |          |      |      |          |         |                     |         |         |                         |                         |                            |                 |  |
|            | 1        | 1985 | 1999 | 180      | 15.1778 | 13.5007             | 12 5007 | 2 1021  | 0.0000                  | 226                     | 1.0705                     | Circ and he     |  |
| Townson    | 2        | 2000 | 2003 | 48       | 15.1778 | 13.5007             | 13.5007 | 2.1931  | 0.0000                  | 226                     | 1.9705                     | Sin saito       |  |
| Taraco     | 1        | 1985 | 2003 | 228      | 15.1778 | 13.4710             | 12 4710 | 1 4722  | 0.0000                  | 250                     | 1.0666                     | Cin colto       |  |
|            | 2        | 2004 | 2014 | 132      | 15.1778 | 13.4710             | 15.4/10 | 1.4/33  | 0.0000                  | 558                     | 1.9000                     | Sin salto       |  |

# Análisis de tendencia media y estándar estación Huancané

| TENDENCIA EN LA MEDIA:                 |              |
|----------------------------------------|--------------|
| $T_m = A_m + B_m * t$                  |              |
| Cálculo de los parámetros, regresión l | ineal simple |
| N° datos                               | 360          |
| Desviación estándar del tiempo (St)    | 104.0673     |
| Desviación estándar media (STm)        | 10.9200      |
| $\overline{t \cdot T_m}$               | 2389.6004    |
| $\overline{t}$                         | 180.5000     |
| $T_m$                                  | 13.5311      |
| R                                      | -0.0464      |
| Bm                                     | -0.0049      |
| Am                                     | 14.4105      |

TENDENCIA EN LA DESVIACIÓN ESTÁNDAR  $T_s = A_s + B_s * t$ Cálculo de los parámetros, regresión eal simple N° datos 30 Desviación estándar del tiempo (St) 8.8034 Desviación estándar media (STm) 2.2391  $t \cdot T_s$ 169.0800 15.5000 10.9184 -0.0079 R -0.0020 Bs 10.9495 As

Tm = 14.4105-0.0049\*t

#### Ts = 10.9495-0.0020\*t

| man and a state to the state of the   |                                  |   | en al contra da la contra da servici       |             |  |  |  |  |
|---------------------------------------|----------------------------------|---|--------------------------------------------|-------------|--|--|--|--|
| Evaluación de la tendencia (l         | m)                               | 1 | Evaluación de la tendencia ( l             | S)          |  |  |  |  |
| Para averiguar si la tendencia es sig | nificativa:                      |   | Para averiguar si la tendencia es sigr     | nificativa: |  |  |  |  |
| se analiza el coeficiente de regres   | ión Bm.                          |   | se analiza el coeficiente de regresión Bm. |             |  |  |  |  |
| o también el coeficiente de correl    | ación R.                         |   | o también el coeficiente de correlación R. |             |  |  |  |  |
|                                       |                                  |   |                                            |             |  |  |  |  |
| Cálculo del estadístico Tc            |                                  | _ | Cálculo del estadístico Tc                 |             |  |  |  |  |
| tc                                    | -0.8795                          |   | tc                                         | -0.0417     |  |  |  |  |
| Cálculo del t tabular (tt)            |                                  |   | Cálculo del t tabular (tt)                 |             |  |  |  |  |
| Probabilidad 95%                      |                                  |   | Probabilidad                               | 95%         |  |  |  |  |
| Nivel de significancia α/2            | Nivel de significancia α/2 0.025 |   |                                            | 0.025       |  |  |  |  |
| Grados de libertad (G.L. = n-2)       | 358                              |   | Grados de libertad (G.L. = n-2)            | 28          |  |  |  |  |
| Se obtiene de la tabla t de Student   |                                  |   | Se obtiene de la tabla t de Student        |             |  |  |  |  |
| tt                                    | 1.907                            |   | tt                                         | 2.048       |  |  |  |  |
| Comparación del tc con el t           | ít -                             | - | Comparación del tc con el t                | t           |  |  |  |  |
| Si.  tc ≤tt (95%)→R no es signifi     | cativo                           |   | Si.  tc ≤tt (95%)→R no es signifi          | cativo      |  |  |  |  |
| No hay que corregir                   |                                  |   | No hay que corregir                        |             |  |  |  |  |
| Si.  tc >tt (95%)→R si es signifi     | cativo                           |   | Si.  tc >tt (95%)→R si es significativo    |             |  |  |  |  |
| Si hay que corregir                   |                                  |   | Si hay que corregir                        |             |  |  |  |  |
| NO CORREGIR LA TENDENCIA M            | IEDIA                            |   | NO CORREGIR LA TENDENCIA EN DESV.          | ESTANDAR    |  |  |  |  |

| TENDENCIA EN LA MEDIA:                                 | :            |                                         | TENDENCIA EN LA DESVIACIÓN ES                          | FÁNDAR       |  |  |  |
|--------------------------------------------------------|--------------|-----------------------------------------|--------------------------------------------------------|--------------|--|--|--|
| $T_m = A_m + B_m * t$                                  |              |                                         | $T_s = A_s + B_s * t$                                  |              |  |  |  |
| Cálculo de los parámetros, regresión l                 | ineal simple |                                         | Cálculo de los parámetros, regresión li                | ineal simple |  |  |  |
| N° datos                                               | 228          |                                         | N° datos                                               | 19           |  |  |  |
| Desviación estándar del tiempo (St)                    | 65.9621      |                                         | Desviación estándar del tiempo (St)                    | 5.6273       |  |  |  |
| Desviación estándar media (STm)                        | 13.4710      |                                         | Desviación estándar media (STm)                        | 3.8165       |  |  |  |
| $\overline{t \cdot T_m}$                               | 1648.7720    |                                         | $\overline{t \cdot T_s}$                               | 130.4385     |  |  |  |
| ī                                                      | 114.5000     |                                         | ī                                                      | 10.0000      |  |  |  |
| $\overline{T_m}$                                       | 15.1778      |                                         | $\overline{T_s}$                                       | 13.0850      |  |  |  |
| R                                                      | -0.1003      |                                         | R                                                      | -0.0192      |  |  |  |
| Bm                                                     | -0.0205      |                                         | Bs                                                     | -0.0130      |  |  |  |
| Am                                                     | 17.5221      |                                         | As                                                     | 13.2150      |  |  |  |
| Tm = 17.5221-0.0205*t<br>Evaluación de la tendencia (1 | Fm)          |                                         | Ts = 13.2150-0.0130*t<br>Evaluación de la tendencia (1 | ſs)          |  |  |  |
| Para averiguar si la tendencia es sig                  | nificativa:  |                                         | Para averiguar si la tendencia es sig                  | nificativa:  |  |  |  |
| se analiza el coeficiente de regres                    | ión Bm.      |                                         | se analiza el coeficiente de regres                    | ión Bm.      |  |  |  |
| o también el coeficiente de correl                     | ación R.     |                                         | o también el coeficiente de correl                     | ación R.     |  |  |  |
| Cálculo del estadístico Tc                             |              |                                         | Cálculo del estadístico Tc                             |              |  |  |  |
| tc                                                     | -1.5148      |                                         | tc -0.0791                                             |              |  |  |  |
| Cálculo del t tabular (tt)                             |              |                                         | Cálculo del t tabular (tt)                             |              |  |  |  |
| Probabilidad                                           | 95%          |                                         | Probabilidad                                           | 95%          |  |  |  |
| Nivel de significancia $\alpha/2$                      | 0.025        |                                         | Nivel de significancia α/2                             | 0.025        |  |  |  |
| Grados de libertad (G.L. = n-2)                        | 226          |                                         | Grados de libertad (G.L. = n-2)                        | 17           |  |  |  |
| Se obtiene de la tabla t de Student                    |              |                                         | Se obtiene de la tabla t de Student                    |              |  |  |  |
| tt                                                     | 1.946        |                                         | tt                                                     | 2.11         |  |  |  |
| Comparación del tc con el t                            | lt           |                                         | Comparación del tc con el t                            | it .         |  |  |  |
| Si.  tc ≤tt (95%)→R no es signif                       | icativo      |                                         | Si.  tc ≤tt (95%)→R no es signifi                      | cativo       |  |  |  |
| No hay que corregir                                    |              |                                         | No hay que corregir                                    |              |  |  |  |
| Si.  tc >tt (95%)→R si es signifi                      | cativo       | Si.  tc >tt (95%)→R si es significativo |                                                        |              |  |  |  |
| Si hay que corregir                                    |              | Si hay que corregir                     |                                                        |              |  |  |  |
| NO CORREGIR LA TENDENCIA N                             | IEDIA        |                                         | NO CORREGIR LA TENDENCIA EN DESV. ESTANDAR             |              |  |  |  |

# Análisis de tendencia media y estándar estación Taraco (tramo 1-2)

### Análisis de tendencia media y estándar estación Taraco (tramo 3-4)

-0.0438

-0.0057

16.1988

#### TENDENCIA EN LA MEDIA: $T_m = A_m + B_m * t$ Cálculo de los rámetros, regresión l al simple N° datos 360 Desviación estándar del tiempo (St) 104.0673 Desviación estándar media (STm) 13.4522 $t \cdot T_m$ 2678.3274 180.5000 Ŧ $\overline{T}_m$ 15.1778

R

Bm

Am

#### $T_s = A_s + B_s * t$ Cálculo de los p arámetros, regresión li al simple N° datos 30 Desviación estándar del tiempo (St) 8.8034 Desviación estándar media (STm) 3.6487 $t \cdot T_s$ 203.1050 15.5000 Ŧ Ŧ, 13.1904

TENDENCIA EN LA DESVIACIÓN ESTÁNDAR

Tm = 16.1988-0.0057\*t

Evaluación de la tendencia (Tm) Para averiguar si la tendencia es significativa: se analiza el coeficiente de regresión Bm. o también el coeficiente de correlación R.

#### Ts = 13.4597-0.0174\*t

-0.0419

-0.0174

13.4597

R

Bs

As

| Evaluación de la tendencia (Ts)                  |
|--------------------------------------------------|
| Para averiguar si la tendencia es significativa: |
| se analiza el coeficiente de regresión Bm.       |
| o también el coeficiente de correlación R.       |

| Cálculo del estadístico Tc          |         | _ | Cálculo del estadístico Tc          |            |
|-------------------------------------|---------|---|-------------------------------------|------------|
| tc                                  | -0.8288 |   | tc                                  | -0.2220    |
| Cálculo del t tabular (tt)          |         |   | Cálculo del t tabular (tt)          |            |
| Probabilidad                        | 95%     |   | Probabilidad                        | 95%        |
| Nivel de significancia α/2          | 0.025   |   | Nivel de significancia α/2          | 0.025      |
| Grados de libertad (G.L. = n-2)     | 358     |   | Grados de libertad (G.L. = n-2)     | 28         |
| Se obtiene de la tabla t de Student |         |   | Se obtiene de la tabla t de Student |            |
| tt                                  | 1.907   |   | tt                                  | 2.048      |
| Comparación del tc con el t         | tt      |   | Comparación del tc con el t         | it         |
| Si.  tc ≤tt (95%)→R no es signifi   | icativo |   | Si.  tc ≤tt (95%)→R no es signifi   | cativo     |
| No hay que corregir                 |         |   | No hay que corregir                 |            |
| Si.  tc >tt (95%)→R si es signifi   | cativo  |   | Si.  tc >tt (95%)→R si es signifi   | cativo     |
| Si hay que corregir                 |         |   | Si hay que corregir                 |            |
| NO CORREGIR LA TENDENCIA N          | IEDIA   |   | NO CORREGIR LA TENDENCIA EN DESV    | . ESTANDAR |

# ANEXO C PRUEBA DE BONDAD DE AJUSTE SMIRNOV-KOLMOGOROV

|               |           | Delta                  | 0.0198   | 0.0370  | 0.0435   | 0.0118   | 0.0218   | 0.0331     | 0.0008   | 0.0214  | 0.0537   | 0.0643   | 0.0812   | 0.0484  | 0.0135   | 0.0145   | 0.0261          | 0.0480   | 0.0319  | 0.0064   | 0.0065   | 0.0008   | 0.0522  | 0.0616            | 0.0651  | 0.0498   | 0.0564       | 0.0501   | 0.0214   | 0.0085   | 0.0238   | 0.0125   |      |                |                  |                 |            |
|---------------|-----------|------------------------|----------|---------|----------|----------|----------|------------|----------|---------|----------|----------|----------|---------|----------|----------|-----------------|----------|---------|----------|----------|----------|---------|-------------------|---------|----------|--------------|----------|----------|----------|----------|----------|------|----------------|------------------|-----------------|------------|
|               |           | F(Z)                   | 0.0124   | 0.0275  | 0.1403   | 0.1408   | 0.1831   | 0.2266     | 0.2266   | 0.2366  | 0.2366   | 0.2583   | 0.2737   | 0.3387  | 0.4059   | 0.4371   | 0.4578          | 0.4681   | 0.5165  | 0.5871   | 0.6194   | 0.6459   | 0.7296  | 0.7713            | 0.8070  | 0.8240   | 0.8629       | 0.8888   | 0.8924   | 0.9117   | 0.9117   | 0.9802   |      |                |                  |                 |            |
|               |           | Z                      | -2.2437  | -1.9193 | -1.0789  | -1.0766  | -0.9035  | -0.7500    | -0.7500  | -0.7171 | -0.7171  | -0.6487  | -0.6017  | -0.4161 | -0.2382  | -0.1583  | -0.1060         | -0.0800  | 0.0413  | 0.2200   | 0.3040   | 0.3744   | 0.6116  | 0.7432            | 0.8671  | 0.9306   | 1.0932       | 1.2200   | 1.2392   | 1.3515   | 1.3515   | 2.0578   |      |                | 12               | ŝ               |            |
| ETROS         |           | r(x) =<br>A/(N+1)      | 0.0323   | 0.0645  | 0.0968   | 0.1290   | 0.1613   | 0.1935     | 0.2258   | 0.2581  | 0.2903   | 0.3226   | 0.3548   | 0.3871  | 0.4194   | 0.4516   | 0.4839          | 0.5161   | 0.5484  | 0.5806   | 0.6129   | 0.6452   | 0.6774  | 0.7097            | 0.7419  | 0.7742   | 0.8065       | 0.8387   | 0.8710   | 0.9032   | 0.9355   | 0.9677   |      |                | 0.08             | 0.24            | 30         |
| S PARÁM       | vioció    | viacio<br>n N          |          |         |          |          |          |            |          |         |          |          |          |         |          |          | 0000            | R077     |         |          |          |          |         |                   |         |          |              |          |          |          |          |          |      |                | eorico           | abular          | _<br>_     |
| ORMAL 3       | č         | nes                    | 38       | 30      | 310      | 202      | 128      | <u> 95</u> | 395      | 69      | 69       | 20       | 06       | 191     | 30       | 113      | 900             | 03       | 101     | 125      | )48      | 73       | 96      | 88                | 394     | 54       | 526          | 80       | 305      | 957      | 957      | 219      | 18   |                | g At             | Δta             |            |
| N LOGN        |           | dia 0                  | 0.26     | 0.19    | 0.06     | 0.06     | 0.0      | 0.02       | 0.02     | 0.02    | 0.02     | 0.02     | 0.01     | 0.0     | 0.0      | 0.00     | 0.00            | 0.00     | 0.00    | 0.00     | 0.00     | 0.00     | 0.01    | 0.02              | 0.03    | 0.0      | 0.0          | 0.07     | 0.0      | 0.0      | 0.0      | 0.22     | 1.57 |                | oución Lo        | in nivel de     |            |
| RIBUCIO       |           | =<br>(0) Me(           | 940      | 982     | 906      | 11       | 807      | 559        | 559      | '34     | '34      | 391      | 86       | :23     | 30       | 113      | 33<br>35        | 92       | 021     | 879      | 171      | 32       | 76      | 11                | 860     | 90       | 82           | 68       | 212      | 69       | 69       | 980      |      | 9              | a la distrik     | ros, con L      | n del 5%   |
| DIST          | 4         | n nol<br>(-ix)         | 3.02     | 3.05    | 3.20     | 3.26     | 3.33     | 3.36       | 3.36     | 3.37    | 3.37     | 3.38     | 3.30     | 3.44    | 3.48     | 3.50     | 3.51            | 3.51     | 3.54    | 3.58     | 3.60     | 3.62     | 3.67    | 3.70              | 3.73    | 3.75     | 3.78         | 3.81     | 3.82     | 3.84     | 3.84     | 4.00     |      | ana 32.        | e ajustan a      | parámeti        | anificació |
|               | Docio     | rosic<br>x0            | _1       | 0       | 0        |          | 0        |            |          |         |          | ~        | _        | 0       | 0        | 0        | 1 66            | -<br>-   | 10      | _        | 0        |          | •       |                   | ~       | -        |              | _        | 0        | •        | 6        |          |      | x medi         | s datos se       | rmal de 3       | Si         |
|               |           | X                      | 19.01    | 20.60   | 25.30    | 25.31    | 26.40    | 27.4(      | 27.40    | 27.62   | 27.62    | 28.08    | 28.40    | 29.70   | 31.00    | 31.60    | 32.00           | 32.2(    | 33.15   | 34.60    | 35.30    | 35.90    | 37.96   | 39.20             | 40.37   | 40.96    | 42.60        | 43.90    | 44.10    | 45.29    | 45.29    | 53.51    | _    |                | Ľ                | 2               |            |
|               |           | M                      | 4        | 9 2     | 7 3      | 0 4      | 5 5      | 9 0        | 7 7      | ∞       | 8        | 4 10     | 3 11     | 0 12    | 8 13     | 3 14     | 1 15            | 3 16     | 1 17    | 9 18     | 3 19     | 1 20     | 6 21    | 3 22              | 2 23    | 6 24     | <u>8</u>     | 4 26     | 7 27     | 9 28     | 4 29     | 30       | TOTA |                |                  |                 |            |
|               |           | Delta                  | 9 0.019  | 6 0.035 | 5 0.047  | 0.016    | 8 0.026  | 5 0.038    | 5 0.005  | 6 0.016 | 6 0.048  | 2 0.059  | 6 0.076  | 1 0.044 | 6000     | 3 0.011: | 7 0.023         | 9 0.045  | 3 0.030 | 5 0.006  | 2 0.006  | 1 0.000  | 0.049   | 0.058             | 1 0.061 | 8 0.045  | 3 0.051      | 1 0.045  | 7 0.016  | 1 0.003  | 1 0.028  | 6000     | ſ    | <mark></mark>  | <mark>~</mark>   |                 |            |
| S             |           | - F(Z)                 | 4 0.012  | 5 0.028 | 3 0.144  | 0 0.145  | 0 0.187  | 9 0.231    | 9 0.231  | 3 0.241 | 3 0.241  | 6 0.263  | 1 0.278  | 9 0.343 | 7 0.409  | 1 0.440  | 6 0.460         | 1 0.470  | 0.518   | 2 0.587  | 3 0.619  | 2 0.645  | 8 0.727 | 1 0.768           | 7 0.803 | 6 0.819  | <b>0.858</b> | 6 0.884  | 3 0.887  | 2 0.907  | 2 0.907  | 9 0.977  |      | 0.076          | ar 0.248         | 30              |            |
| <b>ÀMETRO</b> |           | ) Z=Inx                | -2.229   | -1.901  | -1.060   | -1.058   | -0.886   | -0.733     | -0.733   | -0.701  | -0.701   | -0.633   | -0.587   | -0.403  | -0.228   | -0.150   | -0.098          | -0.073   | 0.046   | 0.221    | 0.303    | 0.372    | 0.603   | 0.732             | 0.852   | 0.914(   | 1.072        | 1.1956   | 1.214    | 1.323    | 1.323    | 2.005    |      | ∆ teoric       | ∆ tabul          | <u>د</u>        |            |
| AL 2 PAR      | 0/0/      | r(x) =<br>M/(N+1       | 0.0323   | 0.0645  | 0.0968   | 0.1290   | 0.1613   | 0.1935     | 0.2258   | 0.2581  | 0.2903   | 0.3226   | 0.3548   | 0.3871  | 0.4194   | 0.4516   | 0.4839          | 0.5161   | 0.5484  | 0.5806   | 0.6129   | 0.6452   | 0.6774  | 0.7097            | 0.7419  | 0.7742   | 0.8065       | 0.8387   | 0.8710   | 0.9032   | 0.9355   | 0.9677   |      | stribución     | s, con un        | <mark>5%</mark> |            |
| GNORM/        | , indiana | esviacio<br>n          |          |         |          |          |          |            |          |         |          |          |          |         |          |          | CYVC U          | C++7-0   |         |          |          |          |         |                   |         |          |              |          |          |          |          |          |      | an a la dis    | arámetros        | cación de       |            |
| CION LO       | 6         | Aedia <sup>D</sup>     |          |         |          |          |          |            |          |         |          |          |          |         |          |          | ana k           | 0204     |         |          |          |          |         |                   |         |          |              |          |          |          |          |          |      | s se ajust     | nal de 2 p       | de signifi      |            |
| STRIBU        |           | =ln(x)                 | 9452     | 0253    | .2308    | .2314    | .2734    | .3105      | .3105    | .3185   | .3185    | .3350    | .3464    | .3911   | .4340    | .4532    | .4657           | .4720    | .5011   | .5439    | .5639    | .5807    | 6373    | .6687             | 6981    | .7132    | .7519        | .7819    | .7865    | .8131    | .8131    | .9799    |      | Los dato       | Log Norn         | nivel           |            |
| Ξ             |           | x Y                    | 19.01 2  | 20.60 3 | 25.30 3  | 25.31 3  | 26.40 3  | 27.40 3    | 27.40 3  | 27.62 3 | 27.62 3  | 28.08 3  | 28.40 3  | 29.70 3 | 31.00 3  | 31.60 3  | 32.00 3         | 32.20 3  | 33.15 3 | 34.60 3  | 35.30 3  | 35.90 3  | 37.99 3 | 39.20 3           | 40.37 3 | 40.99    | 42.60 3      | 13.90 3  | 44.10 3  | 45.29 3  | 45.29 3  | 53.51 3  | L    |                |                  |                 |            |
|               |           | W                      | -        | 2       | 3        | 4        | 5        | 9          | 7        | 8       | 6        | 10       | 11       | 12      | 13       | 14       | 15              | 16       | 17      | 18       | 19       | 20       | 21      | 22                | 23      | 24       | 25           | 26       | 27       | 28       | 29       | 30       |      |                |                  |                 |            |
|               |           | delta                  | .0036    | .0105   | .0543    | .0224    | .0235    | .0257      | 9900.    | .0308   | .0631    | .0780    | 7760.    | .0761   | .0502    | .0544    | 9/90.           | .0903    | .0766   | .0381    | .0365    | .0403    | .0217   | .0389             | .0501   | .0387    | .0549        | .0548    | .0270    | .0183    | .0139    | .0245    |      |                |                  |                 |            |
|               |           | F(Z)                   | 0.0358 0 | 0540 0  | .1511 0  | .1515 0  | ).1848 C | 0.2192 0   | 0.2192 0 | .2272 0 | ).2272 0 | ).2446 C | 0.2571 0 | .3110 C | ).3692 C | .3972 0  | ).4162 C        | .4258 0  | .4718 0 | ).5425 C | ).5764 C | ).6049 C | .6991 C | .7486 0           | .7920 0 | 0.8129 0 | ).8613 C     | ).8935 C | 0.8979 0 | ).9215 C | ).9215 C | 0.9923   |      | .0977          | ).2483           | <mark>30</mark> |            |
| SSIANA        |           | S/M-x=                 | 1.8015   | 1.6073  | 1.0319 0 | 1.0302 ( | 0.8972   | 0.7747     | 0.7747   | 0.7480  | 0.7480   | 0.6915   | 0.6523   | 0.4931  | 0.3341   | 0.2605   | 0.2115          | 0.1871 0 | 0.0707  | .1068 (  | .1927 0  | .2660 (  | .5219 ( | .6700             | .8135 0 | .8888    | .0863        | .2455 (  | .2699 (  | .4155 0  | .4155 0  | .4220    |      | teorico (      | tabular (        | د               |            |
| L O GAU       | - 11/     | )(x) = 2;<br>/(n+1) 2; | .0323    | .0645   | - 8960.  | .1290 -  | .1613 -  | 1935       | .2258 -  | .2581 - | .2903 -  | .3226    | .3548    | .3871   | - 4194   | .4516    | .4839           | - 101    | .5484   | .5806 (  | .6129 0  | .6452 (  | .6774 0 | .7097             | .7419 0 | .7742 (  | .8065        | .8387    | .8710    | .9032    | .9355 1  | .9677    |      | ución <u>A</u> | ión del <u>∆</u> |                 |            |
| NORMA         | a aida    | acion H<br>ndar M      | Ő        | Ö       | Ö        | 0        | Ö        | Ö          | Ö        | Ö       | 0        | Ö        | Ö        | Ö       | Ö        | Ö        | з <b>7</b> 6 0. | 0        | Ö       | 0        | Ö        | Ö        | Ö       | Ö                 | Ö       | Ö        | Ö            | Ö        | Ö        | Ö        | Ö        | Ō        |      | a la distrib   | significac       |                 |            |
| BUCIÓN        | i voor    | ia cesu<br>estal       |          |         |          |          |          |            |          |         |          |          |          |         |          |          | 70 0 11         | 0/0      |         |          |          |          |         |                   |         |          |              |          |          |          |          |          |      | ajustan a      | n nivel de       | 2%              |            |
| DISTR         |           | Med                    | -        | 0       | 0        | -        | 0        | 0          | 0        | 2       | 2        | 80       | 0        | 0       | 0        | 0        | 0 22.77         | 0 27.00  | 2       | 0        | 0        | 0        | 0       | 0                 | 2       | 0        | 0            | 0        | 0        | 0        | 0        | <u>_</u> |      | datos se       | al, con ur       |                 |            |
|               |           | ×                      | 19.0     | 20.6    | 25.3     | 25.3     | 26.4     | 27.4       | 27.4     | 27.6.   | 27.6.    | 28.0     | 28.4     | 29.7    | 31.0     | 31.6     | 32.0            | 32.2     | 33.1    | 34.6     | 35.3     | 35.9     | 37.9    | 39.2 <sup>,</sup> | 40.3    | 40.9     | 42.6         | 43.9     | 44.1     | 45.2     | 45.2     | 53.5     |      | Los            | Norm             |                 |            |
|               |           | W                      | -        | 2       | 3        | 4        | 5        | 9          | 7        | 8       | 6        | 10       | 11       | 12      | 13       | 14       | 15              | 16       | 17      | 18       | 19       | 20       | 21      | 22                | 23      | 24       | 25           | 26       | 27       | 28       | 29       | 30       |      |                |                  |                 |            |

| OS       |      | $X^{A2}$ y $\frac{\Gamma(X)}{M(N+1)}$ G(y) Delta | 28.1607 1867.4315 0.0323 0.0214 0.0109 | 30.0091 1868.3558 0.0645 0.0390 0.0255 | 35.4871 1871.0948 0.0968 0.1478 0.0510 | 35.5033 1871.1029 0.1290 0.1482 0.0192 | 36.7692 1871.7358 0.1613 0.1869 0.0256 | 37.9347 1872.3186 0.1935 0.2266 0.0331 | 37.9347 1872.3186 0.2258 0.2266 0.0008 | 38.1896 1872.4460 0.2581 0.2357 0.0224 | 38.1896 1872.4460 0.2903 0.2357 0.0546 | 38.7269 1872.7147 0.3226 0.2555 0.0671 | 39.1002 1872.9013 0.3548 0.2697 0.0851 | 40.6154 1873.6589 0.3871 0.3298 0.0573 | 42.1296 1874.4160 0.4194 0.3929 0.0265 | 42.8299 1874.7662 0.4516 0.4227 0.0289 | 43.2961 1874.9993 0.4839 0.4426 0.0413 | 43.5292 1875.1158 0.5161 0.4525 0.0636 | 44.6368 1875.6696 0.5484 0.4997 0.0487 | 46.3265 1876.5145 0.5806 0.5698 0.0108 | 47.1441 1876.9232 0.6129 0.6026 0.0103 | 47.8417 1877.2720 0.6452 0.6297 0.0155 | 50.2781 1878.4903 0.6774 0.7168 0.0394 | 51.6879 1879.1952 0.7097 0.7612 0.0515 | <b>53.0540 1879.8782 0.7419 0.7997 0.0578</b> | 53.7704 1880.2364 0.7742 0.8180 0.0438 | <b>55.6508 1881.1766 0.8065 0.8604 0.0539</b> | 57.1659 1881.9341 0.8387 0.8887 0.0500 | 57.3990 1882.0507 0.8710 0.8926 0.0216 | 58.7849 1882.7436 0.9032 0.9137 0.0105 | 58.7849 1882.7436 0.9355 0.9137 0.0218 | 68.3661 1887.5343 0.9677 0.9850 0.0173 |          |      | ttos se ajustan a la distribución <u>∆ teorico</u> 0.0851 | a 3 parámetros, con un nivel de <u>A tabular 0.2483</u> | significación dei 5%      |        |
|----------|------|--------------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|-----------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|----------|------|-----------------------------------------------------------|---------------------------------------------------------|---------------------------|--------|
| arámetr  |      | >                                                |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 15 2000                                | ++ 40.303                              |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          |      | Los di                                                    | Gamm                                                    |                           |        |
| WMA3 P   |      | Ľ,                                               |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          |      |                                                           |                                                         |                           |        |
| ICIÓN GA |      | 8                                                |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 1 716                                  | 1.1 10                                 |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          |      |                                                           |                                                         |                           |        |
| DISTRIBL | 29   | ≻<br>0;                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 73 77 GE                               | C0:77 C/                               |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        | c        | N    |                                                           |                                                         |                           |        |
|          | Daoi | 3 rosid                                          | 325                                    | 67                                     | 12                                     | 54                                     | 30                                     | 78                                     | 78                                     | 23                                     | 23                                     | 84                                     | 92                                     | 2                                      | 60                                     | 2                                      | 7 6 1 4                                | 6<br>                                  | 9                                      | 6                                      | <b>+</b>                               | 0                                      | e                                      | 78                                     | 74                                            | ¥                                      | 12                                            | 49                                     | 82                                     | 07                                     | 07                                     | 64                                     | 01       | 0.40 |                                                           |                                                         |                           |        |
|          |      | ∧(X:-iX)                                         | -3185.43                               | -2262.41                               | -598.60                                | -595.64                                | -393.47                                | -253.36                                | -253.36                                | -227.99                                | -227.99                                | -180.17                                | -151.22                                | -65.342                                | -20.315                                | -9.633                                 | -5.157                                 | -3.565                                 | -0.192                                 | 0.663(                                 | 3.897                                  | 10.249                                 | 77.454                                 | 163.867                                | 293.327                                       | 382.49(                                | 698.412                                       | 1052.56                                | 1115.87                                | 1545.32                                | 1545.32                                | 7741.04                                | 6196.59  | F    |                                                           |                                                         | _                         |        |
|          |      | (Xi-X)^2                                         | 216.4939                               | 172.3383                               | 71.0273                                | 70.7933                                | 53.6962                                | 40.0406                                | 40.0406                                | 37.3204                                | 37.3204                                | 31.9008                                | 28.3851                                | 16.2229                                | 7.4454                                 | 4.5274                                 | 2.9852                                 | 2.3341                                 | 0.3335                                 | 0.7608                                 | 2.4766                                 | 4.7186                                 | 18.1704                                | 29.9453                                | 44.1471                                       | 52.6923                                | 78.7181                                       | 103.4743                               | 107.5832                               | 133.6634                               | 133.6634                               | 391.3210                               | 1934.54  |      | 33.7278                                                   | 8.1675                                                  | 0007 UCCC:007             | 0.4202 |
|          |      | ×                                                | 19.01                                  | 20.60                                  | 25.30                                  | 25.31                                  | 26.40                                  | 27.40                                  | 27.40                                  | 27.62                                  | 27.62                                  | 28.08                                  | 28.40                                  | 29.70                                  | 31.00                                  | 31.60                                  | 32.00                                  | 32.20                                  | 33.15                                  | 34.60                                  | 35.30                                  | 35.90                                  | 37.99                                  | 39.20                                  | 40.37                                         | 40.99                                  | 42.60                                         | 43.90                                  | 44.10                                  | 45.29                                  | 45.29                                  | 53.51                                  |          |      | Media X                                                   | S                                                       | SIN C                     | دّ     |
|          |      | ×                                                | -                                      | 2                                      | 3                                      | 4                                      | 5                                      | 9                                      | 7                                      | 8                                      | 6                                      | 10                                     | 11                                     | 12                                     | 13                                     | 14                                     | 15                                     | 16                                     | 17                                     | 18                                     | 19                                     | 20                                     | 21                                     | 22                                     | 33                                            | 24                                     | 25                                            | 26                                     | 27                                     | 28                                     | 29                                     | 30                                     | TOTAL    | F    |                                                           |                                                         |                           |        |
|          |      | Delta                                            | 0.0152                                 | 0.0313                                 | 0.0447                                 | 0.0129                                 | 0.0202                                 | 0.0287                                 | 0.0035                                 | 0.0264                                 | 0.0586                                 | 0.0705                                 | 0.0882                                 | 0.0586                                 | 0.0259                                 | 0.0276                                 | 0.0394                                 | 0.0615                                 | 0.0456                                 | 0.0065                                 | 0.0056                                 | 0.0105                                 | 0.0448                                 | 0.0568                                 | 0.0627                                        | 0.0485                                 | 0.0579                                        | 0.0534                                 | 0.0250                                 | 0.0132                                 | 0.0190                                 | 0.0176                                 |          |      | 0882                                                      | 2483                                                    | 30                        |        |
|          |      | G(y)                                             | 0.0170                                 | 0.0332                                 | 0.1415                                 | 0.1420                                 | 0.1815                                 | 0.2223                                 | 0.2223                                 | 0.2317                                 | 0.2317                                 | 0.2521                                 | 0.2666                                 | 0.3285                                 | 0.3935                                 | 0.4240                                 | 0.4444                                 | 0.4546                                 | 0.5028                                 | 0.5742                                 | 0.6073                                 | 0.6347                                 | 0.7222                                 | 0.7665                                 | 0.8046                                        | 0.8227                                 | 0.8644                                        | 0.8921                                 | 0.8959                                 | 0.9165                                 | 0.9165                                 | 0.9854                                 |          |      | 0.0                                                       | 0                                                       |                           |        |
|          | D/4/ | r(x) =<br>M/(N+1)                                | 0.0323                                 | 0.0645                                 | 0.0968                                 | 3 0.1290                               | 0.1613                                 | 3 0.1935                               | 3 0.2258                               | 0.2581                                 | 0.2903                                 | 0.3226                                 | 0.3548                                 | 0.3871                                 | 0.4194                                 | 0.4516                                 | 2 0.4839                               | 0.5161                                 | 2 0.5484                               | 0.5806                                 | 3 0.6129                               | 0.6452                                 | 3 0.6774                               | 0.7097                                 | l 0.7419                                      | 0.7742                                 | 3 0.8065                                      | 0.8387                                 | 0.8710                                 | 3 0.9032                               | 0.9355                                 | 0.9677                                 |          |      | ∆ teorico                                                 | <u>∆ tabula</u>                                         | _                         |        |
| SO       |      | y                                                | 5 9.9843                               | 1 10.8171                              | 1 13.2850                              | 7 13.2923                              | 3 13.8627                              | 5 14.3878                              | 5 14.3878                              | 2 14.5026                              | 2 14.5026                              | 3 14.7447                              | 7 14.9129                              | 0 15.5955                              | 3 16.2777                              | 4 16.5932                              | 4 16.8032                              | 5 16.9082                              | 5 17.4072                              | 0 18.1685                              | 3 18.5368                              | 2 18.8511                              | 5 19.9488                              | 9 20.5839                              | 3 21.1994                                     | 3 21.5221                              | 7 22.3693                                     | 3 23.0519                              | 9 23.1569                              | 3 23.7813                              | 3 23.7813                              | 3 28.0979                              |          |      | n a la                                                    | rámetros,<br><u>4 - del 50/</u>                         | o <mark>u dei 27</mark> 0 |        |
| RÁMETR   |      | X^2                                              | 19.968(                                | 21.634                                 | 26.570                                 | 26.584                                 | 27.725                                 | 28.775                                 | 28.775                                 | 29.005                                 | 29.005                                 | 29.4890                                | 29.825                                 | 31.191(                                | 32.555                                 | 33.186                                 | 33.606                                 | <sup>3</sup> 33.816                    | 34.814                                 | 36.337(                                | 37.073(                                | 37.702                                 | 39.897(                                | 41.167                                 | 42.398                                        | 43.044;                                | 44.738                                        | 46.103                                 | 46.313                                 | 47.562(                                | 47.562(                                | 56.1958                                |          |      | se ajusta                                                 | nma 2 pa                                                | <mark>signilicau</mark>   |        |
| MA2 PA   |      | >                                                |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 2 25 120                               | 024.00                                 |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          |      | -os datos                                                 | oución Gar                                              | <mark>) nivei de</mark>   |        |
| IÓN GAN  |      | [ک<br>ا                                          |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 0.062                                  | 0.300                                  |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          |      |                                                           | distric<br>222                                          |                           |        |
| STRIBUC  |      | 8                                                |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 1 001                                  | 1.3044                                 |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          |      |                                                           |                                                         |                           |        |
| ä        |      | ≻                                                |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        |                                        | 47 740E                                | 001 /. /1                              |                                        |                                        |                                        |                                        |                                        |                                        |                                               |                                        |                                               |                                        |                                        |                                        |                                        |                                        |          | ſ    |                                                           |                                                         |                           |        |
|          | >    | ln(x)                                            | 2.9452                                 | 3.0253                                 | 3.2308                                 | 3.2314                                 | 3.2734                                 | 3.3105                                 | 3.3105                                 | 3.3185                                 | 3.3185                                 | 3.3350                                 | 3.3464                                 | 3.3911                                 | 3.4340                                 | 3.4532                                 | 3.4657                                 | 3.4720                                 | 3.5011                                 | 3.5439                                 | 3.5639                                 | 3.5807                                 | 3.6373                                 | 3.6687                                 | 3.6981                                        | 3.7132                                 | 3.7519                                        | 3.7819                                 | 3.7865                                 | 3.8131                                 | 3.8131                                 | 3.9799                                 | 104.6947 |      | 33.7278                                                   | 3.4898<br>2.000r                                        | 0.0285                    |        |
|          |      | ×                                                | 19.01                                  | 20.60                                  | 25.30                                  | 25.31                                  | 26.40                                  | 27.40                                  | 27.40                                  | 27.62                                  | 27.62                                  | 28.08                                  | 28.40                                  | 29.70                                  | 31.00                                  | 31.60                                  | 32.00                                  | 32.20                                  | 33.15                                  | 34.60                                  | 35.30                                  | 35.90                                  | 37.99                                  | 39.20                                  | 40.37                                         | 40.99                                  | 42.60                                         | 43.90                                  | 44.10                                  | 45.29                                  | 45.29                                  | 53.51                                  |          | -    | Media x                                                   | Med. Log                                                | 7                         |        |
|          |      | ×                                                | -                                      | 2                                      | 3                                      | 4                                      | 5                                      | 9                                      | 7                                      | 8                                      | 6                                      | 10                                     | 11                                     | 12                                     | 13                                     | 14                                     | 15                                     | 16                                     | 17                                     | 18                                     | 19                                     | 20                                     | 21                                     | 22                                     | 23                                            | 24                                     | 25                                            | 26                                     | 27                                     | 28                                     | 29                                     | 30                                     | TOTAL    | -    |                                                           |                                                         | -                         |        |

|                | Delta                         | 0.0322   | 0.0629   | 0.0154  | 0.0161  | 0.0126  | 0.0436  | 0.0113  | 0.0066  | 0.0388  | 0.0405  | 0.0513  | 0.0025  | 0.0517 | 0.0547 | 0.0449  | 0.0236  | 0.0406 | 0.0746 | 0.0706 | 0.0607 | 0.0945  | 0.0932  | 0.0866  | 0.0663  | 0.0613  | 0.0472   | 0.0175   | 0.0010   | 0.0333   | 0.0097   |           |
|----------------|-------------------------------|----------|----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|--------|---------|---------|--------|--------|--------|--------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|-----------|
|                | G(y)                          | 0.0001   | 0.0016   | 0.1122  | 0.1129  | 0.1739  | 0.2371  | 0.2371  | 0.2515  | 0.2515  | 0.2821  | 0.3035  | 0.3896  | 0.4710 | 0.5063 | 0.5288  | 0.5397  | 0.5890 | 0.6552 | 0.6835 | 0.7058 | 0.7720  | 0.8029  | 0.8285  | 0.8405  | 0.8677  | 0.8859   | 0.8884   | 0.9022   | 0.9022   | 0.9580   |           |
|                | у                             | -2.2822  | -1.8616  | -0.7827 | -0.7798 | -0.5592 | -0.3641 | -0.3641 | -0.3223 | -0.3223 | -0.2354 | -0.1759 | 0.0591  | 0.2839 | 0.3847 | 0.4507  | 0.4834  | 0.6361 | 0.8608 | 0.9662 | 1.0545 | 1.3516  | 1.5161  | 1.6708  | 1.7501  | 1.9528  | 2.1106   | 2.1345   | 2.2742   | 2.2742   | 3.1498   |           |
| BEL            | P(x) =<br>M/(N+1)             | 0.0323   | 0.0645   | 0.0968  | 0.1290  | 0.1613  | 0.1935  | 0.2258  | 0.2581  | 0.2903  | 0.3226  | 0.3548  | 0.3871  | 0.4194 | 0.4516 | 0.4839  | 0.5161  | 0.5484 | 0.5806 | 0.6129 | 0.6452 | 0.6774  | 0.7097  | 0.7419  | 0.7742  | 0.8065  | 0.8387   | 0.8710   | 0.9032   | 0.9355   | 0.9677   |           |
|                | alfa                          |          |          |         |         |         |         |         |         |         |         |         |         |        |        | 1005    | 0.1300  |        | 1      |        |        |         |         |         |         |         |          |          |          |          |          |           |
|                | n                             |          |          |         |         |         |         |         |         |         |         |         |         |        |        | 0020 0  | 0.0199  |        |        |        |        |         |         |         |         |         |          |          |          |          |          |           |
| DISTRIB        | (In⊁-<br>X <sub>In×</sub> )^2 | 0.2966   | 0.2158   | 0.0671  | 0.0668  | 0.0469  | 0.0321  | 0.0321  | 0.0294  | 0.0294  | 0.0240  | 0.0206  | 0.0097  | 0.0031 | 0.0013 | 0.0006  | 0.0003  | 0.0001 | 0.0029 | 0.0055 | 0.0083 | 0.0218  | 0.0320  | 0.0434  | 0.0499  | 0.0687  | 0.0853   | 0.0880   | 0.1045   | 0.1045   | 0.2401   | 1.7307    |
|                | xul                           | 2.9452   | 3.0253   | 3.2308  | 3.2314  | 3.2734  | 3.3105  | 3.3105  | 3.3185  | 3.3185  | 3.3350  | 3.3464  | 3.3911  | 3.4340 | 3.4532 | 3.4657  | 3.4720  | 3.5011 | 3.5439 | 3.5639 | 3.5807 | 3.6373  | 3.6687  | 3.6981  | 3.7132  | 3.7519  | 3.7819   | 3.7865   | 3.8131   | 3.8131   | 3.9799   |           |
|                | ×                             | 19.01    | 20.60    | 25.30   | 25.31   | 26.40   | 27.40   | 27.40   | 27.62   | 27.62   | 28.08   | 28.40   | 29.70   | 31.00  | 31.60  | 32.00   | 32.20   | 33.15  | 34.60  | 35.30  | 35.90  | 37.99   | 39.20   | 40.37   | 40.99   | 42.60   | 43.90    | 44.10    | 45.29    | 45.29    | 53.51    |           |
|                | ×                             | 1        | 2        | 3       | 4       | 5       | 6       | 7       | 8       | 9       | 10      | 11      | 12      | 13     | 14     | 15      | 16      | 17     | 18     | 19     | 20     | 21      | 22      | 23      | 24      | 25      | 26       | 27       | 28       | 29       | 30       | TOTAL     |
|                | Delta                         | 0.0288   | 0.0524   | 0.0246  | 0.0071  | 0.0083  | 0.0259  | 0.0064  | 0.0271  | 0.0593  | 0.0667  | 0.0813  | 0.0396  | 0:0030 | 0.0048 | 0.0051  | 0.0263  | 0.0076 | 0.0322 | 0.0321 | 0.0257 | 0.0727  | 0.0787  | 0.0786  | 0.0614  | 0.0634  | 0.0538   | 0.0247   | 0.0094   | 0.0228   | 0.0074   |           |
|                | G(y)                          | 0.0035   | 0.0121   | 0.1213  | 0.1219  | 0.1696  | 0.2194  | 0.2194  | 0.2310  | 0.2310  | 0.2559  | 0.2736  | 0.3475  | 0.4224 | 0.4565 | 0.4788  | 0.4898  | 0.5408 | 0.6129 | 0.6450 | 0.6708 | 0.7501  | 0.7884  | 0.8205  | 0.8356  | 0.8699  | 0.8926   | 0.8957   | 0.9127   | 0.9127   | 0.9752   |           |
|                | у                             | -1.7334  | -1.4843  | -0.7463 | -0.7441 | -0.5735 | -0.4165 | -0.4165 | -0.3822 | -0.3822 | -0.3098 | -0.2595 | -0.0553 | 0.1487 | 0.2430 | 0.3058  | 0.3372  | 0.4865 | 0.7141 | 0.8243 | 0.9183 | 1.2465  | 1.4365  | 1.6205  | 1.7170  | 1.9704  | 2.1745   | 2.2059   | 2.3926   | 2.3926   | 3.6835   |           |
| UMBEL          | P(x) =<br>M/(N+1)             | 0.0323   | 0.0645   | 0.0968  | 0.1290  | 0.1613  | 0.1935  | 0.2258  | 0.2581  | 0.2903  | 0.3226  | 0.3548  | 0.3871  | 0.4194 | 0.4516 | 0.4839  | 0.5161  | 0.5484 | 0.5806 | 0.6129 | 0.6452 | 0.6774  | 0.7097  | 0.7419  | 0.7742  | 0.8065  | 0.8387   | 0.8710   | 0.9032   | 0.9355   | 0.9677   |           |
| ICION G        | alfa                          |          |          |         |         |         |         |         |         |         |         |         |         |        |        | 6 2607  | 2000.0  |        |        |        |        |         |         |         |         |         |          |          |          |          |          |           |
| <b>USTRIBU</b> | n                             |          |          |         |         |         |         |         |         |         |         |         |         |        |        | 20.0524 | 47c0.0c |        |        |        |        |         |         |         |         |         |          |          |          |          |          |           |
| _              | (xi- <b>X)^2</b>              | 216.4939 | 172.3383 | 71.0273 | 70.7933 | 53.6962 | 40.0406 | 40.0406 | 37.3204 | 37.3204 | 31.9008 | 28.3851 | 16.2229 | 7.4454 | 4.5274 | 2.9852  | 2.3341  | 0.3335 | 0.7608 | 2.4766 | 4.7186 | 18.1704 | 29.9453 | 44.1471 | 52.6923 | 78.7181 | 103.4743 | 107.5832 | 133.6634 | 133.6634 | 391.3210 | 1934.5397 |
|                | ×                             | 19.01    | 20.60    | 25.30   | 25.31   | 26.40   | 27.40   | 27.40   | 27.62   | 27.62   | 28.08   | 28.40   | 29.70   | 31.00  | 31.60  | 32.00   | 32.20   | 33.15  | 34.60  | 35.30  | 35.90  | 37.99   | 39.20   | 40.37   | 40.99   | 42.60   | 43.90    | 44.10    | 45.29    | 45.29    | 53.51    |           |
|                | Σ                             | -        | 2        | 3       | 4       | 5       | 9       | 7       | 8       | 6       | 10      | 11      | 12      | 13     | 14     | 15      | 16      | 17     | 18     | 19     | 20     | 21      | 22      | 23      | 24      | 25      | 26       | 27       | 28       | 29       | 30       | TOTAL     |

| 0.9022 | 0.9580 |        | 0.0945               | 0.2483        |
|--------|--------|--------|----------------------|---------------|
| 2.2742 | 3.1498 |        | ∆ teorico            | ∆ tabular     |
| 0.9355 | 0.9677 |        | in a la distribución | n un nivel de |
| 0.1045 | 0.2401 | 1.7307 | Los datos se ajusta  | logGumbel, co |
| 3.8131 | 3.9799 |        | 3.4898               | 0.2443        |
| 45.29  | 53.51  |        | Χ <sup>Inx</sup>     | Sinx          |
| 29     | 30     | DTAL   |                      |               |

significación del 5%

| Media X | 33.7278 | Los datos se ajustan a la | ∆ teorico | 0.0813 |  |
|---------|---------|---------------------------|-----------|--------|--|
| S       | 8.1675  | distribucion Gumbel, con  | ∆ tabular | 0.2483 |  |
|         |         |                           | u         | 30     |  |

# ANEXO D MANUAL DE MODELAMIENTO HIDROLÓGICO EN HEC-HMS

# 1. Creación del proyecto

Para iniciar en trabajo en HEC-HMS, crearemos un nuevo proyecto presionando el botón "File" luego seleccionamos "New", donde tendremos que ingresar los datos del nuevo proyecto.

| Kec-HMS 4.3                              |                                                                                                                                                                                   |    | -                 | _ |   | $\times$ |
|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------|---|---|----------|
| File Edit View Components GIS Parameters | Compute Results Tools Help                                                                                                                                                        |    | <br>              |   |   |          |
| 🗋 🖆 🖪 🍏 💽 🕂 🗠 🖆                          | 🔲 🐳 🖶 🏜None Selected 🗸                                                                                                                                                            | *8 | $\langle \langle$ |   | 9 |          |
|                                          | Create a New Project X<br>Name: Huancané<br>Description: Cuenca Huacané<br>Location: BA\Documents\MODELAMIENTO HEC-HMS\Tesis\Tr isis<br>Default Unit System: Metric Create Cancel |    |                   |   |   |          |
|                                          |                                                                                                                                                                                   |    |                   |   |   |          |

Figura D.1. Creación de un nuevo proyecto

Fuente: Elaboración propia

# 2. Ingreso de los componentes

# 2.1. Modelo de cuenca (Basin model)

Aquí informamos al programa las características de la cuenca Huancané.

Creamos un modelo de la cuenca: components > Basin Model > New, en la primera casilla le damos un nombre (por ejemplo: Cuenca)

- Para insertar la cuenca seleccionamos "Cuenca" y luego con un clic derecho "map layers > add"
- ✓ Ahora creamos los elementos "subbasin CreatiónTool" y "Sink Creation Tool", luego conectamos los elementos.



Figura D.2. Creación de elementos y conexión entre si

# 2.1.1. Ingreso de las características para el calculo

Subbasin: Aquí ingresamos las características de la cuenca y seleccionamos el método de cálculo para perdidas "SCS Curve Number" y para la escorrentía "SCS Unit Hydrograph".

Loss: Para calcular las perdidas por infiltración ingresamos el valor del número de curva y también las pérdidas iniciales.

Transform: Aquí ingresamos para calcular la escorrentía, ingresamos el tiempo de retardo.

| 🔒 Subbasin Loss                                                                                                                       | Transform Options   |   | 🚑 Subbasin Loss Ti                                                                            | ransform Options                | 🔐 Subbasin Lo                                                  | ss Transform Options                      |
|---------------------------------------------------------------------------------------------------------------------------------------|---------------------|---|-----------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------|-------------------------------------------|
| Downstream:<br>*Area (KM2)<br>Latitude Degrees:<br>Latitude Minutes:<br>Latitude Seconds:<br>Longitude Degrees:<br>Longitude Minutes: | Atoro<br>3604.15    | ^ | Basin Name:<br>Element Name:<br>Initial Abstraction (MM)<br>"Curve Number:<br>"Impervious (%) | Cuenca<br>14.55<br>77.73<br>0.0 | Basin Name:<br>Element Name:<br>Graph Type:<br>*Lag Time (MIN) | Cuenca<br>Standard (PRF 484) V<br>2195.53 |
| Longitude Seconds:                                                                                                                    |                     |   |                                                                                               |                                 |                                                                |                                           |
| Canopy Method:                                                                                                                        | None                |   |                                                                                               |                                 |                                                                |                                           |
| Surface Method:                                                                                                                       | None                |   |                                                                                               |                                 |                                                                |                                           |
| Loss Method:                                                                                                                          | SCS Curve Number    |   |                                                                                               |                                 |                                                                |                                           |
| Transform Method:                                                                                                                     | SCS Unit Hydrograph |   |                                                                                               |                                 |                                                                |                                           |
| Baseflow Method:                                                                                                                      | None                | ~ |                                                                                               |                                 |                                                                |                                           |
| <                                                                                                                                     | >                   |   |                                                                                               |                                 |                                                                |                                           |

Figura D.3. Se observa la configuración, infiltración y escorrentía

Fuente: Elaboración propia

### 2.2. Datos de precipitaciones (Time Series Data Manager)

Aquí vamos introducir los datos pluviométricos.

Creando datos de precipitaciones: "Components > Time-Series Data Manager > New" aparece un cuadro donde seleccionamos "Precipitation Gages", luego "New" donde nombraremos lo siguiente, ver la figura D.4.

| 🔀 Time-Se    | ries Data Manager        |                             | $\times$    |
|--------------|--------------------------|-----------------------------|-------------|
| Data Type:   | Precipitation Gages      | ~                           |             |
| 🔀 Create A N | ew Time-Series Data      |                             | $\times$    |
| Name         | Pluvio                   |                             |             |
| Description  | Hietograma precipitación | H                           | <b>₩</b> Ξ- |
| Data Type    | Precipitation Gages      | $\sim$                      |             |
|              |                          | Create Car                  | ncel        |
|              |                          | Add Window<br>Delete Window |             |

Figura D.4. introducimos en nombre y descripción del pluviómetro

Fuente: Elaboración propia

Time-Series Gage: Solo cambiamos tiempo según nuestro hietograma en "Time Interval".

Time Window: Indica la fecha y hora de inicio y el fin de la precipitación.

Table: Aquí ingresamos el hietograma.

Graph: Aquí se observa el gráfico del hietograma.

| Time-Series Gage Time Window Table Graph | Time-Series Gage Time Window Table Graph | Graph                                 | Time-Series Gage Time Window Table Graph |
|------------------------------------------|------------------------------------------|---------------------------------------|------------------------------------------|
| Gage Name: Pluvio                        | Gage Name: Pluvio                        | Time (ddMMMYYYY, H Precipitation (MM) | 30                                       |
| Description: Hietograma precipitación 👳  | *Start Date (ddMMMYYYY) 09ago2020        | 09ago2020, 00:00                      |                                          |
| Data Source: Manual Entry 🗸              | *Start Time (HH:mm) 00:00                | 09ago2020, 01:00 0.63                 | 25-                                      |
| Units: Incremental Millimeters           | *End Date (ddMMMYYYY) 10ago2020          | 09ago2020, 02:00 0.68                 |                                          |
| Time Interval: 1 Hour                    | *End Time (HH·mm) 00:00                  | 09ago2020, 03:00 0.73                 | \$ <sup>20</sup>                         |
|                                          |                                          | 09ago2020, 04:00 0.80                 |                                          |
| Latitude Degrees:                        |                                          | 09ago2020, 05:00 0.88                 | § 15-                                    |
| Latitude Minutes:                        |                                          | 09ago2020, 06:00 0.98                 | a                                        |
| Latitude Seconds:                        |                                          | 09ago2020, 07:00 1.12                 |                                          |
| Longitude Degrees:                       |                                          | 09ago2020, 08:00 1.31                 | ā l                                      |
| Longitude Minutes:                       |                                          | 09ago2020, 09:00 1.61                 | 5                                        |
| Longitude Seconds:                       |                                          | 09ago2020, 10:00 2.12                 |                                          |
|                                          |                                          | 09ago2020, 11:00 3.32                 | 00:00 06:00 12:00 18:00 00:00            |
|                                          |                                          | 09ago2020, 12:00 26.15                | 09Aug2020                                |
|                                          |                                          | 000000 10:00 × 00                     | 1                                        |

Figura D.5. Ingreso de datos de precipitación para el modelado

### 2.3. Modelo meteorológico

Creando el modelo meteorológico: "Components > Meteorologic Model Manager > New". Le daremos un nombre Tr = 100 años.

Al picar en Tr = 100 años, abajo aparece lo siguiente:

Meteorology model: Aquí se cambiará solo en la opción "replace missng" por Set To Defaul.

Basins: Hay que cambiar la opción "Include Subbasins" y elegir "Yes"



Figura D.6. Seleccionamos las respectivas condiciones

Fuente: Elaboración propia

Specified Hyetograpf: Abajo aparece lo siguiente:

Picando sobre "None" aparece los pluviómetros que hayamos creado (en este caso son cinco que son para diferentes periodos de retorno) y elegiremos uno de ellos a su respectivo periodo.



Figura D.7. Seleccionamos el pluviógrafo para su respectivo periodo de retorno

# 2.4. Especificaciones de control

"Component > Control Specifications Manager > New". El nombre será por defecto (Control 1)

Picamos en "Control 1", y abajo rellenamos los datos.

Le especificamos que calcule el hidrograma de 00:00 a 12:00, y la fecha de inicio será el día 09 de agosto del 2020 y finalizará en 14 de agosto del 2020.

En el "Time Interval" indica el incremento de tiempo para que el programa realice los cálculos. Para nuestro proyecto será un intervalo de 02 horas.

| Control Specifications  |               |   |
|-------------------------|---------------|---|
| Name:                   | Control 1     |   |
| Description:            |               | ÷ |
| *Start Date (ddMMMYYYY) | 09ago2020     |   |
| *Start Time (HH:mm)     | 00:00         |   |
| *End Date (ddMMMYYYY)   | 14ago2020     |   |
| *End Time (HH:mm)       | 12:00         |   |
| Time Interval:          | 2 Hours 🗸 🗸 🗸 |   |

Figura D.8. Valores para las especificaciones de control

Fuente: Elaboración propia

# 3.Crear la simulación

Finamente, vamos a ejecutar el modelo:

Primero creamos un protocolo de simulación: "Compute > Create compute > Simulation Run".

En un proyecto complejo podemos definir diversos "Run" combinando diferentes modelos de cuenca, modelos meteorológicos y especificaciones de control.

Finalmente, ejecutamos el programa: Primero elegimos el "Run" (hay cinco): "Compute > Select Run" y finalmente para iniciar el cálculo: Ccompute > Compute Run (Run).

# 4.Obtención de resultados

| HEC-HMS 4.3 [C:\'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | \Documents\MOD<br>nents GIS Parame                                 | ELAMI<br>eters ( | ENT | D HEC-HMS                                                                         | Tesis\TR year\HUA<br>; Tools Help            | NCANE\HUANCA                                   | NE.hms]                                   |                          | -               | - 🗆               | ×  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------|-----|-----------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------|-------------------------------------------|--------------------------|-----------------|-------------------|----|
| 🗅 😅 🗖 🍜                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>k</b> ⊕ <                                                       | der-             |     | <b>₩ + </b> =                                                                     | -None Selec                                  | ted 🗸 Run: R                                   | tun 5                                     | ~ *                      | 5 🚳 🔤           | 9                 |    |
| Cuerta me     Cuerta me | ls<br>ages<br>1 Tr 10<br>1 Tr 100<br>2020, 00:00 - 10ago<br>1 Tr25 | 2020, (          | ~   | Graph fo<br>0<br>5-<br>(uuu) 15-<br>15-<br>15-<br>15-<br>15-<br>20-<br>25-<br>30- | or Subbasin "Cuenc                           | <sup>a"</sup><br>Subbasin "Ci                  | uenca" Results                            | for Run "Run 5           |                 |                   |    |
| Components Compute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | r Tr 5<br>• Tr 50<br>Results<br>me Window Table                    | ><br>Graph       | >   | 35<br>400-<br>350-<br>300-<br>(;; 250-<br>200-                                    |                                              |                                                |                                           |                          |                 |                   |    |
| Time (ddMMMYYYY, H<br>09ago2020, 00:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Precipitation (MM)                                                 |                  | ^   | ) 150-<br>I20 -<br>I00 -<br>50 -                                                  |                                              |                                                |                                           |                          |                 |                   |    |
| 09ago2020, 01:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 0.72             |     | 0-1                                                                               | 9                                            | 10                                             | 11                                        | 12                       | 13              |                   | ·  |
| 09ago2020, 03:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 0.83             |     |                                                                                   |                                              |                                                |                                           |                          |                 | Aug202            | 20 |
| 09ago2020, 04:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 0.90             |     | Legend (C                                                                         | Compute Time: DATA<br>un:Run 5 Element:Cu    | CHANGED, RECOMP<br>enca Result:Precipit        | ation EXPIRED                             |                          |                 |                   |    |
| 09ago2020, 05:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 0.99             |     | R                                                                                 | un:Run 5 Element:Cu                          | enca Result:Precipit                           | ation Loss EXPIRED                        |                          |                 |                   |    |
| 09ago2020, 06:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 1.11             |     | — R                                                                               | un:Run 5 Element:Cu                          | enca Result:Outflow                            | V EXPIRED                                 |                          |                 |                   |    |
| 09ago2020, 08:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 1.48             |     | R                                                                                 | un:Run 5 Element:Cu                          | enca Result:Basefio                            | W EXPIRED                                 |                          |                 |                   |    |
| 09ago2020, 09:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 1.82             |     | NOTE 15302:                                                                       | Finished computing                           | simulation run "Run                            | 4" at time 16ago20                        | 20, 17:16:55.            |                 |                   | ^  |
| 09ago2020, 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 2.40             |     | NOTE 15301:<br>NOTE 20364:                                                        | Began computing si<br>Eound no parameter     | mulation run "Run 5<br>r problems in meteo     | at time 16ago2020                         | ), 17:18:22.<br>Tr 100". |                 |                   |    |
| 09ago2020, 11:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 3.75             |     | NOTE 40049:                                                                       | Found no paramete                            | r problems in basin                            | model "Cuenca hne                         |                          |                 |                   |    |
| 09ago2020, 12:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    | 29.54            | ~   | WARNING 20                                                                        | Initial abstraction ra<br>657: Hyetograph ga | atio for subbasin "Cu<br>ige "Pluviografo Tr 1 | uenca" is 0,1999.<br>00" for subbasin "Ci | uenca" contains 54 m     | issing or negat | tive precipitatio |    |
| 000000 10:00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    | 5.50             | ~   | WARNING 20                                                                        | iosz: nyetograph ga                          | ige Pluviografo (r.1                           | uu iorsubbasin Ci                         | uerical conitains 54 m   | issing or negat | uve precipitatio  | ~  |

# Figura D.9. Escorrentía superficial y infiltración

### Fuente: Elaboración propia

| Kec-HMS 4.3 [C:\\                                                                                  | Documents\MODEL4   | MIENT | O HEC-HMS\Tesi                                                                                                                  | s\TR year\H                                                                           | HUANCANE\H                                                                                      | UANCANE.hr                                                                                                        | ns]                                                                                                |                                                                         |                                               | - 0                  | ×     |
|----------------------------------------------------------------------------------------------------|--------------------|-------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------|----------------------|-------|
| File Edit View Compon                                                                              | ents GIS Parameter | s Com | pute Results To                                                                                                                 | ols Help                                                                              |                                                                                                 |                                                                                                                   |                                                                                                    |                                                                         |                                               |                      |       |
| 🗅 😅 🖪 🎿 📗                                                                                          | k 🕂 < 🖦 🗉          | +     | 승수 구성                                                                                                                           | None s                                                                                | Selected $\lor$                                                                                 | Run: Run 5                                                                                                        |                                                                                                    | ~                                                                       | 🍋 🐻                                           |                      |       |
| HUANCANE<br>Basin Models<br>Description<br>Aforo<br>Control Specification<br>Control Specification | :<br>15            |       | Q1 Time-Series                                                                                                                  | Results for<br>Start<br>End o<br>Comp                                                 | Subbasin "Cu<br>P<br>of Run: 09ago<br>f Run: 14ago<br>ute Time:DATA                             | renca"<br>Project: HUANCA<br>Sul<br>2020, 00:00<br>2020, 12:00<br>CHANGED, REC                                    | ANE Simulatie<br>obasin: Cuenca<br>I<br>COMPUTE (                                                  | on Run: Run 5<br>Basin Model:<br>Meteorologic Mod<br>Control Specificat | Cuenca hn<br>el: Met Tr 100<br>ions:Control 1 | e                    |       |
|                                                                                                    |                    |       | Date                                                                                                                            | Time                                                                                  | Precip<br>(MM)                                                                                  | Loss<br>(MM)                                                                                                      | Excess<br>(MM)                                                                                     | Direct Flow<br>(M3/S)                                                   | Baseflow<br>(M3/S)                            | Total Flow<br>(M3/S) |       |
|                                                                                                    |                    |       | 09ago2020<br>09ago2020<br>09ago2020                                                                                             | 00:00<br>02:00<br>04:00                                                               | 1.49                                                                                            | 1.49                                                                                                              | 0.00                                                                                               | 0.0 0.0 0.0                                                             | 0.0 0.0 0.0                                   | 0.0 0.0 0.0          |       |
|                                                                                                    |                    |       | 09ago2020                                                                                                                       | 06:00                                                                                 | 2.10                                                                                            | 2.10                                                                                                              | 0.00                                                                                               | 0.0                                                                     | 0.0                                           | 0.0                  |       |
| Components Compute R                                                                               | tesults            |       | 09ago2020                                                                                                                       | 08:00                                                                                 | 2.75                                                                                            | 2.75                                                                                                              | 0.00                                                                                               | 0.0                                                                     | 0.0                                           | 0.0                  |       |
|                                                                                                    |                    |       | 09ago2020                                                                                                                       | 10:00                                                                                 | 4.22                                                                                            | 4.22                                                                                                              | 0.00                                                                                               | 0.0                                                                     | 0.0                                           | 0.0                  |       |
| Control Specifications                                                                             |                    |       | 09ago2020                                                                                                                       | 12:00                                                                                 | 33.29                                                                                           | 24.01                                                                                                             | 9.28                                                                                               | 2.3                                                                     | 0.0                                           | 2.3                  |       |
|                                                                                                    |                    |       | 09ago2020                                                                                                                       | 14:00                                                                                 | 8.49                                                                                            | 3.86                                                                                                              | 4.63                                                                                               | 7.3                                                                     | 0.0                                           | 7.3                  |       |
| Name:                                                                                              | Control 1          |       | 09ago2020                                                                                                                       | 16:00                                                                                 | 3.69                                                                                            | 1.50                                                                                                              | 2.19                                                                                               | 16.2                                                                    | 0.0                                           | 16.2                 |       |
| Description:                                                                                       |                    |       | 09ago2020                                                                                                                       | 18:00                                                                                 | 2.55                                                                                            | 0.98                                                                                                              | 1.57                                                                                               | 28.6                                                                    | 0.0                                           | 28.6                 |       |
| *Start Date (ddMMMYYYY)                                                                            | 09ago2020          | i — I | 09ago2020                                                                                                                       | 20:00                                                                                 | 2.00                                                                                            | 0.74                                                                                                              | 1.26                                                                                               | 43.6                                                                    | 0.0                                           | 43.6                 |       |
|                                                                                                    |                    | -     | 09ago2020                                                                                                                       | 22:00                                                                                 | 1.66                                                                                            | 0.60                                                                                                              | 1.06                                                                                               | 61.5                                                                    | 0.0                                           | 61.5                 | -     |
| *Start Time (HH:mm)                                                                                | 00:00              |       | 10ago2020                                                                                                                       | 00:00                                                                                 | 1.43                                                                                            | 0.50                                                                                                              | 0.93                                                                                               | 82.9                                                                    | 0.0                                           | 82.9                 | -     |
| *End Date (ddMMMYYYY)                                                                              | 14ago2020          |       | 10ago2020                                                                                                                       | 02:00                                                                                 | 0.00                                                                                            | 0.00                                                                                                              | 0.00                                                                                               | 108.4                                                                   | 0.0                                           | 108.4                | -     |
| *End Time (HH:mm)                                                                                  | 12:00              | 1     | 10ago2020                                                                                                                       | 04:00                                                                                 | 0.00                                                                                            | 0.00                                                                                                              | 0.00                                                                                               | 138.2                                                                   | 0.0                                           | 138.2                | -     |
|                                                                                                    |                    |       | 10ago2020                                                                                                                       | 08:00                                                                                 | 0.00                                                                                            | 0.00                                                                                                              | 0.00                                                                                               | 1/2.4                                                                   | 0.0                                           | 1/2.4                | -     |
| Time Interval:                                                                                     | 2 Hours V          |       | 10ag02020                                                                                                                       | 10:00                                                                                 | 0.00                                                                                            | 0.00                                                                                                              | 0.00                                                                                               | 210.0                                                                   | 0.0                                           | 210.0                | -     |
|                                                                                                    |                    |       | 10ago2020                                                                                                                       | 10:00                                                                                 | 0.00                                                                                            | 0.00                                                                                                              | 0.00                                                                                               | 240.1                                                                   | 0.0                                           | 240.1                | -     |
|                                                                                                    |                    |       | 10ag02020                                                                                                                       | 12:00                                                                                 | 0.00                                                                                            | 0.00                                                                                                              | 0.00                                                                                               | 204.3                                                                   | 0.0                                           | 204.3                | · · · |
|                                                                                                    |                    |       | NOTE 15302: Fin<br>NOTE 15301: Be<br>NOTE 20364: Fo<br>NOTE 40049: Fo<br>NOTE 41743: Init<br>WARNING 20657:<br>Values that were | ished compi<br>gan comput<br>und no para<br>und no para<br>tial abstract<br>Hyetograp | uting simulation<br>ing simulation ru<br>meter problems<br>ion ratio for sub<br>oh gage "Pluvio | run "Run 4" at<br>un "Run 5" at tin<br>s in meteorologi<br>s in basin model<br>obasin "Cuenca"<br>grafo Tr100" fo | time 16ago202<br>ne 16ago2020,<br>model "Met Ti<br>"Cuenca hne".<br>'is 0,1999.<br>r subbasin "Cue | 0, 17:16:55.<br>17:18:22.<br>100".<br>enca" contains 54                 | missing or neg                                | ative precipitati    | on v  |

Figura D.10. Caudal acumulado para un intervalo de tiempo de 2 horas

Fuente: Elaboración propia

# ANEXO E

# MANUAL DE MODELAMIENTO HIDRÁULICO EN HEC-RAS (ras mapper)

# 1. Creación del proyecto

Para iniciar en trabajo en HEC-RAS, crearemos un nuevo proyecto presionando el botón "File" luego seleccionamos "New Project", donde tendremos que ingresar los datos del nuevo proyecto.

| 🚟 HEC-RAS 5.0.6         |                    | _                                                          | X           |
|-------------------------|--------------------|------------------------------------------------------------|-------------|
| File Edit Run View Opti | ons GIS Tools Help |                                                            |             |
|                         | 👻 🛣 建 🕹 🛣 💝        | ❤ <u>◄ 뿐 / ८ ♥ 0 10 10 10 10 10 10 10 10 10 10 10 10 1</u> | Hall        |
| Project: HUANCANE       |                    | c:\\TOSHIBA\Documents\MODELAMIENTO HEC-RAS\Modelo 2D\HUAN  | ICANE.prj 📋 |
| Plan:                   |                    |                                                            |             |
| Geometry:               |                    |                                                            |             |
| Steady Flow:            |                    |                                                            |             |
| Unsteady Flow:          |                    |                                                            |             |
| Description :           |                    | 👌 SI Ur                                                    | nits        |

Figura E.11. Creación de un nuevo proyecto

### Fuente: Elaboración propia

# 2. Georreferenciación

Insertamos la proyección haciendo un clic "tools > set Projection for projec" y luego buscamos el archivo, y luego un ok.

| Geometries                |                                                                                                         | Features                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|---------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 🔲 Results<br>🔲 Map Layers | RAS Mapper Options                                                                                      | ×                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Map Layers<br>Terrains    | Project Settings<br>General<br>Render Mode<br>Global Settings<br>General<br>RAS Layers<br>Editing Tools | Projection         ESRI Projection File (*,pri):       [C:\Users\TOSHIBA\Documents\MODELAMIENTO]:         PROJCS[*WGS_1984_UTM_Zone_195*'GEOGCS[*GCS_WGS_1984"_DATUM         [***] TO_WGS_1984_UTM_Zone_195*'GEOGCS[*GCS_WGS_1984"_DATUM         [***] TO_WGS_1984_UTM_Zone_195*'GEOGCS[*GCS_WGS_1984"_DATUM         [***] Townserie.         [***] Notiting:         [***] Notiting:         [***] Sele_Factor':         [***] Default Raster Warping Method         [***] Default Raster Warping Method         Computation Decimal Places |  |
|                           |                                                                                                         | Horizontal: 1  Vertical: 2  XS River Stations Units: Feet  Decimal Places: 0  Elevation Point Filtering                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
|                           |                                                                                                         | XS Points: 450 ÷ LS Points: 1000 ÷<br>Restore Defaults OK Cancel Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

# Figura E.12. Insertamos la proyección

Fuente: Elaboración propia

# 3. Modelo de terreno

Pasamos a introducir el modelo digital del terreno selecionando "Terrains > Create New Ras Terrain".

| 🚟 RAS Mapper                                | -                                                                                                                     |        | ×        |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------|----------|
| File Tools Help                             |                                                                                                                       |        |          |
|                                             | 🖙 👆 🚭 🕀 💥 23 🗲 🄿 📷 🜌 💹 🚳 Max Min 🖪                                                                                    |        | <b>e</b> |
|                                             | Terrains New Terrain Layer                                                                                            |        |          |
|                                             | Set SRS                                                                                                               | Info   |          |
|                                             | Output Terrain File       Rounding (Precision):       1/128       Vertical Conversion:       Use Input File (Default) |        |          |
|                                             |                                                                                                                       | Cancel |          |
| Messages Views Profile Lines Active Feature | ires                                                                                                                  |        |          |

Figura E.13. Seleccionamos el modelo digital de terreno

Elegimos el raster del modelo del terreno, preferiblemente en formato .tif.

| lew Terrain Layer                            |                          |                           |                                 |                   |                  |           |
|----------------------------------------------|--------------------------|---------------------------|---------------------------------|-------------------|------------------|-----------|
| Set SRS                                      |                          |                           |                                 |                   |                  |           |
| + Filename<br>dem 1.tif                      |                          |                           | Projection<br>(Same as Project) | Cell Size<br>12.5 | Rounding<br>None | Info<br>1 |
| *<br>*                                       |                          |                           |                                 |                   |                  |           |
| Output Terrain File<br>Rounding (Precision): | 1/128                    | ▼ Create Stitches         |                                 | Inputs to Si      | ngle Raster      |           |
| Vertical Conversion:                         | Use Input File (Default) | <u> </u>                  |                                 |                   | -                |           |
| Filename:                                    | C:\Users\TOSHIBA\Docur   | ments\MODELAMIENTO HEC-R/ | AS\Modelo río 2D\T              | errain \DEM.      | hdf              | 2         |
|                                              |                          |                           |                                 |                   | Create           | Cancel    |

Figura E.14. Insertamos el modelo digital de terreno

Fuente: Elaboración propia

El programa creará un archivo hdf que representa el modelo de terreno en HEC RAS, por lo que el programa ya no necesitará el terreno en formato .tif, sino que tendrá su propio modelo de terreno en formato hdf.



Figura E.15. DEM del área de estudio

# 4. Creación de la geometría

Una vez hemos cargado todos los datos necesarios del terreno pasamos a crear la geometría en el editor de geometría.

| HEC-RAS 5.0.6                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                     |                         | $\times$       |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------|-------------------------|----------------|
| File Edit Run View Option                                                                                                        | s GIS Tools Help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                          |                     |                         |                |
| 😂 🖬 🔟 🚌 🎫 🐝                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ● <u>→ ⊭ </u> ⊭ ∠                                                                                        | ¥ 🗠 🖳 🔳             | 📰 📴 oss                 | II tonii       |
| Project: HUANCANE                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | c:\\TOSHIBA\Documen                                                                                      | ts MODELAMIENTO HEC | -RAS\Modelo 2D\HUANCANE | .prj 📄         |
| Ceometric Data                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                     | - =                     | 1 ×            |
| File Edit Options View Tables                                                                                                    | Tools GISTools Help<br>Prines 20 August 20 Augus | n RG <b>201</b>                                                                                          | Description :       | Plot WS extent          | s for Profile: |
| Crocs<br>Sector                                                                                                                  | Background Laver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Select layers to view in bar                                                                             | ckground            |                         | ſ              |
| Drdg/Culu<br>Factors<br>Stuckers<br>Stuckers<br>Stuckers<br>Stuckers<br>Stuckers<br>Stuckers<br>Stuckers<br>Stuckers<br>Stuckers | Map Layer<br>Note - Herc-RA gas<br>and saler "Ris Total<br>Layer" to add dos.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | netry schematic now gets harkgro<br>apper vinces. Go to the melin win<br>«1845 Mapper" Right Cirk on "Ma | and<br>dow          |                         |                |
| Anizo Aniza                                                                                                                      | Terrain (associated T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Cose                                                                                                     |                     |                         |                |
| View<br>View<br>View                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                     |                         |                |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                          |                     |                         |                |

Figura E.16. Aquí se creará la geometría

## Fuente: Elaboración propia

El primer paso que debemos realizar es delimitar el área 2D donde se creará la malla de simulación. Para ello presionamos el botón "2D Flow Area" y delimitamos el área del proyecto y finalizando con doble click.



Figura E.17. Delimitando el área de estudio

# 5. Creación de la malla

Una vez creada la geometría, pasamos a crear la malla que definirá nuestro modelo, para ello seleccionamos el botón "2D Flow Area" de la barra "Editors".

| File Edit Options | View Tables Tools GIS Tools Help                                                                                   |                       |                                         |                     |                    |            |
|-------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------|---------------------|--------------------|------------|
| Folitors          | ge 2DFlow SA/2DArea SA/2DArea 2DArea 2<br>Area Conn BCLines BreakLines N<br>DI III III III III III III III III III | Ann n Station • 12.99 | Description :                           | <u> </u>            | Plot WS extents fo | r Profile: |
| Junct.            | 2D Flow Areas                                                                                                      |                       |                                         |                     | 1                  | <u>^</u>   |
| Cross             | 2D Flow Area: Área de estudio                                                                                      | -                     | L ↑ Storage ←                           |                     |                    |            |
| Brdg/Culv         | Connections and References to this 2D Flo                                                                          | w Area                |                                         | <u> </u>            |                    |            |
| Inline            |                                                                                                                    |                       |                                         |                     |                    |            |
| Structure         |                                                                                                                    |                       |                                         | -                   |                    |            |
| Structure         | Defaullt Manning's n Value:                                                                                        | 0.06                  | 2D Flow Area Computation Point          | s                   |                    |            |
| Storage           | Edit Land Cover to Manning's n                                                                                     | . Current m           | esh contains no computation             | points.             |                    |            |
| 2DFlow<br>Area    | Cell Volume Filter Tol (0=OFF)(m):                                                                                 | 0.003                 |                                         |                     |                    |            |
|                   | Face Profile Filter Tol (0=OFF)(m):                                                                                | 0.003 Generate C      | omputation Points on Regular Interval v | with All Breaklines |                    |            |
| Int 2D Flow Areas | Face Area-Elev Filter Tol (0=OFF)(m):                                                                              | 0.003                 | View/Edit Computation Points            |                     |                    |            |
| Pump<br>Station   | Face Conveyance Tol Ratio (min=0.0001):<br>Face Laminar Depth (0=OEE)(m):                                          | 0.02                  |                                         |                     |                    |            |
| HTab<br>Param     | GIS Outline Force Mesh Reco                                                                                        | mputation             |                                         | Cancel              |                    |            |
| View              |                                                                                                                    |                       |                                         |                     | _                  |            |
|                   |                                                                                                                    |                       |                                         | /                   |                    |            |
|                   |                                                                                                                    |                       |                                         |                     | *******            | 0005.00    |

Figura E.18. Creación de malla

Fuente: Elaboración propia

A continuación, presionamos el botón "Generate Computation Point son Regular Interval with all Breaklines" para definir las dimensiones vertical y horizontal de la malla. Hemos definido las celdas de 10×10 como un tamaño de precisión media, como es lógico, cuanto menor sea la celda, mayor la precisión y el tiempo de cálculo. Y luego presionamos el botón "Generate Points in 2D Flow Area".

| File Edit Options View Tables Tools GIS Tools Help<br>Tools River Storage 20Flow SA/2D Areal SA/2D Areal 2D Area<br>Reach Area Area Area Conn B Clines BreakLines                                                                                                                                                                                                                                                           | 20 Area Pump RS                                                                                                                  | Description :             | Plot WS extents for Profile: |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------|
| Editors<br>Junct.<br>Cross<br>Section<br>Brdg/Culv<br>Editors<br>2D Flow Areas<br>2D Flow Areas<br>2D Flow Areas<br>Connections and References to this 2D<br>Editors<br>Connections and References to this 2D                                                                                                                                                                                                               | Regions 7 (12.99)                                                                                                                |                           |                              |
| Inline<br>Structure       Structure       Defaullt Manning's n Value:       Structure       Cell Volume Filter Tol (0=OFF)(m):       Free       Cell Minimum Surface Area Fraction (0=       Face Profile Filter Tol (0=OFF)(m):                                                                                                                                                                                            | 2D Flow Area Generate Points Computation Point Spacing Spacing DX = Shift Generated Points (Optional) Shift Right = Shift Up = 0 | mputation Points          |                              |
| SAZEO Frea         Face Area-Elev Filter Tol (0=OFF)(m):           Face Area-Elev Filter Tol (0=OFF)(m):         Face Area-Elev Filter Tol (0=OFF)(m):           Face Area-Elev Filter Tol (0=OFF)(m):         Face Conveyance Tol Ratio (min=0.0001           Station         Face Laminar Depth (0=OFF)(m):           HTab         Face Laminar Depth (0=OFF)(m):           View         Force Mesh Riter Tol (0=OFF)(m): | Generate Points in 2D Flow Area Cancel (); [0.02 [0.06 ] ecomputation                                                            | and internal Connections) |                              |

Figura E.19. Definimos el tamaño de la celda

# Fuente: Elaboración propia

En la descripción "Default Manning's n value", se insertará el coeficiente de rugosidad, para nuestro proyecto insertaremos un valor de 0.033.

| 🧙 Geometric Data     |                                                                                                             | _          |            | ×        |
|----------------------|-------------------------------------------------------------------------------------------------------------|------------|------------|----------|
| File Edit Options V  | fiew Tables Tools GISTools Help<br>20.Priow SA/20.Area] SA/20.Area] 20.Area 20.Area Pump R.S. Description : | Plot WS ex | ctents for | Profile: |
| Editors              | Area Coon BC Lines BreakLines Mann n Station regions of 1239                                                |            |            | -        |
| Junet.               | 2D Flow Areas                                                                                               | 1          |            | ^        |
| Cross                | 20 Flow Area: Área de estudio                                                                               |            |            |          |
| Section              | Connections and References to this 2D Flow Area                                                             |            |            |          |
| Brdg/Culv            |                                                                                                             |            |            |          |
|                      |                                                                                                             |            |            |          |
| Structure            |                                                                                                             |            |            |          |
| Lateral<br>Structure | <u> </u>                                                                                                    |            |            |          |
|                      | Defaulit Manning's n Value: 0.033 2D Flow Area Computation Points                                           |            |            |          |
| Storage<br>Area      | Edit Land Cover to Manning's n                                                                              | 1          |            |          |
| 2DFlow<br>OPP2       | Cell Volume Filter Tol (0=OFF)(m): 0.003                                                                    |            |            |          |
|                      | Generate Computation Points on Regular Interval with All Breaklines                                         |            |            |          |
| SA/2D Area<br>Conn   | Enforce Selected Breaklines (and internal Connections)                                                      |            |            |          |
| Pump                 | Face Conveyance Tol Ratio (min=0.0001): 0.02                                                                |            |            |          |
| Station              | Face Laminar Depth (0=OFF)(m): 0.06                                                                         |            |            |          |
| HTab                 | GIS Outline Force Mesh Recomputation OK Cancel                                                              |            |            |          |
| View                 |                                                                                                             |            |            |          |
| Picture              |                                                                                                             |            |            | -        |
| 4                    |                                                                                                             | 415394     | 45.8321    | 506.62   |

Figura E.20. Aquí insertamos el coeficiente de manning

# Fuente: Elaboración propia

A continuación, presionamos el botón "Force Mesh Recomputation" y presionamos "ok" para que se generare la malla deseada.



Figura E.21. Malla creada

# 6. Condiciones de contorno

Luego pasamos a definir las condiciones de contorno aguas arriba y aguas abajo. Para ello apretamos el botón "SA/2D Area BC Lines" y comenzamos a definir los contornos.

Las condiciones de contorno se definen en los bordes del área, aunque no es necesario que ocupen la totalidad del borde, sino sólo donde deseamos que se cumpla. Ambas en el cauce del río, tanto en aguas arriba y aguas abajo.



Figura E.22. Definición del contorno aguas arriba y aguas abajo

Fuente: Elaboración propia

# 7. Guardar

🤾 Geometric Data × File Edit Options View Tools GIS Tools Help Tables rea SA/2DArea 2DArea BC Linos BreakLine: RS <12.99 Plot WS extents for New Geometry Data Description Pump Station 2 Open Geometry Data Save Geometry Data Save Geometry Data As ... Rename Geometry Title Delete Geometry Data Copy to Clipboard Print ... Import Geometry Data Exit Geometry Data Editor Area 2D Flow Area Pump Station HTab Param View Picture 413528.44, 832

Antes de seguir, debemos guardar la geometría.

Figura E.23. Guardamos el archivo

Fuente: Elaboración propia

### 8. Definimos el régimen de flujo

Hecho esto, ya tendríamos definida la geometría, sería el momento de definir el régimen de flujo y las condiciones de contorno. Como hemos puesto un hidrograma de entrada, el régimen de flujo sería variable, por lo que habría que abrir la pestaña "Unsteady Flow Data".

| Unsteady Flow D       | )ata                                   |                   |                             | _       |            | $\times$ |
|-----------------------|----------------------------------------|-------------------|-----------------------------|---------|------------|----------|
| le Ontions Heli       |                                        |                   |                             |         |            |          |
|                       | P                                      |                   |                             | ~       | Appl       | v Data   |
| Boundary Conditions   | Initial Conditio                       | ns                |                             |         | - <u> </u> |          |
|                       |                                        | Boundary Co       | ondition Types              |         |            |          |
| Stage Hydrograp       | h Flow F                               | lydrograph        | Stage/Flow Hydr.            | Rat     | ing Curve  | :        |
| Normal Depth          | Lateral                                | Inflow Hydr.      | Uniform Lateral Inflow      | Groundv | ater Inte  | rflow    |
| T.S. Gate Openin      | gs 🛛 Elev Cor                          | ntrolled Gates    | Navigation Dams             | IB S    | tage/Flov  | J.       |
| Rules                 | Pre                                    | cipitation        | 1                           |         |            |          |
|                       |                                        | Add Boundary C    | Condition Location          |         |            |          |
| Add RS                | Add SA/20                              | Flow Area         | Add SA Connection           | Add Pu  | mp Statio  | n        |
|                       | Select Location                        | n in table then s | elect Boundary Condition Ty | pe      |            |          |
| River                 | Reach                                  | RS                | Boundary Condition          |         |            |          |
|                       |                                        |                   |                             |         |            |          |
| Storage/2D Flow Areas |                                        |                   | Boundary Condition          |         |            |          |
| 1 Área de estudio     | BCLine: Aguas a                        | bajo              |                             |         |            |          |
| 2 Area de estudio     | 2 Area de estudio BCLine: Aguas arriba |                   |                             |         |            |          |

Figura E.24. Aquí se ingresan los datos para la simulación

Una vez abierto podemos comprobar que aparecen los contornos que hemos definido. Si los seleccionamos podemos elegir el tipo de condición que le queremos aportar, teniendo las siguientes posibilidades:

Stage Hydrograph: se trata de definir el nivel del agua a lo largo del tiempo de simulación.

Flow Hydrograph: se trata de definir el caudal entrante a lo largo del tiempo de simulación.

Rating Curve: se trata de relacionar el caudal entrante o saliente con el nivel del agua en la condición de contorno, al igual que en los modelos 1D.

Normal Depth: se trata de definir la pendiente de energía en ese punto, al igual que en los modelos 1D.

Para nuestro proyecto definiremos el hidrograma de entrada seleccionando la condición de contorno "aguas arriba" y a continuación el botón "Flow Hydrograph".

|                                 |                                                                                                                                                                                                    | 👶 Apply Data                                                                                                                                                                                                                                                                                                      |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| itial Conditions                | ndition Types                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                   |
| Flow Hydrograph                 | Stage/Flow Hydr.                                                                                                                                                                                   | Rating Curve                                                                                                                                                                                                                                                                                                      |
| Lateral Inflow Hydr,            | Uniform Lateral Inflow                                                                                                                                                                             | Groundwater Interflow                                                                                                                                                                                                                                                                                             |
| Elev Controlled Gates           | Navigation Dams                                                                                                                                                                                    | IB Stage/Flow                                                                                                                                                                                                                                                                                                     |
| Precipitation                   |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |
| Add Boundary C                  | ondition Location                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                   |
| Add SA/2D Flow Area             | Add SA Connection                                                                                                                                                                                  | Add Pump Station                                                                                                                                                                                                                                                                                                  |
| elect Location in table then se | elect Boundary Condition Ty                                                                                                                                                                        | pe                                                                                                                                                                                                                                                                                                                |
| each DS                         | Boundary Condition                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                   |
| cauli KS                        |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |
|                                 |                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                   |
|                                 | itial Conditions  <br>Boundary Co<br>Flow Hydrograph<br>Lateral Inflow Hydr.<br>Elev Controlled Gates<br>Precipitation<br>Add Boundary C<br>Add SA/2D Flow Area<br>elect Location in table then se | itial Conditions Boundary Condition Types Boundary Condition Types Flow Hydrograph Stage/Flow Hydr, Lateral Inflow Hydr, Uniform Lateral Inflow Elev Controlled Gates Navigation Dams Precipitation Add Boundary Condition Location Add SA/2D Flow Area Elect Location in table then select Boundary Condition Ty |

Figura E.25. Preparando para ingresas los datos

En la nueva ventana definimos los intervalos de tiempo en los que definimos el hidrograma (en nuestro caso, dos horas) y elegimos el tiempo de comienzo y fin del hidrograma (recomiendo utilizar el tiempo de simulación) y los caudales del hidrograma e cada momento. Por último ponemos la pendiente del terreno a la entrada en la casilla inferior izquierda, lo que permite al programa calcular el calado en la condición de contorno y distribuir el caudal a lo largo de la línea e contorno. Para finalizar ok.

| Flow Hydrograph                                                                   |                                     |                           |  |  |  |  |
|-----------------------------------------------------------------------------------|-------------------------------------|---------------------------|--|--|--|--|
| C Read from DSS before simulation Select DSS file and Path                        |                                     |                           |  |  |  |  |
| File                                                                              |                                     |                           |  |  |  |  |
| Daths                                                                             |                                     |                           |  |  |  |  |
| Paul: j                                                                           |                                     |                           |  |  |  |  |
| C                                                                                 |                                     |                           |  |  |  |  |
| <ul> <li>Enter Table</li> <li>Calact / Enter the Data's Charting Table</li> </ul> | Dafaaaaa                            | ata time interval: 2 Hour |  |  |  |  |
| C Use Simulation Time:                                                            | e Reference                         | 0                         |  |  |  |  |
| G Find the Tree Da                                                                |                                     |                           |  |  |  |  |
| <ul> <li>Fixed Start Time: Date</li> </ul>                                        | e: 109A0G2020 Time: 1000            | 0                         |  |  |  |  |
| No. Ordinates Interpolate Missi                                                   | ng Values Del Row Ins R             | ow                        |  |  |  |  |
|                                                                                   |                                     |                           |  |  |  |  |
|                                                                                   | Hydrograph Data                     |                           |  |  |  |  |
| Date                                                                              | Simulation Time                     | Flow A                    |  |  |  |  |
| 5 09402020.0800                                                                   | (nours)                             | (m3/s)                    |  |  |  |  |
| 6 09Aug2020 1000                                                                  | 10:00                               | 0                         |  |  |  |  |
| 7 09Aug2020 1200                                                                  | 12:00                               | 1.6                       |  |  |  |  |
| 8 09Aug2020 1400                                                                  | 14:00                               | 3.8                       |  |  |  |  |
| 9 09Aug2020 1600                                                                  | 16:00                               | 6.6                       |  |  |  |  |
| 10 09Aug2020 1800                                                                 | 18:00                               | 9.4                       |  |  |  |  |
| 11 09Aug2020 2000                                                                 | 20:00                               | 11.4                      |  |  |  |  |
| 12 09Aug2020 2200                                                                 | 22:00                               | 13.6                      |  |  |  |  |
| 13 09Aug2020 2400                                                                 | 24:00                               | 16.4                      |  |  |  |  |
| 14 10Aug2020 0200                                                                 | 26:00                               | 19.5                      |  |  |  |  |
| 15 10Aug2020 0400                                                                 | 28:00                               | 22.8                      |  |  |  |  |
| 16 10Aug2020 0600                                                                 | 30:00                               | 20.2                      |  |  |  |  |
| 18 10Aug2020 0800                                                                 | 32.00                               | 20.0                      |  |  |  |  |
| 19 10Aug2020 1000                                                                 | 36:00                               | 28.1                      |  |  |  |  |
| Time Step Adjustment Options ("Cri                                                | tical" boundary conditions)         |                           |  |  |  |  |
| Monitor this hydrograph for adju                                                  | istments to computational time step |                           |  |  |  |  |
| Max Change in Flow (without c                                                     | hanging time step):                 |                           |  |  |  |  |
| that change in those (wild load e                                                 |                                     |                           |  |  |  |  |
| Min Flow: Multiplier: EG Slope for distributing flow along BC Line: 0.0004        |                                     |                           |  |  |  |  |
|                                                                                   | Plot Data                           | OK Cancel                 |  |  |  |  |

Figura E.26. Ingreso de datos aguas arriba

Una vez definida la condición de "aguas arriba", definiremos la condición "aguas abajo" mediante la pendiente de energía, lo cual se hace de la misma forma que en HEC RAS 1D

| Unsteady Flow Da                                                                                                                                                       | ta - CAUDAL NO PERMANEN                          | JTE                           | - 🗆 ×                 |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------|-----------------------|--|--|--|--|--|
| Description :                                                                                                                                                          |                                                  |                               | 🗘 Apply Data          |  |  |  |  |  |
| Boundary Conditions                                                                                                                                                    | Initial Conditions                               |                               |                       |  |  |  |  |  |
| Stage Hydrograph                                                                                                                                                       | Boundary Co<br>Flow Hydrograph                   | Stage/Flow Hydr.              | Rating Curve          |  |  |  |  |  |
| Normal Depth                                                                                                                                                           | Lateral Inflow Hydr.                             | Uniform Lateral Inflow        | Groundwater Interflow |  |  |  |  |  |
| T.S. Gate Opening:                                                                                                                                                     | Elev Controlled Gates                            | Navigation Dams               | IB Stage/Flow         |  |  |  |  |  |
| Rules                                                                                                                                                                  | Precipitation                                    |                               |                       |  |  |  |  |  |
|                                                                                                                                                                        | Add Boundary (                                   | Condition Location            |                       |  |  |  |  |  |
| Add RS                                                                                                                                                                 | Add SA/2D Flow Area                              | Add SA Connection             | Add Pump Station      |  |  |  |  |  |
|                                                                                                                                                                        | Select Location in table then s                  | elect Boundary Condition Ty   | /pe                   |  |  |  |  |  |
| River                                                                                                                                                                  | Reach RS                                         | Boundary Condition            |                       |  |  |  |  |  |
|                                                                                                                                                                        | JJ                                               |                               |                       |  |  |  |  |  |
| Storage/2D Flow A                                                                                                                                                      | D BCLine: Aguas ariba 1                          | Flow Hydrograph               |                       |  |  |  |  |  |
| 2 AREA DE ESTUDIO                                                                                                                                                      | D BCLine: Aguas abajo 1                          | Normal Depth                  |                       |  |  |  |  |  |
| Norm                                                                                                                                                                   | al Depth Downstream Bound<br>SA: AREA DE ESTUDIO | dary<br>BCLine: Aquas abaio 1 |                       |  |  |  |  |  |
| Frictio                                                                                                                                                                | n Slope:                                         | 0.000                         | 24                    |  |  |  |  |  |
| 2D Flow Area Boundary Condition Parameters     C Compute separate water surface elevation per face along BC Line     C Compute single water surface for entire BC Line |                                                  |                               |                       |  |  |  |  |  |
| OK Cancel                                                                                                                                                              |                                                  |                               |                       |  |  |  |  |  |
|                                                                                                                                                                        |                                                  |                               |                       |  |  |  |  |  |
|                                                                                                                                                                        |                                                  |                               |                       |  |  |  |  |  |
|                                                                                                                                                                        |                                                  |                               |                       |  |  |  |  |  |



Fuente: Elaboración propia

### 9. Inicio de simulación

Antes de seguir, debemos guardar.

Por último, queda comenzar la simulación, para ello abrimos la ventana de simulación en régimen variable

Una vez abierta la ventana debemos señalar todas las casillas de resultados (quitando la parte de sedimentos que no la vamos a utilizar), a continuación definimos el intervalo de simulación, el cual dejamos en 12 horas ya que es tiempo de sobra para analizar la tormenta (podría ser más o menos pero hemos adaptado la tormenta al tiempo de la simulación cuando definimos la precipitación).

Por último, en las "Computation Settings" hemos decidido que nos de los resultados con el mismo intervalo que en la tormenta, y con pasos de cálculo de una hora ya que así obtenemos un cálculo rápido.

| 上 Unsteady Flow Analysis                                                                                                                                                                                                                                                                                                                                                            | $\times$                             |  |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|--|--|--|--|--|--|
| File Options Help                                                                                                                                                                                                                                                                                                                                                                   |                                      |  |  |  |  |  |  |  |
| Plan : Short ID:                                                                                                                                                                                                                                                                                                                                                                    |                                      |  |  |  |  |  |  |  |
| Geometry File : Geometria                                                                                                                                                                                                                                                                                                                                                           | -                                    |  |  |  |  |  |  |  |
| Unsteady Flow File : Caudal no permanente                                                                                                                                                                                                                                                                                                                                           |                                      |  |  |  |  |  |  |  |
| Programs to Run       Plan Description         Image: Sediment       Post Processor         Image: Processor       Plan Description         Image: Processor       Plan Description |                                      |  |  |  |  |  |  |  |
| Simulation Time Window       Starting Date:       Ending Date:       14AUG2020       Ending Time:   Ending Time:                                                                                                                                                                                                                                                                    | 0000                                 |  |  |  |  |  |  |  |
| Computation Settings         Computation Interval:         Mapping Output Interval:         1 Hour         DSS Output Filename:         c:\Users\TOSHIBA\Documents\MODELAMIENTO HEC                                                                                                                                                                                                 | al: 1 Hour ▼<br>1 Hour ▼<br>RAS\Mode |  |  |  |  |  |  |  |
| Compute                                                                                                                                                                                                                                                                                                                                                                             |                                      |  |  |  |  |  |  |  |

Figura E.28. Seleccionado y ingreso de datos para la simulación

Fuente: Elaboración propia

| Lunsteady Flow Analys                                                                                                      | is ×                                                                      |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Plan : Plan A                                                                                                              | Short ID:                                                                 |
| Geometry File :                                                                                                            | Geometria                                                                 |
| Unsteady Flow                                                                                                              | File : Caudal no permanente                                               |
| Programs to Run     Geometry Preprocesso     Unsteady Flow Simular     Sediment     Post Processor      Eloodplain Mapping | Plan Description<br>ion<br>HEC-RAS<br>Enter the short plan Identifier (16 |
| Simulation Time Window                                                                                                     | char recommended 64 char max)                                             |
| Starting Date:                                                                                                             | 09 Plan Al                                                                |
| Ending Date:                                                                                                               | 14 OK Cancel 1200                                                         |
| Computation Settings                                                                                                       | 10 Second X Hydrograph Output Interval: 1 Hour                            |
| Mapping Output Interval:                                                                                                   | 1 Hour ▼ Detailed Output Interval: 1 Hour ▼                               |
| DSS Output Filename:                                                                                                       | c: \Users\TOSHIBA\Documents\MODELAMIENTO HEC-RAS\Mode                     |
|                                                                                                                            |                                                                           |
|                                                                                                                            | Compute                                                                   |

Figura E.29. Creamos un plan y guardamos

Sólo queda apretar el botón "Compute"

| 🚟 HEC-RAS Computations                                                                                                                                                                                                                                                                                                           |                                             | _ |      | $\times$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|---|------|----------|
| Write Geometry Information<br>Layer: COMPLETE                                                                                                                                                                                                                                                                                    |                                             |   |      |          |
| Geometry Processor<br>River:<br>Reach:<br>IB Curve:                                                                                                                                                                                                                                                                              | RS:<br>Node Type: Storage Area              |   |      |          |
| Unsteady Flow Simulation<br>Simulation:<br>Time: 46.5000 10AUG2020 22:30:0<br>Unsteady Flow Computations                                                                                                                                                                                                                         | 0 Iteration (1D): Iteration (2D): 5         |   |      |          |
| Stored Map Generation<br>Map:                                                                                                                                                                                                                                                                                                    | ſ                                           |   |      |          |
| Simulation started at: 09Sep2020 05:01:32 PM<br>Writing Geometry<br>AREA DE ESTLDIO: Mesh property tables are or<br>Completed Writing Geometry<br>Geometric Preprocessor HEC-RAS 5.0.6 N<br>Finished Processing Geometry Data to Results<br>Completed copying Geometry Data to Results<br>Performing Unsteady Flow Simulation HE | arrent.<br>ovember<br>CC-RAS 5.0.6 November |   |      |          |
| Pause Take Snapshot of Results                                                                                                                                                                                                                                                                                                   |                                             | [ | Stop |          |

Figura E.30. Procesando la simulación

Fuente: Elaboración propia

## 10. Resutados

Una vez terminado el proceso de simmulación para cada periodo de retorno nos dirigimos a la pestaña RAS MAPPER, donde podremos ver los resultados.



Figura E.31. Resultado para un periodo de retorno 5 años



Figura E.32. Resultado para un periodo de retorno 10 años

Fuente: Elaboración propia



**Figura E.33**. *Resultado para un periodo de retorno 25 años* Fuente: Elaboración propia



Figura E.34. Resultado para un periodo de retorno 50 años



Figura E.35. Resultado para un periodo de retorno 100 años

Fuente: Elaboración propia

# **ANEXO F** PUNTOS GEODESICOS

| P                                                                                      | UNIVERSIDAD NACIO<br>INGENIERÍA TOPOGR<br>DESCRIPCIÓN<br>ROYECTO CONSOLIDACIÓN DE LOS | DNAL DEL ALTIPL<br>RAFICA Y AGRIMENSURA<br>N MONOGRÁFICA<br>DERECHOS DE LA PROPIEDAD IN   |                                                        | UNIVERSIDAD NACIONAL DEL ALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DE SCRIPCIÓN MONOGRÁFICA<br>PROYECTO CONSOLIDACIÓN DE LOS DERECHOS DE LA PROPIEDAD INMUEBLE |                                                                                     |                                                                                    |                                                         |  |  |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Tesis <sub>EVE</sub>                                                                   | "ANÁLISIS DEL NIVEL DE RIESGO E<br>NTUAL MÁXIMA AVENIDA EN LA CU<br>APLICANDO EL SIST | EN ZONAS VULNERABLES A INUNI<br>ENCA DEL RÍO HUANCANÉ PARCI<br>'EMA DE INFORMACIÓN GEOGRA | DACIONES ANTE UNA<br>ALIDAD DE AZANGARILLO,<br>ÁFICA'' | Tesis EVENTU,                                                                                                                                                             | NÁLISIS DEL NIVEL DE RIESGO EI<br>AL MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE | N ZONAS VULNERABLES A INUN<br>NCA DEL RÍO HUANCANÉ PARC<br>MA DE INFORMACIÓN GEOGR | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' |  |  |
| CÓDIGO:<br>PCG-1049                                                                    | LOCALIDAD:<br>AZANGARILLO                                                             | ESTABLECIDA POR:<br>Bach. Oswaldo Dar                                                     | ío Mamani Sucasaire                                    | CÓDIGO:<br>PCG-1050                                                                                                                                                       | LOCALIDAD:<br>AZANGARILLO                                                           | ESTABLECIDA POR:<br>Bach. Oswaldo Dar                                              | ío Mamani Sucasaire                                     |  |  |
| UBICACIÓN:<br>DENTRO DE U                                                              | IN TERRENO                                                                            | CARACTERÍSTICAS DE LA N<br>DISCO DE BRONC                                                 | /ARCA:<br>E 7 cm. DIÁMETRO                             | UBICACIÓN:<br>AL LADO DE LA                                                                                                                                               |                                                                                     | CARACTERÍSTICAS DE LA<br>DISCO DE BRONO                                            | MARCA:<br>CE 7 cm. DIÁMETRO                             |  |  |
| LATITUD(S) WGS-8<br>15°C                                                               | :4<br>)9'47.9979''                                                                    | LONGITUD ( O ) WGS-84<br>69°47                                                            | '52.04''                                               | LATITUD ( S ) WGS-84<br>15°10'5                                                                                                                                           | 0.7486"                                                                             | LONGITUD ( O ) WGS-84<br>69°47'                                                    | ۱<br>17.1956"                                           |  |  |
| NORTE (Y) WGS-84                                                                       | 4<br>8323452.476                                                                      | ESTE ( X ) WGS-84<br>4142                                                                 | 94.780                                                 | NORTE ( Y ) WGS-84<br>8322                                                                                                                                                | 1528.134                                                                            | ESTE ( X ) WGS-84<br>4153                                                          | 41.579                                                  |  |  |
| ALTURA ELIPSOIDAL<br>3830.234                                                          | ELEVACIÓN GEOIDAL<br>3819.164                                                         | ZONA UTM<br>19 SUR                                                                        | ORDEN<br>B                                             | ALTURA ELIPSOIDAL<br>3826.143                                                                                                                                             | ELEVACIÓN GEOIDAL<br>3817.528                                                       | ZONA UTM<br>19 SUR                                                                 | ORDEN<br>B                                              |  |  |
|                                                                                        |                                                                                       |                                                                                           |                                                        |                                                                                                                                                                           | ¢FCC 1050                                                                           |                                                                                    |                                                         |  |  |
| Distrito                                                                               | Huancané                                                                              |                                                                                           |                                                        | Distrito:                                                                                                                                                                 | Huancané                                                                            |                                                                                    |                                                         |  |  |
| Provincia:                                                                             | Huancané                                                                              |                                                                                           |                                                        | Provincia:                                                                                                                                                                | Huancané                                                                            |                                                                                    |                                                         |  |  |
| Departamento:                                                                          | Puno                                                                                  |                                                                                           |                                                        | Departamento:                                                                                                                                                             | Puno                                                                                |                                                                                    |                                                         |  |  |
| <b>DESCRIPCIÓN:</b><br>La estación "PCG-1049" se encuentra ubicada en un terreno.      |                                                                                       |                                                                                           |                                                        | <b>DESCRIPCIÓN:</b><br>La estación "PCG-1050" se encuentra ubicada en la margen derecha de la via.                                                                        |                                                                                     |                                                                                    |                                                         |  |  |
| MARCA DE ESTACIÓI                                                                      | N:                                                                                    |                                                                                           |                                                        | MARCA DE ESTACIÓN:                                                                                                                                                        |                                                                                     |                                                                                    |                                                         |  |  |
| Es un disco de bronce de 7 cm. De diametro, Incrustado a ras del suelo y lleva grabada |                                                                                       |                                                                                           |                                                        | Es un disco de bronce de 7 cm. De diametro, Incrustado a ras del suelo y lleva grabada                                                                                    |                                                                                     |                                                                                    |                                                         |  |  |
| la siguiente descripción: "PCG-1049"                                                   |                                                                                       |                                                                                           |                                                        | la siguiente descripción                                                                                                                                                  | : "PCG-1050"                                                                        |                                                                                    |                                                         |  |  |
| REFERENCIA:                                                                            |                                                                                       |                                                                                           |                                                        | REFERENCIA:                                                                                                                                                               |                                                                                     |                                                                                    |                                                         |  |  |
| Carta Nacional Escala                                                                  | a 1/100 000, Hoja 31-x                                                                |                                                                                           |                                                        | Carta Nacional Escala 1/                                                                                                                                                  | 100 000, Hoja 31-x                                                                  |                                                                                    |                                                         |  |  |
| DESCRITA POR:                                                                          | REVISADO:                                                                             | JEFE PROYECTO:                                                                            | FECHA:                                                 | DESCRITA POR:                                                                                                                                                             | REVISADO:                                                                           | JEFE PROYECTO:                                                                     | FECHA:                                                  |  |  |
| O.D.M.S.                                                                               | Ing. R.C.T.                                                                           | Bach. Oswaldo D.M.S.                                                                      | Marzo 2019                                             | O.D.M.S.                                                                                                                                                                  | Ing. R.C.T.                                                                         | Bach. Oswaldo D.M.S.                                                               | Marzo 2019                                              |  |  |

| UNI<br>PROYEC                                                                                         | VERSIDAD NACIO<br>INGENIERÍA TOPOGRA<br>DESCRIPCIÓN<br>TO CONSOLIDACIÓN DE LOS D | NAL DEL ALTIPL.<br>NFICA Y AGRIMENSURA<br>MONOGRÁFICA<br>DERECHOS DE LA PROPIEDAD IN  |                                                         | PROYE                                                                                                 | IVERSIDAD NACIO<br>INGENIERÍA TOPOGRA<br>DESCRIPCIÓN<br>CTO CONSOLIDACIÓN DE LOS D | NAL DEL ALTIPL<br>AFICA Y AGRIMENSURA<br>MONOGRÁFICA<br>DERECHOS DE LA PROPIEDAD II  |                                                         |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Tesis EVENTUAL                                                                                        | ÁLISIS DEL NIVEL DE RIESGO EN<br>MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE  | I ZONAS VULNERABLES A INUNI<br>NCA DEL RÍO HUANCANÉ PARCI<br>MA DE INFORMACIÓN GEOGRA | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' | Tesis EVENTUA                                                                                         | IÁLISIS DEL NIVEL DE RIESGO EN<br>L MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE | I ZONAS VULNERABLES A INUNI<br>NCA DEL RÍO HUANCANÉ PARC<br>MA DE INFORMACIÓN GEOGR. | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' |  |  |
| CÓDIGO:<br>A1                                                                                         | LOCALIDAD:<br>AZANGARILLO                                                        | ESTABLECIDA POR:<br>Bach. Oswaldo Dar                                                 | ío Mamani Sucasaire                                     | CÓDIGO:<br>A2                                                                                         | LOCALIDAD:<br>AZANGARILLO                                                          | ESTABLECIDA POR:<br>Bach. Oswaldo Dar                                                | ío Mamani Sucasaire                                     |  |  |
| UBICACIÓN:<br>MARGEN DERECHA I                                                                        | de la vía                                                                        | CARACTERÍSTICAS DE LA I<br>BARRILLA                                                   | MARCA:<br>A DE 50 cm.                                   | UBICACIÓN:<br>MARGEN IZQUIERD                                                                         | A DEL RÍO                                                                          | CARACTERÍSTICAS DE LA I<br>BARRILLA                                                  | MARCA:<br>A DE 50 cm.                                   |  |  |
| LATITUD ( S ) WGS-84<br>15°09'55                                                                      | .9578"                                                                           | LONGITUD ( O ) WGS-84<br>69°48'1                                                      | 14.3476"                                                | LATITUD(S) WGS-84<br>15°09'3                                                                          | 2.337"                                                                             | LONGITUD ( O ) WGS-84<br>69°47'3                                                     | l<br>32.8093"                                           |  |  |
| NORTE ( Y ) WGS-84<br>83232                                                                           | 05.460                                                                           | ESTE ( X ) WGS-84<br>4136                                                             | 29.952                                                  | NORTE ( Y ) WGS-84<br>8323                                                                            | 935.764                                                                            | ESTE ( X ) WGS-84<br>4148                                                            | 66.939                                                  |  |  |
| ALTURA ELIPSOIDAL<br>3832.217                                                                         | ELEVACIÓN GEOIDAL<br>3823.369                                                    | ZONA UTM<br>19 SUR                                                                    | ORDEN<br>C                                              | ALTURA ELIPSOIDAL<br>3827.327                                                                         | ELEVACIÓN GEOIDAL<br>3817.946                                                      | ZONA UTM<br>19 SUR                                                                   | ORDEN<br>C                                              |  |  |
|                                                                                                       |                                                                                  |                                                                                       |                                                         |                                                                                                       |                                                                                    |                                                                                      | 2                                                       |  |  |
| Distrito                                                                                              | Huancané                                                                         |                                                                                       |                                                         | Distrito                                                                                              | Huancané                                                                           |                                                                                      |                                                         |  |  |
| Provincia:                                                                                            | Huancané                                                                         |                                                                                       |                                                         | Provincia:                                                                                            | Huancané                                                                           |                                                                                      |                                                         |  |  |
| Departamento:                                                                                         | Puno                                                                             |                                                                                       |                                                         | Departamento:                                                                                         | Puno                                                                               |                                                                                      |                                                         |  |  |
| <b>DESCRIPCIÓN:</b><br>La estación "A1" se encue                                                      | ntra ubicada en la marger                                                        | i derecha de la vía.                                                                  |                                                         | DESCRIPCIÓN:<br>La estación "A2" se encuentra ubicada en la margen izquierda del río de aguas arriba. |                                                                                    |                                                                                      |                                                         |  |  |
| MARCA DE ESTACIÓN:                                                                                    |                                                                                  |                                                                                       |                                                         | MARCA DE ESTACIÓN:                                                                                    |                                                                                    |                                                                                      |                                                         |  |  |
| Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva |                                                                                  |                                                                                       | Es una barrilla de media,                               | que esta incrustado a ras o                                                                           | lel suelo y esta monument                                                          | tado con concreto y lleva                                                            |                                                         |  |  |
| la siguiente descripción: '                                                                           | 'A1"                                                                             |                                                                                       |                                                         | la siguiente descripción:                                                                             | "A2"                                                                               |                                                                                      |                                                         |  |  |
| REFERENCIA:                                                                                           |                                                                                  |                                                                                       |                                                         | REFERENCIA:                                                                                           |                                                                                    |                                                                                      |                                                         |  |  |
| Carta Nacional Escala 1/10                                                                            | 00 000, Hoja 31-x                                                                |                                                                                       |                                                         | Carta Nacional Escala 1/1                                                                             | l00 000, Hoja 31-x                                                                 |                                                                                      |                                                         |  |  |
| DESCRITA POR:                                                                                         | REVISADO:                                                                        | JEFE PROYECTO:                                                                        | FECHA:                                                  | DESCRITA POR:                                                                                         | REVISADO:                                                                          | JEFE PROYECTO:                                                                       | FECHA:                                                  |  |  |
| O.D.M.S.                                                                                              | Ing. R.C.T.                                                                      | Bach. Oswaldo D.M.S.                                                                  | Marzo 2019                                              | O.D.M.S.                                                                                              | Ing. R.C.T.                                                                        | Bach. Oswaldo D.M.S.                                                                 | Marzo 2019                                              |  |  |

|                                                                                                       | VERSIDAD NACIO<br>INGENIERÍA TOPOGRA<br>DESCRIPCIÓN<br>TO CONSOLIDACIÓN DE LOS D | P NAL DEL ALTIPL.<br>AFICA Y AGRIMENSURA<br>MONOGRÁFICA<br>DERECHOS DE LA PROPIEDAD IN |                                                                                                       | UNIVERS ID AD NACIONAL DEL ALT IP LANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROYECTO CONSOLIDACIÓN DE LOS DERECHOS DE LA PROPIEDAD INMUEBLE |                                                                                    |                                                                                       |                                                         |  |  |
|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| "AN/<br>Tesis EVENTUAL                                                                                | ÁLISIS DEL NIVEL DE RIESGO EN<br>MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE  | N ZONAS VULNERABLES A INUNI<br>NCA DEL RÍO HUANCANÉ PARCI<br>MA DE INFORMACIÓN GEOGRA  | DACIONES ANTE UNA<br>ALIDAD DE AZANGARILLO,<br>ÁFICA''                                                | "AN/<br>Tesis EVENTUAL                                                                                                                                                       | ÁLISIS DEL NIVEL DE RIESGO EN<br>. MÁXIMA AVENIDA EN LA CUEI<br>APLICANDO EL SISTE | I ZONAS VULNERABLES A I NUNI<br>NCA DEL RÍO HUANCANÉ PARCI<br>MA DE INFORMACIÓN GEOGR | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' |  |  |
| CÓDIGO:<br>A3                                                                                         | LOCALIDAD:<br>AZANGARILLO                                                        | ESTABLECIDA POR:<br>Bach. Oswaldo Dari                                                 | ío Mamani Sucasaire                                                                                   | CÓDIGO:<br>A4                                                                                                                                                                | LOCALIDAD:<br>AZANGARILLO                                                          | ESTABLECIDA POR:<br>Bach. Oswaldo Dar                                                 | ío Mamani Sucasaire                                     |  |  |
| UBICACIÓN:<br>MARGEN DERECHA I                                                                        | DE LA VÍA                                                                        | CARACTERÍSTICAS DE LA I<br>BARRILLA                                                    | MARCA:<br>DE 50 cm.                                                                                   | UBICACIÓN:<br>DENTRO DE UN TE                                                                                                                                                | RRENO                                                                              | CARACTERÍSTICAS DE LA I<br>BARRILLA                                                   | MARCA:<br>A DE 50 cm.                                   |  |  |
| LATITUD ( S ) WGS-84<br>15°10'15                                                                      | .2829"                                                                           | LONGITUD ( O ) WGS-84<br>69°47'5                                                       | 56.9167"                                                                                              | LATITUD ( S ) WGS-84<br>15°09'57                                                                                                                                             | 7.762"                                                                             | LONGITUD ( O ) WGS-84<br>69°47'                                                       | 54.207"                                                 |  |  |
| NORTE ( Y ) WGS-84<br>83226                                                                           | 13.571                                                                           | ESTE ( X ) WGS-84<br>4141                                                              | 52.305                                                                                                | NORTE ( Y ) WGS-84<br>83231                                                                                                                                                  | 52.224                                                                             | ESTE ( X ) WGS-84<br>4142                                                             | 31.203                                                  |  |  |
| ALTURA ELIPSOIDAL<br>3840.324                                                                         | ELEVACIÓN GEOIDAL<br>3832.376                                                    | ZONA UTM<br>19 SUR                                                                     | ORDEN<br>C                                                                                            | ALTURA ELIPSOIDAL<br>3832.063                                                                                                                                                | ELEVACIÓN GEOIDAL<br>3819.145                                                      | ZONA UTM<br>19 SUR                                                                    | ORDEN<br>C                                              |  |  |
|                                                                                                       |                                                                                  |                                                                                        |                                                                                                       |                                                                                                                                                                              |                                                                                    |                                                                                       |                                                         |  |  |
| Distrito:                                                                                             | Huancané                                                                         |                                                                                        |                                                                                                       | Distrito:                                                                                                                                                                    | Huancané                                                                           |                                                                                       |                                                         |  |  |
| Provincia:                                                                                            | Huancané                                                                         |                                                                                        |                                                                                                       | Provincia:                                                                                                                                                                   | Huancané                                                                           |                                                                                       |                                                         |  |  |
| Departamento:                                                                                         | Puno                                                                             |                                                                                        |                                                                                                       | Departamento:                                                                                                                                                                | Puno                                                                               |                                                                                       |                                                         |  |  |
| <b>DESCRIPCIÓN:</b><br>La estación "A3" se encuentra ubicada en la margen derecha de la vía.          |                                                                                  |                                                                                        |                                                                                                       | <b>DESCRIPCIÓN:</b><br>La estación "A4" se encuentra ubicada en un predio.                                                                                                   |                                                                                    |                                                                                       |                                                         |  |  |
| MARCA DE ESTACIÓN:                                                                                    |                                                                                  |                                                                                        |                                                                                                       | MARCA DE ESTACIÓN:                                                                                                                                                           |                                                                                    |                                                                                       |                                                         |  |  |
| Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva |                                                                                  |                                                                                        | Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva |                                                                                                                                                                              |                                                                                    |                                                                                       |                                                         |  |  |
| la siguiente descripción: '                                                                           | 'A3"                                                                             |                                                                                        |                                                                                                       | la siguiente descripción:                                                                                                                                                    | 'A4"                                                                               |                                                                                       |                                                         |  |  |
| REFERENCIA:                                                                                           |                                                                                  |                                                                                        |                                                                                                       | REFERENCIA:                                                                                                                                                                  |                                                                                    |                                                                                       |                                                         |  |  |
| Carta Nacional Escala 1/10                                                                            | 00 000, Hoja 31-x                                                                |                                                                                        |                                                                                                       | Carta Nacional Escala 1/10                                                                                                                                                   | 00 000, Hoja 31-x                                                                  |                                                                                       |                                                         |  |  |
| DESCRITA POR:                                                                                         | REVISADO:                                                                        | JEFE PROYECTO:                                                                         | FECHA:                                                                                                | DESCRITA POR:                                                                                                                                                                | REVISADO:                                                                          | JEFE PROYECTO:                                                                        | FECHA:                                                  |  |  |
| O.D.M.S.                                                                                              | Ing. R.C.T.                                                                      | Bach. Oswaldo D.M.S.                                                                   | Marzo 2019                                                                                            | O.D.M.S.                                                                                                                                                                     | Ing. R.C.T.                                                                        | Bach. Oswaldo D.M.S.                                                                  | Marzo 2019                                              |  |  |

| UNIVERSIDAD NACIONAL DEL ALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROVECTO CONSOLIDACIÓN DE LA PROPIEDAD INMUERIE      |                                      |                                                                                   |                                                                                         |                                                                                                                                                               |                                                                                                              | UNIVERS ID AD NACIONAL DE LALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROYECTO CONSOLIDACIÓN DE LOS DERECHOS DE LA PROPIEDAD INMUEBLE |                                                                                 |                                                                                     |                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------|
| Tesis                                                                                                                                                         | "AN/<br>EVENTUAI                     | ÁLISIS DEL NIVEL DE RIESGO EN<br>L MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE | N ZONAS VULNERABLES A INUNE<br>ENCA DEL RÍO HUANCANÉ PARCI<br>EMA DE INFORMACIÓN GEOGRA | DACIONES ANTE UNA<br>ALIDAD DE AZANGARILLO,<br>ÁFICA''                                                                                                        | Tesis                                                                                                        | "AN/<br>EVENTUAL                                                                                                                                                           | ÁLISIS DEL NIVEL DE RIESGO EN<br>MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE | N ZONAS VULNERABLES A INUN<br>NCA DEL RÍO HUANCANÉ PARC<br>IMA DE INFORMACIÓN GEOGR | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' |
| CÓDIGO:                                                                                                                                                       |                                      | LOCALIDAD:                                                                        | ESTABLECIDA POR:                                                                        |                                                                                                                                                               | CÓDIGO:                                                                                                      |                                                                                                                                                                            | LOCALIDAD:                                                                      | ESTABLECIDA POR:                                                                    |                                                         |
| A5                                                                                                                                                            | 5                                    | AZANGARILLO                                                                       | Bach. Oswaldo Dari                                                                      | o Mamani Sucasaire                                                                                                                                            | A6                                                                                                           | 5                                                                                                                                                                          | AZANGARILLO                                                                     | Bach. Oswaldo Dar                                                                   | ío Mamani Sucasaire                                     |
| UBICACIÓN:<br>SE UBICA EN                                                                                                                                     | N EL LADO I                          | ZQUIERDO                                                                          | CARACTERÍSTICAS DE LA N<br>BARRILLA                                                     | /ARCA:<br>. DE 50 cm.                                                                                                                                         | UBICACIÓN:<br>MARGEN                                                                                         | IZQUIERDA                                                                                                                                                                  | A DEL RÍO                                                                       | CARACTERÍSTICAS DE LA<br>BARRILLA                                                   | MARCA:<br>A DE 50 cm.                                   |
| LATITUD ( S ) V                                                                                                                                               | WGS-84<br>15°09'57                   | .1366"                                                                            | LONGITUD ( O ) WGS-84<br>69°47'4                                                        | 1.2429"                                                                                                                                                       | LATITUD ( S )                                                                                                | WGS-84<br>15°09'55                                                                                                                                                         | .3848"                                                                          | LONGITUD ( O ) WGS-84<br>69°47'                                                     | l<br>20.3257"                                           |
| NORTE ( Y ) V                                                                                                                                                 | WGS-84<br>83231                      | 72.848                                                                            | ESTE ( X ) WGS-84<br>4146                                                               | 18.015                                                                                                                                                        | NORTE ( Y )                                                                                                  | NGS-84<br>83232                                                                                                                                                            | 28.932                                                                          | ESTE ( X ) WGS-84<br>4152                                                           | 42.043                                                  |
| ALTURA ELIPS<br>3827.2                                                                                                                                        | OIDAL<br>201                         | ELEVACIÓN GEOIDAL<br>3818.106                                                     | ZONA UTM<br>19 SUR                                                                      | ORDEN<br>C                                                                                                                                                    | ALTURA ELIPS<br>3825.                                                                                        | OIDAL<br>321                                                                                                                                                               | ELEVACIÓN GEOIDAL<br>3817.558                                                   | ZONA UTM<br>19 SUR                                                                  | ORDEN<br>C                                              |
|                                                                                                                                                               | •••••••••••••••••••••••••••••••••••• |                                                                                   |                                                                                         |                                                                                                                                                               |                                                                                                              |                                                                                                                                                                            | AG                                                                              |                                                                                     |                                                         |
| LOCALIZACIÓN                                                                                                                                                  | N :                                  |                                                                                   |                                                                                         |                                                                                                                                                               | LOCALIZACIÓ                                                                                                  | N :                                                                                                                                                                        |                                                                                 |                                                                                     |                                                         |
| Distrito:                                                                                                                                                     |                                      | Huancané                                                                          |                                                                                         |                                                                                                                                                               | Distrito:                                                                                                    |                                                                                                                                                                            | Huancané                                                                        |                                                                                     |                                                         |
| Provincia:                                                                                                                                                    |                                      | Huancané                                                                          |                                                                                         |                                                                                                                                                               | Provincia:                                                                                                   |                                                                                                                                                                            | Huancané                                                                        |                                                                                     |                                                         |
| Departamento                                                                                                                                                  | 0:                                   | Puno                                                                              |                                                                                         |                                                                                                                                                               | Departament                                                                                                  | 0:                                                                                                                                                                         | Puno                                                                            |                                                                                     |                                                         |
| <b>DESCRIPCIÓN:</b><br>La estación "A5" se encuentra ubicada en un predio.                                                                                    |                                      |                                                                                   |                                                                                         |                                                                                                                                                               | <b>DESCRIPCIÓN:</b><br>La estación "A6" se encuentra ubicada en la margen izquierda del río de aguas arriba. |                                                                                                                                                                            |                                                                                 |                                                                                     |                                                         |
| MARCA DE ESTACIÓN:<br>Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva<br>la siguiente descripción: "A5" |                                      |                                                                                   |                                                                                         | MARCA DE ESTACIÓN:<br>Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva<br>la siguiente descripción: "A6" |                                                                                                              |                                                                                                                                                                            |                                                                                 |                                                                                     |                                                         |
| <b>REFERENCIA:</b><br>Carta Naciona                                                                                                                           | al Escala 1/10                       | 00 000, Hoja 31-x                                                                 |                                                                                         |                                                                                                                                                               | <b>REFERENCIA:</b><br>Carta Naciona                                                                          | ll Escala 1/10                                                                                                                                                             | 00 000, Hoja 31-x                                                               |                                                                                     |                                                         |
| DESCRITA POR                                                                                                                                                  | R:                                   | REVISADO:                                                                         | JEFE PROYECTO:                                                                          | FECHA:                                                                                                                                                        | DESCRITA POR                                                                                                 | R:                                                                                                                                                                         | REVISADO:                                                                       | JEFE PROYECTO:                                                                      | FECHA:                                                  |
| 0.D.N                                                                                                                                                         | vi.s.                                | Ing. R.C.T.                                                                       | Bach. Oswaldo D.M.S.                                                                    | Marzo 2019                                                                                                                                                    | 0.D.N                                                                                                        | И.S.                                                                                                                                                                       | Ing. R.C.T.                                                                     | Bach. Oswaldo D.M.S.                                                                | Marzo 2019                                              |
|                                                                                                                                                               |                                      |                                                                                   |                                                                                         |                                                                                                                                                               | 1.1                                                                                                          | -                                                                                                                                                                          |                                                                                 |                                                                                     |                                                         |

| UNIVERS IDAD NACIONAL DEL ALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROYECTO CONSULDACIÓN DE LOS DEFECHOS DE LA PROPIEDAD INMUEBLE |                    |                                                                                |                                                                                                                                                                |                                                         | UNIVERS ID AD NACIONAL DEL ALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROYECTO CONSOLIDACIÓN DE LOS DERECHOS DE LA PROPIEDAD INMUEBLE |                                   |                                                                                   |                                                                                      |                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------------|
| Tesis                                                                                                                                                                    | "ANA<br>EVENTUAL   | LISIS DEL NIVEL DE RIESGO EN<br>MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE | N ZONAS VULNERABLES A INUNI<br>NCA DEL RÍO HUANCANÉ PARCI<br>MA DE INFORMACIÓN GEOGRA                                                                          | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' | Tesis                                                                                                                                                                      | "AN<br>EVENTUA                    | ÁLISIS DEL NIVEL DE RIESGO EN<br>L MÁXIMA AVENIDA EN LA CUE<br>APLICANDO EL SISTE | N ZONAS VULNERABLES A INUN<br>INCA DEL RÍO HUANCANÉ PARC<br>IMA DE INFORMACIÓN GEOGR | DACIONES ANTE UNA<br>IALIDAD DE AZANGARILLO,<br>ÁFICA'' |
| CÓDIGO:                                                                                                                                                                  |                    | LOCALIDAD:                                                                     | ESTABLECIDA POR:                                                                                                                                               |                                                         | CÓDIGO:                                                                                                                                                                    |                                   | LOCALIDAD:                                                                        | ESTABLECIDA POR:                                                                     |                                                         |
| A8                                                                                                                                                                       |                    | AZANGARILLO                                                                    | Bach. Oswaldo Dari                                                                                                                                             | ío Mamani Sucasaire                                     | A                                                                                                                                                                          | 10                                | AZANGARILLO                                                                       | Bach. Oswaldo Dai                                                                    | ío Mamani Sucasaire                                     |
| UBICACIÓN:<br>MARGEN DE                                                                                                                                                  | ERECHO             | DEL RÍO                                                                        | CARACTERÍSTICAS DE LA I<br>BARRILLA                                                                                                                            | MARCA:<br>A DE 50 cm.                                   | UBICACIÓN:<br>MARGEI                                                                                                                                                       | N DERECHO                         | DEL RÍO                                                                           | CARACTERÍSTICAS DE LA<br>BARRILL                                                     | MARCA:<br>A DE 50 cm.                                   |
| LATITUD(S) WG                                                                                                                                                            | GS-84<br>15°10'8.3 | 9207"                                                                          | LONGITUD ( O ) WGS-84<br>69°47'                                                                                                                                | 28.264"                                                 | LATITUD ( S )                                                                                                                                                              | WGS-84<br>15°10'43                | 3.4823"                                                                           | LONGITUD ( O ) WGS-84<br>69°47'                                                      | 1<br>30.6557"                                           |
| NORTE ( Y ) WG                                                                                                                                                           | GS-84<br>83228     | 28.409                                                                         | ESTE ( X ) WGS-84<br>415006.588                                                                                                                                |                                                         | NORTE ( Y )                                                                                                                                                                | NORTE ( Y ) WGS-84<br>8321749.952 |                                                                                   | ESTE ( X ) WGS-84<br>414939.116                                                      |                                                         |
| ALTURA ELIPSOIE<br>3827.434                                                                                                                                              | DAL<br>4           | ELEVACIÓN GEOIDAL<br>3816.929                                                  | ZONA UTM<br>19 SUR                                                                                                                                             | ORDEN<br>C                                              | ALTURA ELIP<br>3825                                                                                                                                                        | SOIDAL<br>5.421                   | ELEVACIÓN GEOIDAL<br>3817.665                                                     | ZONA UTM<br>19 SUR                                                                   | ORDEN<br>C                                              |
|                                                                                                                                                                          | <b>6</b> 48        | And                                        |                                                                                                                                                                |                                                         |                                                                                                                                                                            | PATC                              |                                                                                   |                                                                                      |                                                         |
| LOCALIZACIÓN :                                                                                                                                                           |                    |                                                                                |                                                                                                                                                                |                                                         | LOCALIZACIÓ                                                                                                                                                                | ÓN:                               |                                                                                   |                                                                                      |                                                         |
| Distrito:                                                                                                                                                                |                    | Huancané                                                                       |                                                                                                                                                                |                                                         | Distrito:                                                                                                                                                                  |                                   | Huancané                                                                          |                                                                                      |                                                         |
| Provincia:                                                                                                                                                               |                    | Huancané                                                                       |                                                                                                                                                                |                                                         | Provincia:                                                                                                                                                                 |                                   | Huancané                                                                          |                                                                                      |                                                         |
| Departamento:                                                                                                                                                            |                    | Puno                                                                           |                                                                                                                                                                |                                                         | Departamen                                                                                                                                                                 | to:                               | Puno                                                                              |                                                                                      |                                                         |
| <b>DESCRIPCIÓN:</b><br>La estación "A8" se encuentra ubicada en la margen derecha del río de aguas arriba.                                                               |                    |                                                                                |                                                                                                                                                                |                                                         | <b>DESCRIPCIÓN:</b><br>La estación "A10" se encuentra ubicada en la margen derecha del río de aguas arriba.                                                                |                                   |                                                                                   |                                                                                      |                                                         |
| MARCA DE ESTACIÓN:<br>Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva<br>la siguiente descripción: "A8"            |                    |                                                                                | MARCA DE ESTACIÓN:<br>Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva<br>la siguiente descripción: "A10" |                                                         |                                                                                                                                                                            |                                   |                                                                                   |                                                                                      |                                                         |
| REFERENCIA:<br>Carta Nacional Es                                                                                                                                         | scala 1/10         | 0 000, Hoja 31-x                                                               |                                                                                                                                                                |                                                         | REFERENCIA<br>Carta Nacion                                                                                                                                                 | :<br>al Escala 1/1                | 00 000, Hoja 31-x                                                                 |                                                                                      |                                                         |
| DESCRITA POR:                                                                                                                                                            |                    | REVISADO:                                                                      | JEFE PROYECTO:                                                                                                                                                 | FECHA:                                                  | DESCRITA PC                                                                                                                                                                | DR:                               | REVISADO:                                                                         | JEFE PROYECTO:                                                                       | FECHA:                                                  |
| O.D.M.S                                                                                                                                                                  | 5.                 | Ing. R.C.T.                                                                    | Bach. Oswaldo D.M.S.                                                                                                                                           | Marzo 2019                                              | 0.D.                                                                                                                                                                       | M.S.                              | Ing. R.C.T.                                                                       | Bach. Oswaldo D.M.S.                                                                 | Marzo 2019                                              |
|                                                                                                                                                                          |                    |                                                                                |                                                                                                                                                                | 4                                                       |                                                                                                                                                                            |                                   |                                                                                   |                                                                                      |                                                         |

| UNIVERSIDAD NACIONAL DE LALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROVECTO CONSOLIDACIÓN DE LOS DEFACIONS DE LA PROPIEDAD INMUERIE                                                                                                                                                                                     |                    |                                                                                 |                                                                                       |                                                        | UNIVERS ID AD NACIONAL DEL ALTIPLANO<br>INGENIERÍA TOPOGRAFICA Y AGRIMENSURA<br>DESCRIPCIÓN MONOGRÁFICA<br>PROYECTO CONSULDACIÓN DE LOS DERECHOS DE LA PROPIEDAD INMUEBLE                                                                                                                                      |                                   |                                                                                    |                                                                                       |                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------|
| Tesis                                                                                                                                                                                                                                                                                                                                                         | "ANÁ<br>EVENTUAL   | LISIS DEL NIVEL DE RIESGO EN<br>MÁXIMA AVENIDA EN LA CUEI<br>APLICANDO EL SISTE | I ZONAS VULNERABLES A INUNE<br>NCA DEL RÍO HUANCANÉ PARCI<br>MA DE INFORMACIÓN GEOGR/ | DACIONES ANTE UNA<br>ALIDAD DE AZANGARILLO,<br>ÁFICA'' | Tesis                                                                                                                                                                                                                                                                                                          | "AN/<br>EVENTUAL                  | ÁLISIS DEL NIVEL DE RIESGO EN<br>. MÁXIMA AVENIDA EN LA CUEI<br>APLICANDO EL SISTE | I ZONAS VULNERABLES A INUNI<br>NCA DEL RÍO HUANCANÉ PARCI<br>MA DE INFORMACIÓN GEOGRA | DACIONES ANTE UNA<br>ALIDAD DE AZANGARILLO,<br>ÁFICA'' |
| CÓDIGO:                                                                                                                                                                                                                                                                                                                                                       |                    | LOCALIDAD:                                                                      | ESTABLECIDA POR:                                                                      |                                                        | CÓDIGO:                                                                                                                                                                                                                                                                                                        |                                   | LOCALIDAD:                                                                         | ESTABLECIDA POR:                                                                      |                                                        |
| A13                                                                                                                                                                                                                                                                                                                                                           |                    | AZANGARILLO                                                                     | Bach. Oswaldo Dari                                                                    | o Mamani Sucasaire                                     | A                                                                                                                                                                                                                                                                                                              | L4                                | AZANGARILLO                                                                        | Bach. Oswaldo Dar                                                                     | ío Mamani Sucasaire                                    |
| UBICACIÓN:<br>DENTRO D                                                                                                                                                                                                                                                                                                                                        | DE UN TEF          | RRENO                                                                           | CARACTERÍSTICAS DE LA M<br>BARRILLA                                                   | MARCA:<br>DE 50 cm.                                    | UBICACIÓN:<br>SE UBIO                                                                                                                                                                                                                                                                                          | CA A 50 M D                       | e la via afirmada                                                                  | CARACTERÍSTICAS DE LA I<br>BARRILLA                                                   | MARCA:<br>DE 50 cm.                                    |
| LATITUD(S) WG                                                                                                                                                                                                                                                                                                                                                 | GS-84<br>15°10'45. | 0556"                                                                           | LONGITUD ( O ) WGS-84<br>69°47'1                                                      | 1.6195"                                                | LATITUD ( S )                                                                                                                                                                                                                                                                                                  | WGS-84<br>15°09'39                | 9.806"                                                                             | LONGITUD ( O ) WGS-84<br>69°47'2                                                      | 21.6219"                                               |
| NORTE ( Y ) WG                                                                                                                                                                                                                                                                                                                                                | 6S-84<br>832170    | 03.659                                                                          | ESTE ( X ) WGS-84<br>415507.344                                                       |                                                        | NORTE ( Y )                                                                                                                                                                                                                                                                                                    | NORTE ( Y ) WGS-84<br>8323707.472 |                                                                                    | ESTE ( X ) WGS-84<br>415201.637                                                       |                                                        |
| ALTURA ELIPSOID<br>3826.139                                                                                                                                                                                                                                                                                                                                   | DAL<br>9           | ELEVACIÓN GEOIDAL<br>3816.298                                                   | ZONA UTM<br>19 SUR                                                                    | ORDEN<br>C                                             | ALTURA ELIP<br>3849                                                                                                                                                                                                                                                                                            | SOIDAL<br>9.418                   | ELEVACIÓN GEOIDAL<br>3824.512                                                      | ZONA UTM<br>19 SUR                                                                    | ORDEN<br>C                                             |
|                                                                                                                                                                                                                                                                                                                                                               |                    | (CALL)                                                                          |                                                                                       | T                                                      |                                                                                                                                                                                                                                                                                                                |                                   | <b>A</b> 144                                                                       |                                                                                       |                                                        |
| LOCALIZACIÓN :                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                 |                                                                                       |                                                        | LOCALIZACIÓ                                                                                                                                                                                                                                                                                                    | DN :                              |                                                                                    |                                                                                       |                                                        |
| Distrito:<br>Provincia:                                                                                                                                                                                                                                                                                                                                       |                    | Huancane                                                                        |                                                                                       |                                                        | Distrito:                                                                                                                                                                                                                                                                                                      |                                   | Huancane                                                                           |                                                                                       |                                                        |
| Departamento:                                                                                                                                                                                                                                                                                                                                                 |                    | Puno                                                                            |                                                                                       |                                                        | Departamen                                                                                                                                                                                                                                                                                                     | to:                               | Puno                                                                               |                                                                                       |                                                        |
| Departamento:       Puno         DESCRIPCIÓN:       La estación "A13" se encuentra ubicada en la margen izquierda de aguas arriba, dentro de un predio.         MARCA DE ESTACIÓN:       Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva la siguiente descripción: "A13"         REFERENCIA:       Puno |                    |                                                                                 |                                                                                       |                                                        | DESCRIPCIÓN:         La estación "A14" se encuentra ubicada a 50 m de la vía afirmada y por encima de una ladera.         MARCA DE ESTACIÓN:         Es una barrilla de media, que esta incrustado a ras del suelo y esta monumentado con concreto y lleva la siguiente descripción: "A14"         REFERENCIA: |                                   |                                                                                    |                                                                                       |                                                        |
| Carta Nacional Es                                                                                                                                                                                                                                                                                                                                             | scala 1/10         | 0 000, Hoja 31-x                                                                |                                                                                       |                                                        | Carta Nacion                                                                                                                                                                                                                                                                                                   | al Escala 1/10                    | JU UUU, Hoja 31-x                                                                  |                                                                                       |                                                        |
| DESCRITA POR:                                                                                                                                                                                                                                                                                                                                                 |                    | REVISADO:                                                                       | JEFE PROYECTO:                                                                        | FECHA:                                                 | DESCRITA PC                                                                                                                                                                                                                                                                                                    | R:                                | REVISADO:                                                                          | JEFE PROYECTO:                                                                        | FECHA:                                                 |
| O.D.M.S.                                                                                                                                                                                                                                                                                                                                                      | i.                 | Ing. R.C.T.                                                                     | Bach. Oswaldo D.M.S.                                                                  | Marzo 2019                                             | 0.D.                                                                                                                                                                                                                                                                                                           | M.S.                              | Ing. R.C.T.                                                                        | Bach. Oswaldo D.M.S.                                                                  | Marzo 2019                                             |

# **ANEXO G** PANEL FOTOGRÁFICO



VISTA FOTOGRAFICA: Obteniendo información del punto de control PCG-1049.



Fecha de la fotografía:Marzo del 2019Foto Nº 02VISTA FOTOGRAFICA:Punto de control PCG-1049, con su respectiva descripción y placa de 7cm.





Fecha de la fotografía:Marzo del 2019Foto Nº 04VISTA FOTOGRAFICA:Punto de control PCG-1050, con su respectiva descripción y placa de 7cm..



 Fecha de la fotografía:
 Marzo del 2019
 Foto

 VISTA FOTOGRAFICA:
 Ubicación de puntos de control para el área de investigación.
 Foto





 Fecha de la fotografía:
 Marzo del 2019
 Foto Nº 08

VISTA FOTOGRAFICA: Efecto de erosión, producidos por máximas avenidas en el cauce.



Fecha de la fotografía:Marzo del 2018Foto Nº 09VISTA FOTOGRAFICA:Aquí se puede observar la inundación del río Huancané en la margen<br/>derecho.



Fecha de la fotografía:Marzo del 2018Foto Nº 10VISTA FOTOGRAFICA:Aquí se puede observar la inundación del río Huancané en la margen<br/>derecha perjudicando los productos de consumo para el hombre.



VISTA FOTOGRAFICA: Inundación del río Huancané perjudicando las áreas agrícolas.

