

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA, ELECTRONICA Y SISTEMAS

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

"DISEÑO DE UN SISTEMA DE ACUMULACIÓN TÉRMICA Y CONTROLADORES PARA APLICACIONES DE CALEFACCIÓN CON TERMAS SOLARES, EN LA REGIÓN ALTOANDINA -PUNO"

TESIS

PRESENTADA POR: Bach. MARIO BERNAL SAAVEDRA SALLUCA Bach. YONY MAMANI CRUZ

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERIO MECÁNICO ELECTRICISTA

PUNO – PERÚ

2021

DEDICATORIA

El presente trabajo de tesis va dedicado en especial a mis tres hijos: Oleg, Diego y Antonella, a mi querida Madre María Salomé Salluca Luque, a mi esposa Yina Calisaya y a mi familia. Quienes en todo momento han sido mi fortaleza y motivo para culminar la presente investigación.

M. Bernal Saavedra

AGRADECIMIENTOS

Mis agradecimientos especiales a mis Padres José Saavedra y María Salluca, a mis hermanos y hermanas por todo el apoyo brindado durante mis estudios y en la culminación de este, agradezco a mi esposa por su valioso apoyo y esfuerzo brindado durante la realización de esta presente tesis.

Agradecer también a los docentes de la Escuela profesional por impartir sus conocimientos y formarme con valores éticos para asumir los nuevos retos como ingeniero Mecánico Electricista.

M. Bernal Saavedra

INDICE GENERAL

DEDICATORIA

AGRADECIMIENTOS

INDICE GENERAL

INDICE DE TABLAS

INDICE DE FIGURAS

INDICE DE ACRÓNIMOS

RESUMEN	
ABSTRACT	

CAPITULO I

INTRODUCCIÓN

1.1	PLANTEAMIENTO DEL PROBLEMA 20
1.1.1	Descripción del problema
1.2 I	FORMULACIÓN DEL PROBLEMA
1.2.1	Problema general
1.2.2	Problemas específicos
1.3	OBJETIVOS
1.3.1	Objetivos específicos
1.3.2	justificación
1.3.3	Energético
1.3.4	Ciencia y tecnología
1.3.5	Económico
1.3.6	Social
1.3.7	Ambientales
1.4 I	HIPOTESIS
1.4.1	hipótesis general
1.4.2	Hipótesis especifico

1.5	DEFINICIÓN DE VARIABLES	24
1.5.1	Variables independientes:	24
1.5.2	Variables dependientes:	24
1.5.3	Variables intervinientes:	24

CAPITULO II

REVISIÓN DE LITERATURA

2.1	ANTECEDENTES DE LA INVESTIGACIÓN	25
2.2	MARCO TEÓRICO Y MARCO CONCEPTUAL	30
2.2.1	Fuentes de energía renovables	30
2.2.2	Energía Solar ¿Por qué?	30
2.2.3	Radiación Solar	31
2.2	.3.1 Radiación Solar en el Perú	31
2.2.4	Sistemas Solares térmicos:	33
2.2.5	Funcionamiento de un Sistema Solar Térmico	33
2.2.6	Tipos de sistemas térmicos	33
2.2	.6.1 Sistema Solar Térmico de baja temperatura	34
2.2.7	Tipos de colectores Solares	36
2.2	.7.1 Colector solar de placa plana	36
2.2	.7.2 Colector solar de tubos de vacío	36
2.2	.7.3 Diferencias entre el tipo colector tubo al vacio de colecto solar plano	40
2.2.8	Calefacción	40
2.2	.8.1 Sistemas de Calefacción	40
2.2	.8.2 Componentes de un sistema de calefacción	41
2.3	MATERIAL DE CAMBIO DE FASE (PCM)	46
2.3.1	Tipos de materiales de cambio de fase	47
2.3.2	PCM inorgánicos: sales hidratadas	48
2.3.3	PCM orgánicos: parafinas, ácidos grasos y mezclas orgánicas	48

4	2.3.4	PCM de Ácidos grasos	50
4	2.3.5	Aplicaciones	50
2.4	5	SISTEMAS DE CONTROL	51
4	2.4.1	Tipos de sistema de control	53
4	2.4.2	Sistemas en lazo abierto	53
4	2.4.3	Sistema en lazo cerrado o realimentados.	54
4	2.4.4	Control proporcional-integral-derivativo (PID)	55
4	2.4.5	Control de sistemas no lineales	56
	2.4.	5.1 Modelos matemáticos	56
	2.4.	5.2 Representación en variables de estado y puntos de equilibrio	56
	2.4.	5.3 linealización de sistemas no lineales	57

CAPITULO III

MATERIALES Y MÉTODOS

3.	1	METODOLOGÍA:	60
3.	2	OPERACIONALIDAD DE VARIABLES	60
3.	3	DETERMINACIÓN DE CARGAS DEL SISTEMA DE CALEFACCIÓN	62
	3.3.1	Cálculo del calor perdido por transmisión en el recinto.	67
	3.3.2	Cálculo del calor perdido por infiltraciones de aire exterior	70
	3.3.3	Cálculo del calor aportado por ocupación de las personas	72
	3.3.4	Cálculo de la carga de calefacción	73
3.	4	DIMENSIONAMIENTO DE RADIADORES	74
	3.4.1	Selección del tipo de radiador:	74
	3.4.2	Cálculo de la cantidad de radiadores	74
3.	5	DIMENSIONAMIENTO DEL ACUMULADOR	76
	3.5.1	Criterios para el dimensionamiento del tanque acumulador:	76
	3.5.2	Diseño térmico del acumulador con agua	77
	3.5	2.1 Cálculo del área de transferencia del serpentín del fluido caloportador	77

3.5.2.2 Cálculo del área de transferencia del serpentín del fluido calefactor
3.5.3 Diseño térmico del acumulador con PCM
3.5.3.1 Área del serpentín del fluido caloportador (serpentín nro. 01)
3.5.3.2 Área del serpentín del fluido caloportador (serpentín nro. 02) 100
3.5.3.3 Cálculo del área del serpentín nro. 02 en el proceso de solidificación 102
3.5.4 Cálculo de la potencia del calefactor eléctrico
3.6 DISEÑO MECÁNICO DEL ACUMULADOR 105
3.6.1 Diseño de los serpentines 107
3.6.1.1 Dimensionamiento del serpentín nro. 01 109
3.6.1.2 Dimensionamiento del serpentín nro. 02 109
3.6.2 Diseño mecánico del tanque110
3.6.2.1 Cálculo de la altura real del tanque
3.6.2.2 Cálculo del espesor del cuerpo
1 1
3.6.2.3 Espesor de la tapa y casquete
3.6.2.3 Espesor de la tapa y casquete
 3.6.2.3 Espesor de la tapa y casquete
 3.6.2.3 Espesor de la tapa y casquete
3.6.2.3 Espesor de la tapa y casquete
3.6.2.3 Espesor de la tapa y casquete
3.6.2.3 Espesor de la tapa y casquete 115 3.6.2.4 Otros elementos principales del tanque 122 3.7 IMPLEMENTACIÓN DEL SISTEMA DE CALEFACCIÓN 124 3.8 MODELADO Y SIMULACIÓN DEL SISTEMA DE ACUMULACIÓN 125 3.8.1 Variables de sistema de calefacción solar 125 3.8.2 Modelado y simulación del acumulador con agua 127 3.8.3 Sistema de calefacción 134
3.6.2.3 Espesor de la tapa y casquete 115 3.6.2.4 Otros elementos principales del tanque 122 3.7 IMPLEMENTACIÓN DEL SISTEMA DE CALEFACCIÓN 124 3.8 MODELADO Y SIMULACIÓN DEL SISTEMA DE ACUMULACIÓN 125 3.8.1 Variables de sistema de calefacción solar 125 3.8.2 Modelado y simulación del acumulador con agua 127 3.8.3 Sistema de calefacción 134 3.8.4 Sistema de ecuaciones 136
3.6.2.3 Espesor de la tapa y casquete 115 3.6.2.4 Otros elementos principales del tanque 122 3.7 IMPLEMENTACIÓN DEL SISTEMA DE CALEFACCIÓN 124 3.8 MODELADO Y SIMULACIÓN DEL SISTEMA DE ACUMULACIÓN 125 3.8.1 Variables de sistema de calefacción solar 125 3.8.2 Modelado y simulación del acumulador con agua 127 3.8.3 Sistema de calefacción 134 3.8.4 Sistema de ecuaciones 136 3.8.5 Linealización del sistema de ecuaciones 137
3.6.2.3 Espesor de la tapa y casquete 115 3.6.2.4 Otros elementos principales del tanque 122 3.7 IMPLEMENTACIÓN DEL SISTEMA DE CALEFACCIÓN 124 3.8 MODELADO Y SIMULACIÓN DEL SISTEMA DE ACUMULACIÓN 125 3.8.1 Variables de sistema de calefacción solar 125 3.8.2 Modelado y simulación del acumulador con agua 127 3.8.3 Sistema de calefacción 134 3.8.4 Sistema de ecuaciones 136 3.8.5 Linealización del sistema de ecuaciones 137 3.8.5.1 Proceso de calentamiento del tanque con agua 138
3.6.2.3 Espesor de la tapa y casquete
3.6.2.3 Espesor de la tapa y casquete 115 3.6.2.4 Otros elementos principales del tanque 122 3.7 IMPLEMENTACIÓN DEL SISTEMA DE CALEFACCIÓN 124 3.8 MODELADO Y SIMULACIÓN DEL SISTEMA DE ACUMULACIÓN 125 3.8.1 Variables de sistema de calefacción solar 125 3.8.2 Modelado y simulación del acumulador con agua 127 3.8.3 Sistema de calefacción 134 3.8.4 Sistema de ecuaciones 136 3.8.5 Linealización del sistema de ecuaciones 137 3.8.5.1 Proceso de calentamiento del tanque con agua 138 3.8.5.2 Proceso de operación del tanque 142 3.8.5.3 Proceso de enfriamiento con carga de calefacción 145

3.8.6.1 Proceso de fusión del PCM de temperatura ambiente a temperatura final o	de
fusión-60°c	147
3.8.6.2 Proceso de calentamiento del PCM liquido de 60°C a 80°C	151
3.8.6.3 Proceso de operación del tanque	156
3.8.6.4 Proceso de enfriamiento con carga de calefacción	160
3.8.6.5 Proceso de solidificación del PCM con carga de calefacción	163
3.9 DISEÑO DEL CONTROLADOR	170
3.9.1 Control de la potencia del calefactor eléctrico con controlador PID	171
3.9.2 Control del caudal F2 del circuito calefactor con controlador PID	174

CAPITULO IV

RESULTADOS Y DISCUSION

V. CONCLUSIONES	
VI. RECOMENDACIONES	
VII. BIBLIOGRAFÍA	
ANEXOS	

INDICE DE TABLAS

Tabla N° 1: Radiación Solar del Perú (kwh/m²/dia). 32
Tabla N° 2: Diferencias entre tipos de colector tuvo al vacío y plano.40
Tabla N° 3: Características de los PCM orgánicos
Tabla N° 4: Valores típicos de energía almacenada de parafinas con temperatura de
fusión próxima a la temperatura de confort50
Tabla N° 5: Cálculo del coeficiente de transmitancia de los muros
Tabla N° 6: Cálculo del coeficiente de transmitancia de los muros
Tabla N° 7: Cálculo del coeficiente de transmitancia del piso y techo
Tabla N° 8: Cálculo del coeficiente de transmitancia de ventanas y puerta
Tabla N° 9: Cálculo de carga térmica por transmisión
Tabla N° 10: Calor sensible y latente de personas
Tabla N° 11: Cuadro comparativo acumulador con PCM y Agua 179

INDICE DE FIGURAS

Figura N° 1: Espectro electromagnético de la radiación solar	31
Figura N° 2: Sistema de circulación forzada	34
Figura N° 3: Sistema termosifón con circuito abierto	35
Figura N° 4: Sistema termosifón con circuito cerrado	35
Figura N° 5: Colector solar plano	36
Figura N° 6: Tubo de vacío termosifón o evacuado simple	37
Figura N° 7: Tubo de vacío de flujo directo o U- Pipe	38
Figura N° 8: Tubo vacío de Head pipe	39
Figura N° 9: Circuito básico por radiadores	41
Figura N° 10: Corrientes de aire creadas por el movimiento de un radiador	42
Figura N° 11:Radiadores de aluminio	43
Figura N° 12: Recirculadores	43
Figura N° 13: Depósitos acumuladores	44
Figura N° 14: Termostato de Regulación	45
Figura N° 15: Termohigrómetro	45
Figura N° 16: Válvula de Seguridad	46
Figura N° 17: Clasificación de las sustancias usadas para almacenamiento térmico	47
Figura N° 18: Muestra la relación entre la temperatura y calor de fusión para los F	РСМ
	48
Figura N° 19: Sistema de Lazo Abierto	54
Figura N° 20: Función de transferencia de un sistema en lazo cerrado	54
Figura N° 21: Diagrama de bloque de sistema no lineal	57
Figura N° 22: Dimensiones del Laboratorio de Control Automatización UNA Puno	63
Figura N° 23: Esquema balance energía de laboratorio como sistema cerrado	66

Figura N° 24: Temperatura de entrada y salida del radiador	75
Figura N° 25: Representación de las paredes del Tanque	
Figura N° 26: Balance de energía en el tanque acumulador	
Figura N° 27: Esquema de una tubería simple	
Figura N° 28: Circuito de calefacción	89
Figura N° 29: Esquema de una tubería simple, serpentín 02	
Figura N° 30: Esquema de una tubería simple, serpentín Nro 01	
Figura N° 31: Esquema de una tubería simple, serpentín N° 02	100
Figura N° 32: Esquema de solidificación anular del PCM	102
Figura N° 33: Calefactor eléctrico en el interior del tanque acumulador	104
Figura N° 34: Partes de un serpentín helicoidal	107
Figura N° 35: Esquema de distribución de tuberías en el interior del tanque	107
Figura N° 36: Esquema del volumen de aire ocupado en el interior del tanque.	111
Figura N° 37: Casquete torieférico	115
Figura N° 38: Dimensiones de una brida de 18"	118
Figura N° 39: Unión de tapa y cilindro	118
Figura N° 40: Ubicación de las cargas de reacción en empaquetadura	120
Figura N° 41: Vista isométrica de Tanque acumulador	123
Figura N° 42: Esquema P&ID sistema de calefacción solar	124
Figura N° 43: Variables del sistema de calefacción solar	126
Figura N° 44: Esquema de balance de energía en el acumulador	127
Figura N° 45: Esquema del serpentín nro 01	129
Figura N° 46: Esquema del serpentín N° 02	130
Figura N° 47: Esquema de transferencia de calor en el tanque	132
Figura N° 48: Balance de energía del ambiente-Laboratorio	134

Figura N° 49:Esquema de radiadores
Figura N° 50: Temperatura del interior del tanque
Figura N° 51: Diagrama de lazo abierto del tanque acumulador y sistema calefactor.
Figura N° 52: Temperatura del interior del tanque y temperatura de salida del tanque
Figura N° 53: Temperatura del interior del ambiente T6 y temperatura de salida de los
radiadores T8142
Figura N° 54: Sistema de calefacción, condición de T1 de 90°C a 80°C a los 3000s e
incremento de F2 a 0.0002m3/s a los 5000s 143
Figura N° 55: Sistema de calefacción, condición de T1 de 90°C a 80°C a los 3000s y
aporte de calefactor eléctrico de 9000W a los 5000s144
Figura N° 56: Enfriamiento del agua del tanque con carga de calefacción 145
Figura N° 57: balance de energía de tanque acumulador146
Figura N° 58: Esquema de transferencia
Figura N° 59: Esquema de sección anular del PCM alrededor del serpentín 148
Figura N° 60: Fusión de PCM
Figura N° 61: Temperatura del interior del tanque con PCM, calentamiento sin carga de
calefacción153
Figura N° 62: Diagrama de lazo abierto del acumulador con PCM y sistema calefactor
Figura N° 63: Calentamiento de PCM líquido con carga de calefacción 156
Figura N° 64: Sistema de calefacción, condición de T1 de 90°C a 80°C a los 3000s e
incremento de F2 a 0.0002m3/s a los 5000s

Figura N° 65: Sistema de calefacción, condición de T1 = 90° e incremento de F2 a
0.0002m3/s a los 5000s158
Figura N° 66: Sistema de calefacción, condición de T1 de 90°C y aporte de calefactor
eléctrico de 9000W a los 5000s159
Figura N° 67: Enfriamiento del agua del tanque con carga de calefacción 160
Figura N° 68: Enfriamiento del PCM del tanque con incremento de T4 a T7 161
Figura N° 69: Enfriamiento del agua del tanque con carga de calefacción 162
Figura N° 70: Esquema de transferencia de calor en proceso de solidificación del PCM.
Figura N° 71: Sketch of 1-D annular PCM solidifacation
Figura N° 72: Esquema de transferencia de calor-serpentín N° 02 165
Figura N° 73: Diagrama lazo abierto - proceso solidificación de PCM con carga de
calefacción167
Figura N° 74: Tiempo de solidificación del PCM con carga de calefacción 168
Figura N° 75: Solidificación del PCM con carga de calefacción con caudal
F2=0.00017m3/s, sin inyección de energía auxiliar169
Figura N° 76: Diagrama de bloques para control del Calefactor Eléctrico-Qresist 171
Figura N° 77: Respuesta a la variación de T1 de 90°C a 80°C a los 3000s 172
Figura N° 78: Regulación de potencia con variación de T1 de 90°C a 80°C a los 3000s
Figura N° 79: Diagrama de bloques para control del caudal-F2
Figura N° 80: Respuesta a la variación de T1 de 95°C a 91°C a los 3000s 175
Figura N° 81: Respuesta de T6 a la variación de T1 de 95°C a 91°C a los 3000s 175
Figura N° 82: Regulación de F2 frente a la variación de T1 de 95°C a 91°C a los 3000s

INDICE DE ACRÓNIMOS

NOMENCLATURAS

E _{ent}	-	Energía de Entrada	Cp	-	Calor especifico					
E _{sal}	-	Energía de Salida	Т	-	Temperatura					
Q _{ent}	-	Flujo de Calor de Entrada	t	-	Tiempo					
Q_{sal}	-	Flujo de Calor de Salida	Q		Flujo de Calor					
ρ	-	Densidad	U	-	Coeficiente global de					
					transferencia					
V	-	Volumen	А	-	Área de transferencia					
Δ(T)	-	Variación de temperatura	g	-	Gravedad					
r	-	Radio del elemento	β	-	Coeficiente de expansión					
					térmica					
К	-	Conductividad térmica	μ	-	Viscosidad dinámica					
		del material								
h _o -		Coeficiente de	Re	-	Numero de Reynolds					
		convección interna								
$\mathbf{h}_{\mathbf{i}}$	-	Coeficiente de	а	-	Exponente experimental					
		convección externa			de Dittus-Boelter					
R_{f}	-	Factor de ensuciamiento	F	-	Caudal					
N _u	-	Numero de Nusselt	L	-	Longitud					
D_h	-	Diámetro hidráulico	1	-	Altura del recipiente					
Gr	-	Nro de Grashof	q	-	Calor					
Pr	-	Nro de Prandlt	М	-	Flujo de masa					
m	-	masa	n	-	exponente de la curva del					
					radiador					
Ner	-	número de elementos de	Δ	-	variación					
		radiador								
Н	-	Entalpia	vel	-	Velocidad					

L _h	-	Calor latente de fusión	А	-	Área de transferencia
N _v	-	Número de vueltas	d	-	Distancia de lado
Р	-	Presión	ε _c	-	Coeficiente de corrección
PH	-	Presión Hidráulica	Po	-	Presion de diseño

ABREVIATURAS

Serp1	-	Serpentín nro 01	tub	-	Tubería
Serp2	-	Serpentín nro 02	Recip	-	Recipiente
resis	-	resistencia	Aisl	-	Aislamiento
perd	-	pérdida	Air	-	aire
ent	-	entrada	mu	-	muro
sal	-	salida	tech	-	techo
rad	-	radiador	Pis	-	piso
pers	-	persona	Ven	-	ventana
ren	-	renovación	Nom	-	nominal
tran	-	transferido	Liq	-	Líquido
puer	-	puerta	Sol	-	Solido
ext	-	exterior	sec	-	Sección
amb	-	ambiente	cuad	-	Cuadrada
acum	-	Acumulador	circ	-	Circular
s1	-	Serpentín 1	s2		Serpentín 2

RESUMEN

La presente investigación tiene como objetivo diseñar un acumulador térmico controlado usando PCM para aplicación en sistemas de calefacción de ambientes en la región Puno. Esta investigación nace a partir de la necesidad de implementar dispositivos que almacenen energía térmica obtenida por colectores o termas solares, que puedan transferir calor hacia un sistema de calefacción y que sean capaces de liberar ese calor almacenado durante la noche. Se ha diseñado un tanque acumulador que contiene PCM en su interior con el que se logra obtener autonomía de operación del sistema de calefacción. Se ha utilizado la herramienta SIMULINK de Matlab para la obtención y comparación de resultados, para ello se ha modelado matemáticamente y obtenido las funciones de transferencia del sistema de calefacción usando el diseño de un tanque con PCM y otro con agua. Los resultados son: el tanque con PCM tarda 3h para llegar a la Temperatura de operación frente a 1h del tanque con agua. Durante el periodo de operación, para una Temperatura menor a 90°C del fluido caloportador el tanque con PCM requiere regulación de variables para así mantener la temperatura de confort. Durante la etapa de enfriamiento, el tanque con agua logra mantener la temperatura de confort solo por un tiempo de 38 min, mientras que el tanque con PCM por de 5 horas y 40 min. El controlador PID diseñado para la etapa de operación logra mantener la temperatura de confort en 21°C a través de la regulación de caudal del fluido calefactor y la potencia del calefactor eléctrico. Finalmente, se concluye que, el diseño del tanque acumulador usando PCM y controlando sus parámetros de operación permite su aplicación en sistemas de calefacción de ambientes en la región Puno.

Palabras Claves: Acumulador térmico Solar, Acumulador con PCM, Diseño de Acumulador Térmico, Calefacción Solar, Control de calefacción.

ABSTRACT

The present research aims to design a controlled thermal accumulator using PCM for application in space heating systems in the Puno region. This research was born from the need to implement devices that store thermal energy obtained by collectors or solar thermal baths, that can transfer heat to a heating system and that are capable of releasing that stored heat during the night. An accumulator tank has been designed that contains PCM in its interior with which it is possible to obtain autonomy of operation of the heating system. The SIMULINK tool from Matlab has been used to obtain and compare results, for this, the transfer functions of the heating system have been mathematically modeled and obtained using the design of a tank with PCM and another with water. The results are: the tank with PCM takes 3h to reach the operating temperature compared to 1h of the tank with water. During the operation period, for a temperature lower than 90 ° C of the heat transfer fluid, the tank with PCM requires regulation of variables in order to maintain the comfort temperature. During the cooling stage, the tank with water manages to maintain the comfort temperature only for a time of 38 min, while the tank with PCM for 5 hours and 40 min. The PID controller designed for the operating stage manages to maintain the comfort temperature at 21 ° C through the regulation of the flow rate of the heating fluid and the power of the electric heater. Finally, it is concluded that the design of the storage tank using PCM and controlling its operating parameters allows its application in space heating systems in the Puno region.

Keywords: Solar Thermal Accumulator, Accumulator with PCM, Thermal Accumulator Design, Solar Heating, Heating Control.

CAPITULO I

INTRODUCCIÓN

En la actualidad, Las fuentes energéticas obtenidas del petróleo, gas natural están por agotarse, es necesario buscar nuevas alternativas de energía ecológica como la energía solar que es una fuente de energía que puede ser mucho más rentable y favorable al medio ambiente. En los últimos años se ha buscado la mejor manera de captar la mayor cantidad de energía solar. Alguna de las formas más comunes de recolección de energía solar son la conversión foto térmica y la fotovoltaica.

La foto térmica es la obtención de calor por medio de colectores solares que pueden captar la radiación solar y pueden transferirla por medio de convección o conducción a un fluido, y así poder calentar diferentes fluidos sin la necesidad de utilizar combustibles provenientes del petróleo.

En la región Puno el recurso solar tiene una irradiación anual promedio de 5.2 kWh/m² el cual puede ser aprovechado energéticamente, por otra parte debido a su ubicación geográfica Puno presenta durante el año temperaturas bajas en promedio de 15°C, en meses de Junio, Julio y Agosto alrededor de los 0°C, debido a estas bajas temperaturas surge la necesidad de implementar sistemas de calefacción solar tomando en consideración la temperatura de confort establecido en el reglamento nacional de edificaciones.

Las instalaciones de calefacción solar requieren de un sistema de acumulación ya que la demanda de calefacción claramente es mayor cuando hay ausencia de sol, sobre

todo en horas de la noche, Por lo que un estudio detallado de los sistemas de acumulación de energía solar térmica aplicados a la calefacción es necesario.

En este proyecto se ha desarrollado el diseño de un tanque acumulador de energía térmica el cual usa material de cambio fase para incrementar la capacidad de almacenamiento térmico, esto con la finalidad de que se disponga de la mayor cantidad de energía para periodos sin sol como la noche, a ello se suma el diseño de un controlador que controlará los parámetros de funcionamiento de todo el sistema de calefacción en conjunto con el sistema de acumulación.

1.1 PLANTEAMIENTO DEL PROBLEMA

1.1.1 Descripción del problema

En la actualidad, el uso de la energía solar como energía térmica ha tomado un interés muy importante en la región Puno, existen diversas aplicaciones e investigaciones sobre el aprovechamiento de la energía solar térmica para fines de calefacción en la región Puno utilizando sistemas de radiadores, suelos radiantes u otros medios. Sin embargo, el recurso solar solo se tiene durante el día. Entonces, para poder viabilizar estos sistemas de calefacción poniendo énfasis en su utilización en periodos sin sol como la noche, hace necesario implementar sistemas térmicos que almacenen calor y que sean capaces de prolongar la disponibilidad de la energía térmica durante los periodos sin sol.

Por otra parte, la forma más común de almacenamiento térmico que se viene utilizando son los tanques acumuladores a base de agua, sin embargo, estos no logran ser beneficiosos debido a que el agua en estado líquido solo logra un almacenamiento por calor sensible. Otra forma de almacenamiento térmico es por calor latente utilizando materiales de cambios de fase PCM, debido a que estos materiales sufren cambios de fase a bajas temperaturas logrando absorber y acumular grandes cantidades de energía los cuales se pueden aprovechar para usarlo en sistemas de calefacción durante la noche.

1.2 FORMULACIÓN DEL PROBLEMA

1.2.1 Problema general

¿En qué medida beneficia el diseñar un acumulador térmico controlado usando PCM para aplicación en sistemas de calefacción de ambientes de la región Puno?

1.2.2 Problemas específicos

¿Qué impacto tiene el radio del volumen útil del PCM en la autonomía del sistema de calefacción?

¿Como influye la temperatura critica del fluido caloportador en las acciones de regulación de parámetros a fin de mantener la temperatura de confort?

¿En qué medida el implementar un controlador que regule caudal del fluido calefactor y potencia de resistencia impactará en la temperatura de confort y disponibilidad de autonomía?

1.3 OBJETIVOS

Diseñar un acumulador térmico controlado usando PCM para su aplicación en calefacción de ambientes en la región Puno.

1.3.1 Objetivos específicos

- Determinar el radio del volumen útil del PCM para evaluar el impacto en la autonomía del sistema de calefacción
- Encontrar la temperatura critica del fluido caloportador para tomar acciones de regulación de parámetros a fin de mantener la temperatura de confort.
- Implementar un controlador que regule caudal del fluido calefactor y potencia de resistencia para mantener la temperatura de confort y disponibilidad de autonomía.

1.3.2 justificación

En la región Puno, alguna de las aplicaciones de la energía solar que recibe mayor aceptación es el uso mediante termas solares para Agua caliente sanitaria (duchas calientes) y es muy poca aplicación en la calefacción de interiores de edificaciones, sin embargo estos sistemas son una alternativa ecológica y económica y que debe motivarse su utilización. El confort térmico es un aspecto muy importante en los ambientes de múltiples usos. (VIVIENDA, 2006)

1.3.3 Energético

El territorio peruano, por estar mucho más próximo al Ecuador, cuenta con radiación solar durante la mayor parte del año. Según el Atlas Solar del Perú elaborado por el Ministerio de Energía y Minas, el Perú tiene una elevada radiación solar anual siendo en la sierra de aproximadamente 5.2 a 6.5 KWh/m2 ; 5.0 a 6.0 KWh/m2, en la Costa y en la Selva de aproximadamente 4.5 a 5.0 KWh/m2. (SENAMHI, 2003)

1.3.4 Ciencia y tecnología

El proyecto de investigación se basa en la aplicación de nuevas tecnologías como el caso de PCM en acumuladores térmicos para usos en los sistemas de calefacción y otros, proponiendo una tecnología adecuada frente a las condiciones climatológicas de nuestra Región. Abre camino a continuar con la investigación y apostar por tecnologías basadas en almacenamiento por calor latente para sistemas de calefacción.

1.3.5 Económico

Implementar un sistema de calefacción convencional se consigue mediante la quema de Combustibles ya sean gas, diésel u otros o mediante el uso de electricidad, esto conlleva a un elevado costo de operación.

Pero si se emplea la energía solar como alternativa frente a los sistemas de calefacción convencionales representa una serie de ventajas como el máximo ahorro de energía, bajo costo de operación bajos costos de mantenimiento.

1.3.6 Social

El uso de la energía térmica solar trae consigo beneficios con la aplicación en sistemas de calefacción de todo tipo de ambientes, se mejora la calidad de vida, el trato y la atención de las personas en ambientes confortables sobre todo en épocas de friaje

típicos de la región andina. Así mismo trae beneficios en la economía de las personas quienes podrán apostar por el uso de energía saludable y amigable con el medio ambiente.

Por otra parte, como bien se ha mencionado de la aplicación en sistemas de calefacción, esto solo es un punto de partida ya que el uso de sistemas de acumulación basados en PCM puede magnificarse en sistemas de secado de productos, temperado de piscinas, huertos, crianza de animales, entre otros.

1.3.7 Ambientales

El mecanismo de desarrollo limpio o mecanismo para un desarrollo limpio (MDL) es un acuerdo suscrito en el Protocolo de Kioto (11 de diciembre de 1997) establecido en su artículo 12, que permite a los gobiernos de los países industrializados y a las empresas (personas naturales o jurídicas, entidades públicas o privadas) desarrollar proyectos para cumplir con metas de reducción de gases de efecto invernadero.

El objetivo del MDL es promover las reducciones de emisiones de gases de efecto Invernadero y el desarrollo sustentable y, al mismo tiempo, crear flexibilidad en la manera de cumplir las metas del Protocolo.

Esta alternativa nos permitirá tener un futuro cercano en presencia de un mundo más limpio con la utilización de energías renovables al consumir menos combustible fósil, nuestra región es un punto de radiación privilegiado que debemos aprovechar como fuente alterna de energía, para disminuir las emisiones de contaminantes, colaborar con el cuidado y preservación del medio ambiente.

1.4 HIPOTESIS

1.4.1 hipótesis general

El diseño de un acumulador térmico controlado usando PCM permite su aplicación en sistemas de calefacción de ambiente en la región Puno.

1.4.2 Hipótesis especifico

- El radio del volumen útil del PCM impacta en el tiempo de autonomía del sistema de calefacción.
- La temperatura critica del fluido caloportador permite tomar acciones de regulación de parámetros a fin de mantener la temperatura de confort.
- El Implementar un controlador que regule caudal del fluido calefactor y potencia de resistencia logrará mantener la temperatura de confort y disponibilidad de autonomía.

1.5 DEFINICIÓN DE VARIABLES

1.5.1 Variables independientes:

- Radio del volumen útil de PCM del serpentín Nro. 02
- Temperatura critica del fluido Caloportador
- Caudal del fluido calefactor
- Energía del calefactor eléctrico (Resistencia)

1.5.2 Variables dependientes:

- Tiempo de Autonomía de operación.
- Disponibilidad de autonomía.
- Temperatura de confort

1.5.3 Variables intervinientes:

- Temperatura de fluido caloportador
- Radiación solar
- Temperatura del medio ambiente

CAPITULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

La energía solar en la región Puno se ha venido aprovechando de manera muy reducida, en la mayoría de las aplicaciones se viene utilizado termas solares para usos de agua caliente sanitaria(duchas calientes), sin embargo las aplicaciones para confort de ambientes no ha progresado en gran medida, se conoce de muy pocos proyectos de aplicación tal es el caso de la Oficina de Infraestructura Educativa (OINFE), que es la entidad normativa del sector educación en el tema de infraestructura, quienes lograron implementar un sistema de calefacción solar a tres salones con un área total de 227.00 m²,Estos ambientes cuentan con un sistema de aislamiento en techos y paredes, pisos de madera y calefacción solar (empleando colectores solares planos y un acumulador de agua caliente de 1,000 L de capacidad) (Laar & Olortegui del Castillo, 2014).

En el año 2016 el tesista Paredes Perez de la Universidad Nacional del Altiplano realiza el proyecto de investigación denomina "Estudio y Diseño de una vivienda rural en el departamento de Puno utilizando materiales de cambio de fase para fines de confort", donde presenta un estudio sobre una propuesta de diseño de una vivienda rural, el cual utiliza un sistema térmico solar para calefacción con colectores solar y como elemento acumulador de calor plantea un diseño tanque acumulador enterrado y con material PCM, no se logra determinar los parámetros de comportamiento, sin embargo se realizar un análisis de ahorro de energía eléctrica frente a un sistema convencional.(Paredes Perez, 2016), este trabajo resulta una aplicación tomando en como referencia que en el año 2013 en españa se ha desarrollado un Proyecto a gran escala utilizando materiales de cambio de fase en tanque acumulador El proyecto consiste en suministrar agua caliente a un

determinada población. Se diseña un sistema completo de abastecimiento de agua caliente para uso doméstico, se diseña un tanque acumulador a gran escala 4523m3, se utiliza PCM Climacel C-48, el tanque está enterrado para minimizar los efectos de pérdida de calor por temperatura de ambiente, el sistema fue construido para para acumular calor en estaciones de verano y suministrar calor en estaciones de invierno.

En el año 2017, tesistas de la Escuela profesional de Ingeniería Mecánica Eléctrica de la Universidad Nacional del Altiplano, desarrollan un proyecto de investigación donde diseñan un prototipo de vivienda con un sistema de calefacción en base a un colector solar con termotanque, bomba y Piso radiante tipo serpentín, Se utiliza material de cambio de fase PCM 45 de parafina como material acumulador de calor, instalan el PCM dentro de una tubería envolvente tipo encamisado en la tubería que transporta el fluido(serpentín) en el piso de la habitación(suelo radiante), a nivel de prototipo se logra mantener la temperatura de confort entre 20°C y 21°C por el tiempo de 2 a 2.5, gracias a la acumulación de energía por el PCM.(Berrio Huarahuara & Hancco Mamani, 2017)

En año 2019 se ha desarrollado el proyecto de Implementación de un sistema de calefacción solar para un aula universitaria de la Universidad Nacional de Juliaca, Puno (Pizarro Viveros et al., 2019). Se implementa un sistema de Calefacción solar con 01 radiador y circuito de piso radiante, demostrando incrementos considerables en estaciones típicas de la región Puno. Se obtuvo 2°C de incremento para la estación de verano (lluvias con pocas horas de sol), 5°C para la estación de Otoño (Incremento de horas de Sol) y 4°C para los meses de Junio. El sistema usó 02 selectores solare de tubos de vacío de 20 y 15 tubos los cuales incorporan tanques acumuladores horizontales dispuestos a la intemperie, se utiliza un PLC para regulación de la velocidad de la bomba del circuito de calefacción con el cual se regula los caudales del fluido calefactor.

Estas son algunas de las aplicaciones y avances de investigación a nivel local referidos a la utilización de energía térmico solar para fines de calefacción de ambientes, en cuanto a las aplicaciones de PCM como material de almacenamiento de calor latente, tal como se ha descrito líneas arriba no se tiene mucha investigación por lo que motiva al desarrollo de la presente investigación.

En el 2006, García et al. (2006) en su artículo propone el diseño de un sistema de acumulación térmica utilizando materiales de cambio de fase PCM, este consiste en incorporar módulos de PCM en cilindros dentro de los tanques convencionales para ducha, se realiza comparaciones del comportamiento de la transferencia de calor de un cilindro con PCM y un cilindro con aletas lleno de PCM, el estudio se basa en la velocidad de enfriamiento del PCM significando ello una capacidad de transferencia rápida al agua contenido dentro del tanque. se evidencia que, los módulos de PCM con aletas ofrecen una reducción del tiempo de enfriamiento del PCM y por ende mejora la rapidez de transferencia de calor al agua, el PCM utilizado fue Acetato sódico trihidratado con grafito.

Simanca (2018) realiza otra aplicación del PCM en su proyecto denominado "Construcción y pruebas de un captador solar de placa plana con acumulación de energía solar térmica con material de cambio de fase", La investigación consistió en implementar un banco de pruebas de colectores de placa plana incorporando PCM en la parte de baja de los colectores, los resultado son satisfactorios ya que en el periodo sin sol aunque por un tiempo muy corto el PCM transfería energía logrando que la temperatura de salida del colector disminuya lentamente.

Rincón Ortega (2019) en su investigación de tesis doctoral denominado "Evaluación analítica y experimental de un sistema de calentamiento solar de agua a baja temperatura con tecnología de almacenamiento térmico con material de cambio de

fase(PCM) en térmicos energéticos y energéticos", realiza una investigación a nivel experimental en donde se compara el funcionamiento de un tanque de almacenamiento térmico incorporando PCM(PARAFINA RT55 Y RT45) y otro sin dicho material. El experimento consiste en incorporar pequeños cilindros de PCM en el interior del tanque de almacenamiento típico de una ducha, se realizan mediciones de temperatura en el interior del tanque y en lo cilindros de PCM, se verifica que durante la descarga de agua la variación de la temperatura del fluido a la salida del Acumulador con PCM solo presenta una variación de 1°C a 1.5°C respecto del acumulador sin PCM.

Todos los estudios mencionados arriba se centran en la incorporación de PCM encapsulado en cilindros pequeños dentro de un tanque acumulador convencional, sin embargo en Julio del 2019, el tesista Zamora Jiménez (2019) desarrolla una investigación denominado "Diseño de una instalación solar térmica para el abastecimiento energético de acumuladores de calor latente de tipo PCM", en este proyecto se diseñó y construyó dos acumuladores de energía tipo intercambiador horizontal de carcasa y de tubos, uno con tubos lisos y el otro con tubos aleteados. el diseño se realizó para estudiar los procesos de fusión y solidificación del PCM por lo que el tanque solo contaba con un paquete de tubos para el fluido calefactor(fluido caliente), como resultado se obtuvo que el PCM se fundió por niveles de estratificación es decir en la parte superior del tanque se logró una fusión y temperatura de 82°C, en la parte media del tanque se logra fundir y el PCM alcanza 79°C, sin embargo en la parte baja del tanque apenas se llegó a los 69°C no logrando fundir el PCM, una de las causas fue la estratificación del PCM según conclusión del autor, el PCM Utilizado fue el Rubiterm RT70HC.

Los trabajos de tipo experimental de acumuladores de agua caliente con incorporación de PCM aplicados a la energía solar han sido estudiados por diferentes autores y según el artículo de revisión presentado por Kee et al. (2018),se han estudiado

28

diferentes diseños para la incorporación de PCM en los tanques de almacenamiento de agua caliente, típicamente se insertan dentro del tanque botellas de aluminio con PCM en el interior cilindros de diferentes materiales llenos con PCM o cápsulas esféricas, También se ha investigado la inmersión de la tubería del fluido calo portador en el PCM, entonces, partiendo de estas investigaciones existe una clara posibilidad de mejorar los diseños de los acumuladores térmicos y la posibilidad de la utilización de Parafinas como material de acumulación de energía es viable. En el año 2015 Reyes et al.(2016) al no existir información sobre el comportamiento de la parafina ante los ciclos de fusión y solidificación repetitivos, logra en su investigación determinar que las ceras o parafinas no sufren cambios químico-estructurales.

Por otra parte se han desarrollado modelos numérico para estudio del comportamiento de la solidificación de la parafina, como es el caso de la tesis doctoral (Pan, 2019) donde realiza un estudio de los tiempos de solidificación de la parafina para distintos tipo de diseño, tubo concéntrico en tubo de fluido de enfriamiento, donde desarrolla un modelo matemático del proceso de solidificación donde concluye que el PCM inicia a solidificarse en las paredes del tubo de enfriamiento mientras el PCM liquido va transfiriendo calor latente de fusión teniendo como resistencia el PCM solido en las paredes del tubo. Se determinó que para el PMC de conductividad térmica K=0.5W/(mK) se requieren 10 horas para solidificar 4.5 cm de espesor de capa envolvente al tubo de enfriamiento y para un PCM con K= 1.5W/(mK) se requieren 2.5 Horas para solidificar el mismo espesor, para este último caso se puede llegar a solidificar hasta 7 cm de espesor en 10 Horas.

2.2. MARCO TEÓRICO Y MARCO CONCEPTUAL

2.2.1. Fuentes de energía renovables

Las fuentes de energía renovable han sido aprovechadas por el hombre desde hace mucho tiempo, básicamente acompañadas de la energía animal, y su empleo continuó durante toda la historia hasta la llegada de la "Revolución Industrial", con la aparición del carbón, con una densidad energética muy superior a la de la biomasa y su menor precio, desplazó a estas.

Las energías renovables son aquellas que se producen de manera continua y son inagotables a escala humana. Además, tienen la ventaja adicional de poder complementarse entre sí, favoreciendo la integración entre ellas.

Son respetuosas con el medio ambiente, y aunque ocasionen efectos negativos sobre el entorno, son mucho menores que los impactos ambientales de las energías convencionales como combustibles fósiles (petróleo, gas y carbón), energía nuclear, etc.

(Méndez Muñiz & Cuervo Garcia, 2010, págs. 24-25)

Ventajas

- Son respetuosas con el medio ambiente
- No emiten gases contaminantes
- No generan residuos peligrosos
- Se pueden instalar en zonas rurales y aisladas
- Acercan la producción al consumo
- Disminuyen la dependencia de suministros externas

2.2.2. Energía Solar ¿Por qué?

La energía que es consumida cotidianamente en el mundo civilizado es la que se denomina energía convencional (hidroeléctrica, petróleo, gas, carbono), la misma que o es limitada regionalmente o es agotable. La energía solar, siendo una fuente inagotable y

disponible, se presenta como alternativa para reemplazar a las convencionales. En el Perú, a cada metro cuadrado de superficie horizontal llega cada día cerca de 5 Kwh de energía solar; por tanto no existe problema en la disponibilidad de esta energía. Comparando este valor con otras formas de energía

2.2.3. Radiación Solar

La radiación solar es un tipo de energía que se propaga a través del espacio, a la velocidad de la luz y en forma de ondas electromagnéticas; dicha radiación se distribuye sobre un rango de longitudes de onda a la que se le reconoce como espectro de radiación electromagnética. Dentro del espectro, la radiación solar que llega a la superficie de la tierra está ubicada en el rango de longitud de onda comprendido entre 0,29 y 3,0 µm (Figura 1). (Pineda, 2004, pág. 10)

Figura Nº 1: Espectro electromagnético de la radiación solar

2.2.3.1.Radiación Solar en el Perú

En el Perú, la irradiación solar promedio es una de las más altas en todo el mundo, comparado con Holanda, el Perú recibe el doble de energía solar. La fluctuación por estaciones en el Perú es mucho menor que la de las regiones nórdicas. En Holanda por

ejemplo, la radiación promedio en invierno puede llegar a índices tan bajos como 0,5

Kwh/m²/día, mientras que en el verano alcanza los 5Kwh/m²/día (como en el Perú).

Site	Lat	Long	Ele	Yr	T	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Avg	Sr
Abancay	13,63 S	72,88	2398	2	T	5,42	4,89	5,03	4,94	4,72	4,56	4,81	5,11	5,08	5,86	5,97	5,33	5,14	Η
Angostura	15,17 S	71,63	4155	3	Т	5,47	4,92	4,89	4,97	4,83	4,78	4,89	536	5,42	6,86	6,14	5,64	538	Н
Alacocha	10,58 S	76,22	4023	2	Т	4,78	4,44	4,75	5,08	5,00	4,94	5,11	5,28	4,94	5,53	5,44	5,11	5,03	Н
Bambamarca	6,58 S	78,52	2600	3	T	4,75	4,67	4,64	4,69	4,56	4,94	5,11	5,17	5,17	5,17	5,53	5,39	4,96	Н
Cajamarca	7,17 S	78,52	2750	1	Т	4,56	4,89	4,25	4,44	4,58	4,38	4,44	5,08	4,72	4,75	5,11	5,08	4,68	Η
Calaña	17,93 S	70,18	590	3	Т	6,44	6,19	5,72	5,11	4,33	4,03	4,11	4,69	5,28	6,39	6,44	6;42	5,43	Ρ
Campo de Marte	12,07 S	77,03	137	1		4,94	5,38	5,17	539	4,06	2,89	2,56	2,83	'3,56	3,3	5,38	5,06	4,34	Н
Capachica	15,63 S	69,83	3868	3	- I	5,47	5,44	5,19	53»	4,89	4,83	5,03	5,44	5,78	6,17	6,38	5,64	5,46	Н
Cañete	13,10 S	76,30	36	3		5,19	5,19	5,14	4,97	3,92	2,97	2,92	3,17	3,36	4,35	4,75	532	4,27	Н
Cartavio	7,92 S	79,17	51	3	I.	5,53	5,44	5,3	5,0	4,89	4,06	4,14	4,08	4,5	5,06	5,67	5,67	4,96	Н
Casa Grande	7,77 S	79,17	158	3	I	5,39	5,33	5,39	5,0	5,19	3,92	4,06	4,28	4,42	4,97	5,14	5,53	4,88	Н
Caylloma	15,18 S	71,77	4320	2		5,36	4,92	4,78	4,86	4,75	4,78	4,97	5,44	5,31	6,06	6,14	5,86	5,38	Н
Cayalli	6,88 S	79,37	150	2	1	5,36	5,81	5,3	5,39	5,25	4,44	4,72	5,08	532	5,78	5,86	6,03	5,37	H
Characato	16,47 S	/1,45	2461	3	1	6,14	5,33	6,56	530	5,22	4,81	5,19	5,64	6,11	6,92	7,06	6,58	5,84	H
Conococha	10,12 S	11,33	4020	3	÷	4,86	4,33	4,44	4,72	4,78	4,89	5,17	5,42	5,25	4,69	5,33	3,08	4,95	Н
Cuenca Rio Verde	15,48 S	70,67	4260	3	÷	5,47	4,81	5,00	5,14	4,89	4,83	4,97	536	5,42	5,94	5,92	5,53	5,27	H
Cuzco	13,52 S	/1,95	3365	3	4	5,19	4,69	4,92	5,03	4,81	4,78	5,06	5,11	5,17	5,64	5,75	5,32	5,11	K
Desaguadero	16,,65 S	69,00	3850	3	4	5,72	5,56	5,58	5,53	4,92	4,67	4,81	5,39	5,47	6,17	6,06	5,67	5,46	н
Don Martin	11,03 S	77,68	50	3	4	5,33	5,06	5,06	4,86	4,0	3,35	3,36	3,58	3,97	4,36	5,03	5,44	4,44	н
El Fraile	10,10 5	71,18	4015	2	4	0,39	4,39	4,47	4,00	4,10	4,67	4,81	0,22 5.05	0,07	6,06	0,94 5.00	0,67	0,13	H
Fundo Iberia	11,30 5	09,07	180	3	4	4,81	4,07	4,04	4,31	4,20	4,31	4,69	0,Z0	5,03	5,0	5,06	4,01	4,1Z	VI
Granja M. Sassape	0,02 5	79,92	40	1	4	0,70	5,81	0,22	0,28	0,83	0,0	4,80	501	5,81	0,0	0,94	0,89	0,12	н
Hacienda Majoro	14,83 5	74,97	620	3	4	0,00	0,1Z	0,81	0,00	0,03	4,38	4,03	0,00	0,01	0,08	0,30	0,94 5.50	0,48	н
Haciendita	0.52.8	77,52	400	2	÷	0,4Z	0,08	0,9Z	0,00	43"	4,00	3,94 520	4,0	4,18	0,08 520	0,4Z	0,00	0,20 520	Н
Huanaz	12.05 0	75 10	3207	2	÷	5,00	4,00	0,00	0,11	100	0,11	50	0,1Z	0,47 5.44	522	5.02	520	5.4	
Huancayo	12,00 0	75.33	2280	2	÷	7 20	4,00 6,71	4,94	4,04	4,9Z	4,00	0,0	6.75	7 10	7 / 7	0,00 7,75	721	696	р
Huánuco	9 90 9	75,35	1012	2	÷	1,50	1 53	4.64	1.64	1 79	1 59	1.91	5 1 /	1,10	5.08	533	1 90	1.93	L.
Hurava-Moho	15 35 9	69.50	3890	2	÷	5 35	4,00	4,04	4,04	4,70	4,00	5 1/	5 56	5,60	5.86	6.03	4,00	5 29	н
Ica	14 08 S	75 73	398	2	÷	5.86	50	5 4 2	5 11	4,00	5,75	4 17	4 81	535	6 17	6 4 4	6 14	5 4 1	н
Imata	15.82 S	71 07	4405	3	÷	5.35	4 81	4 78	4 94	4.81	4 72	50	533	5.31	5.86	5 94	5.53	5 19	н
Juli	16,02 C	69.43	3862	2	÷	5.5	4 81	4 47	5 25	5 11	4 78	4 97	4 97	5.47	6,06	6,06	533	533	н
Kavra	13 55 9	71.88	3219	2	÷	5.0	1,01	1 61	1.86	1 61	1,78	1 97	5.03	5.08	5 33	5 56	1 89	1 93	н
Lagunillas	15 58 S	70.92	4280	3	÷	5.67	5 22	5 11	5.03	4 67	4.53	4 89	5 53	5 58	6.38	6.39	5,75	5,39	н
Lambaveque	670 S	79,90	18	3	÷	5 17	5 61	53	5,31	5.08	4 64	439	4 72	5.03	5 47	5 64	5.81	5.2	н
La Molina	12 08 S	76,95	251	3	i	5.03	5 17	5 25	50	3,97	3 33	3.31	3 56	3 75	436	4 83	5.08	4 39	н
Lampas Alto	10.08 S	77,28	4030	3	i	4.78	4.11	4.36	4.56	4,78	4,72	5.35	5.42	535	4.67	5.44	4.97	4.38	Ĥ
Lampas Baio	10.07 S	77.37	3950	3	Ť	4.86	4.44	4.36	4.64	4.81	4.92	5.36	5.42	4.19	4.97	5.64	5.53	4.94	H
La Punta	12.07 S	77.17	13	2	i	4.3	5.08	4,94	4.72	3.89	2.94	2.89	3.0	3.17	3.61	4.38	4.86	3,99	Ĥ
La Salle	16.40 S	71,53	2330	3	Í.	6.14	5,33	5,58	5,33	5.22	4,72	5,11	5.64	5,94	6.58	7.06	6.58	5,77	H
Llaucan	6,65 S	75,32	2600	1	Ť.	4,64	4,89	4,36	4,05	4,14	4,47	439	4,72	5,03	5,38	5,53	5,69	4,78	Н
Los Cedros	3,13 S	80,67	5	3	Т	4,78	5,39	5,44	5,25	5,28	4,53	4,61	4,67	4,39	4,58	4,86	5,39	4,93	Н
Moquegua	17,20 S	70,93	1420	2	Т	7,67	5,19	5,89	5,92	5,14	4,92	5,0	5,75	6,5	7,03	7,33	7,28	6,13	Н
Neshuya	8,63 S	74,92	340	1	T	4,81	4,72	4,14	3,75	3,78	3,33	4,38	5,03	5,17	5,08	5,17	5,67	4,59	Н
Pampa Blanca	17,10 S	71,75	455	2	1	5,28	4,75	5,19	4,76	3,67	3,11	3,42	3,42	3,28	4,42	4,66	5,11	4,37	Н
Pampa De Majes	16,35 S	72,17	1433	3	1	6,5\$	5,97	6,08	5,69	5,32	4,86	536	5,81	6,22	7,03'	731	6,92	6,09	Н
Pane	15,42 S	71,07	4524	3	Т	5,03	4,69	4,58	4,67	4,33	4,61	4,64	4,83	4,83	5,22	5,72	5,31	4,87	Н
Puno	15,83 S	70,03	3875	2	1	5,69	5,22	5,28	5,28	4,97	4,78	5,0	5,61	5,78	6,39	6,61	5,67	5,52	Н
Punta de Cotes	17,68 S	71,38	15	2	1	6,67	6,36	6,61	5,19	4,14	3,25	3,0	3,67	3,42	4,58	636	6,28	4,96	Ρ
Querococha	9,68 S	77,35	3935	1	Т	4,33	4,22	436	4,83	4,72	4,61	5,0	5,25	5,17	4,67	§31	4,64	4,78	Н
Quillabamba	12,83 S	72,72	1660	2		4,44	4,33	4,72	4,25	4,33	4,32	4,44	4,44	4,5	4,89	4,97	4,36	4,51	Н
Salcedo	15,32 S	70,02	3852	3		5,47	5,11	5,11	5,14	4,83	4,61	4,69	538	5,5	6,17	536	5,64	5,34	Н
San Jacinto	9,17 S	78,32	283	3		5,06	4,33	5,17	4,94	4,75	4,0	433	43	4,97	5,72	5,83	5,83	4,95	Н
San Jorge	8,53 S	74,87	270	2		4,81	4,61	4,67	4,5	4,42	436	4,92	539	5,0	5,19	4,53	4,61	4,75	Н
San Lorenzo	9,75 S	77,47	3750	1		4,86	4,44	4,56	4,92	4,72	4,75	5,28	5,42	5,36	5,19	5,75	5,19	5,04	Н
San Ramón	11,15 S	75,38	800	3		4,3	4,33	4,44	43	4,33	435	4,64	4,69	4,72	5,19	5,14	5,14	4,67	Н
Sibayo	15,48 S	71,45	3847	3	I	5,36	4,69	4,69	4,94	4,81	4,75	4,89	5,0	5,22	5,86	5,94	533	5,14	Н
Tablazo	5,37 S	81,78	147	3	I	4,19	5,28	5,61	5,17	5,33	4,64	4,83	5,44	5,64	5,89	5,78	6,14	5,33	Н
Tarapoto	6,58 S	76,32	356	3	I	4,75	4,67	4,36	4,28	4,17	4,06	4,58	4,83	4,72	472	4,69	4,83	4,57	Н
Tejedores	4,75 S	80,23	2500	3		4,47	4,75	5,08	4,81	5,38	4,86	5,05	5,39	5,64	5,75	5,78	5,58	5,2	H
linajones	6,67 S	/9,47	220	3	-	5,44	5,61	5,39	538	5,72	5,06	5,75	5,86	6,0	6,22	6,3	6,64	5,81	H
Tunelcero	13,12 S	/5,07	4600	3	1	4,97	4,67	5,14	4,97	4,67	4,81	5,08	5,42	5,38	5,66	6,97	5,44	5,19	H
Yurac	9,00 S	/5,67	420	3		4,31	4,0	4,14	4,11	3,94	3,67	4,17	4,72	4,69	4,67	4,64	4,31	4,38	H
Zorritos	3,67 S	80,67	5	2	1	5,03	533	5,08	5,42	5,25	5,11	4,75	4,25	4,56	5,11	5,42	5,33	5,07	Н

Tabla Nº 1: Radiación Solar del Perú (kwh/m²/dia).

Fuente : World Solar Irradiation Database

2.2.4. Sistemas Solares térmicos:

Un sistema solar térmico es el conjunto de componentes mecánicos, eléctricos y electrónicos que permite captar la energía solar disponible y transformarla en calor de forma que se queda utilizar en diferentes necesidades.

En general, es necesario acumular esta energía para cuando se requiera su consumo, mediante un fluido contenido en depósitos. La principal aplicación para la que se utiliza es la obtención de agua caliente sanitaria (ACS), en general, el consumo de agua caliente no está influido por la estación del año y la temperatura que se requiere para la utilización del agua no es muy elevada (60°C por ejemplo), otras aplicaciones aunque en menor cantidad son el uso para sistemas de calefacción.

2.2.5. Funcionamiento de un Sistema Solar Térmico

El principio básico de funcionamiento de los sistemas solares es sencillo: la radiación solar se capta y el calor se transfiere a un fluido (generalmente agua o aire). Para aprovechar la energía solar térmica se usa el captador solar. El fluido calentado se puede usar directamente (para calentar agua en piscinas) o indirectamente mediante un intercambiador de calor (calefacción de habitaciones).

La energía solar que se capta durante el día tiene que ser almacenada en forma de energía térmica, para muchos sistemas térmicos solares el agua es la sustancia perfecta para almacenar la energía térmica. Se puede hacer uso de un intercambiador de calor, pero para aplicaciones simples solo se utiliza un colector solar de agua acoplado y se utiliza el mismo como almacenaje.

2.2.6. Tipos de sistemas térmicos

La energía solar térmica es utilizada principalmente en fluidos, que dependiendo de la temperatura final alcanzada por el fluido, los sistemas térmicos se dividen de:

a) **Baja temperatura**: Son las más frecuentes y se destinan a aquellas aplicaciones que no exigen temperaturas del agua superiores a los 90 °C, como por ejemplo, producción de agua caliente sanitaria (ACS) para viviendas, calefacción de viviendas, calentamiento de agua para piscinas, etc.

b) Media temperatura: Destinada a aquellas aplicaciones que exigen temperaturas del agua comprendidas entre 80 °C y 250 °C, como, por ejemplo, calentamiento de fluidos para procesos industriales y la desalinización de agua de mar.

c) Alta temperatura: Destinada a aquellas aplicaciones que requieran temperaturas del agua superiores a los 250 °C, como es el caso de la generación de vapor para la producción de electricidad.

2.2.6.1.Sistema Solar Térmico de baja temperatura

Los colectores que se utilizan en estas aplicaciones son colectores planos.

Sistemas de circulación forzada: En este tipo de sistemas para hacer circular el agua entre el colector y el acumulador se utiliza una bomba, por lo que se hace necesario un aporte externo de energía.

Figura Nº 2: Sistema de circulación forzada

Fuente (Shallnberg et.al.,n.d.)

Sistemas termosifón

Instalaciones de circuito abierto: "El agua que circula por el colector es la misma que se utiliza como agua caliente. El agua entra en el colector, se calienta, pasa al tanque y se usa directamente."

Figura Nº 3: Sistema termosifón con circuito abierto.

Fuente (*Shallenberg et al., n.d.*)

Instalaciones de circuito cerrado: En este tipo de instalaciones Schallenberg et al. mencionan que: "Por el colector circula un fluido (en circuito cerrado) que se calienta y cede su calor al agua de abasto a través de un intercambiador de calor.

Figura Nº 4: Sistema termosifón con circuito cerrado.

Fuente (Shallenberg et al., n.d.)

2.2.7. Tipos de colectores Solares

Los tipos de colectores solares existen en el mercado mundial actual son los colectores solares de placa plana y los de tubos de vacío. Existiendo entre estos dos tipos diferentes marcas de colectores solares.

2.2.7.1.Colector solar de placa plana

Podemos distinguir dos tipos básicos de colectores solares de placa plana, en función de la configuración del absorbedor: el paralelo de "tipo parrilla", en las versiones vertical y horizontal y la serie de "tipo serpentín".

Figura Nº 5: Colector solar plano

Fuente (https://solar-energia.net/energia-solar-termica/colector-solar-termico/colector-solar-plano)

2.2.7.2.Colector solar de tubos de vacío

La tecnología de tubos de vacío es actualmente la más eficaz de las empleadas en los sistemas solares térmicos. Los sistemas de agua caliente por termosifón con tubos de vacío en los últimos años han invadido mercados en varios países. La mejora que aportan los colectores de tubo de vacío consiste en evitar las pérdidas por conducción y convección.

Los colectores de vacío encuentran su principal aplicación en los sistemas de temperaturas intermedias (calefacción, acondicionamiento de aire, procesos industriales,

etc.) y en lugares fríos con diferencias elevadas entre la temperatura del colector y la del ambiente.

Existen tres tipos de colectores de tubos de vacío.

El primero es el sistema de colectores de tubo de vacío termosifónicos que se basan en los tubos evacuados. Estos están conformados por dos tubos concéntricos entre los cuales se ha aspirado el aire produciéndose un vacío. En uno de los extremos, ambos tubos se unen sellándose el vacío. Dentro de ambos tubos se sitúan los distintos tipos de absorbedores que determinan los distintos sistemas.

Los tubos evacuados simples o termosifónicos son tubos evacuados ensamblados directamente con el depósito acumulador o de manera independiente que pueden contener solo agua o agua más anticongelante. El fluido se calienta por convección y comienza a ascender a través del tubo siendo reemplazado por fluido frío que a su vez se calienta y reinicia el proceso.

Figura Nº 6: Tubo de vacío termosifón o evacuado simple.

Fuente: Jensen T. 2009 Tecnologia de la Energia Solar

Se tiene también colectores de vacío de flujo directo o U-Pipe que se emplean tanto en colectores individuales como en sistemas solares compactos con depósito integrado.

Los colectores de tubo de vacío de flujo directo tienen la ventaja de poder adoptar una posición tanto horizontal como vertical sin mermar su rendimiento ya que el tubo puede rotar sobre su eje inclinándose el absorbedor de la manera más adecuada en el caso de que el absorbedor tenga la forma de plancha.

Figura Nº 7: Tubo de vacío de flujo directo o U- Pipe

Fuente: Jensen, T. (2009)

Por último, dentro de la tecnología de tubo de vacío encontramos los colectores **heat pipe**. Emplean un mecanismo denominado tubo de calor que consiste en un tubo cerrado en el cual se introduce un fluido vaporizante (mezcla de alcohol) de propiedades específicas. Cuando el Sol incide sobre el absorbedor adosado al tubo, el fluido se evapora y absorbe calor (calor latente). Como gas asciende sobre el líquido hasta lo alto del tubo donde se sitúa el foco frío. Allí se licúa (se condensa) y cede su calor latente al fluido que nos interesa calentar volviendo a caer al fondo del tubo por capilaridad o gravedad.

Este proceso (evaporación - condensación) se repite mientras dure la radiación del Sol o hasta que el colector haya alcanzado una temperatura muy alta (en torno a los 130°

C o más). Tienen la ventaja de que cada tubo es independiente pudiéndose cambiar en pleno funcionamiento del sistema. Es altamente resistente a las heladas. Dado que los tubos también pueden girar sobre su eje, existe la posibilidad de que adopten posiciones verticales y horizontales al igual que ocurre en los sistemas de flujo directo, aunque en este caso generalmente habrá que respetar una inclinación mínima del tubo (entre 15° y 20° según el fabricante) para permitir que el fluido, una vez licuado, pueda descender por gravedad.

Fuente: Jensen, T. (2009). Tecnología de la Energía Solar (pp. 92-121) New York. Editorial

2.2.7.3.Diferencias entre el tipo colector tubo al vacio de colecto solar plano

Captador tubo al vacío	Captador plano
El propio vacío aísla térmicamente casi	Pierden bastante calor por convección y
totalmente al colector con el exterior lo	conducción sobre todo en lugares de mucho
que lo hace más recomendable en lugares	frio o viento
de mucho frio o viento	
Presentan mejor captación de la energía	Presentan menor captación de la energía
solar para los diferentes ángulos de	solar para los diferentes ángulos de
incidencia del sol	incidencia del sol
El propio vacío protege al colector de la	Son más propensos a sufrir condensación,
corrosión y no presentar condensación,	sobre todo si se deteriora la junta entre el
lo que hace que sean más duraderos y	cristal u la caja, lo que provoca corrosión y
fiables	afecta el rendimiento del modulo
El fluido no circula por los tubos	El fluido circula por el interior del colector,
	siendo propenso a <u>a</u> corrosiones internas y
	e incrustaciones e incluso a llegar a
	romperse por congelamiento del fluido.

Tabla N[•] 2: *Diferencias entre tipos de colector tuvo al vacío y plano.*

Fuente:https://energias-renovables-y-limpias.blogspot.com/2013/01/captadoressolares-planos-frente-a-los-de-tubos-de-vacio.html

2.2.8. Calefacción.

La calefacción es un sistema que tiene como función calentar el interior de las casas o edificios cuando el clima este frío no aunque en tiempos remotos se utilizaba el fuego para calentar el hogar, pero en algunos hogares aún se utilizan las famosas chimeneas para calentar la habitación habitada.

2.2.8.1.Sistemas de Calefacción

Un sistema de calefacción es la forma práctica de llevar a cabo una calefacción de forma continua y controlable para que en los espacios habitables se pueda percibir una sensación de confort térmico en la época invernal.

Podemos clasificar los sistemas de calefacción en:

- Sistemas de agua caliente
- Sistemas de aire caliente

- Sistemas por vapor de agua
- Sistemas por fluido térmico

Sistemas convencionales

- Calefacción eléctrica
- Sistemas de Biocombustibles
- Sistemas de energía solar
- Bombas de calor

2.2.8.2.Componentes de un sistema de calefacción

Radiadores: El sistema de calefacción mediante radiadores es posiblemente el sistema más utilizado. Existen variados sistemas de calefacción aunque habitualmente la característica que diferencia a unos de otros radica en la forma en la que se cede el calor del agua calentado en por cualquier fuente al local que se desea calefactar. Arroyo (2010). Pag.23

Fuente: http://www.imacifp.com/wp-content/uploads/2014/10/1.-Calefacci%C3%B3n-I.curso_.pdf

Los radiadores están constituidos básicamente por recipientes de elevada superficie por los que circula agua. El calor del agua se cede a través de las paredes del radiador al aire más frío del local que se quiere calefactar. En el recinto se crean entonces corrientes de aire por convención: el aire caliente de menor densidad asciende y desplaza hacia abajo al aire más frío. De ese modo se calienta todo el aire del recinto y el ciclo se repite hasta alcanzar una temperatura uniforme en todo el local.

Figura N• 10: Corrientes de aire creadas por el movimiento de un radiador

Fuente: http://www.imacifp.com/wp-content/uploads/2014/10/1.-Calefacci%C3%B3n-I.curso_.pdf

Como es lógico teniendo en cuenta el nombre de estos emisores también producen emisión de calor mediante radiación, es decir a través de ondas.

Radiadores de aluminio: El aluminio ha sido el último material empleado en la construcción de radiadores; éstos se distinguen fácilmente por un acabado más elegante y sobrio, lo que les suele convertir en el tipo de emisor preferido por la mayoría de los usuarios. Además de una mejor apariencia estética (algo siempre muy discutible) y es su gran ligereza; también su duración es mucho mayor que otro tipo de radiadores. Por otro lado la elevada transmisión térmica del aluminio les otorga una inercia térmica mínima, es decir comienzan a emitir calor rápidamente y se enfrían de igual forma.

Feuente: http://www.imacifp.com/wp-content/uploads/2014/10/1.-Calefacci%C3%B3n-I.curso_.pdf

Las dimensiones y características técnicas, radiadores de aluminio, dependerán del perfil escogido, el radiador ofrecerá más o menos potencia. Estos datos en todo caso son siempre ofrecidos por el fabricante.

Bombas recirculadores.: Tiene por misión el vencer las resistencias que ofrece el circuito de tuberías al avance de agua por el interior. Su instalación es hoy prácticamente imprescindible si se desea obtener una calefacción con puesta a régimen y sin problemas

Figura N[•] 12: *Recirculadores*

Fuente: https://docplayer.es/10461573-Modulo-de-calefaccion-calefaccion-modulocalefaccion-jose-manuel-arroyo-rosa-jose-manuel-arroyo-rosa-pagina-1.html

Los circuladores de la calefacción pueden situarse tanto en la ida como en el retorno de del circuito de calefacción.

Depósitos acumuladores: Permiten disponer de abundante agua caliente sanitaria aprovechando el circuito de calefacción.

Según su capacidad puede ser de tipo mural o de pie y se pueden instalar en posición vertical y horizontal según los modelos. Arroyo (2010). Pag.15

Figura Nº 13: Depósitos acumuladores

Fuente: https://docplayer.es/10461573-Modulo-de-calefaccion-calefaccion-modulo-calefaccion-jose-manuel-arroyo-rosa-jose-manuel-arroyo-rosa-pagina-1.html

Los depósitos están formados por circuitos independientes los cuales son:

Circuitos de calentamiento: es el mismo de calefacción y tiene por misión calentar el agua caliente sanitaria. También llamado circuito primario.

Circuito de consumo: es el que contiene el agua sanitaria que se ha de calentar y consumir. Los depósitos acumuladores pueden estar diseñados para distintos sistemas de calentamiento del agua sanitaria

Componentes de regulación, control y seguridad: Para un correcto funcionamiento y un elevado grado de seguridad en las instalaciones de calefacción, es imprescindible la colocación de los siguientes componentes de regulación y control.

Termostatos de regulación: sistema de control de temperatura del agua. Arroyo (2010).

Pag.23

Fuente: https://docplayer.es/10461573-Modulo-de-calefaccion-calefaccion-modulocalefaccion-jose-manuel-arroyo-rosa-jose-manuel-arroyo-rosa-pagina-1.html

Termohigrometro: elemento de control visual tanto de temperatura como de presión de agua

Figura Nº 15: Termohigrómetro

Fuente: https://docplayer.es/10461573-Modulo-de-calefaccion-calefaccion-modulocalefaccion-jose-manuel-arroyo-rosa-jose-manuel-arroyo-rosa-pagina-1.html

Válvula de seguridad: Equipo de protección y seguridad de sobrepresiones en el sistema debido al aumento de volumen que experimenta el fluido en el circuito primario al elevarse su temperatura. Este mecanismo no puede estar antecedido de válvula de corte.

Figura Nº 16: Válvula de Seguridad

Fuente: https://docplayer.es/10461573-Modulo-de-calefaccion-calefaccion-modulocalefaccion-jose-manuel-arroyo-rosa-jose-manuel-arroyo-rosa-pagina-1.html

2.3.MATERIAL DE CAMBIO DE FASE (PCM)

Los materiales con cambio de fase (Phase Change Material-PCM) son materiales con un alto calor latente que, a la temperatura de cambio de fase (sólido ↔ líquido), son capaces de almacenar o liberar grandes cantidades de energía (hasta 100 veces más que si emplea el calor sensible). El interés de este tipo de materiales radica en que, durante el cambio de fase, la temperatura se mantiene constante mientras que el material va absorbiendo o liberando energía. La temperatura de cambio de fase es característica de cada PCM. Se trata de materiales inteligentes (smart materials) y pasivos, los cuales actúan de manera reversible en base a las condiciones térmicas del entorno. En general son materiales de bajo costo. Esta forma de almacenamiento posee grandes ventajas frente a las otras:

- Gran densidad de almacenamiento, muy superior a la de calor sensible y similar a la de las reacciones termoquímicas, por lo que se elimina la necesidad de construcción de grandes instalaciones.
- Reducción de las pérdidas energéticas derivadas de la variación de temperatura (necesaria en la forma de almacenamiento sensible).
- Posibilidad de selección de la temperatura de trabajo (proceso de carga y descarga energética del material) según las necesidades.
- El calor liberado/almacenado se realizará a temperatura constante.

2.3.1. Tipos de materiales de cambio de fase

Los materiales de cambio de fase líquido-sólido más comunes en el rango de temperaturas 20 °C y 80 °C son las ceras de parafina, sales hidratadas, mezclas eutécticas y ácidos grasos.

Figura N• 17: *Clasificación de las sustancias usadas para almacenamiento térmico.*

Fuente: (Oliver, Neila, & García-Santos, 2012b)

Figura N[•] 18: *Muestra la relación entre la temperatura y calor de fusión* para los PCM

Los ácidos grasos tienen, al igual que las ceras de parafina, un calor latente de aproximadamente 200 kJ/kg, pero son más caros.

2.3.2. PCM inorgánicos: sales hidratadas

Estos materiales sales hidratadas, como la sal de Glauber fueron muy estudiados en las primeras etapas de investigación de PCM, por su bajo costo y su capacidad de almacenamiento de grandes cantidades de calor por unidad de volumen, en comparación con las sustancias orgánicas.

2.3.3. PCM orgánicos: parafinas, ácidos grasos y mezclas orgánicas

Los PCM orgánicos poseen unas características que los hacen muy útiles en su aplicación en determinados elementos constructivos para almacenamiento de calor latente. Son más estables químicamente que las sustancias inorgánicas, funden y solidifican conveniente- mente, sin necesidad de agentes nucleadores (sustancia química para crear núcleos y formar cristales dentro del polímero) y no sufren subenfriamiento o

histéresis (cuando el PCM líquido se enfría por debajo del punto de solidificación. Esto ocurre por la formación de estructuras cristalinas durante un estado termodinámicamente metaestable).

Los PCM de Parafinas son esencialmente un alcalino sólido refinado. Muestran dos rangos de enfriamiento: un rango más estrecho para un breve periodo de tiempo, y un rango más extenso que ocurre durante un periodo más amplio. Ambos se interpretan como una transición de líquido a amorfo-sólida y amorfo-sólida a cristalino-sólida, respectivamente. Parte del calor latente total de fusión se almacena en la sustancia durante cada una de estas transiciones. Es importante destacar la gran diferencia entre el rango de temperatura de congelación medido experimentalmente y los datos disponibles.

Desde un punto de vista práctico de su aplicación en sistemas de calefacción y refrigeración pasiva, son más interesantes las parafinas comerciales y las ceras de parafina, debido a su temperatura de fusión.

Ventajas	Inconvenientes
Fáciles de usar	Calor latente y entalpía bajos
Estabilidad térmica y química	Baja conductividad térmica
No sufren sub enfriamiento	Amplio rango de fusión
No necesitan agente nucleador para	Cambios de volumen durante el cambio
solidificar	de fase
No corrosivos	Reacción potencial con hormigón
Reciclables y ecológicamente	
inocuos	Potencialmente combustibles

Tabla Nº 3: Características de los PCM orgánicos

Fuente:(Oliver et al., 2012b)

Las aplicaciones de las ceras de parafina han sido las más analizadas. Los resultados demostraban que la combinación de un sistema prototipo y enfriamiento

nocturno proporciona un índice de almacenamiento térmico apropiado para evitar el

sobrecalentamiento en condiciones habituales de verano.

	Temp. fusión	Q fusión	
РСМ	(°C)	(kJ/kg)	Fuente
Hexadecano	18	236	Darkwa K, Kim JS
Heptadecano	22	214	Darkwa K, Kim JS
Octadecano	28	244	Darkwa K, Kim JS
Parafina	20–60	200	Hawes, Feldman et al.
RT25	25	147	Weinlader H, et al 2005

Tabla N• 4: Valores típicos de energía almacenada de parafinas con temperatura de fusión próxima a la temperatura de confort

Fuente: (A, F, & Santos, 2010).

2.3.4. PCM de Ácidos grasos

Los ácidos grasos, derivados de productos animales y vegetales, están constituidos por una larga cadena alifática, más de 12 carbonos. Su cadena alquílica puede ser saturada o insaturada.

2.3.5. Aplicaciones

Las principales aplicaciones que tienen estos materiales vienen definidas por:

- Su alta capacidad de almacenaje de energía en forma de calor. Almacenar calor en un momento determinado para disponerlo más tarde. Esto permite obtener una gestión térmica más eficiente.
- Sus prestaciones como termorregulador para reducir las oscilaciones térmicas de un espacio, en torno a la temperatura de cambio de fase del PCM. Con esto se consigue reducir la dependencia con los sistemas de climatización convencionales y por tanto un ahorro energético.

- Almacenaje pasivo en edificios, para obtener temperaturas de confort constantes.
- Para enfriamiento (banco de hielo).
- Obtención de agua caliente sanitaria (ACS).
- Mantenimiento de temperaturas constantes en habitaciones con ordenadores y dispositivos eléctricos.
- Protección térmica de alimentos durante el transporte.
- Protección térmica de productos agrícolas (vino, leche, verduras, etc.).
- Protección térmica de dispositivos electrónicos, evitando sobrecalentamientos.
- Aplicaciones médicas: protección térmica para el transporte de sangre, mantenimiento de la temperatura de la mesa de operaciones, terapias de frío-calor.
- Refrigerante de máquinas.
- Obtención de confort térmico en vehículos.
- Amortiguación de los picos de temperaturas exotérmicos en reacciones químicas.

2.4.SISTEMAS DE CONTROL

El control automático es de gran importancia en el mundo de la ingeniería. El sistema de control es el conjunto de dispositivos que unen para realizar una tarea, donde el principio básico del control es la regulación automática o guía de dispositivos bajo condiciones de estados estacionarios y transitorios. (Perez Limachi & Canaza Zavala, 2009)

El uso efectivo de estos resultados depende de varios factores como lo son:

- La realimentación; el cual hace posible el establecimiento y mantenimiento de estabilidad en la operación del sistema
- La disminución de la sensibilidad de funcionamiento; para limitaciones de diseño, para variaciones de los parámetros de la planta y no linealidades de la planta.

• La adaptación del comportamiento del sistema a las características desconocidas o variables con el tiempo. (Perez Limachi & Canaza Zavala, 2009)

Sus estudios son muy diversos, pero es esencial en el control numérico de las maquinas herramientas, industrias de manufactura, industria aeroespacial, diseño en la industria automotriz además en los procesos industriales como el control de presión, temperatura, humedad, viscosidad, nivel de agua y flujo en la industria de proceso. (Canaza Zavala & Perez Limachi, 2009, p. 7)

A continuación, se puntualiza la terminología necesaria en la teoría de control automático basado en (Ogata, 1998, p. 2-3)

Variable controlada y variable manipulada: La variable controlada es la cantidad o condición que se mide y controla. La, variable manipulada es la cantidad o condición que el controlador modifica para afectar el valor de la variable controlada. Por lo común, la variable controlada es la salida (el resultado) del sistema.

Controlar significa medir el valor de la variable controlada del sistema y aplicar la variable manipulada al sistema para corregir o limitar una desviación del valor medido a partir de un valor deseado. En el estudio de la ingeniería de control, necesitamos definir términos adicionales que resultan necesarios para describir los sistemas de control.

Plantas. Una planta puede ser una parte de un equipo, tal vez un conjunto de las partes de una máquina que funcionan juntas, el propósito de la cual es ejecutar una operación particular. llamaremos planta a cualquier objeto físico que se va a controlar (tal como un dispositivo mecánico, un horno de calefacción, un reactor químico o una nave espacial).

Procesos. un proceso es una operación o un desarrollo natural progresivamente continuo, marcado por una serie de cambios graduales que se suceden uno al otro en una forma relativamente fija y que conducen a un resultado o propósito determinados; o una operación artificial o voluntaria progresiva que consiste en una serie de acciones o

movimientos controlados, sistemáticamente dirigidos hacia un resultado o propósito determinados.

Sistemas. Un sistema es una combinación de componentes que actúan juntos y realizan un objetivo determinado. Un sistema no necesariamente es físico. El concepto de sistema se aplica a fenómenos abstractos y dinámicos, tales como los que se encuentran en la economía. Por tanto, la palabra sistema debe interpretarse como una implicación de sistemas físicos, biológicos, económicos y similares.

Perturbaciones. Una perturbación es una señal que tiende a afectar negativamente el valor de la salida de un sistema. Si la perturbación se genera dentro del sistema se denomina interna, en tanto que una perturbación externa se produce fuera del sistema y es una entrada.

2.4.1. Tipos de sistema de control

Los sistemas de control de acuerdo a su principio de funcionamiento pueden emplear o no información que existe en el sistema, y las maniobras de supervisión. Se cuenta con dos tipos de sistema de control. (Canaza Zavala & Perez Limachi, 2009, p. 8)

- Sistemas en lazo abierto
- Sistemas en lazo cerrado o realimentado.

2.4.2. Sistemas en lazo abierto

Con un sistema de lazo abierto la entrada se elige en base en la experiencia que se tiene con dichos sistemas para producir el valor de salida, sin embargo, no se ve modificada por el cambio en las condiciones externas. Un esquema de este tipo se presenta en la figura 19. (W. Bolton 2a edición, p. 4)

Figura Nº 19: Sistema de Lazo Abierto

Elaborado por el equipo de trabajo

2.4.3. Sistema en lazo cerrado o realimentados.

Un sistema de control de lazo cerrado tiene una señal de realimentación hacia la entrada desde la salida, la cual se utiliza para modificar la entrada de modo que la salida se conserve a pesar de los cambios en las condiciones de operación. Figura 20 (W. Bolton 2ª edición, p. 4).

Figura Nº 20: Función de transferencia de un sistema en lazo cerrado

Fuente: (Canaza Zavala & Perez Limachi, 2009, p.9)

La función de transferencia se define como el cociente de la salida en estado estable entre la entrada en estado estable para un sistema o subsistema

funcion de transferencia $G = \frac{salida \ en \ estado \ etable}{entrada \ en \ estado \ estable}$

funcion de transferencia =
$$\frac{\theta_0}{\theta_i} = \frac{G}{1 + GH}$$

La ecuación anterior se aplica a realimentación negativa. Con realimentación positiva el denominador de la ecuación anterior se convierte en (1-GH). (W. Bolton 2^a edición, p. 22)

2.4.4. Control proporcional-integral-derivativo (PID)

Este controlador es con frecuencia es el más utilizado y uno de los que brindan mayor precisión dentro de la regulación automática. El controlador recibe su nombre ya que es la composición de una acción de control proporcional, una acción de control integral y una acción de control derivativa por lo que se nombra acción de control proporcional–integral – derivativa o PID. El algoritmo del cálculo del control PID requiere de tres parámetros distintos: el proporcional, el integral y el derivativo. El valor proporcional determina la reacción del error actual. El integral genera una corrección proporcional a la integral del error, esto asegura que, empleando un esfuerzo de control necesario, el error que se registra se reduce a cero. El derivativo determina la reacción del tiempo en el que el error se produce. El PID tiene las ventajas de cada una de las tres acciones de control individuales. (Pantoja Laces, 2013).

$$u(t) = k_p e(t) + \frac{k_p}{\tau_I} \int_0^t e(t) dt + k_p \tau_d \frac{de(t)}{dt}$$

Representado con la transformada de Laplace.

$$u(t) = k_p \left\{ 1 + \frac{s}{\tau_I s} + \tau_d S \right\} E(S)$$

Es necesario decir que los valores de k_p , τd , τl representan los mismos valores que anteriormente se mencionaron. Los controladores PID se confían para procesos con constante de tiempo larga en los que no hay ruido del exterior. Además, ellos son de gran utilidad cuando se regulan procesos industriales como en el control de presión, flujo, temperatura, posición, velocidad y nivel.

2.4.5. Control de sistemas no lineales

2.4.5.1. Modelos matemáticos

Un modelo matemático de un sistema real constituye una representación abstracta realizada en términos de lenguaje y simbología matemática (ecuaciones algebraicas, ecuaciones diferenciales, en diferencias, etc.) la cual resalta propiedades importantes del sistema en estudio.

Los sistemas dinámicos que estudiaremos describen procesos reales de naturaleza no lineal. La herramienta matemática para su descripción está constituida por sistemas de ecuaciones diferenciales ordinarias no lineales a parámetros agrupados.

2.4.5.2. Representación en variables de estado y puntos de equilibrio

Representaremos un sistema no lineal mediante el diagrama de bloques mostrado en la siguiente figura Donde $x^{\cdot} = dx/dt$ representa la tasa de variación de la variable x respecto al tiempo.

Fuente: (Sira Ramirez, 2004, p. 3)

En base a la figura 21 se considera el siguiente conjunto de ecuaciones que representan un sistema no lineal con una sola entrada y una salida:

$$\dot{x}(t) = f(x(t), u(t)), x(t_0) = x_0$$

 $y(t) = h(x(t))$

donde x(t) es una función vectorial del tiempo la cual toma valores en el espacio de n dimensiones y representa el estado del sistema, u(t) es una función escalar del tiempo que representa la entrada del sistema y toma valores en la recta real. La variable y(t) es también una función escalar del tiempo y representa la salida del sistema. Las funciones $f(\cdot)$ y $h(\cdot)$ son funciones continuas, diferenciables al menos una vez con respecto a cada uno de sus argumentos.

Los **puntos** o **trayectorias de equilibrio** de un sistema no lineal se obtienen al resolver la ecuación $\dot{x} = 0$, en la expresión anterior. Cuando la tasa de variación de x respecto al tiempo es cero, es decir, cuando dx/dt = 0, tenemos:

$$f(X(U), U) = 0$$

donde hemos reemplazado el estado x(t) por x(t) = X = X(U).

2.4.5.3.linealización de sistemas no lineales

Específicamente, si la dinámica de la planta está dada por

$$\dot{x}_i(t) = f_i(x(t)), u(t), t); \quad x \in \mathbb{R}^n, \quad x \in \mathbb{R}^m$$

Si se quiere linealizar el sistema en la ecuación anterior en algún punto nominal dado como (u_n, x_n). se tiene el sistema expresado como $\dot{x}i = fi(x, u, t)$ Suponiendo que inicialmente el sistema está en el punto nominal y ante ciertas perturbaciones pequeñas estas variables se expresan como:

$$x(t) = x^{0}(t) + \delta x(t)$$
$$u(t) = u^{0}(t) + \delta x(t)$$

EL sistema linealizado se expresará:

$$\frac{d}{dt}\delta \mathbf{x} = \begin{bmatrix} \frac{\partial \mathbf{f}_1}{\partial x} |_0 \\ \frac{\partial \mathbf{f}_2}{\partial x} |_0 \\ \frac{\partial \mathbf{f}_3}{\partial x} |_0 \\ \vdots \\ \frac{\partial \mathbf{f}_n}{\partial x} |_0 \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \frac{\partial \mathbf{f}_1}{\partial u} |_0 \\ \frac{\partial \mathbf{f}_2}{\partial u} |_0 \\ \frac{\partial \mathbf{f}_3}{\partial u} |_0 \\ \vdots \\ \frac{\partial \mathbf{f}_n}{\partial u} |_0 \end{bmatrix} \delta \mathbf{u} = \mathbf{A}(t)\delta \mathbf{x} + \mathbf{B}(t)\delta \mathbf{u}$$

Las matrices A y B serán por lo tanto matrices de dimensiones A \in R n×n , y B \in R n×m. Expandiendo los términos de las ecuaciones anteriores se tiene:

$$(t) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial x_1} |_0 & \frac{\partial f_1}{\partial x_2} |_0 & \frac{\partial f_1}{\partial x_n} |_0 \\ \frac{\partial f_2}{\partial x_1} |_0 & \frac{\partial f_2}{\partial x_2} |_0 & \dots & \frac{\partial f_2}{\partial x_n} |_0 \\ \frac{\partial f_3}{\partial x_1} |_0 & \frac{\partial f_3}{\partial x_2} |_0 & \dots & \frac{\partial f_3}{\partial x_n} |_0 \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_n}{\partial x_1} |_0 & \frac{\partial f_n}{\partial x_2} |_0 & \dots & \frac{\partial f_n}{\partial x_n} |_0 \end{bmatrix}, \qquad B(t) \equiv \begin{bmatrix} \frac{\partial f_1}{\partial u_1} |_0 & \frac{\partial f_1}{\partial u_2} |_0 & \dots & \frac{\partial f_1}{\partial u_m} |_0 \\ \frac{\partial f_2}{\partial u_1} |_0 & \frac{\partial f_2}{\partial u_2} |_0 & \dots & \frac{\partial f_2}{\partial u_m} |_0 \\ \frac{\partial f_3}{\partial u_1} |_0 & \frac{\partial f_3}{\partial u_2} |_0 & \dots & \frac{\partial f_3}{\partial u_m} |_0 \\ \vdots & \vdots & \dots & \vdots \\ \frac{\partial f_n}{\partial u_1} |_0 & \frac{\partial f_n}{\partial u_2} |_0 & \dots & \frac{\partial f_n}{\partial u_m} |_0 \end{bmatrix}$$

Si la ecuacioón de salida y = g(x,u) es no-lineal tambien $y(t) = y 0 + \delta y$, entonces

$$\frac{d}{dt}\delta \mathbf{x} = \begin{bmatrix} \frac{\partial g_1}{\partial x} |_0 \\ \frac{\partial g_2}{\partial x} |_0 \\ \frac{\partial g_3}{\partial x} |_0 \\ \vdots \\ \frac{\partial g_n}{\partial x} |_0 \end{bmatrix} \delta \mathbf{x} + \begin{bmatrix} \frac{\partial g_1}{\partial u} |_0 \\ \frac{\partial g_2}{\partial u} |_0 \\ \frac{\partial g_3}{\partial u} |_0 \\ \vdots \\ \frac{\partial g_n}{\partial u} |_0 \end{bmatrix} \delta \mathbf{u} = C(t)\delta \mathbf{x} + D(t)\delta \mathbf{u}$$

La ecuación final debe expresarse en términos de variables de estado tal como se muestra:

ECUACION DE ESTADOS =
$$\begin{cases} \dot{x} = Ax + Bu \\ Y = Cx + Du \end{cases}$$

CAPITULO III

METODOLOGÍA DE INVESTICACIÓN

3.1. METODOLOGÍA:

La presente investigación se ha realizado por el método de Simulación continua por software computacional para así determinar los distintos parámetros de funcionamiento del diseño planteado para luego analizarlos en función de nuestro problema planteado. Para ello se ha utilizado la Herramienta SIMULINK del software computacional Matlab.

Se desarrolló los modelos matemáticos de todos los sistemas involucrados considerando diversos factores para la operación, en donde las variables independientes se relacionan con las variables dependientes, los cuales nos han permitido realizar un análisis del tipo multivariado, se han usado ecuaciones diferenciales que reflejan la variación en el tiempo de cada variable de estado. El análisis, la interpretación y validación de los datos es a través del comportamiento de las curvas de parámetros en función del tiempo, los cuales son arrojados por el Software de simulación SIMULINK. Se han realizado dos diseños de Acumuladores a fin de comparar parámetros operacionales y sacar conclusiones en base a nuestro problema planteado.

Las condiciones de ubicación geográfica han sido nuestro punto de partida para nuestro diseño y también determinante en el análisis de los datos obtenidos en la fase de simulación.

3.2.OPERACIONALIDAD DE VARIABLES

De acuerdo con el problema planteado, se definen operacionalmente las siguientes variables:

- **Tiempo de Autonomía:** Esta variable indica el tiempo en el cual el acumulador logra transferir energía al sistema de calefacción manteniendo la temperatura de confort sin recibir aporte de energía solar o eléctrica, este tiempo es igual al tiempo que tarda el volumen útil del PCM en solidificarse
- **Disponibilidad de autonomía:** Esta variable indica la disponibilidad en estado líquido del PCM en estado líquido a fin de aprovechar su uso en horas de la noche.
- **Temperatura de Confort:** Esta variable indica la temperatura a la cual debe operar el sistema de calefacción dentro del recinto.
- Radio del volumen útil del PCM: Es el radio del volumen del PCM alrededor del serpentín del fluido calefactor. El tiempo de solidificación depende de esta variable.
- Temperatura critica del fluido caloportador: Esta variable representa la temperatura entregada por los colectores solares y su variación está relacionada con la radiación solar. De esta temperatura depende si el acumulador requiere energía auxiliar o regulación de parámetros a fin de no afectar la temperatura de confort.
- Flujo del fluido calefactor: De esta variable dependerán la temperatura alcanzada por el PCM, la temperatura de ingreso a los radiadores, temperatura de salida de los radiadores y temperatura de confort.
- **Potencia de resistencia eléctrica:** Es la potencia requerida para compensar la variación de la energía térmico solar toda vez que la temperatura del fluido calefactor se encuentre por debajo de su temperatura crítica.

3.3.DETERMINACIÓN DE CARGAS DEL SISTEMA DE CALEFACCIÓN

• Condiciones del ambiente

En esta investigación se ha tomado como recinto a calentar el ambiente del laboratorio de control y automatización de la escuela profesional de Ingeniería Mecánica Eléctrica de la UNA-PUNO. A continuación, se indican los parámetros característicos de la ubicación para el diseño.

- Ubicación: se encuentra en la ciudad de Puno en el departamento del mismo nombre.
- Altitud: 3810 msnm
- Zona bioclimática: Nro 5, Alto Andino (Reglamento Nacional de Edificaciones, 2014)
- Presión atmosférica media anual: 64.31 Kpa, (Senamhi, 2020)
- **Temperatura media anual**: 15.72°C, (Senamhi, 2020)
- Temperatura interior del ambiente: 15°C, se ha tomado este valor según tesis (Mercado Calapuja & Machaca Cutipa, 2017) por tratarse de una misma ubicación.
- Tipo de local: Aula
- Temperatura de Confort para el diseño: 20°C. (Reglamento Nacional de Edificaciones, 2014)
- Numero de renovaciones de aire por hora: 4-5 veces (Ministerio de vivienda construcción y saneamiento., 2006)

• Características de los componentes del recinto

Figura Nº 22: Dimensiones del Laboratorio de Control Automatización UNA Puno

Elaborado por el equipo de trabajo

Área total del ambiente: 223.72m²

Volumen del ambiente: 173.4 m³

Altura del ambiente: 2.5m

• Características de los muros:

Para efectos de cálculo, los muros se han seccionado e identificado de la siguiente manera: MURO 1A: Muro lado oeste y a la intemperie, pared completa de 7.8m de largo por 2.5m de altura.

MURO 1B: Muro lado oeste (debajo de ventanas) y a la intemperie, no se considera las áreas de las ventanas y para efectos de cálculo se suman las áreas de las dos paredes, quedando así un muro de 2.4m de largo por 2m de alto.

MURO 2: Muro lado norte y a la intemperie, pared completa de 6.8m de largo por 2.5m de altura.

MURO 3A: Muro lado este (debajo de ventana) y a la intemperie, muro de 4.75m de largo por 1.1m de alto.

MURO 3B: Muro lado este y la intemperie, pared completa de 5.45m de largo por 2.5m de alto.

MURO 4: Muro lado sur, no está a la intemperie ya que es un muro de división con otro ambiente, pared completa de 5.6m de largo por 2.5m de alto.

Los muros están conformados por ladrillos tipo King Kong con revestimiento de estuco mortero tanto interior como exteriormente, el espesor total de los muros es 18 cm. La conductividad térmica de los materiales es según la normativa DS006-2014 EM.110-Reglamento - Confort térmico y lumínico. Ver tabla nro. 05.

• Características de los pisos y techo:

Piso y techo: loza aligerada de 18.5 cm de espesor con ladrillo con huecos, vigueta de 15 cm y 5 cm de relleno de concreto y estuco de 1.5cm, la conductividad térmica de los materiales es según la normativa DS006-2014 EM.110-Reglamento - Confort térmico y lumínico. Ver tabla nro. 05.

• Características de las Puertas

Cantidad: 01 Altura:2m Ancho:1.2m Material de Puerta: Madera Orientación: Sur

Nro. de	Componentes de la puerta	espesor[m]	Coeficiente de
capas			transmisión $\left[\frac{W}{m2.K}\right]$
01	Madera maciza	0.05	3.5
Nro. de	Componentes del piso y techo	espesor[m]	Conductividad
capas			Térmica $\left[\frac{W}{m.K}\right]$
01	Relleno de concreto armado	0.05	1.63
02	Ladrillo hueco para techo	0.12	0.35
	Vigueta de concreto armado	0.12	1.63
03	Estuco (cemento y arena)	0.015	0.87
Nro. de	Componentes del muro	espesor[m]	Conductividad
capas			Térmica $\left[\frac{W}{m.K}\right]$
01	Estuco (cemento y arena)	0.015	0.47
02	Ladrillo tipo King Kong	0.15	0.87
03	Estuco (cemento y arena)	0.015	0.47
Nro. de	Componentes de las ventanas	espesor[m]	Conductividad
capas			Térmica $\left[\frac{W}{m.K}\right]$
01	Vidrio simple	0.006	1.2

Tabla N [•]	5:	cálculo	del	coeficiente	de	transmitancia	de la	os muros
	•••	000000000		000,0000000				///////////////////////////////////////

El coeficiente de transmisión viene determinado en la tabla nro. 08 del DS006-2014

EM.110-Reglamento - Confort térmico y lumínico. Ver tabla nro. 05.

• Características de las ventanas:

Ventana Oeste:

Cantidad: 02 unidades

Dimensiones: 1.2m de largo por 0.5 m de alto

Orientación: Oeste

Ventana Este:

Cantidad: 01 unidad, Ver tabla nro. 05.

Dimensiones: 4.75m de largo por 1.4 de alto

Orientación: Este

• Balance de energía en el ambiente:

Figura Nº 23: Esquema balance energía de laboratorio como sistema cerrado.

Elaborado por el equipo de trabajo

El incremento de la temperatura influye en el incremento de la entalpia en el Interior del ambiente, entonces, considerando al ambiente como un sistema cerrado se tiene la siguiente ecuación.

$$m_{a} \frac{\Delta H_{ambiente}}{\Delta t} = Q_{entra} - Q_{sale}$$
(1)

Flujo de la energía térmica

$$m_{a} \frac{\Delta H_{ambiente}}{\Delta t} = Q_{rad} + Q_{pers} - Q_{ren} - Q_{tran}$$
(2)

Donde:

Q_{tran}: Calor perdido por transmisión

Q_{rad}: Calor generado por los radiadores

 Q_{per} : Calor entregado por las personas

Q_{ren}: Calor perdido por renovación de aie

3.3.1. Cálculo del calor perdido por transmisión en el recinto.

• Cálculo de la transmitancia de los componentes:

La transmitancia térmica de los componentes, de acuerdo al DS006-2014 EM.110-Reglamento - Confort térmico y lumínico. Se calcula de la siguiente forma:

$$U = \frac{1}{\left(\frac{e_{\text{mat.01}}}{K_{\text{mat.01}}} + \frac{e_{\text{mat.02}}}{K_{\text{mat.02}}} + \frac{e_{\text{mat.03}}}{K_{\text{mat.03}}} + R_{\text{ci}} + R_{\text{ce}}\right)}$$
(3)

Donde:

emat : Espesor del material

kmat: Conductividad térmica del material

Rci: Resistencia a la convección interior

$$R_{ci,muros\,tipo\,1A} = 0.06 \frac{W}{m^2. K}$$
$$R_{ci,pisos\,tipo\,2B\,y\,3B} = 0.09 \frac{W}{m^2. K}$$

Rce: Resistencia a la convección exterior

$$\begin{split} R_{ce,muros\ tipo\ 1A} &= 0.06 \frac{W}{m^2.\ K} \\ R_{ce,pisos\ tipo\ 2B\ y\ 3B} &= 0.05 \frac{W}{m^2.\ K} \end{split}$$

En base a la ecuación (3) se han calculado la transmitancia de los muros y pisos, en la siguiente tabla se muestran sus resultados:

Item	Componen te	Tipo	Resistenci a Térmica $\frac{e_{mat}}{K_{mat}} \left[\frac{\mathbf{m}^2 \cdot \mathbf{K}}{\mathbf{W}} \right]$	Resistencia a la convección Interior Rci $\left[\frac{m^2.K}{W}\right]$	Resistencia a la convección Exterior Rce $\left[\frac{m^2.K}{W}\right]$	Coeficiente de transmisión $U\left[\frac{W}{m^2.K}\right]$
1	Muro 1A	1A	0.35	0.06	0.11	1.9097
2	Muro 1B	1A	0.35	0.06	0.11	1.9097
3	Muro 2	1A	0.35	0.06	0.11	1.9097
4	Muro 3A	1A	0.35	0.06	0.11	1.9097
5	Muro 3B	1A	0.35	0.06	0.11	1.9097
6	Muro 4	1A	0.35	0.06	0.11	2.1113

Tabla	N^{\bullet}	6:	Cálculo	del	coeficiente	de	transmitancia	de	los	muros
					· · · J · · · · · · ·					

Elaborado por el equipo de trabajo

Tabla Nº 7: cálculo del coeficiente de transmitancia del piso y techo

Item	Componen te	Tipo	Resistenci a Térmica $\frac{e_{mat}}{K_{mat}} \left[\frac{\mathbf{m}^2 \cdot \mathbf{K}}{\mathbf{W}} \right]$	Resistencia a la convección Interior Rci $\left[\frac{m^2.K}{W}\right]$	Resistencia a la convección Exterior Rce $\left[\frac{m^2.K}{W}\right]$	Coeficiente de transmisión $U\left[\frac{W}{m^2.K}\right]$
1	Techo	1A	0.35	0.06	0.11	1.9097
2	Piso	1A	0.35	0.06	0.11	1.9097

(Elaborado por el equipo de trabajo)

Tabla Nº 8: Cálculo del coeficiente de transmitancia de ventanas y puerta

Item	Compone nte	Tipo	Resistenci a Térmica $\frac{e_{mat}}{K_{mat}} \left[\frac{\mathbf{m}^2 \cdot \mathbf{K}}{\mathbf{W}} \right]$	Resistencia a la convección Interior Rci $\left[\frac{m^2.K}{w}\right]$	Resistencia a la convección Interior Rce $\left[\frac{m^2.K}{W}\right]$	Coeficiente de transmisión $U\left[\frac{W}{m^2.K}\right]$
1	Puerta	1A	-	-	-	3.5
2	Ventana en puerta	1A	0.01	0.06	0.11	5.7143
3	Ventanas oeste	1A	0.01	0.06	0.11	5.7143
4	Ventana este	1A	0.01	0.06	0.11	5.7143

Elaborado por el equipo de trabajo

• Cálculo del calor transmitido:

La transferencia de calor viene definida por la ley de enfriamiento de newton:

$$Q = UA\Delta(T) \tag{4}$$

El Flujo de calor total transmitido al exterior viene a ser la suma del flujo de energía de todos los componentes del cerramiento del ambiente.

 $Q_{tran} = \left[U_{m1}A_{t,m1} + U_{m2}A_{t,m2} + U_{tech}A_{tech} + U_{pis}A_{pis} + U_{puer}A_{puer} + U_{ven}A_{ven} \right] (T_{conf} - T_a) \quad (5)$

• Cálculo de la carga total por transmisión

Para determinar la carga térmica total de calefacción se ha considerado factores o suplementos de corrección al calor transmitido por los componentes, los cuales son:

Suplemento So: dependerá del Modo de servicio de calefacción y la permeabilidad térmica media.

El modo de servicio consiste en el tiempo que el ambiente este está sin servicio (horas de interrupción).

Para efectos de esta investigación de ha considerado 12 a 16 horas de interrupción diaria. La permeabilidad térmica media se calcula con la siguiente formula:

$$\text{Per}_{\text{media}} = \frac{\sum U_i A_i \Delta T_i}{\sum A_i \Delta T_i}$$

Reemplazando valores se obtiene:

$$Per_{media} = 2.3$$

Recurriendo a la tabla 6 del Anexo 01 según (Parra Muñoz, 2014), Se obtuvo So=0.15.

Suplemento S1: Este suplemento depende de la orientación de las paredes respecto a los puntos cardinales del recinto a calefaccionar, estas se considerarán según la tabla 7 del anexo 01. Se ha preparado la siguiente tabla donde se muestran los resultados del flujo de calor transmitido por los componentes y la carga total.

Ítem	Componen te	Área	Calor transmitid o [W]	So(Interrupci ón mayor a 10 Horas)	Orienta ción	S1	Carga térmica [W]
1	Muro 1A	19.5	186.1996	0.15	OESTE	0	214.129513
2	Muro 1B	4.8	45.8337	0.15	OESTE	0	52.7088033
3	Muro 2	17	162.3278	0.15	NORTE	-0.05	178.56062
4	Muro 3A	5.225	49.8919	0.15	ESTE	0	57.3757286
5	Muro 3B	13.625	130.1010	0.15	ESTE	0	149.616134
6	Muro 4	14	147.7942	0.15	SUR	0	169.963288
7	Techo	69.36	821.2342	0.15	-	0	944.419337 9
8	Piso	69.36	750.1765	0.15	-	0	862.702940 5
9	Puerta	2.4	42.0000	0.15	SUR	0.05	50.4
10	Ventana en puerta	0.6	17.1429	0.15	SUR	0.05	20.5714285 7
11	Ventanas este	6.65	190.0000	0.15	ESTE	0	218.5
12	Ventana	1.2	34.2857	0.15	OESTE	0	39.4285714
	oeste	momi					3
		TOTA	2,576.9875			TOT	2,958.37636
		L				AL	0

T-11- NTO	0	11 1	1				
1 adia N°	9 :	caicuio	ae	carga	termica	por	transmision

Elaborado por el equipo de trabajo

3.3.2. Cálculo del calor perdido por infiltraciones de aire exterior

La pérdida de calor por infiltraciones de aire se considera cuando hay un flujo de aire frío que ingresa al interior y un flujo de aire caliente que sale al exterior, estos flujos se dan por las rendijas existentes en puertas y ventanas o por el número de renovaciones de aire que hay en el recinto, este calor se calcula con la siguiente formula:

$$Q_{ren} = C_p M_a (T_{conf} - T_a)$$
 (6)

Para el cálculo del flujo de masa de aire se toma el que resulte mayor entre el flujo de aire por infiltraciones o por renovación.

El local no tiene presencia de rendijas considerables en la Puerta o ventanas, tampoco un sistema de extracción aire, por lo que se ha visto por conveniente calcularlo por el número de renovaciones que se debe cumplir según el reglamento nacional de edificaciones, en el anexo A.2.2 del reglamento en mención indica que el NRPH para un aula de centro educativo será de 4 a 5 veces.

Con estas consideraciones el flujo de la masa de aire viene determinado por:

$$M_{a} = \frac{N^{\circ}RPH(m_{a})}{3600}$$
(7)

En seguida, se calculó la masa de aire del recinto, para ello se determinó los parámetros del aire en el recinto:

Para hallar los parámetros, se ha considerado la temperatura promedio entre la temperatura de confort y la temperatura exitente:

$$Tm = \frac{Ta + Tconfort}{2}$$
$$Tm = \frac{15 + 20}{2} = 17.5^{\circ}C$$

Con esta temperatura se buscó en las tablas de propiedades del aire lo siguientes datos:

Capacidad calorífica a presión constante: $C_{p,a} = 1005 \frac{Kj}{Kg-K}$

Capacidad calorífica a volumen constante: $C_{v.a} = 718 \frac{Kj}{Kg-K}$

Masa específica: $\overline{M} = 28.97 \frac{Kg}{Kmol}$

Constante universal de los gases: $R = 8.31447 \frac{Kpa-m^3}{Kmol-K}$

La masa del aire se calcula según la formula siguiente

$$m_a = \frac{PV\overline{\overline{M}}}{RT}$$
(8)

Reemplazando valores en la ecuación nro. 01 se tiene:

$m_a = 133.7504 \text{ Kg}$

Finalmente, al reemplazar este valor en la ecuación (7) se obtuvo el flujo de masa de aire y el calor perdido por renovación de aire.

$$M_a = 0.1486 \frac{Kg}{s}$$

Reemplazando en la ecuación (6) se obtiene el calor por renovación:

$$Q_{ren} = 746.773W$$

3.3.3. Cálculo del calor aportado por ocupación de las personas

Las cargas por ocupación por personas están determinadas por la siguiente fórmula:

$$Q_{pers} = n_{pers} (C_{s,pers} + C_{l,pers}) C_{simultaneidad}$$
(9)

Donde:

n_{pers} : Número de personas en el edificio.

C_{s,pers}: Carga sensible que ocasiona cada persona [W/Persona]

Cl.pers: Carga latente que ocasiona cada persona [W/Persona]

C_{simultaneidad}: Indica el número de personas que se encuentran al mismo tiempo en el ambiente. Para esta investigación se ha considerado un promedio de 10 personas en total que podrán ocupar el ambiente con un factor de simultaneidad del 50%.

Para determinar los calores sensible y latente de las personas se obtuvo de la siguiente tabla:

Grado de actividad	Temperatura seca del local					
	26°C W		24°C W		21°C W	
	Sentados, en reposo	61	41	67	35	75
Sentados, trabajo muy ligero	63	53	70	46	79	37
Empleado de oficina	63	68	71	60	82	49
De pie, marcha lenta	63	68	71	60	82	49
Sentado, de pie	64	82	74	72	85	61
Sentado, restaurante	71	90	82	79	94	67
Trabajo ligero en banco de taller	72	147	86	133	107	113
Baile o danza	80	168	95	153	117	131
Marcha, 5 km/h	96	196	111	181	135	158
Trabajo penoso	142	282	153	270	176	247

Fuente web https://www.ingenierosindustriales.com/calculo-de-cargas-termicas-declimatizacion/

Reemplazando valores en la ecuación nro. (9)

 $Q_{pers} = 10(79 + 37)0.5 = 580W$

3.3.4. Cálculo de la carga de calefacción

Reemplazando valores en la ecuación (2) y a la vez considerando el estado estacionario

de la mima, tenemos:

$$m_{a}\frac{\Delta H_{ambiente}}{\Delta t} = 0 = Q_{rad} + Q_{pers} - Q_{ren} - Q_{tran}$$

$$Q_{rad} = Q_{ren} + Q_{tran} - Q_{pers}$$
$$Q_{rad} = 746.773W + 2,958.376W - 580W$$
$$Q_{rad} = 746.773W + 2,958.376W - 580W$$

$$Q_{rad} = 3,125.149W$$

Finalmente, se consideró un factor de seguridad del 10%, con lo que la carga total de calefacción tiene el siguiente valor:

$$Q_{rad} = 3,437.6649W$$

3.4. DIMENSIONAMIENTO DE RADIADORES

3.4.1. Selección del tipo de radiador:

Se seleccionaron radiadores de aluminio debido a que ofrece mejores ventajas respecto de los otros tipos de radiadores, su forma de calentar es más eficiente y homogénea, calienta más rápido el ambiente, otra característica importante es que manejan saltos térmicos de hasta 40°C.

- Radiador de Aluminio-Dubal, ver ficha técnica en anexo 02
- Modelo: 70
- Capacidad nominal: $Q_{nom} = 102.7W$
- Salto térmico nominal: Δ Tnom = 40°C
- Número de exponente de la curva característica: n = 1.34

3.4.2. Cálculo de la cantidad de radiadores.

Se determinó primero el número de elementos requeridos:

$$N^{\circ} \text{ de elementos} = \frac{\text{Potencia requerida}}{\text{Potencia por elemento}}$$
(10)

La potencia del elemento debe ser corregida según el salto térmico real al cual va a operar, para ello se tiene la siguiente expresión:

$$Q_{elemento} = Q_{nom} \left[\frac{\Delta T}{\Delta T_{nom}} \right]^n$$
(11)

$$\Delta T = \frac{T_e + T_s}{2} - T_a \tag{12}$$

Se asumió que las temperaturas de ingreso y salida del radiador son 54°C y 46°C respectivamente.

Figura Nº 24: Temperatura de entrada y salida del radiador.

Elaborado por el equipo de trabajo

Reemplazando valores en las ecuaciones (11) y (12) se tiene:

 $Q_{elemento} = 69.847 W$

Reemplazando valores en la ecuación nro (10) se obtiene la cantidad de elementos requeridos:

N° de elementos =
$$\frac{3,437.6649W}{69.847 W} = 49.21$$

 N° de elementos = 50

Se ha considerado 5 radiadores de 10 elementos cada uno.

Finalmente, la carga total de los radiadores fue:

 $Q_{rad} = (N^{\circ} de elementos)(Potencia de cada Elemento)$

 $Q_{rad} = 3492.38W$

3.5.DIMENSIONAMIENTO DEL ACUMULADOR

Según el planteamiento del problema, se ha desarrollado dos diseños de acumuladores, el primero se trata de un acumulador con agua como fluido acumulador de energía, el segundo es de un acumulador con PCM RT60 como material de cambio de fase.

El tanque es tipo intercambiador con doble serpentín, uno para captar la energía del fluido caloportador y otro para entregar energía al fluido de calefacción.

Se evaluó primero las características de ambos diseños en base a los parámetros térmicos y finalmente se seleccionó el tanque más crítico.

3.5.1. Criterios para el dimensionamiento del tanque acumulador:

- La estratificación del fluido dentro del tanque es un criterio a tomar en cuenta para el dimensionamiento de tanques verticales, para ello se debe considerar que la relación Altura/diámetro sea mayor a 2.esto está considerado en la normativa europea UNE-EN 12977-3. Diseño de sistemas solares térmicos y sus componentes.
- Por tratarse de un tanque pequeño, consideraremos un diámetro estándar de 18" (457.20mm) que aceptado por la norma ASME Sección VIII división 3.
- El volumen del tanque será de 150lit de agua, el cual es equivalente a un acumulador para una vivienda familiar de 04 personas, cada persona consume 40lit de agua caliente sanitaria, se ha tomado esta referencia.
- Volumen del agua en el tanque $V_{agua} = 0.0457 * 0.95 = 0.155 \text{m}^3$

3.5.2. Diseño térmico del acumulador con agua

3.5.2.1. Cálculo del área de transferencia del serpentín del fluido caloportador

El área del serpentín según (Patricio et al., 2007) se determinó según la siguiente expresión:

$$A_{serp} = \left[\frac{q_{agua}}{\theta} + Q_{rad} + U_{tq}A_{e,tq}\left(\frac{T_f + T_{in}}{2} - T_a\right)\right] \left[\frac{1}{U_{serp}\left[T_{fe} - \frac{T_f + T_{in}}{2}\right]}\right] (F)$$
(13)

Donde:

A_{serp}: Área del serpentín [m²]

 $A_{e,tq}$: Área exterior del tanque $[m^2]$

q_{agua}: Cambio de energía interna del agua [Kj]

θ: Duración del periodo de calentamiento [s]

T_f: Temperatura final de calentamiento[K]

T_{in}: Temperatura inicial de calentamiento[K]

T_{fe}: Temperatura de entrada del fluido caloportador[K]

T_a: Temperatura del medio ambiente[K]

F: Factor de seguridad

 U_{serp} : Coeficiente de transmisión del serpentín $\left[\frac{W}{m^2 K}\right]$

 U_{tq} : Coeficiente de transmisión del Tanque $\left[\frac{W}{m^2 K}\right]$

Qrad: Potencia absorbido por los radiadores[KW]

Datos

Se ha considerado una temperatura de operación en el interior del tanque de 80°C

 $T_{\rm f} = 80 + 273.15 = 353.15 \rm K$

 $T_{in} = 15 + 273.15 = 288.15K$

$T_a = 15 + 273.15 = 288.15K$

Factor de seguridad=1.1

Duración del periodo de calentamiento = 3600s

 $Q_{rad} = 3,492.39W$

La energía interna del agua se determinó según la siguiente ecuación:

$$q_{agua} = \rho_{agua} V_{agua} C_p (T_f - T_{in})$$
(14)

Los parámetros del agua se hallaron a 45° que es cercano a la temperatura promedio del agua en operación.

Datos:

$$\rho_{agua} = 990.17 \frac{Kg}{m^3}$$
$$C_p = 4.18 \frac{Kj}{Kg - K}$$

Reemplazando valores en la ecuación (14):

$$q_{agua} = 40,354.378 \text{KJ}$$

• Cálculo del calor perdido al exterior:

La siguiente ecuación expresa el calor perdido al exterior.

$$Q_{\text{perdido}} = U_{\text{tq}} A_{\text{e,tq}} \left(\frac{T_{\text{f}} + T_{\text{in}}}{2} - T_{\text{a}} \right)$$
(15)

Elaborado por el equipo de trabajo

Consideraciones sobre los materiales del tanque:

El diámetro exterior estándar para una tubería de 18"es de 457mm según el ASME B36.10M.

Para nuestro caso se ha mantenido el diámetro exterior, sin embargo, el espesor de la pared del tanque será 3/16" que equivale a un espesor de 4.76mm. de placa de acero ASTM S283.

Se consideró aislamiento de 3" de lana de fibra de roca basáltica por tener una baja conductividad térmica.

La conductividad térmica del material varía según su temperatura, estos valores se pueden apreciar en la tabla del fabricante, ver anexo 03.

Bajo estas consideraciones se obtuvo los siguientes radios y conductividades térmicas:

 $r_{1} = 0.2237m$ $r_{2} = 0.2285m$ $r_{3} = 0.3047m$ $K_{recip} = 41\frac{W}{mK}$ $A_{e,tq} = 5.66m^{2}$

$$K_{aisl} = 0.043 \frac{W}{mK}$$

Cálculo del coeficiente de transmisión del tanque:

$$U_{tq} = \frac{1}{r_3 \left[\frac{1}{r_1 h_0}\right] + r_3 \left[\frac{\ln \frac{r_2}{r_1}}{K_{recip}}\right] + r_3 \left[\frac{\ln \frac{r_3}{r_2}}{K_{aisl}}\right] + \frac{1}{h_i}}$$
(16)

El coeficiente de convección viene definido por:

$$h = \frac{N_u K}{D_h} \tag{17}$$

Numero de Nusselt en el tanque (convección natural):

Numero de Nusselt para el caso en que el GrPr = Nro de rayleigh $<10^9$, Flujo laminar,

$$N_{\rm u} = 0.59 (\rm{GrPr})^{\frac{1}{4}}$$
(18)

Nro de Grashof

$$Gr = \frac{gD_h^3 \rho^2 \beta \Delta T}{\mu^2}$$
(19)

Las propiedades del agua a la temperatura máxima (80°C) de operación son:

ρ _{agua} [Kg/m ³]	= 971.77
$C_{p,agua}\left[\frac{j}{Kg - °C}\right]$	= 4197
µ _{agua} [Pa.s]	= 0.0003546
Pr _{agua}	= 2.22
$\beta_{agua}[K^{-1}]$	= 0.0006405
$K_{agua}\left[\frac{W}{m - °C}\right]$	= 0.67
$L_c[m] = Dh$	= 0.95

Se asumió una temperatura en la pared interna T1=79°C, el cual es verificado por medio de iteraciones.

Temperatura interior To=80°C, la variación de la temperatura:

$$\Delta T = 80 - 79 = 1^{\circ}C$$

Reemplazando valores en la ecuación (19) se calculó el nro de grashof:

$$Gr = 4.2843x10^4$$

Nro de rayleigh

$$GrPr = 9.51x10^4$$

 $GrPr = Nro de rayleigh < 10^9$, entonces se trata de un flujo laminar

Con estos valores se calculó el nro de Nusselt según la ecuación (18)

$$N_{\rm m} = 4.5647$$

La ecuación nro (17) expresado en términos de convección en el interior del tanque es:

$$h_o = \frac{N_u K_{agua}}{L_c}$$

Al reemplazar valores se tiene::

$$h_o = 3.219 \frac{W}{m^2.\,^{\circ}C}$$

Se asume el coeficiente de convección en el exterior del tanque, luego mediante iteraciones se procedión a aproximar al valor asumido.

$$h_i = 3 \frac{W}{m^2.°C}$$

Reemplazando valores en la ecuación (16) se obtuvo un primer valor:

$$U_{tq} = 0.3577 \frac{W}{m^2.°C}$$

Con este valor se calculó los primeros valores de las temperaturas T1 y T3 del tanque.

$$T_1 = T_o - \frac{U_{tq}}{h_i}(T_0 - T_i)$$

$$T_1 = 72.834^{\circ}C$$

 $T_3 = \frac{U_{tq}}{h_i}(T_o - T_i) + T_i$
 $T_3 = 23.19^{\circ}C$

En base a la temperatura T3 se calculó la temperatura promedio para hallar las propiedades del aire en la pared externa del tanque:

$$T_{\text{promedio aire}} = \frac{(T_3 - T_i)}{2} = \frac{(23.19 - 15)}{2} = 19.35^{\circ}\text{C}$$

Se obtiene las propiedades del aire a 20°C(ver anexo 04).

Con las ecuaciones (18) y (19) se calculó el nro. de Nusselt para el aire.

$$N_u = 96.0984$$

La ecuación nro (17) expresado en términos de convección en el exterior del tanque es:

$$h_{i} = \frac{N_{u}K_{aire}}{L_{c}}$$

Reemplazando valores obtenemos:

$$h_i = 2.5431 \frac{W}{m^2.\,^{\circ}C}$$

Reemplazando este nuevo valor del coeficiente de convección en la ecuación (16) se obtuvo de la primera iteración del coeficiente global de transmisión del tanque:

$$U_{tq} = 0.3502 \frac{W}{m^2.°C}$$

De igual modo el nuevo valor de la temperatura T1 será:

$$T_1 = 72.984^{\circ}C$$

Finalmente, continuando con las iteraciones se obtuvo los valores finales de:

$$T_1 = 75.474^{\circ}C$$

 $h_i = 2.6511 \frac{W}{m^2 \cdot {}^{\circ}C}$
 $U_{tq} = 0.3742 \frac{W}{m^2 \cdot {}^{\circ}C}$

Con el valor del coeficiente global de transmisión se calcula ahora la perdida de energía al exterior.

Reemplazando valores en la ecuación (15) se tiene:

$$Q_{\text{perdido}} = 0.3742 \text{ X } 5.66 \left(\frac{80+15}{2}-15\right)$$

 $Q_{perdido} = 184.30W$

• Cálculo de los parámetros del fluido caloportador

Para determinar la cantidad de colectores solares requeridos se ha definido las condiciones de operación del sistema

- Se proyectó que la temperatura del agua en el interior del tanque se caliente en un tiempo estimado de 7200 segundos (2horas).
- Cuando la temperatura haya alcanzado 60° el sistema de calefacción entra en operación, mientras la temperatura en el interior del tanque bajo esta condición debe seguir incrementando hasta llegar a 80°C.
- Tiempo para que la temperatura llegue a 60°C será de 1800 segundos.

Bajo estas condiciones mencionadas se tiene el siguiente balance de energía en el tanque.

Figura Nº 26: Balance de energía en el tanque acumulador.

Elaborado por el equipo de trabajo

$$Q_{serp1} - Q_{serp2} - Q_{perd} = mC_p \frac{(T_f - T_{in})}{\theta}$$
(20)

Donde la potencia perdida al exterior: $Q_{perdido} = 184.30W$

Potencia del serpentín nro 02 será igual a la potencia consumida por los radiadores:

$$Q_{serp2} = Q_{rad} = 3,492.38W$$

Reemplazando valores y propiedades en la ecuación (20):

$$Q_{serp1} = 7,240.75W$$

Cálculo de la cantidad de colectores solares

Se seleccionó colectores solares de la marca Nohana3000 (ver ficha técnica en anexo 05) con las siguientes características:

Tipo de Colector: Heat Pipe de 10 Tubos

Superficie útil del colector: 1.135m²

Caudal optimo recomendado: $90\frac{l}{h} = 0.0000250\frac{m^3}{s}$

Rendimiento Óptico: $h_{OA} = 0.78$

Coeficiente de Pérdida de calor: $K_1 = 1.723 \frac{W}{m^2 K}$

Coeficiente de Pérdida de calor: $K_2 = 0.018 \frac{W}{m^2 K^2}$

El rendimiento del colector viene definido por la siguiente ecuación

$$h_{\text{colector}} = h_{\text{OA}} - K_1 \left[\frac{T_m - T_a}{I} \right] - K_2 I \left[\frac{T_m - T_a}{I} \right]^2$$
(21)

Donde:

I: Irradiación

La irradiación promedio diaria para el departamento de Puno según Aquino Larico (2018) es igual a: I = 1,110.04 $\frac{W}{m^2}$

Tm: Temperatura promedio de entrada al colector =60°C

Ta: temperatura ambiente=15°C

Reemplazando valores en la ecuación (21) tenemos:

$$h_{colector} = 0.6773$$

 $POTENCIA_{colector} = h_{colector} IAreaNro$

Nro = 8.485

La temperatura promedio de salida del Colector para las condiciones de operación dadas arriba se calculó de la siguiente manera:

$$T_{\text{salida}} = \frac{h_{\text{colector}} IAreaNro}{MC_{\text{p}}} + T_{\text{entrada}}$$

Se ha considerado 4 colectores en serie.

El flujo másico de agua en la tubería viene a ser la recomendad por el fabricante

Reemplazando valores se tiene:

$$T_{salida} = 93.84^{\circ}C$$

Nota: Para nuestro diseño se consideró 90°C.

$$T_{fe} = 90 + 273.15 = 363.15K$$

Sin embargo, para compensar la potencia requerida se consideró 12 colectores, los cuales están distribuidos como sigue: 4 en serie por 3 filas en paralelo.

Entonces, el caudal con el que se ha trabajado en nuestro diseño es 3 veces el caudal recomendado.

$$F = 0.000075 \frac{m^3}{s}$$

• Cálculo del coeficiente global transmisión del serpentín nro. 01

Coeficiente global de convección para una tubería simple (sin recubrimiento):

$$U_{t} = \frac{1}{\frac{r_{2}}{r_{1}h_{0}} + r_{2}\left[\frac{\ln\frac{r_{2}}{r_{1}}}{K_{tubo}}\right] + \frac{1}{h_{i}}}$$
(22)

Elaborado por el equipo de trabajo

La tubería Seleccionada para el serpentín es de cobre por su alta conductividad térmica, de temple flexible, tipo L, de 1" de diámetro exterior. Ver ficha técnica en anexo 06 (catalogo Nacobre)

 $r_1 = 0.0130175m$

$$r_2 = 0.0142875m$$

 $K_{tubo} = 380 \frac{W}{mK}$

Cálculo del Número de Nusselt en tuberías (convección forzada):

El número de Nusselt para flujo turbulento en tuberías con Re $>10^4$ se determina por:

$$N_{\rm u} = 0.023 {\rm Re}^{0.8} {\rm Pr}^{\rm a}$$
 (23)

donde a=0.4 para calentamiento y a=0.3 para enfriamientos.

$$\operatorname{Re} = \frac{\rho \operatorname{vel} D_{h}}{\mu} \tag{24}$$

La velocidad en función del Flujo volumétrico viene definido por:

$$\operatorname{vel} = \frac{F}{\pi D_{\rm h}^2} \tag{25}$$

Propiedades de agua a la temperatura del fluido Caloportador T=93°C

$$\rho_{agua} [Kg/m^3] = 965.30$$

$$C_{p,agua} \begin{bmatrix} j \\ Kg - °C \end{bmatrix} = 4205$$

$$\mu_{agua} [Pa.s] = 0.000314$$

$$Pr_{agua} = 1.958$$

$$\beta_{agua} [K^{-1}] = 0.0006954$$

$$K_{agua} \begin{bmatrix} W \\ m - °C \end{bmatrix} = 0.675$$

Siendo el diámetro hidráulico: $D_h = 0.02311m$

Reemplazando valores en la ecuación (24) se calculó el número de Reynold

 $Re = 3.38X10^4$

Verificamos que $\text{Re}>10^4$ y considerando que a=0.3 por tratarse de un fluido que se enfría, se obtuvo el número de Nusselt según la ecuación (23),

$$N_{\rm m} = 118.22$$

En base a la ecuación (17), El coeficiente de convección en el interior del serpentín es:

$$h_{o} = \frac{N_{u}K_{agua}}{D_{h}}$$
$$h_{o} = 3,065.01 \frac{W}{m^{2}.°C}$$

Asumiendo el coeficiente de convección en el exterior de la tubería.

$$h_{i} = 1000 \frac{W}{m^{2}.°C}$$

Se reemplaza lo valores en la ecuación (22) y obteniendose un primer valor del coeficiente global de transmisión.

$$U_{serp1} = 583.568 \frac{W}{m^2.°C}$$

Con este valor cse calculó el primer valor de la temperatura de la superficie exterior del tubo T2.

$$T_2 = \frac{U_{serp1}}{h_i}(T_o - T_i) + T_i$$
$$T_2 = 58.767^{\circ}C$$

Con esta temperatura se calculó la temperatura promedio para hallar las propiedades del agua en la pared externa del serpentín:

$$T_{\text{promedio agua}} = \frac{(T_3 - T_i)}{2} = \frac{(58.767 - 15)}{2} = 36.88^{\circ}\text{C}$$

Con las propiedades del agua a 35°C(ver anexo 07) y Con las ecuaciones la ecuación números (18) y (19) se calculó los siguientes valores::

$$Gr = 1.28 \times 10^7$$

 $N_u = 49.63$

La ecuación nro (17) expresado en términos de convección en el exterior del serpentín es:

$$h_i = \frac{N_u K_{agua}}{D_h}$$

Reemplazando valores obtenemos:

$$h_i = 1,187.67 \frac{W}{m^2.°C}$$

Reemplazando este nuevo valor del coeficiente de convección en la ecuación (22) obtiene la primera iteración del coeficiente global de transmisión del tanque:

$$U_{serp1} = 642.848 \frac{W}{m^2.°C}$$

Continuando con las iteraciones se obtuvo los valores finales de:

$$T_{1} = 55.91^{\circ}\text{C}$$
$$h_{i} = 1,167.786 \frac{\text{W}}{\text{m}^{2}.^{\circ}\text{C}}$$
$$U_{\text{serp1}} = 636.977 \frac{\text{W}}{\text{m}^{2}.^{\circ}\text{C}}$$

Finalmente procedemos a calcular el área de transferencia requerida del serpentín nro. 01, reemplazando valores en la ecuación (13).

$$A_{serp1} = \left[\frac{q_{agua}}{\theta} + Q_{rad} + U_{tq}A_{e,tq}\left(\frac{T_f + T_{in}}{2} - T_a\right)\right] \left[\frac{1}{U_{serp}\left[T_{fe} - \frac{T_f + T_o}{2}\right]}\right] (F)$$
$$A_{serp1} = 0.378m^2$$

3.5.2.2. Cálculo del área de transferencia del serpentín del fluido calefactor

El área del serpentín nro. 02 viene determinado según la siguiente ecuación:

$$A_{serp2} = \frac{Q_{serp2}}{U_{serp2}(\frac{T_f + T_{in}}{2} - T_{e,serp2})}$$
(26)

El calor absorbido por el serpentín nro. 02 es determinado a partir de la carga absorbida por los radiadores.

Figura Nº 28: Circuito de calefacción

Elaborado por el equipo de trabajo

Temperatura de entrada 54°c

Temperatura de salida 46°C

La potencia expresada en términos de flujo de masa viene a ser:

$$Q = M_{agua}C_p(T_{entrada} - T_{salida})$$
(27)

En términos de parámetros del radiador es:

$$M_{agua} = \frac{Q_{rad}}{C_{p}(T_{e,rad} - T_{sa,rad})}$$

Reemplazando valores se obtuvo:

$$M_{agua} = 0.104437 \ \frac{Kg}{s}$$

Asumiendo 1°C por pérdidas en el recorrido de la tubería de conducción del circuito calefactor, se determinó que las temperaturas de ingreso y salida al serpentín nro. 02. son:

$$T_{e,serp2} = 46^{\circ}C - 1^{\circ}C = 45^{\circ}C$$

 $T_{s,serp2} = 54^{\circ}C + 1^{\circ}C = 55^{\circ}C$

La ecuación nro. (27) expresada en términos del serpentín nro. 02 es:

$$Q_{serp2} = M_{agua}C_p(T_{s,serp2} - T_{e,serp2})$$

Reemplazando valores:

$$Q_{serp2} = 4,367.6W$$

Para el cálculo del coeficiente global de transmisión se tiene el siguiente esquema.

Figura N° 29: Esquema de una tubería simple, serpentín 02

(Elaborado por el equipo de trabajo)

Se asume que la temperatura T2 en la superficie del tubo del serpentín será de 60, este valor es aproximado más adelante mediante iteraciones.

Las propiedades del agua son en base al promedio de temperatura entre 80°C y 60°C.

La convección de calor en el exterior del serpentín es del tipo natural, por lo que el número de Nusselt depende del número de Grashof.

Con las ecuaciones (18) y (19) se calculó los siguientes valores:

$$Gr = 1.18 \times 10^7$$

 $N_u = 41.51$

Reemplazando valores en la ecuación nro. (17) se obtuvo lo siguientes valores:

$$h_i = 1,057.103 \frac{W}{m^2.°C}$$

Para el cálculo del coeficiente de convección en el interior de la tubería se considera las propiedades del agua a 45°C (ver anexo 07) que es la temperatura de ingreso al serpentín. Reemplazando valores en la ecuación (24) se calculó el número de Reynold

$$Re = 8.68X10^3$$

Se considera que a=0.4 por tratase de calentamiento de fluido.

$$N_u = 0.023 \text{Re}^{0.8} \text{Pr}^{0.4}$$

 $N_u = 56.15$

En base a la ecuación (17), el coeficiente de convección en el interior del serpentín es:

$$h_{o} = \frac{N_{u}K_{agua}}{D_{h}}$$
$$h_{o} = 1,373.86 \frac{W}{m^{2}.°C}$$

Reemplazando este nuevo valor del coeficiente de convección en la ecuación (22) se obtuvo un primer valor del coeficiente global de transmisión del serpentín:

$$U_{serp2} = 571.96 \frac{W}{m^2.°C}$$

Finalmente, continuando con las iteraciones se obtuvieron los valores finales de:

$$T_2 = 60.96^{\circ}C$$

 $h_i = 1,044.215 \frac{W}{m^2 \cdot {}^{\circ}C}$

$$U_{\rm serp2} = 568.17 \frac{\rm W}{\rm m^2.°C}$$

Finalmente, reemplazando valores en la ecuación nro (26), se obtuvo el área del serpentín del fluido calefactor:

$$A_{serp2} = 0.439 \text{m}^2$$

3.5.3. Diseño térmico del acumulador con PCM

Se tomaron las siguientes consideraciones para el diseño.

- El PCM seleccionado es la Parafina wax RT60, este PCM sufre un cambio de estado de sólido a líquido a partir de los 58°C hasta los 60°C según su fabricante, tal como se indica en su ficha técnica, ver anexo 08.
- Al igual que el tanque acumulador con agua, el PCM debe calentarse hasta que la temperatura en el interior sea de 80°C, esto quiere decir que hasta los 58°C el PCM seguirá en estado Sólido, entre 58°C y 60°C el PCM será una mezcla de Solido-líquido y a partir de 60° el PCM es completamente líquido.
- El sistema de calefacción (serpentín nro. 02) debe operar solo cuando el PCM se encuentre en estado Líquido, esto quiere decir que, para el diseño de los serpentines consideraremos al PCM en estado Líquido.
- $Tin = 15^{\circ}C$, igual a la temperatura ambiente.
- Tm1=58°C, temperatura de inicio de fusión
- Tm2=60°C, temperatura de fin de fusión
- Tf=80°C, temperatura fina de calentamiento.
- La variación de la energía del PCM se define por la variación de su entalpia bajo las siguientes condiciones:

$$H_{pcm} = \begin{cases} C_{P,PCMsol}T_{pcm} - C_{P,PCMsol}T_{in} & T_{pcm} < T_{m1} & (28) \\ C_{P,PCMsol}(T_{m1} - T_{in}) + L_{h,pcm} \left[\frac{T_{pcm} - T_{m1}}{T_{m2} - T_{m1}} \right] & T_{m1} \le T_{pcm} \le T_{m2} \\ C_{P,PCMsol}T_{m1} + L_{h,pcm} + C_{P,PCMliq}T_{pcm} - C_{P,pcmliq}T_{m2} & T_{pcm} > T_{m2} \end{cases}$$

$$\left[\frac{T_{pcm} - T_{m1}}{T_{m2} - T_{m1}}\right] = \text{fraccion liquida fundida del PCM}$$

• El Proceso de fusión será a temperatura casi constante entre Tm1 y Tm2, cuando la fracción liquida sea igual o mayor a 1 significa que se ha fundido todo el PCM, a partir de este instante inicia la fase de calentamiento hasta la temperatura requerida.

3.5.3.1.Área del serpentín del fluido caloportador (serpentín nro. 01)

Despejando el área del serpentín de la ecuación (13) se tiene:

$$A_{serp1} = \left[\frac{q_{pcm}}{\theta} + Q_{serp2} + U_{tq}A_{e,tq}\left(\frac{T_f + T_{in}}{2} - T_a\right)\right] \left[\frac{1}{U_{serp1}\left[T_{fe} - \frac{T_f + T_{in}}{2}\right]}\right] (F)$$
(29)

Donde:

A_{serp1}: Área del serpentín nro. 01 [m²]

 $A_{e,tq}$: Área exterior del tanque $[m^2]$

 q_{pcm} : Cambio de energía interna del PCM en estado líquido [Kj]

- θ: Duración del periodo de calentamiento [s]
- T_f: Temperatura final de calentamiento[K]
- T_{in}: Temperatura inicial de calentamiento[K]
- T_{fe}: Temperatura de entrada del fluido caloportador[K]
- T_a: Temperatura del medio ambiente[K]
- F: Factor de seguridad

$$U_{serp1}$$
: Coeficiente de transmisión del serpentín nro. $01 \left[\frac{W}{m^2 K} \right]$

 U_{tq} : Coeficiente de transmisión del Tanque $\left[\frac{W}{m^2K}\right]$

Q_{serp2}: Potencia absorbido por el serpentín nro. 02[KW]

Datos de operación:

 $T_f = 80 + 273.15 = 353.15K$

 $T_{in} = 60 + 273.15 = 288.15$ K, para este caso particular.

 $T_a = 15 + 273.15 = 288.15K$

Factor de seguridad=1.1

Duración del periodo de calentamiento = 1800s

 $Q_{serp2} = 4,367.6W$

Debido al cambio de estado del PCM, el cálculo del área del serpentín se ha analizado para los siguientes casos:

Caso 01: Calentamiento del PCM una vez que se haya fundido toda la masa del PCM, esto quiere decir que la temperatura inicial será de 60°C y final de 80°C, en este caso el sistema de calefacción entra en operación.

Caso 02: Proceso de fusión del PCM, en este caso el proceso de fusión inicia con la fusión de la primera capa de contacto con la tubería del serpentín donde la temperatura del PCM se incrementa desde 15°C hasta 58°C en estado sólido y entre 58°C y 60°C llega a fundirse completamente. Durante este proceso no opera el sistema de calefacción.

• Cálculo del área del serpentín nro. 01 para el caso 1

La energía interna del PCM viene determinado por:

$$q_{PCM} = \rho_{PCM} V_{PCM,Liq} \Delta H_{PCM}$$

Expresado en términos del calor especifico es:

$$q_{PCM} = \rho_{PCM} V_{PCM,Liq} C_p (T_f - T_{in})$$
(30)

Las propiedades del PCM a 80° son:

$$\rho_{PCM} = 778 \frac{Kg}{m^3}$$
$$C_p = 2.2 \frac{Kj}{Kg-K}$$

El volumen del PCM en estado líquido dependerá del porcentaje de expansión volumétrica, esto se puede apreciar en la Curva de expansión volumétrica de PCM RT60 según Mann et al.(2020)ver anexo 09.

Para una temperatura de 80°C la expansión será aproximadamente de 15%.

Entonces, el volumen del PCM líquido a 80°C será 15% más que el volumen en estado sólido.

El volumen en estado sólido del PCM viene a ser el mismo que se ha considerado para el agua.

Entonces:

$$V_{PCM,Liq} = 1.15 V_{PCM,sol}$$

$$V_{PCM,Liq} = 0.174 m^3$$

Reemplazando valores en la ecuación (30) se tiene que:

 $q_{PCM} = 5,947.968 \text{KJ}$

• Cálculo del calor perdido al exterior

Para el calor perdido al exterior se asume que el coeficiente global de transmisión en el tanque es la misma que en el caso de acumulador con agua-

$$Q_{\text{perdido}} = U_{\text{tq}} A_{\text{e,tq}} \left(\frac{T_{\text{f}} + T_{\text{in}}}{2} - T_{\text{a}} \right) \tag{31}$$

Reemplazando valores se tiene:

$$Q_{\text{perdido}} = 0.3742 \text{ X } 5.66 \left(\frac{80+60}{2} - 15\right)$$

$$Q_{perdido} = 116.49W$$

• Calculo del coeficiente global de transmisión del serpentin nro. 01.

Para determinar el Coeficiente Global se calcularon primero los coeficientes de convección tanto en el interior y exterior de la tubería.

Figura Nº 30: Esquema de una tubería simple, serpentín Nro 01

Elaborado por el equipo de trabajo

Para el cálculo del coeficiente de convección en el interior del tubo debemos tomar las propiedades del agua a la temperatura del fluido Caloportador.

ρ _{agua} [Kg/m ³]	= 965.30			
$C_{p,agua}\left[\frac{j}{Kg - °C}\right]$	= 4205			
µ _{agua} [Pa.s]	= 0.000314			
Pr _{agua}	= 1.958			
$\beta_{agua}[K^{-1}]$	= 0.0006954			
$K_{agua}\left[\frac{W}{m-°C}\right]$	= 0.675			

$$D_{h} = 0.02311m$$

Reemplazando valores en la ecuación (24) se obtiene el número de Reynold

$$Re = 3.38X10^4$$

para Re> 10^4 se aplicó la ecuación (23), considerando que a=03 por tratarse de un fluido que se enfría.

$$N_u = 0.023 Re^{0.8} Pr^{0.3}$$

$N_u = 118.22$

En base a la ecuación (17), El coeficiente de convección en el interior del serpentín es:

$$h_{o} = \frac{N_{u}K_{agua}}{D_{h}}$$
$$h_{o} = 3,065.01 \frac{W}{m^{2}.°C}$$

Ahora, para el cálculo del coeficiente de convección en el exterior del tubo se realizó en base a iteración tomando un valor inicial de:

$$h_i = 1000 \frac{W}{m^2.°C}$$

Reemplazando valores en la ecuación (22) se obtiene un primer valor del coeficiente global de transmisión.

$$U_{serp1} = 734.43 \frac{W}{m^2.°C}$$

Con este valor se procede a calcular el primer valor de la temperatura de la superficie exterior del tubo T2.

$$T_2 = \frac{U_{serp1}}{h_i} (T_o - T_i) + T_i$$
$$T_2 = 82.033^{\circ}C$$

donde

$$T_{\text{promedio agua}} = \frac{(T_2 - T_i)}{2} = \frac{(82.033 - 60)}{2} = 71.0165^{\circ}C$$

Entonces, se toman las propiedades de la parafina a 70°C, ver anexo 08.

Por otra parte, la convección de calor en el exterior del serpentín será del tipo natural.

Con las ecuaciones (18) y (19) se calculan estos valores:

$$Gr = 2.71 \times 10^5$$

 $N_u = 35.18$

La ecuación nro (17) expresado en términos de convección en el exterior del serpentín es:

 $h_i = \frac{N_u K_{pcm}}{D_h}$

Reemplazando valores:

$$h_i = 283.744 \frac{W}{m^2.\,^\circ\text{C}}$$

Reemplazando este nuevo valor del coeficiente de convección en la ecuación (22) se obtuvo de la primera iteración del coeficiente global de transmisión:

$$U_{serp1} = 257.34 \frac{W}{m^2.°C}$$

Finalmente, iterando se obtuvieron los valores finales de:

$$T_1 = 87.075^{\circ}C$$

 $h_i = 298.746 \frac{W}{m^2 \cdot {}^{\circ}C}$
 $U_{serp1} = 269.62 \frac{W}{m^2 \cdot {}^{\circ}C}$

Finalmente, se procedió a calcular el área de transferencia requerida del serpentín nro. 01 para el caso 1. Reemplazando valores en la ecuación (29) se tiene:

$$A_{serp1} = \left[\frac{q_{pcm}}{\theta} + Q_{serp2} + U_{tq}A_{e,tq}\left(\frac{T_f + T_{in}}{2} - T_a\right)\right] \left[\frac{1}{U_{serp1}\left[T_{fe} - \frac{T_f + T_{in}}{2}\right]}\right] (F)$$
$$A_{serp1} = 0.699m^2$$

• Área del serpentín nro. 01 para el caso 2

Para este caso, se consideró el mismo valor del coeficiente de convección en en el interior de la tubería del caso 1, debido a que las condiciones en el interior de la tubería no cambian.

$$h_o = 3,065.01 \frac{W}{m^2.°C}$$

El coeficiente de convección para el proceso de fusión viene definido según (Lamberg et

al., 2017) por la siguiente expresión:

$$\begin{split} h_{i} &= 0.072 \left[\frac{g \left[\frac{T_{fe} - T_{m1}}{2} \right] \rho_{pcm.liq}^{2} \beta_{pcm.liq} C_{pcm.liq} K_{pcm.liq}^{2}}{\mu} \right]^{1/3} \qquad (\ 32\) \\ h_{i} &= 75.7087 \frac{W}{m^{2}.\,^{\circ}C} \end{split}$$

Reemplazando valores en la ecuación (22):

$$U_{serp1} = 73.691 \frac{W}{m^2.°C}$$

La energía interna del PCM viene determinado según la ecuación (28), para lo cual se asume que la fracción liquida será igual a 1.

$$q_{PCM} = \rho_{PCM} V_{PCM} \Delta H_{PCM}$$

$$q_{PCM} = \rho_{PCM} V_{PCM,sol} C_{P,PCMsol} (T_{m1} - T_{in}) + \rho_{PCM} V_{PCM,Liq} L_{h,pcm} \left[\frac{T_{pcm} - T_{m1}}{T_{m2} - T_{m1}} \right]$$

 $q_{\text{PCM}} = \rho_{\text{PCM}} V_{\text{PCM},\text{sol}} C_{\text{P,PCMsol}} (T_{m1} - T_{in}) + \rho_{\text{PCM}} V_{\text{PCM},\text{Liq}} L_{h,\text{pcm}}$

Reemplazando valores

Finalmente para calcular el área del serpentín se reemplaza los valores en la ecuación nro.

(29).

El área del serpentín depende del tiempo de fusión del PCM

Para ello hemos calculado para los siguientes tiempos:

Para 3600s
$$\rightarrow A_{serp1} = 5.08 \text{ m}^2$$

Para 7200s $\rightarrow A_{serp1} = 2.82 \text{m}^2$
Para 9000s $\rightarrow A_{serp1} = 2.27 \text{m}^2$

3.5.3.2. Área del serpentín del fluido caloportador (serpentín nro. 02)

El área del serpentín nro. 02 es determinado mediante la ecuación siguiente:

$$A_{serp2} = \frac{Q_{serp2}}{U_{serp2}(\frac{T_f + T_{in}}{2} - T_{e,serp2})}$$
(33)

Donde

Tf=60°C, el sistema de calefacción solo opera con PCM líquido.

Tin=80°C

T entrada del fluido al serpentín =45°C

La potencia absorbida por el serpentín nro. 02 es 4,367.6W

• Cálculo del coeficiente global de transmisión del serpentín nro. 02

Figura Nº 31: Esquema de una tubería simple, serpentín N° 02

(Elaborado por el equipo de trabajo)

Se asume que la temperatura T2 en la superficie del tubo es de 60°C.

Las propiedades del PCM se tomaron para 70°C que es el promedio entre 80°C y 60°C

$$\begin{split} \rho_{pcm} \, [\text{Kg}/\text{m}^3] &= 778 \\ C_{p,pcm} \left[\frac{j}{\text{Kg} - ^\circ \text{C}} \right] &= 2200 \\ D_h &= 0.02311 \text{m} & \mu_{pcm} [\text{Pa.s}] &= 0.00548 \\ \text{Con las ecuaciones (} & \text{Pr}_{pcm} &= 57.41 \\ \text{Gr} &= 1.48 \, \text{X} \, 10^5 & \beta_{pcm} [\text{K}^{-1}] &= 0.00211 \\ N_u &= 30.21 & K_{pcm} \left[\frac{\text{W}}{\text{m} - ^\circ \text{C}} \right] &= 0.21 \end{split}$$

La ecuación nro (17) expresado en términos de convección en el exterior del serpentín

es:

$$h_i = \frac{N_u K_{pcm}}{D_h}$$

Reemplazando valores se tiene:

$$h_i = 243.685 \frac{W}{m^2.°C}$$

El coeficiente de convección en el interior del serpentín será la misma que se calculó en el acápite 3.5.2.2.

$$h_o = 1,373.86 \frac{W}{m^2.°C}$$

Reemplazando en (22) obtuvo un primer valor para coeficiente global de transmisión del serpentín:

$$U_{serp2} = 190.18 \frac{W}{m^2.\,^{\circ}C}$$

Continuando con las iteraciones se calcularon los valores finales de:

$$T_2 = 53.14^{\circ}C$$

 $h_i = 262.340 \frac{W}{m^2 \cdot {}^{\circ}C}$
 $U_{serp2} = 201.36 \frac{W}{m^2 \cdot {}^{\circ}C}$

Finalmente, de la ecuación (33), el área del serpentín nro. 02 es:

$$A_{serp2} = 0.868m^2$$

Considerando un factor de seguridad 1.1

$$A_{serp2} = 0.954m^2$$

3.5.3.3.Cálculo del área del serpentín nro. 02 en el proceso de solidificación.

Se realizó este análisis debido a que se plantea aprovechar el calor latente de solidificación

Se tomó como referencia el estudio realizado por (Pan, 2019) en su tesis Efficient modeling of latent thermal energy storage systems for optimal design and operational research

Fuente: Pan, Chunjian, 2019

El autor realiza varios análisis de tiempos de solidificación de PCM con distintos parámetros a partir de la siguiente ecuación:

$$\frac{1}{2}r^{2}\ln\frac{r}{r_{o}} - \frac{1}{4}(r^{2} - r_{0}^{2}) = \frac{K_{pcm}(T_{m} - T_{w})t}{\rho_{pcm}[L_{h,pcm} + \varepsilon_{c}C_{pm}(T_{m} - T_{w})]}$$

Despejando la variable t (tiempo) en función del radio.

$$t = \frac{\rho_{pcm} \left[L_{h,pcm} + \epsilon_c C_{pm} (T_m - T_w) \right]}{K_{pcm} (T_m - T_w)} \left[\frac{1}{2} r^2 \ln \frac{r}{r_o} - \frac{1}{4} (r^2 - r_o^2) \right]$$

A medida que transcurre el tiempo el PCM se solidificará alrededor de la tubería formando así una capa cada vez mayor. El crecimiento de la capa dependerá del incremento del radio r.

Se utilizó este mismo análisis para determinar el diseño y el área de transferencia del serpentín.

Se tiene lo siguiente:

 ϵ_c : factor de ajuste del calor sensible = 0.23 r_o : Radio exterior de la tubería = 0.01428m T_w : Temperatura en la superfice exterior del tubo, se considera igual a 45°C T_m : Temperatura media de fusión del PCM = 59°C Se asume distintos valores para el radio (r) final de PCM sólido para así determinar el tiempo total de solidificación. Reemplazando valores: Para r=0.05m, el tiempo es 52,302.62s = 14.53 horas Para r=0.04m, el tiempo es 25,028.79s = 6.95 horas Para r=0.03m, el tiempo es 8,429.37 = 2.34 horas

3.5.4. Cálculo de la potencia del calefactor eléctrico

Como energía de respaldo se ha considerado un calefactor eléctrico con el cual se compensará el déficit de energía solar tanto en el día.

Figura Nº 33: Calefactor eléctrico en el interior del tanque acumulador

Elaborado por el equipo de trabajo

La potencia que debe entregar la resistencia del calefactor se ha calculado tomando en cuenta las siguientes consideraciones:

- PCM se encuentra completamente fundido.
- Aporte de energía solar es nulo.
- El sistema de calefacción (serpentín nro. 02) debe estar en funcionamiento en paralelo con el calentamiento del PCM.
- El Calefactor eléctrico debe compensar la energía para mantener la temperatura del PCM en el interior mayor a 60°C y la temperatura de salida del Serpentín nro. 02 a 55°C.

Se tiene el siguiente balance de energía:

$$Q_{resistencia} - Q_{serp2} - Q_{perd} = \frac{q_{PCM}}{\theta}$$

Donde:

 $T_{in} = 60^{\circ}C$

 $T_f = 80^{\circ}C$

 $Q_{serp2} = 4,367.6W$

$\Theta = 1800$ s, tiempo de calentamiento

 $q_{PCM} = 5,947.968$ KJ, energía interna necesaria para llevar de 60° a 80°C

 $Q_{perd} = 116.49W$

Reemplazando valores en la ecuación anterior:

 $Q_{resistencia} = 7,788.51 W$

Considerando un factor de seguridad de 1.1 obtenemos la potencia que debe tener el calefactor eléctrico.

$$Q_{resistencia} = 8,567.36 W$$

3.6.DISEÑO MECÁNICO DEL ACUMULADOR

En la sección 3.5 se ha obtenido los resultados del diseño térmico del acumulador, se ha podido analizar las áreas de transferencia de los serpentines y las características que debe tener el tanque acumulador.

Para el diseño mecánico, se ha seleccionado el tanque que con PCM en su interior debido a que es el más crítico en comparación con el tanque con agua. Así mismo, se considerado las condiciones de fusión y solidificación del PCM puesto que requieren de una mayor área de transferencia en los serpentines, para ello se han considerado los siguientes criterios de diseño:

- 1. El diámetro de la tubería para el serpentín será de mayor o igual a 25mm
- 2. La tubería del serpentín debe ser de cobre tipo L de temple flexible.
- 3. Área exterior del serpentín nro. 01
- 4. $A_{serp1} > 2.27m^2$
- 5. Área exterior del serpentín nro. 02
- 6. $A_{serp2} > 0.954m^2$

- 7. El radio de la sección anular de PCM solido alrededor del serpentín debe ser menor o igual que 0.04m. este criterio significa que la separación entre tubos debe ser menor o igual que 0.08m. esto quiere decir que se debe distribuir las tuberías de tal manera que no quede espacios mayores a 0.08m.
- 8. El volumen útil del tanque debe ser mayor o igual a 0.151m³
- El Diámetro exterior del tanque debe ser equivalente a 18", diámetro estándar según ASME B36.10.
- 10. El diseño del tanque debe ser según la norma ASME SEC VIII div 1.
- 11. El aislante del tanque debe ser mayor o igual a 3" (76.2mm), fibra de roca basáltica.

3.6.1. Diseño de los serpentines

Fuente: Ricaurte, L.(2016)

Según el criterio 7, se ha diseñado el siguiente esquema de distribución.

Figura N[•] 35: *Esquema de distribución de tuberías en el interior del tanque.*

Elaborado por el equipo de trabajo

Donde:

 d_1 : lado de sección cuadrada de PCM que envuelve a la tubería = 0.06974m

 $DH_{A,1}$: Diámetro A del serpentin nro 01 = 0.098m

 $DH_{B,1}$: Diámetro B del serpentin nro 01 = 0.237m

 $DH_{C,1}$: Diámetro C del serpentin nro 01 = 0.377m

 $DH_{A,2}$: Diámetro A del serpentin nro 02 = 0.139m

 $DH_{B,2}$: Diámetro B del serpentin nro 02 = 0.278m

• Separación de tubos en el interior

Según el criterio 7 se calcula el área máxima de la sección de PCM solido con r=0.04

$$A_{sec,circ} = \pi r^2$$
$$A_{sec,circ} = 0.005026m^2$$

El área de la sección cuadrada de lado d1 es:

$$A_{sec,cuad} = [d_1]^2$$
$$A_{sec,cuad} = 0.004863m^2$$

Comparando ambas áreas se deduce que la separación de los tubos según el esquema propuesto es aceptable.

El radio equivalente con el cual se obtendría la misma área del cuadrado de lado d1.

$$A_{sec,cuad} = \pi r_{r.sol}^{2}$$
$$r_{r.sol} = 0.03934 m$$

Comparando con el radio mínimo se acepta la distribución de tuberías del serpentín nro. 02.

3.6.1.1. Dimensionamiento del serpentín nro. 01

El área del serpentín nro. 01 se obtiene de la siguiente expresión:

$$A_{serp1} = \pi D_{exterior,tubo} L_{serp}$$
(34)

De las figuras 34 y 35, la longitud del serpentín nro.01 viene expresado por::

$$L_{serp1} = \pi DH_{A.1}N_V + \pi DH_{B.1}N_V + \pi DH_{C.1}N_V$$

Reemplazando en la ecuación nro. (34).

$$A_{serp1} = \pi D_{exterior,tubo} (\pi DH_{A.1}N_V + \pi DH_{B.1}N_V + \pi DH_{C.1}N_V)$$

Se procede a asumir valores del número de vueltas hasta para encontrar el área que cumpla con el criterio 4.

$$N_{vueltas} = 11 \rightarrow A_{serp} = 2.21m^2$$
, es menor a $2.27m^2$
 $N_{vueltas} = 12 \rightarrow A_{serp} = 2.41m^2$, es mayor a $2.27m^2$
 $L_{serp1} = 26,893.13mm$

Del resultado se concluye

- 12 vueltas para el serpentín A, B y C
- Paso igual a 0.0697m

Finalmente, se calcula la altura ocupada por el PCM en el interior del tanque.

$$l_{pcm} = PASO(N_{vueltas} + 1)$$

$$l_{pcm} = 1.046m$$

3.6.1.2. Dimensionamiento del serpentín nro. 02

Según el esquema propuesto en la figura 35, el serpentín nro. 02 se divide en 02

serpentines, A,y B y un tramo recto vertical que se ubica en el centro del tanque.

Longitud del serpentín nro. 02 la aproximaremos mediante:

$$L_{serp2} = \pi DH_{A.2}N_V + \pi DH_{B.2}N_V + N_V PASO$$

$L_{serp2} = 18,765.61$ mm

El número de vueltas se considera el mismo que se calculó para el serpentín nro. 01 Reemplazando valores en la ecuación nro. (34) se verifica el área superficial

$$A_{serp2} = 1.68m^2$$

Se concluyen que el valor cumple con el criterio nro. 06.

Entonces, se tiene:

- 12 vueltas para el serpentín A y B. y un tramo recto central.
- Paso igual a 0.0697m

3.6.2. Diseño mecánico del tanque

El cálculo mecánico del tanque consiste básicamente en determinar los espesores de las diferentes partes que lo conforman, tomando como datos de partida la forma del equipo, las dimensiones previamente calculadas, el material utilizado, las condiciones de presión, temperatura y el peso específico del fluido.

Para el diseño del tanque se ha considerado la facilidad de apertura del mismo y el desmontaje de sus accesorios para un fácil mantenimiento.

Se ha considerado también las siguientes correcciones de la altura del tanque para determinar el volumen ocupado por el PCM:

- Corrección debido a la boquilla de Mantenimiento (Hand Hold) de 6" de diámetro con lo que se incrementa en 150mm
- Corrección debido a la expansión volumétrica del PCM.

Según el número de vueltas de los serpentines y el paso se obtiene la altura ocupada por el PCM sólido.

$$l_{pcm.sol} = PASO(N_v + 1)$$

 $l_{pcm.sol} = 0.907m$

Para cumplir con el criterio Nro. 08, la altura resultante para un volumen útil de 0.151m3 será:

$$l_{pcm.sol.util} = 0.963m$$

Se toma este último valor como la altura del PCM solido por ser el mayor.

3.6.2.1.Cálculo de la altura real del tanque.

EL volumen del PCM líquido considerando aproximadamente un 15% de expansión a

80°C (Ver curva de expansión en anexo 09).

$$V_{pcm.liq} = 0.151 \text{ x} (1 + 0.15)$$

 $V_{pcm.liq} = 0.174 \text{m}^2$

Con este volumen se obtiene la altura del PCM líquido.

$$l_{pcm.liq} = 1.107m$$

Comparando las alturas del PCM sólido y líquido se calculó la distancia de expansión del PCM.

$$l_{expanción} = 0.144m$$

A partir de estas alturas se realizó el siguiente esquema para representar el volumen de aire contenido en el tanque.

Figura Nº 36: Esquema del volumen de aire ocupado en el interior

Elaborado por el equipo de trabajo

Se ha considerado un espacio de 3 cm por encima del nivel del PCM líquido (nivel máximo), que será el espacio que ocupará el aire.

Siendo así la corrección de la altura por expansión volumétrica de 0.174m.

Finalmente, la altura final del cuerpo del tanque es

 $l_{tanque} = 0.150m + 0.174m + 0.963m$

 $l_{tanque} = 1.287 m$

• Presión máxima y mínima en el tanque

La Presión mínima de trabajo es a la presión atmosférica 64.31 Kpa.

Debido a la expansión volumétrica del PCM durante el cambio de estado y cuando se lleva a la temperatura de operación se tendrá un incremento en su volumen, por lo cual, por tratarse de un recipiente cerrado también sufrirá un incremento de la presión interna debido a la compresión del aire contenido en ella, entonces esta variación se obtiene mediante la ley combinada de los gases ideales:

$$\frac{P_1 V_1}{T_1} = \frac{P_2 V_2}{T_2}$$

Despejando P2

$$P_2 = \frac{T_2 P_1 V_1}{T_1 V_2}$$
(35)

Datos:

 $P_1 = 64.31 \text{ Kpa}$ $T_1 = 15^{\circ}\text{C}$

 $T_2 = 80^{\circ}C$

Cálculo del volumen V1:

Del esquema de la figura 36 se obtiene:

$$V_1 = \frac{\pi D_1^2}{4} l_1$$

 $V_1 = 0.0274 m^3$

Cálculo del volumen V2:

$$V_2 = \frac{\pi D_2^2}{4} l_2$$

$$V_2 = 0.004708 m^3$$

Reemplazando valores en la ecuación nro. (35)

$$P_2 = \frac{T_2 P_1 V_1}{T_1 V_2}$$

 $P_2 = 457.488 \text{Kpa}$
 $P_2 = 66.35 \text{PSI}$

• Cálculo de la presión de diseño

A la presión máxima del tanque se suma las presiones hidrostáticas generadas por las alturas de las columnas de producto.

Una columna de agua de un pie de altura produce una presión de $0.0305 \text{ kg/cm}^2 = 0.4331PSI$

$$PH = 0.4331l_{pcm.liq}$$
$$PH = 1.5732PSI$$

La presión total de trabajo es:

$$P_0 = 1.573 + 66.35 = 67.926PSI$$

Finalmente la Presión de diseño es:

Si
$$P_o > 300 \frac{lb}{pulg^2} \rightarrow P = 1.1P_o$$

Si $P_o \le 300 \frac{lb}{pulg^2} \rightarrow P = P_o + 30 \frac{lb}{pulg^2}$

$P_o = 67.926 + 30 = 97.926$ PSI

Parámetros de diseño

Volumen de diseño = 0.1785m³ Presión de diseño = 97.926PSI³ Temperatura Máximo = 100°C Temperatura Minima = 15°C

3.6.2.2.Cálculo del espesor del cuerpo

El espesor del cuerpo del tanque viene determinado por la siguiente formula:

$$t = \frac{PR}{SE - 0.6(P)}$$
(36)

Donde:

P= Presión de diseño (kPa)

R= Radio de la base (mm)

- S = Esfuerzo máximo admisible (kPa)
- E = Eficiencia de junta
- t = Espesor mínimo del cuerpo (mm)

• Eficiencia de junta soldada

En el anexo 10 se muestra la eficiencia de junta tanto en costuras longitudinales y circunferenciales.

Las juntas soldadas en el cuerpo del cilindro se consideran de unión simple por un solo lado sin solera de respaldo, no se considerarán radiografía, por lo que la eficiencia será E=0.6

• Esfuerzo admisible

Para el esfuerzo admisible del material se de toma la temperatura máxima de operación. Se seleccionó plancha de acero SA 283 Grado C que es un acero comercial y aceptado por la Norma ASME SECC II.(ASME secc II, 2004)

Revisando el anexo 11 para una temperatura 100°C la máxima tensión admisible es de S=108000kPa.

Reemplazando valores en la ecuación (42) se obtiene el espesor:

t = 2.36mm

Finalmente, se seleccionó el espesor comercial, siendo este el inmediato superior al obtenido.

Espesor de plancha = 3/16"(4.76mm)

3.6.2.3.Espesor de la tapa y casquete

Se considera una tapa bridada en la parte superior y un casquete toriesferico en la parte inferior

• Cálculo del espesor del casquete toriesferico.

Las características de un casquete toriesferico vienen definido según la figura siguiente

Figura Nº 37: Casquete torieférico

Fuente: ASME Sec VIII div 1

El cálculo del espesor se determina según la siguiente formula:

$$t = \frac{PLM}{2SE - 0.2(P)}$$
(37)

Donde:

P= Presión de diseño (kPa)

L= Radio de abombado (mm), L=Diametro

M = Factor adimensional que depende de la relación L/r

r = Radio de esquina o radio de nudillos (mm) 6%L

S = Esfuerzo máximo permisible del material de la tapa a tensión y a la temperatura de

diseño (Kpa).S=108000Kpa

t = Espesor mínimo requerido en la tapa (mm)

E=Eficiencia de la soldadura, E=0.6, con costura y sin radiografiar, según anexo 10.

El factor M se calcula también:

$$M = \frac{1}{4} \left[3 + \sqrt{\frac{L}{r}} \right]$$

Considerando r=2"(24.5mm), que es >6%L

$$M = 1.4915$$

Reemplazando valores en la ecuación (37) se ha obtenido el espesor mínimo requerido.

t = 2.359 mm(36)

$$t = 0.00235$$

Finalmente, se selecciona una plancha de3/16" de espesor.

• Cálculo del espesor de la tapa bridada

El espesor viene determinado por la siguiente ecuación:

$$t = d \sqrt{\left(\frac{C'P}{SE}\right) + \frac{1.9Whg}{SEd^3}}$$
(38)

Donde:

t: Espesor mínimo requerido por la tapa.

d: Diámetro medio como se indica que en la figura 43.

C': constante adimensional que depende de la forma de unión entre la tapa y el cilindro.

(ver figura nro. 45)

P: Presión de diseño.

S: Esfuerzo máximo permisible del material de la tapa a tensión y a la temperatura de diseño.

E: Eficiencia de soldadura. Según tabla de anexo10.

W: Carga total de los tornillos.

hg: Brazo de palanca, distancia radial de la línea de centros de barrenos a la línea de reacción del empaque.

• Dimensionamiento de bridas.

Debido a que el diámetro del cilindro es de 18"(450mm), entonces, se seleccionaron las características de un brida estándar de 18"(450mm) según la norma ASME B16.5 (2003).(ver anexo 12).

Para el cuerpo: Brida Slip On,150Lib, cara resaltada (RF), Material ASTM A105.

Para la tapa: Brida ciega,150Lib, cara resaltada (RF), Material ASTM A105.

Fuente: ASME B16.5

Fuente: ASME Sec VIII div 1

Determinación del diámetro medio(d)

$$d = \frac{O + B}{2}$$

$$d = 497.6 mm$$

• Determinación de hg: de la figura Nro. 39 tenemos:

$$hg = \frac{K - d}{2}$$

hg = 40.15mm

• Esfuerzo máximo permisible(S)

El material seleccionado es ASTM A105 cuya máxima tensión admisible a 100 ° C según el anexo 11 es 138000Kpa.

• Cálculo de la carga total de los Pernos.

$$W = \left[\frac{A_{\rm m} + A_{\rm b}}{2}\right] S_{\rm a} \tag{39}$$

Donde Am es el que resulte mayor de las siguientes ecuaciones:

$$A_{m1} = \left[\frac{0.785G^2P + 2b(\pi)GPm}{S_b}\right]$$
(40)

$$A_{m2} = \left[\frac{(\pi)byG}{S_a}\right]$$
(41)

Donde:

Am: Área transversal requerida de los pernos tomada como la que resulte mayor de $Am_1 y Am_2$.

Am1: Área transversal neta requerida de los pernos en condiciones de operaciones.

Am₂: Área neta de los tornillos.

Sa: Esfuerzo máximo permisible del material de los pernos, a temperatura ambiente.

Sb: Esfuerzo máximo permisible del material de los pernos, a temperatura de diseño.

b: Ancho efectivo de contacto de la empaquetadura. (ver figura 46)

bo: Ancho básico de la empaquetadura. (ver figura 46)

G: Diámetro donde se localiza la reacción del empaque en pulgadas. (ver figura 46)

y: Carga máxima permisible en el empaque o en la superficie de sello, su valor depende de la forma y material de la empaquetadura.

Ab: Área transversal neta de los tornillos

m: factor adimensional de la empaquetadura, depende del tipo de empaque, por lo general este valor lo brinda el fabricante.

Obtención de datos:

Los pernos a utilizar son de material ASTM 193 Grado B7 de 1.1/8" de diámetro, entonces según la tabla del anexo 11 obtenemos los valores de los esfuerzos admisibles.

Sa=Sb=130MPa

Se ha seleccionado empaquetadura estándar GARLOK 3000 de18", RF de 1/8" de espesor.

Las características dimensionales de la empaquetadura son de acuerdo al ASME B16.5 ver anexo 13

Figura Nº 40: Ubicación de las cargas de reacción en empaquetadura.

Fuente: ASME SECC VIII

Donde el diámetro exterior es 21.62"

• Cálculo del ancho efectivo de contacto (b)

De las tablas de dimensiones de bridas y empaquetadura se obtiene:

$$b = \left(\frac{OD_{contacto} - ID_{contacto}}{4}\right)$$
$$OD_{contacto} = \phi R$$

 $ID_{contacto} = escojer \ el \ mayor \ valor \ \phi B \ e \ ID_{empaquetadura}$

$$\mathbf{b} = \left(\frac{533.4 - 461.8}{4}\right)$$

b = 17.9*mm*

• Cálculo de localización de la reacción (G)

$$G = \phi R - 2b$$
$$G = 497.6mm$$

• Determinación de la carga máxima permisible en el empaque (y)

Este valor es determinado por el fabricante de la empaquetadura y se muestra en la tabla de tensión mínima en el anexo 14.

Para una empaquetadura clase 3000 de 1/8" de espesor y=4400PSI=30.336 Mpa.

$$m = 5.2$$

Reemplazando valores en las ecuaciones (40) y (41) obtenemos los siguientes valores:

$$A_{m1} = 2,520.94mm^2$$

 $A_{m2} = 6,529.98mm^2$

Ahora con el mayor valor Am2 se calcula el diámetro del perno considerando 16 agujeros.

$$A_{m2} = \frac{\pi (diámetro)^2}{4}$$

diámetro =
$$0.02279m$$

El diámetro comercial cuya área transversal se acerca a este valor es 1.1/8"(0.02857m)

• Área transversal neta de los tornillos (Ab)

$$A_b = \frac{\pi (di\acute{a}metro)^2}{4} N^\circ pernos$$

$$A_{\rm b} = 10,260.83mm^2$$

Al reemplazar los valores en la ecuación (39) se tiene:

Finalmente, los datos para calcular el espesor de las bridas son:

d=0.497m

C'=0.33

P=97.9PSI

S=138000Kpa

E=0.55

W=1,091,402.16N

hg=40.15mm

Reemplazando valores en la ecuación (38) se obtiene el espesor de la brida:

t = 25.75mm

3.6.2.4.Otros elementos principales del tanque

- El tanque esta provisto de Boquillas menores a 3" los cuales son para conexión de instrumentos, resistencia eléctrica, conexión de serpentín y tuberías, venteos y purgas, estas boquillas son de conexión roscada NPT y sus accesorios clase 3000 en Material ASTM A105.
- Se considera una boquilla de 6" de diámetro (Hand Hole) con Placa de refuerzo de 5mm de espesor y diámetro de 302mm, el cual cumple con las consideraciones de la norma (ASME SECC VIII div. 1, 2001), ver anexo 15,

- Las brida de la boquilla Hand hold es Welding Neck de 6",RF, ASTM A 105 clase
 150.
- La brida ciega 6", RF, ASTM A 105 clase 150
- Pernos 5/8" diámetro ASTM A193 Grado B7
- Empaquetadura Garlok de 1/8" de espesor clase 3000.

En base a los parámetros calculados se ha procedido a diseñar y detallar el tanque acumulador y todos sus componentes. Los planos de detalle se muestran en el anexo 17.

Figura Nº 41: Vista isométrica de Tanque acumulador

Elaborado por el equipo de trabajo

3.7.IMPLEMENTACIÓN DEL SISTEMA DE CALEFACCIÓN

Se ha implementado el diagrama de tubería e instrumentos P&ID del sistema de calefacción, donde se muestra los principales componentes y su ubicación

Figura Nº 42: Esquema P&ID sistema de calefacción solar.

Elaborado por el equipo de trabajo

- SISTEMA COLECTOR SOLAR: 12 unidades de Colector solar tipo Heat Pipe de 10 tubos, Nohana, 01 Bomba circuladoras para calefacción, GRUNDFOS ALPHA SOLAR, 5201/h, 0.058 kW, conexión NPT 1".
- SISTEMA ACUMULADOR: 01 Tanque acumulador de PCM, 150 Litros y sus componentes (Calefactor eléctrico 9000W, serpentines, válvulas y manómetro)
- SISTEMA DE CALEFACCIÓN: 05 Radiadores de Aluminio, DUBAL, MODELO 70, 10Elementos, salto 40°C, Capacidad 102.7W. (válvulas de regulación, 01 Bomba circuladoras para calefacción, GRUNDFOS ALPHA SOLAR, 5201/h, 0.058 kW, conexión NPT 1".
- SISTEMA DE CONTROL
- Está compuesto por los transmisores, actuadores y controlador.

3.8.MODELADO Y SIMULACIÓN DEL SISTEMA DE ACUMULACIÓN

En esta sección se ha realizado el modelado matemático y la simulación del sistema de calefacción para el tanque con agua y PCM con la finalidad de comparar sus parámetros de funcionamiento. Se ha obtenido los modelos matemáticos de los sistemas, luego se procedió a simular el funcionamiento y a analizar los resultados en base a nuestro problema y objetivo de esta investigación. Utilizaremos el Software Matlab y su Herramienta Simulink para determinar la data de análisis.

3.8.1. Variables de sistema de calefacción solar

En la figura 51, se muestra el esquema de variables del sistema de calefacción solar para acumulador con PCM/agua, en ella se ha mapeado todos los componentes y variables a los cuales haremos referencia de ahora en adelante.

Elaborado por el equipo de trabajo

3.8.2. Modelado y simulación del acumulador con agua

En base a la primera Ley de la Termodinámica, se tiene el siguiente balance de energía:

$$E_{ent} - E_{sal} = \Delta E_{sistema} \tag{42}$$

De la ecuación (42) en términos de calor tenemos :

$$Q_{ent} - Q_{sal} = \rho V C_p \frac{\partial T}{\partial t}$$

Entonces, aplicando al tanque acumulador como sistema cerrado se tiene la siguiente ecuación:

$$Q_{\text{serp1}} + Q_{\text{resist}} - Q_{\text{serp2}} - Q_{\text{perd}} = \rho V C_p \frac{\partial T_5}{\partial t}$$
(43)

Elaborado por el equipo de trabajo

Por otro lado, la transferencia de calor viene definido por la ley de enfriamiento de newton:

$$Q = UA\Delta(T) \tag{44}$$

Según la ecuación (44) el calor entregado por el serpentín nro 01 viene definido por:

$$Q_{serp1} = U_{s1}A_{s1}(T_1 - T_5)$$
(45)

El coeficiente Global de transferencia para tubería simple (sin recubrimiento) viene definido por:

$$U = \frac{1}{\frac{r_2}{r_1 h_0} + r_2 \frac{\ln \frac{r_2}{r_1}}{K_{tubo}} + \frac{1}{h_i} + R_f}}$$
(46)

El coeficiente de calor por convección viene definido por:

$$h = \frac{N_u K}{D_h}$$
(47)

Numero de Nusselt para el caso en que el GrPr = Nro de rayleigh $<10^9$, Flujo laminar, convección natural.

$$N_{\rm u} = 0.59({\rm GrPr})^{\frac{1}{4}} \tag{48}$$

Nro de Grashof

$$Gr = \frac{gD_h^3 \rho^2 \beta \Delta T}{\mu^2}$$
(49)

Numero de Nusselt flujo turbulento en tuberías para Re >10⁴

$$N_u = 0.023 Re^{0.8} Pr^a$$
 (50)

Se considera a=0.4 para calentamiento y a=0.3 para enfriamientos.

$$Re = \frac{\rho velD_h}{\mu}$$
(51)

Donde la velocidad en función del Flujo volumétrico vine definido por:

$$\text{vel} = \frac{F}{\pi D_{\text{h}}^2} \tag{52}$$

• Transferencia de calor en el serpentín nro. 01

Elaborado por el equipo de trabajo

Para el serpentín 1, Aplicando las ecuaciones (47), (48), (49), (50), (51) y (52) en la ecuación (46) se tiene:

$$U_{s1} = \frac{1}{\frac{r_{2,s1}}{\frac{r_{2,s1}}{0.023r_{1,s1}\left[\frac{\rho}{\pi(D_{h,s1})^{2}\mu}\right]^{0.8}Pr^{0.3}K_{agua}F_{1}^{0.8}} + \frac{r_{s1,2}\frac{\ln\left[\frac{r_{2,s1}}{r_{1,s1}}\right]}{K_{tubo}} + \frac{\frac{1}{0.59\left[g\left(D_{h,s1}\right)^{3}\rho^{2}\beta Pr\right]^{0.25}K_{agua}}{D_{h,s1}\sqrt{\mu}}[T_{1}-T_{5}]^{0.25}}}$$
(53)

Reemplazando la ecuación (53) en la ecuación nro. (45) se tiene:

$$Q_{serp1} = \frac{2\pi r_{2,s1} L_{s1}(T_1 - T_5)}{\frac{r_{2,s1}}{0.023r_{1,s1} \left[\frac{\rho}{\pi(D_{h,s1})^2 \mu}\right]^{0.8} Pr^{0.3} K_{agua} F_1^{0.8}} + r_{s_{1,2}} \frac{\ln \left[\frac{r_{2,s1}}{r_{1,s1}}\right]}{K_{tubo}} + \frac{\frac{1}{0.59 \left[g\left(D_{h,s1}\right)^3 \rho^2 \beta Pr\right]^{0.25} K_{agua}}{D_{h,s1} \sqrt{\mu}} [T_1 - T_5]^{0.25}}$$

$$2\pi r_{2,s1} L_{s1} (T_1 - T_5)$$
(55)

$$Q_{serp1} = \frac{2\pi r_{2,s1} L_{s1} (T_1 - T_5)}{UA \frac{1}{F_1^{0.8}} + UB + UC \frac{1}{[T_1 - T_5]^{0.25}}}$$
(55)

Donde UA, UB y UC, Son constantes simples del Coeficiente Global de Transferencia

para efectos de simplificación.

$$UA = \frac{r_{2,s1}}{0.023r_{1,s1} \left[\frac{\rho}{\pi (D_{h,s1})^2 \mu}\right]^{0.8} Pr^{0.3} K_{agua}}$$
$$UB = r_{S1,2} \frac{\ln \left[\frac{r_{2,S1}}{r_{1,s1}}\right]}{K_{tubo}}$$
$$UC = \frac{1}{\frac{0.59 \left[g(D_{h,s1})^3 \rho^2 \beta Pr\right]^{0.25} K_{agua}}{D_{h,s1} \sqrt{\mu}}}$$

• Transferencia de calor en el serpentín nro. 02

Elaborado por el equipo de trabajo

Para el serpentín 2, Aplicando las ecuaciones (47), (48), (49), (50), (51) y (52) en

la ecuación (46) se tiene:

Reemplazando la ecuación (56) en la ecuación (45) se tiene:

 $Q_{serp2} =$

Donde UD, UF y UG, Son constantes simples del Coeficiente Global de Transferencia para efectos de simplificación.

• Transferencia de calor al exterior del tanque acumulador

Para determinar la ecuación que gobierna la perdida de calor del acumulador al exterior, primero se definió las ecuaciones para determinar el coeficiente global de un tanque vertical con aislamiento:

(57)

Elaborado por el equipo de trabajo

Para un recipiente con aislamiento el coeficiente global de transferencia es:

$$U = \frac{1}{r_{3} \left[\frac{1}{r_{1} h_{0}}\right] + r_{3} \left[\frac{\ln \frac{r_{2}}{r_{1}}}{K_{recip}}\right] + r_{3} \left[\frac{\ln \frac{r_{3}}{r_{2}}}{K_{aisl}}\right] + \frac{1}{h_{i}}}$$
(59)

Reemplazando las ecuaciones (47), (48) y (49) en la ecuación (59) se tiene:

 $U_{recip} =$

Reemplazando la ecuación (60) en la ecuación (45) se tiene:

$$Q_{\text{perd}} = \frac{(2\pi r_{r3}l + \frac{\pi r_{r3}^2}{2})(T_5 - T_a)}{\left[\frac{r_{r3}\sqrt{\mu}}{r_{r1}[\rho^2\beta Pr]^{0.25}\kappa_{agua}} + \frac{\sqrt{\mu_{air}}}{[\rho_{air}^2\beta_{air}Pr_{air}]^{0.25}\kappa_{air}}\right]^{\frac{1}{0.59[gl^3]^{0.25}[T_5 - T_a]^{0.25}} + r_{r3}\left[\frac{\ln\frac{r_{r2}}{r_{r1}}}{\kappa_{recip}}\right] + r_{r3}\left[\frac{\ln\frac{r_{r3}}{r_{r2}}}{\kappa_{ais}}\right]}$$
(61)

(60)

$$Q_{perd} = \frac{(2\pi r_{r3}l + \frac{\pi r_{r3}^{2}}{2})(T_{5} - T_{a})}{UG\frac{1}{[T_{5} - T_{a}]^{0.25}} + UH}$$
(62)

Donde UG y UH son constantes simples del coeficiente global de transferencia para efectos de simplificación.

$$\begin{split} UG &= \left[\frac{r_{r3} \sqrt{\mu}}{r_{r1} [\rho^2 \beta Pr]^{0.25} K_{agua}} + \frac{\sqrt{\mu_{air}}}{[\rho_{air}^2 \beta_{air} Pr_{air}]^{0.25} K_{air}} \right] \frac{l}{0.59 [gl^3]^{0.25}} \\ UH &= r_{r3} \left[\frac{\ln \frac{r_{r2}}{r_{r1}}}{K_{recip}} \right] + r_{r3} \left[\frac{\ln \frac{r_{r3}}{r_{r2}}}{K_{aisl}} \right] \end{split}$$

Finalmente reemplazando las ecuaciones (55), (58), (62) en (43) se tiene se tiene la ecuación que gobierna el incremento de la energía interna del tanque acumulador:

$$\frac{2\pi r_{2,s1}L_{s1}(T_1 - T_5)}{UA\frac{1}{F_1^{0.8}} + UB + UC\frac{1}{[T_1 - T_5]^{0.25}}} + Q_{resist} - \frac{2\pi r_{2,s2}L_{s2}(T_5 - T_3)}{UD\frac{1}{F_2^{0.8}} + UE + UF\frac{1}{[T_5 - T_3]^{0.25}}} - \frac{(63)}{UC\frac{1}{F_2^{0.8}} + UE + UF\frac{1}{[T_5 - T_3]^{0.25}}} - \frac{(2\pi r_{r3}l + \frac{\pi r_{r3}^2}{2})(T_5 - T_a)}{UG\frac{1}{[T_5 - T_a]^{0.25}}} + UH} = \rho VC_p \frac{\partial T_5}{\partial t}$$

Por otra parte, al evaluar el balance de energía para el serpentín nro. 2 tendremos el incremento de la temperatura T4

$$\frac{d(T_4)}{dt} = \frac{Q_{serp2}}{\rho V C_p} - \frac{F_2(T_4 - T_3)}{V_1}$$
(64)

Reemplazando la ecuación (58) en (64) se tiene:

$$\frac{d(T_4)}{dt} = \frac{1}{\rho V_1 C_p} \left[\frac{2\pi r_{2,s2} L_{s2} (T_5 - T_3)}{UD \frac{1}{F_2^{0.8}} + UE + UF \frac{1}{[T_5 - T_3]^{0.25}}} \right] - \frac{F_2 (T_4 - T_3)}{V_1}$$
(65)

3.8.3. Sistema de calefacción

En la figura 48, se muestra los parámetros del sistema de calefacción del laboratorio de control y automatización el cual se considera como un sistema cerrado.

Se ha considerado la potencia entregado por los radiadores y el calor generado por las personas como energías que aportarán calor a nuestro sistema y por otro lado se tiene como perdidas de energía a los flujos de calor transmitido al exterior y por renovación de aire.

Elaborado por el equipo de trabajo

De la ecuación (42) obtenemos:

$$Q_{\text{rad}} + Q_{\text{pers}} - Q_{\text{ren}} - Q_{\text{tran}} = \rho V C_{\text{p,air}} \frac{\partial T_6}{\partial t}$$
(66)

Aplicando la ecuación (44) se determina el calor transmitido al exterior.

$$Q_{tran} = [U_{m1}A_{t,m1} + U_{m2}A_{t,m2} + U_{tech}A_{tech} + U_{pis}A_{pis} + U_{puer}A_{puer}$$
(67)
+ $U_{ven}A_{ven}](T_6 - T_a)$

$$Q_{\rm tran} = \rm{UAG}(T_6 - T_a) \tag{68}$$

Donde UAG es una constante con fines de simplificación

$$UAG = U_{m1}A_{t,m1} + U_{m2}A_{t,m2} + U_{tech}A_{tech} + U_{pis}A_{pis} + U_{puer}A_{puer}$$
(69)

 $+ U_{ven}A_{ven}$

• Flujo de calor por renovación de aire

Considerando sistema cerrado, y en función de la transferencia de masa, la relación de

balance de energía se expresa (Cengel, 2007)

$$Q = MC_{p}\Delta T \tag{70}$$

El calor perdido por renovación lo expresaremos por:

$$Q_{ren} = M_{ren,air}C_{p,air}(T_6 - T_a)$$
(71)

• Calor generado por los radiadores según el fabricante:

Figura Nº 49:Esquema de radiadores

Elaborado por el equipo de trabajo

La potencia de los radiadores viene determinado por la siguiente ecuación

$$Q_{rad} = Q_{nom} \left[\frac{T_7 - T_6}{\Delta T_{nom}} \right]^n \text{Ner}$$
(72)

Reemplazando las ecuaciones (68), (71), (72) en (66)

$$Q_{\text{nom}} \left[\frac{T_7 - T_6}{\Delta T_{\text{nom}}} \right]^n \text{Ner} + Q_{\text{pers}} - m_{\text{ren,air}} C_{\text{p,air}} (T_6 - T_a) - \text{UAG}(T_6 - T_a)$$
(73)
$$= \rho \text{VC}_{\text{p,air}} \frac{\partial T_6}{\partial t}$$

1

Por otra parte evaluando balance de energía en los radiadores según la Figura 57, se

obtiene el incremento de la temperatura T8

$$\frac{d(T_8)}{dt} = -\frac{Q_{rad}}{\rho V_3 C_p} - \frac{F_2(T_8 - T_7)}{V_3}$$
(74)

Reemplazando la ecuación (72) en la ecuación (74)

$$\frac{d(T_8)}{dt} = -\frac{1}{\rho V_3 C_p} Q_{nom} \left[\frac{T_7 - T_6}{\Delta T_{nom}} \right]^n \text{Ner} - \frac{F_2(T_8 - T_7)}{V_3}$$
(75)

3.8.4. Sistema de ecuaciones

• Sistema de acumulación del tanque con agua

$$\begin{cases} \rho VC_{p} \frac{\partial T_{5}}{\partial t} = \frac{2\pi r_{2,s1} L_{s1} (T_{1} - T_{5})}{UA \frac{1}{F_{1}^{0.8}} + UB + UC \frac{1}{[T_{1} - T_{5}]^{0.25}}} + Q_{resist} - \frac{2\pi r_{2,s2} L_{s2} (T_{5} - T_{3})}{UD \frac{1}{F_{2}^{0.8}} + UE + UF \frac{1}{[T_{5} - T_{3}]^{0.25}}} - \frac{d(T_{4})}{dt} = \frac{1}{\rho V_{1} C_{p}} \left[\frac{2\pi r_{2,s2} L_{s2} (T_{5} - T_{3})}{UD \frac{1}{F_{2}^{0.8}} + UE + UF \frac{1}{[T_{5} - T_{3}]^{0.25}}} \right] - \frac{F_{2} (T_{4} - T_{3})}{V_{1}}$$

$$(76)$$

Donde se tiene las siguientes variables:

Variables de entrada: Con las siguientes variables:

F2=Flujo del fluido calefactor, serpentín nro. 02

F1=Flujo del fluido caloportador, serpentín nro. 01

T1=Temperatura de entrada del serpentín nro 01.

T3=Temperatura de entrada del serpentín nro 02.

Qres=Potencia de la resistencia eléctrica

Variables de Salida

T4=Temperatura de salida del serpentín Nro. 02

T5= Temperatura del agua en el interior del tanque.

• Sistema de calefacción

$$\begin{cases} \rho V C_{p,air} \frac{\partial T_{6}}{\partial t} = Q_{nom} \left[\frac{T_{7} - T_{6}}{\Delta T_{nom}} \right]^{n} \text{Ner} + Q_{pers} - m_{ren,air} C_{p,air} (T_{6} - T_{a}) - UAG(T_{6} - T_{a}) \\ \frac{d(T_{8})}{dt} = -\frac{1}{\rho V_{3} C_{p}} Q_{nom} \left[\frac{T_{7} - T_{6}}{\Delta T_{nom}} \right]^{n} \text{Ner} - \frac{F_{2}(T_{8} - T_{7})}{V_{3}} \end{cases}$$
(77)

Donde se tiene las siguientes variables:

Variables de entrada: Con las siguientes variables:

F2=Flujo del fluido calefactor, serpentín nro. 02

T7=Temperatura de entrada al radiador.

Variables de Salida

T6=Temperatura del laboratorio.

T8= Temperatura del fluido de salida del radiador

Es importante mencionar que para la simulación del sistema se consideró que las pérdidas en el recorrido por las tuberías del fluido calefactor son nulas, con lo que podemos decir que:

T7=T3

T3=T8

3.8.5. Linealización del sistema de ecuaciones

En esta sección se procedió a linealizar las ecuaciones y se expresarlas en (78) términos de variables de estado.

ECUACION DE ESTADOS =
$$\begin{cases} \dot{x} = Ax + Bu \\ Y = Cx + Du \end{cases}$$

con las ecuaciones de estado definidas se procedió a analizar el comportamiento de los parámetros mediante diagramas de control en lazo abierto utilizando la herramienta SIMULINK.

Planteando el método de análisis, se ha determinado los procesos más relevantes de funcionamiento del sistema, los cuales son: Calentamiento, operación y enfriamiento.

3.8.5.1.Proceso de calentamiento del tanque con agua

• Calentamiento del tanque sin carga desde temperatura ambiente hasta 60°c

Se considera este escenario debido a que el sistema de calefacción entra en operación cuando T5 alcanza aproximadamente 60°C.

$$Q_{serp2} = 0$$

Reemplazando en el sistema de ecuaciones (76) y con los siguientes valores de entrada.

 $F_1 = 0.000075 \frac{\text{m}^3}{\text{s}}$ $F_2 = 0.00013 \frac{\text{m}^3}{\text{s}}$ $T_1 = 95^{\circ}\text{C}$ $T_3 = 45^{\circ}\text{C}$ $Q_{resist} = 0.0\text{W}$

Se ha procedido a linealizar la ecuación mediante el programa Matlab obteniendo la siguiente ecuación de estado:

$$\begin{bmatrix} \dot{X}_1 \end{bmatrix} = \begin{bmatrix} -3.0696e - 04 \end{bmatrix} \begin{bmatrix} X_1 \end{bmatrix} + \begin{bmatrix} 1.1100e - 01 \ 3.0674e - 1.4320e - 06 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$$

$$\mathbf{y}_1 = \mathbf{X}_1$$

Donde:

 $\dot{X}_1 = \frac{\partial T_5}{\partial t}, X_1 = T_5, U_1 = F_1, U_2 = T_1, U_3 = Q_{resistencia}$

Elaborado por el equipo de trabajo

Lectura:

La temperatura T5 alcanza los 60°C en 2700s

T5 alcanza la temperatura de operación planteado 80°C a los 5450s

T5 se aproximará a la temperatura de entrada T1 a los 12000s.

• Calentamiento del tanque con carga de calefacción desde 60°c hasta temperatura de operación.

Para este caso primero se linealizaron los sistemas de ecuaciones nro (76) y (77) y expresado en ecuaciones de estado son:

A. ECUACIONES DE ESTADO DEL SISTEMA DE ACUMULACIÓN

$$\begin{bmatrix} \dot{X}_{1} \\ \dot{X}_{2} \end{bmatrix} = \begin{bmatrix} -8.3226e - 04 & 0 \\ 7.1278e - 03 & -1.3013e - 02 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}$$
$$+ \begin{bmatrix} 9.4223e + 01 & -5.0884e + 01 & 4.1001e - 04 & 4.2203e - 04 & 1.4320e - 06 \\ 0 & -4.4304e + 02 & 0 & 5.8852e - 03 & 0 \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Donde:

$$\dot{X}_1 = \frac{\partial T_5}{\partial t}, \dot{X}_2 = \frac{\partial T_4}{\partial t}, X_1 = T_5, X_2 = T_4, U_1 = F_1, U_2 = F_2, U_3 = T_1, U_4 = T_3$$

 $U_5 = Q_{resistencia}$

B. ECUACIONES DE ETADO DEL SISTEMA DE CALEFACCIÓN

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -5.1860e - 03 & -4.6095e - 03 \\ 6.2454e - 03 & -8.9367e - 03 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 4.6626e + 02 & 4.6065e - 03 \\ 5.8809e + 02 & 2.6912e - 03 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Donde:

$$\dot{X}_1 = \frac{\partial T_6}{\partial t}, \dot{X}_2 = \frac{\partial T_8}{\partial t}, X_1 = T_6, X_2 = T_8, U_1 = F_2, U_2 = T_7$$

En base a las ecuaciones de estado se ha implemnetado el siguiente diagrama de bloques de lazo abierto

Figura N[•] 51: *Diagrama de lazo abierto del tanque acumulador y sistema calefactor.*

(Elaborado por el equipo de trabajo)

En el diagrama se puede observar que el sistema de acumulación y el sistema de calefacción están enlazados entre sus variables. Es así que, la temperatura T4 de salida del serpentín nro. 02 es igual a la temperatura T7 de entrada a los radiadores, de igual modo la temperatura T8 de salida de los radiadores es igual a la temperatura T3 de entrada al acumulador, estas igualdades corresponden a la asunción de que se ha despreciado las

pérdidas de energía en el recorrido de la tubería desde el acumulador hasta los radiadores

y viceversa.

Considerando las siguientes entradas

$$F_1 = 0.000075 \frac{\text{m}^3}{\text{s}}$$
$$F_2 = 0.00013 \frac{\text{m}^3}{\text{s}}$$

$$T_1 = 95^{\circ}C$$

 $T_3 = T_8, T_4 = T_7, Q_{resist} = 0.0W$

Se obtuvo lo los siguientes resultados.

Elaborado por el equipo de trabajo

Elaborado por el equipo de trabajo

Lectura:

La temperatura T5 del interior del acumulador alcanza 66.89°C aproximadamente en 8000s. que sería la temperatura de operación.

La Temperatura T4 se estabiliza en 49.65 °C en 5000s

La temperatura confort T6 = 20° C se consigue a los 950s y se estabiliza en 21.64°C a los 6000s.

La temperatura de salida de los radiadores alcanza su máximo valor 38.56°C

3.8.5.2. Proceso de operación del tanque

En este caso se analizaron 02 escenarios:

A. Operación con T1 a 90°C a 80°C y Cambio de flujo F2 a 0.0002m3/s

Elaborado por el equipo de trabajo

Lectura:

Cuando la temperatura T1 = 90°C la temperatura de Confort T6 se mantiene por encima de los 20°C.

Cuando el sistema opera con T1= 80° C, la temperatura de confort T6 disminuye por debajo de los 20° C.

Cuando se regula el flujo F2 a 0.0002m3/s, la temperatura confort aumenta y se mantiene aproximadamente a los 20°C.

El salto térmico entre T8 Y T4 disminuye.

T5 opera por debajo de los 60°C y se estabiliza finalmente en 56°C.

B. Operación con T1 =90°C y 80°C con aporte de calefactor eléctrico.

Figura N[•] 55: *Sistema de calefacción, condición de T1 de 90°C a 80°C a los 3000s y aporte de calefactor eléctrico de 9000W a los 5000s.*

Elaborado por el equipo de trabajo

En esta situación para evitar la disminución de T6 por debajo de 20°C, se inyecta energía del calefactor eléctrico a los 5000s y se puede apreciar un incremento rápido de T6 sobrepasando los 20°C, estabilizándose en 24.3°C, de igual modo la temperatura T5 se estabiliza en 76.7°C.

3.8.5.3.Proceso de enfriamiento con carga de calefacción

En este escenario no se considera el calor aportado por el fluido caloportador, el flujo de calor desde el serpentín nro. 01 es igual a cero y el calefactor eléctrico no entra en funcionamiento.

Se considera una variación del Flujo en el circuito de calefacción desde 0.00013m3/s a 0.0002m3/s para ver el comportamiento de la temperatura de confort.

Figura Nº 56: Enfriamiento del agua del tanque con carga de calefacción

X1=t5, X2=t4, X1=t6, X2=t8

Los resultados obtenidos son los siguientes:

La temperatura T5 disminuye lentamente hasta 60°C en 2500s.

Para un flujo de 0.00013m3/s T6 disminuye hasta 15°C en 500s y al incrementar el flujo a 0.0002m3/s T6 incrementa y se estabiliza en 18.5°C antes que T5 llegue a 60°C.

3.8.6. Modelado y simulación del acumulador con PCM

Figura N[•] 57: *balance de energía de tanque acumulador.*

Elaborado por el equipo de trabajo

De la Primera Ley de la termodinámica, en terminos de la entalpía se tiene:

$$Q_{ent} - Q_{sal} = \rho_{pcm.liq} V_{pcm.liq} \frac{\partial H_{pcm}}{\partial t}$$
(79)

$$Q_{serp1} + Q_{resist} - Q_{serp2} - Q_{perd} = \rho_{pcm.liq} V_{pcm.liq} \frac{\partial H_{pcm}}{\partial t}$$
(80)

La variación de la entalpia del PCM viene definido bajo las siguientes condiciones

$$H_{pcm} = \begin{cases} C_{P,PCMsol}T & T < T_{m1} \\ C_{P,PCMsol}T_{m1} + L_{h,pcm} \left[\frac{T - T_{m1}}{T_{m2} - T_{m1}} \right] & T_{m1} \le T \le T_{m2} \\ C_{P,PCMsol}T_{m1} + L_{h,pcm} + C_{P,PCMliq}T - C_{P,pcmliq}T_{m2} & T > T_{m2} \end{cases}$$

Derivando la igualdad respecto del tiempo se tiene lo siguiente:

$$\frac{\partial H_{pcm}}{\partial t} = \begin{cases} C_{P,PCMsol} \frac{\partial T}{\partial t} & T < T_{m1} \\ \frac{L_{h,pcm}}{T_{m2} - T_{m1}} \frac{\partial T}{\partial t} & T_{m1} \le T \le T_{m2} \\ C_{P,PCMliq} \frac{\partial T}{\partial t} & T > T_{m2} \end{cases}$$
(81)

3.8.6.1.Proceso de fusión del PCM de temperatura ambiente a temperatura final de fusión-60°c

Durante este proceso, el circuito de calefacción no entra en operación, no hay aporte de energía del calefactor eléctrico, el sistema se alimenta únicamente del fluido caloportador del serpentín nro 01.

El proceso de fusión del PCM, inicia desde la primera capa de contacto con la tubería del serpentín y este se va expandiendo de manera radial hasta llegar a un punto de ruptura del PCM aún sólido (Biosca Taronger, 2019).

Para lograr una aproximación del proceso de fusión del PCM se asume que el volumen útil del PCM es una composición de volúmenes alrededor del serpentín.

• Determinación del volumen fundido de PCM en función del tiempo

Para determinar la variación del volumen fundido, se considera que la energía transferida desde el interior de la tubería será igual a la energía requerida por el PCM para el cambio de estado sólido a liquido (Lamberg et al., 2017).

Elaborado por el equipo de trabajo

Figura Nº 59: Esquema de sección anular del PCM alrededor del serpentín.

Elaborado por el equipo de trabajo

Según la figura 59, el volumen de sección cuadrada de lado d1, tiene una área:

$$A_{\text{sec,cuad}} = [d_1]^2$$

Por otro lado el área de una sección circular es:

$$A_{sec,circ} = \pi r_{r.liq}{}^2$$

Igualando ambos términos se determina r_{r.liq}, que viene a ser un radio de referencia.

$$r_{r.liq} = \frac{d_1}{\sqrt{\pi}} \tag{82}$$

El volumen útil del PCM en el recipiente será igual al volumen generado a partir de la aproximación del volumen alrededor del serpentín nro 01, entonces, se tiene la siguiente igualdad.

$$L_{serp1} = L_{r.liq}$$
(83)

Según la figura 58 y bajo el planteamiento de Lamberg et al., (2017), se tiene lo siguiente:

$$Q_{serp1} = \frac{\rho_{pcm}[\pi(r + \Delta r)^2 - \pi r^2]L_{serp1}[L_{h,pcm} + C_{p,pcms}(T_{m1})]}{\Delta t}$$

$$2\pi r_{2s2}L_{serp1}U_{s1}(T_1 - T_{m2}) = \frac{\rho_{pcm}[\pi(r + \Delta r)^2 - \pi r^2]L_{serp1}[L_{h,pcm} + C_{p,pcms}(T_{m1})]}{\Delta t}$$

Llevando al límite $\Delta r \rightarrow 0$ y $\Delta t \rightarrow 0$

$$\frac{dr_{r.liq}}{dt} = \frac{1}{r_{r.liq}} \left[\frac{r_{2s2} U_{fusion} (T_1 - T_{m2})}{\rho_{pcm} [L_{h,pcm} + C_{p.pcmsol} (T_{m1} - T_a)]} \right]$$
(84)

El coeficiente de convección para el proceso de fusión esta definido por:

$$h_{o,m} = 0.496 \left[\frac{g \left[\frac{T_1 - T_{m1}}{2} \right] \rho_{pcm.liq}^2 \beta_{pcm.liq} C_{pcm.liq} K_{pcm.liq}^2}{\mu} \right]^{1/3}$$

El coeficiente global para el proceso de fusión es:

U_{fusion}

Reemplazando esta última ecuación en (84) y simplificando tendremos:

Linealizando y expresando en sistemas de ecuaciones de estado se tiene la siguiente expresión

$$[\dot{X}_1] = [-1.7698e - 05][X_1] + [2.9630e - 08 \ 8.5013e - 04 \] \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$$

 $y_1 = X_1$

Donde:

$$\dot{X}_{1} = \frac{\partial r_{r,liq}}{\partial t}$$
$$X_{1} = r_{r,liq}$$
$$U_{1} = T_{1}$$
$$U_{2} = F_{1}$$

La siguiente grafica muestra el tiempo de fusión del PCM.

Figura Nº 60: Fusión de PCM

Elaborado por el equipo de trabajo

El radio de la sección anular llega a su valor máximo en 11200s, esto quiere decir que el PCM se encuentra fundido al 100% en 11200s.

3.8.6.2.Proceso de calentamiento del PCM liquido de 60°C a 80°C

De las ecuaciones (80), (81) y (42) se tiene la siguiente ecuación:

$$\left[C_{P,PCMliq}\frac{\partial T_{9}}{\partial t}\right]\rho V_{PCMliq} = Q_{serp1} + Q_{resist} - Q_{serp2} - Q_{perd}$$
(86)

El flujo de energía en los elementos vendrá expresado por las siguientes ecuaciones:

Finalmente, la fase liquida del PCM es la fase en la que deberá operar el sistema de calefacción, para ello se tienen las siguientes ecuaciones que gobiernan el proceso.

Reemplazando las ecuaciones (87)(88)(89) en (86) se tiene:

$$\begin{cases} \frac{\partial(T_{9})}{\partial t} = \frac{\left[\frac{2\pi r_{2,51}L_{s1}(T_{1} - T_{9})}{UA\frac{1}{F_{1}^{0.8}} + UB + UQ\frac{1}{[T_{1} - T_{9}]^{0.25}} + Q_{resist} - \frac{2\pi r_{2,52}L_{s2}(T_{9} - T_{3})}{UD\frac{1}{F_{2}^{0.8}} + UE + UR\frac{1}{[T_{9} - T_{3}]^{0.25}}} - \frac{\left(2\pi r_{r3}l + \frac{\pi r_{r3}^{2}}{2}\right)(T_{9} - T_{a})}{US\frac{1}{[T_{5} - T_{a}]^{0.25}} + UH}\right]}{C_{P,PCMliq}} \\ \frac{d(T_{4})}{dt} = \frac{1}{\rho V_{1}C_{p}} \left[\frac{2\pi r_{2,s2}L_{s2}(T_{9} - T_{3})}{UD\frac{1}{F_{2}^{0.8}} + UE + UR\frac{1}{[T_{9} - T_{3}]^{0.25}}}\right] - \frac{F_{2}(T_{4} - T_{3})}{V_{1}} \end{cases}$$

$$(90)$$

Donde UQ, UR, US son constantes simples para efectos de simplificación.

$$UQ = \frac{1}{\underbrace{0.59 \left[g(D_{h,s1})^{3} \rho_{pcm,liq}^{2} \beta_{pcm,liq} Pr_{pcm,liq} \right]^{0.25} K_{pcm,liq}}{D_{h,s1} \sqrt{\mu_{pcm,liq}}}$$
$$UR = \frac{1}{\underbrace{\frac{1}{0.59 \left[g(D_{h,s2})^{3} \rho_{pcm,liq}^{2} \beta_{pcm,liq} Pr_{pcm,liq} \right]^{0.25} K_{pcm,liq}}{D_{h,s2} \sqrt{\mu_{pcm,liq}}}}$$

$$US = \left[\frac{r_{r3}\sqrt{\mu_{pcm.liq}}}{r_{r1} \left[\rho_{pcm.liq}^2 \beta_{pcm.liq} Pr_{pcm.liq}\right]^{0.25} K_{pcm.liq}} + \frac{\sqrt{\mu_{air}}}{\left[\rho_{air}^2 \beta_{air} Pr_{air}\right]^{0.25} K_{air}}\right] \frac{1}{0.59 [gl^3]^{0.25}}$$

A continuación, se han evaluado dos escenarios para esta etapa de calentamiento:

• Calentamiento de PCM sin carga de calefacción

En este escenario el sistema de calefacción no entra en operación, de igual modo el calor aportado por la resistencia eléctrica es igual a cero.

$$q_{resist} = 0$$

Reemplazando en el sistema de ecuaciones nro. (90) y expresando en variables de estado se tiene:

$$[\dot{X}_1] = [-4.5753e - 04][X_1] + [1.3730e - 01 \ 4.5701e - 04 \ 3.6363e - 06] \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$$

 $y_1 = X_1$

Donde:

$$\dot{X}_{1} = \frac{\partial T_{9}}{\partial t}$$

$$X_{1} = T_{9}$$

$$U_{1} = F_{1}$$

$$U_{2} = T_{1}$$

$$U_{3} = Q_{\text{resistencia}}$$

Considerando las siguientes entradas:

$$F_1 = 0.000075 \frac{\text{m}^3}{\text{s}}$$
$$T_1 = 95^{\circ}\text{C}$$
$$Q_{resist} = 0.0\text{W}$$

Se obtienen los siguientes resultados:

Figura N[•] 61: *Temperatura del interior del tanque con PCM, calentamiento sin carga de calefacción.*

Elaborado por el equipo de trabajo

Lectura

T9 alcanza 80°C a los 1850s

T9 se aproximará a la temperatura de entrada T1 a los 11000s.

• Calentamiento de PCM con carga de calefacción

Los sistemas de ecuaciones nro. (77) y (90) expresado en ecuaciones de estado son: ECUACIONES DE ESTADO DEL SISTEMA DE ACUMULACIÓN CON PCM

$$\begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} -1.6865e - 03 & 0 \\ 5.6369e - 03 & -1.5015e - 02 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

+
$$\begin{bmatrix} 1.3842e + 02 & -5.5806e + 01 & 8.3846e - 04 & 38.4752e - 04 & 3.6363e - 06 \\ 0 & -4.3279e + 02 & 0 & 9.3781e - 03 & 0 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

 $\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$

Donde:

 $\dot{X}_{1} = \frac{\partial T_{9}}{\partial t}$ $\dot{X}_{2} = \frac{\partial T_{4}}{\partial t}$ $X_{1} = T_{9}$ $X_{2} = T_{4}$ $U_{1} = F_{1}$ $U_{2} = F_{2}$ $U_{3} = T_{1}$ $U_{4} = T_{3}$

 $U_5 = Q_{\text{resistencia}}$

ECUACIONES DE ESTADO DEL SISTEMA DE CALEFACCIÓN

$$\begin{bmatrix} \dot{X}_{1} \\ \dot{X}_{2} \end{bmatrix} = \begin{bmatrix} -5.1860e - 03 & -3.2389e - 03 \\ 6.1092e - 03 & -7.1399e - 03 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}$$
$$+ \begin{bmatrix} 6.0833e + 02 & 3.2389e - 03 \\ 7.6728e + 02 & 1.0307e - 03 \end{bmatrix} \begin{bmatrix} U_{1} \\ U_{2} \end{bmatrix}$$
$$\begin{bmatrix} y_{1} \\ y_{2} \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_{1} \\ X_{2} \end{bmatrix}$$

Donde:

$$\dot{X}_{1} = \frac{\partial T_{6}}{\partial t}$$
$$\dot{X}_{2} = \frac{\partial T_{8}}{\partial t}$$
$$X_{1} = T_{6}$$
$$X_{2} = T_{8}$$
$$U_{1} = F_{2}$$
$$U_{2} = T_{7}$$

En base a las ecuaciones de estado se ha implementado el siguiente diagrama de bloques de lazo abierto para el sistema de acumulación.

Figura Nº 62: Diagrama de lazo abierto del acumulador con PCM y sistema calefactor

Elaborado por el equipo de trabajo

Considerando las siguientes entradas:

$$F_{1} = 0.000075 \frac{\text{m}^{3}}{\text{s}}$$
$$F_{2} = 0.00015 \frac{\text{m}^{3}}{\text{s}}$$
$$T_{1} = 95^{\circ}\text{C}$$
$$T_{3} = T_{8}$$

$$T_4 = T_7$$

 $Q_{resist} = 0.0W$

Se obtienen los siguientes resultados:

Figura Nº 63: Calentamiento de PCM líquido con carga de calefacción.

Elaborado por el equipo de trabajo

Lectura:

La temperatura en el interior del tanque se estabiliza en 69°C a los 3500s.

La temperatura en el interior del ambiente llega a 21°C en1500s.

3.8.6.3.Proceso de operación del tanque

En este caso se analizaron los siguientes escenarios:

• Operación con T1 a 90°C y 80°C con Cambio de flujo F2 a 0.0002m3/s

Figura N[•] 64: *Sistema de calefacción, condición de T1 de 90°C a 80°C a los 3000s e incremento de F2 a 0.0002m3/s a los 5000s.*

Elaborado por el equipo de trabajo

Lectura:

Cuando la temperatura T1 es igual a 90°C, la temperatura de Confort T6 no llega a los 20°C. Lo mismo ocurre para T1=80°C.

Por otra parte, cuando T1=90°C, la temperatura del T9 en el interior del tanque (temperatura del PCM) se encuentra por encima de los 60°C. Mientras que cuando T1=80°C, T9 se encuentra por debajo de los 60°C, físicamente esto no es posible debido a que el PCM inicia su solidificación.

Para lograr subir el valor de T6 con T1=90°C, se procede a variar el flujo nro. 02 a 0.0002m3/s, ver figura siguiente:

Figura N^{\bullet} 65: *Sistema de calefacción, condición de* $T1 = 90^{\circ}$ *e incremento de* F2 *a* 0.0002*m3/s a los 5000s.*

Elaborado por el equipo de trabajo

Lectura:

Para este caso se logra aumentar la temperatura del recinto T6 hasta 20.38°C con solo variar F2 a los 5000s, mientras que T9 se mantiene por encima de los 60°C.

• Operación con T1 =90°C y 80°C con aporte de calefactor eléctrico.

Figura N[•] 66: Sistema de calefacción, condición de T1 de 90°C y aporte de calefactor eléctrico de 9000W a los 5000s.

Elaborado por el equipo de trabajo

Lectura

En este escenario, para incrementar de T6 a más de 20°C se inyecta energía del calefactor eléctrico a los 5000s. en el diagrama se puede apreciar un incremento rápido de T6 sobrepasando los 20°C y estabilizándose en 23.88°C, de igual modo, la temperatura T9 se estabiliza en 86°C.

3.8.6.4. Proceso de enfriamiento con carga de calefacción

En este escenario no se considera el calor aportado por el fluido caloportador, el flujo de calor desde el serpentín nro. 01 será igual a cero y el calefactor eléctrico no entra en funcionamiento.

Elaborado por el equipo de trabajo

Lectura:

La temperatura T9 disminuye lentamente hasta la temperatura mínima de operación (antes que esl PCM tienda a solidificarse) 60°C en 2800s, y T6 disminuye hasta 17.5°C en 300s y llegará a 15.36°C en 1000s aproximadamente.

160

Debido a que la temperatura T6 disminuye rápidamente y a la vez para que T9 llegue a la temperatura de cambio de fase, deben transcurrir 2800s bajo la condición de que T3 se mantenga debajo de 33°C y T4 en 34°C, es necesario implementar un calentador auxiliar externo para que T4 incremente hasta T7=45°C.

La finalidad de este calentador externo es mantener la temperatura confort hasta que la Temperatura T9 del PCM llegue a su punto de solidificación y así aprovechar la energía latente del PCM durante el proceso de solidificación.

Figura Nº 68: Enfriamiento del PCM del tanque con incremento de T4 a T7

Elaborado por el equipo de trabajo

 Se observa que al inyectar energía auxiliar para que la temperatura de entrada a los radiadores T7 llegue hasta 46°C también T4 y T8 se incrementan y T6 se mantiene en la temperatura de confort 20°C.

 T9 continúa disminuyendo hasta llegar a 60°C en aproximadamente en 3250s, es en este punto que el PCM comienza a solidificarse.

Otra forma de mantener la temperatura en el recinto alrededor de 20°C, es mediante una variación del Flujo en el circuito de calefacción hasta 0.00017m3/s a los 500s, a continuación puede apreciar el comportamiento de la temperatura de confort en esta condición.

Figura Nº 69: Enfriamiento del agua del tanque con carga de calefacción

Elaborado por el equipo de trabajo

Lectura:

La temperatura T9 disminuye lentamente hasta 60°C en 3600s.

Para un flujo de 0.00013m3/s T6 disminuye por debajo de 20°C y al incrementar el flujo a 0.00017m3/s, T6 se incrementa y se estabiliza en 20.48°C antes que T9 llegue a 60°C.

3.8.6.5.Proceso de solidificación del PCM con carga de calefacción

Este caso solo se aplica cuando F1=0, No hay aporte de calor del serpentín nro. 01 y el aporte del calefactor también es nulo.

El flujo de calor absorbido por el serpentín nro. 02 será igual al flujo de calor cedido por el PCM durante la solidificación, es decir, dependerá exclusivamente de la velocidad de fusión del PCM.

La velocidad de fusión del PCM dependerá del incremento del volumen solido de PCM

Figura Nº 70: Esquema de transferencia de calor en proceso de solidificación del PCM.

Elaborado por el equipo de trabajo

• Determinación del incremento del Volumen de PCM sólido.

Para determinar el volumen solido de PCM en función del tiempo, se realizará la aproximación tomando como base estudios realizados por (Lamberg et al., 2017) Según la figura 59, el volumen de sección cuadrada de lado d1, tiene un área:

$$A_{sec,cuad} = [d_1]^2$$

Por otro lado, el área de una sección circular será:

$A_{sec,circ} = \pi r_{r.sol}^2$

Igualando ambos términos determinaremos $r_{r.sol}$, que es un radio de referencia.

$$r_{r.sol} = \frac{d_1}{\sqrt{\pi}} = 0.03934m$$

El volumen útil del PCM será igual al volumen generado a partir de la aproximación del volumen alrededor del serpentín nro. 02, entonces tenemos la siguiente igualdad.

$$L_{serp1} = L_{r.sol}$$

Según Chungian (Pan, 2019), para determinar la razón de solidificación del PCM, indica que la tasa de flujo de energía que pasa a través del PCM sólido con una distancia radial r es igual a la tasa de cambio de energía para el PCM líquido con una pequeña distancia anular Δr :

Figura Nº 71: Sketch of 1-D annular PCM solidifacation.

Fuente: chungian, pan, 2019

$$Q_{serp2} = \frac{\rho_{pcm}[\pi(r + \Delta r)^2 - \pi r^2]L[L_{h,pcm} + \epsilon_c C_{pm,sol}(T_m - T_w)]}{\Delta t}$$
(91)

La razón del volumen solidificado de PCM dependerá de la ecuación (91), el cual simplificando resulta:

$$\frac{dr_{r.sol}}{dt} = \left[\frac{U_{sol}(T_m - T_3)}{\rho_{pcm}[L_{h,pcm} + \epsilon_c C_{p.pcmsol}(T_{m1} - T_a)]}\right]$$
(92)

El coeficiente de transmisión del serpentín recubierto con PCM solido viene definido por la siguiente ecuación.

Figura N[•] 72: *Esquema de transferencia de calor-serpentín* N[°] 02.

Elaborado por el equipo de trabajo

Del balance de energía en el serpentín se tiene:

$$\frac{d(T_4)}{dt} = \frac{Q_{serp2}}{\rho V_1 C_p} - \frac{F_2(T_4 - T_3)}{V_1}$$

Extendiendo la expresión en función del coeficiente global de transmisión, se tiene:

$$\frac{d(T_4)}{dt} = \frac{2\pi r_{r.sol} U_{sol} L_{r.sol} (T_m - T_3)}{\rho V_1 C_n} - \frac{F_2 (T_4 - T_3)}{V_1}$$
(94)

El sistema de ecuaciones para el proceso de solidificación del PMC es el siguiente:

$$\begin{cases} \frac{\mathrm{dr}_{r.\text{sol}}}{\mathrm{dt}} = \left[\frac{U_{\text{sol}}(T_{\text{m}} - T_{3})}{\rho_{\text{pcm}}[L_{\text{h,pcm}} + \varepsilon_{c}C_{p.\text{pcmsol}}(T_{\text{m}1} - T_{a})]} \right] \\ \frac{\mathrm{d}(T_{4})}{\mathrm{dt}} = \frac{2\pi r_{r.\text{sol}}U_{\text{sol}}L_{r.\text{sol}}(T_{\text{m}} - T_{3})}{\rho V_{1}C_{p}} - \frac{F_{2}(T_{4} - T_{3})}{V_{1}} \end{cases}$$
(95)

Resolviendo y expresando en ecuaciones de estado se tiene lo siguiente:

RADIO DEL PCM SOLIDO SOLIDIFICADO

$$[\dot{X}_1] = [1.6508e - 12][X_1] + [-3.9842e - 12 \ 3.3813e - 08] \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

 $y_1 = X_1$

Donde:

 $\dot{X}_{1} = \frac{\partial r_{r,sol}}{\partial t}$ $X_{1} = r_{r,sol}$ $U_{1} = F_{2}$

$$U_2 = T_3 = T_8$$

TRANSFERENCIA DE CALOR AL SERPENTIN NRO 02

$$\begin{bmatrix} \dot{X}_1 \end{bmatrix} = \begin{bmatrix} -1.3013e - 02 \end{bmatrix} \begin{bmatrix} X_1 \end{bmatrix} + \begin{bmatrix} 2.2135e - 01 \ 1.3671e - 02 \ 6.9529e + 01 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \\ U_3 \end{bmatrix}$$

$$\mathbf{y}_1 = \mathbf{X}_1$$

Donde:

$$\dot{X}_1 = \frac{\partial T_8}{\partial t}, X_1 = T_8, U_1 = r_{r,sol}, U_2 = T_3 = T_8, U_3 = F_2$$

ECUACIONES DE ETADO DEL SISTEMA DE CALEFACCIÓN

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} -5.1860e - 03 & -3.2389e - 03 \\ 6.1092e - 03 & -7.1399e - 03 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 6.0833e + 02 & 3.2389e - 03 \\ 7.6728e + 02 & 1.0307e - 03 \end{bmatrix} \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Donde:

$$\dot{X}_1 = \frac{\partial T_6}{\partial t}, \dot{X}_2 = \frac{\partial T_8}{\partial t}, X_1 = T_6, X_2 = T_8, U_1 = F_2, U_2 = T_7$$

Se ha implementado el siguiente diagrama de bloques de lazo abierto donde se muestran los tres subsistemas que gobiernan el proceso de solidificación con carga de calefacción.

Elaborado por el equipo de trabajo

Este análisis es una continuación del proceso de enfriamiento con carga de calefacción con un caudal F2=0.00017m3/s.

Se tiene los siguientes resultados:

Figura Nº 74: Tiempo de solidificación del PCM con carga de calefacción.

Elaborado por el equipo de trabajo

Figura N[•] 75: Solidificación del PCM con carga de calefacción con caudal F2=0.00017m3/s, sin inyección de energía auxiliar.

Elaborado por el equipo de trabajo

Lectura:

El tiempo de solidificación del PCM alrededor del serpentín es t=16900s, tiempo en el cual el volumen útil se encuentra solido al 100%.

En este caso la temperatura T6 sufre un incremento hasta 22.32°C, de igual modo las temperaturas T8 y T4 también se incrementan favorablemente.

Finalmente, se resume que el tiempo en el que el PCM logra transferir energía al sistema de calefacción es de 16900s.

3.9.DISEÑO DEL CONTROLADOR

Según los análisis de respuesta en lazo abierto, frente a los diversos escenarios, se ha llegado a determinar el siguiente criterio para el diseño de los controladores:

Para T1(temperatura del fluido caloportador) mayor o igual a 90°C se debe manipular el

Flujo en el circuito calefactor F2.

Para T1 menor a 90" se debe manipular la potencia del calefactor eléctrico.

se ha determinado las siguientes variables: para el controlador:

- Variables de Control: Temperatura del Recinto (ambiente) T6
- Variables manipuladas: Caudal en el circuito calefactor F2 y Potencia del calefactor eléctrico Qresist.
- Perturbación: Flujo en el circuito caloportador F1 y Temperatura de entrada al Tanque acumulador T1.

3.9.1. Control de la potencia del calefactor eléctrico con controlador PID.

Figura Nº 76: Diagrama de bloques para control del Calefactor Eléctrico-Qresist.

Elaborado por el equipo de trabajo

Figura Nº 77: Respuesta a la variación de T1 de 90°C a 80°C a los 3000s

Elaborado por el equipo de trabajo

Como se puede apreciar en la figura 82 al someter a T1 a una variación de la temperatura con una señal tipo escalón de 90°C a 80°C a los 3000 segundos, el controlador regula la potencia del calefactor eléctrico a fin de mantener la temperatura de confort en 21°C.

El Tiempo en que logra estabilizarse el sistema es de 1500s.

La variación de la Potencia del calefactor se puede apreciar en la figura 83, esta potencia llega a 3057W, con este valor el sistema se mantiene estable y en el valor del Set point establecido.

El tiempo que toma a estabilizarse la potencia es de 3000s.

Elaborado por el equipo de trabajo

Con la herramienta de sintonización del SIMULINK se obtuvieron los siguientes parámetros de diseño del controlador PID

$$K_p = 4254.62$$

 $T_i = 7.38$
 $T_d = 466117.66$

3.9.2. Control del caudal F2 del circuito calefactor con controlador PID

Figura Nº 79: Diagrama de bloques para control del caudal-F2

Elaborado por el equipo de trabajo

Para este caso se ha construido el diagrama de bloques con controlador PID para regulación del caudal F2.

Para la simulación se sometió a T1 a una variación con una señal tipo escalón de 95°C a 91°C a los 3000 segundos, el controlador PID regula la válvula de control a fin de mantener la temperatura de confort en 21°C.

El Tiempo en que logra estabilizarse ta temperatura de confort es de 1100s tal como se aprecia en la figura 85, sin embargo, la variación en términos de confort es despreciable por tratarse de 0.03°C. tal como se ve en la figura 85 y 86

Elaborado por el equipo de trabajo

Figura Nº 81: Respuesta de T6 a la variación de T1 de 95°C a 91°C a los 3000s

Elaborado por el equipo de trabajo

La variación del caudal F2 se debe a la regulación de la válvula de control tal como se puede apreciar en la figura 87, el caudal varía desde 1.455m3/s hasta 1.55m3/s en un tiempo 1100s aproximadamente. Con este valor el sistema se mantiene estable y en el valor del Set point establecido.

Figura N[•] 82: *Regulación de F2 frente a la variación de T1 de 95°C a 91°C a los 3000s*

Elaborado por el equipo de trabajo

Los parámetros de diseño del controlador PID son los siguientes

$$K_p = 1.76e - 05$$

 $T_i = 3.73e - 07$
 $T_d = -0.000156$

CAPITULO IV

RESULTADOS Y DISCUSION

Se ha diseñado un tanque acumulador tipo intercambiador de doble serpentín con capacidad de almacenar PCM en su interior, se ha desarrollado planos de fabricación del acumulador, el diseño mecánico cumple con las normas de construcción ASME Secc VIII Div.1. El tanque acumulador ha sido implementado en un sistema de calefacción de ambientes utilizando colectores solares de tubos de vacío y radiadores para calefacción del laboratorio de Control de la Escuela profesional de Mecánica Eléctrica de la Universidad nacional del Altiplano. Se ha realizado el modelo matemático de los sistemas de acumulación y calefacción, en base a sus funciones de transferencia se ha implementado diagramas de flujo de lazo abierto para analizar todas sus variables de estudio. Los resultados obtenidos se muestran en la tabla Nro 11 y se explican a continuación:

• Proceso de Acumulación de Energía:

Para una temperatura T1 de fluido calefactor de 90°C, el tiempo que lleva para calentar el fluido de almacenamiento desde una temperatura de 15°C a 60°C es mucho mayor en el tanque con PCM que tarda aproximadamente 11200s (3 h y 6 min) frente a los 2700s (45 min) que tarda el tanque con agua, esto se debe a que el PCM sufre un proceso de fusión hasta completar el 100% de las misma.

En el proceso de acumulación con carga de calefacción. El tanque con PCM tarda menos tiempo en llegar a su temperatura máxima de operación con relación al tanque con agua, así mismo la temperatura máxima para el PCM es 69°C es mucho mayor frente a los 66.89°C de agua.

• Proceso de operación:

Para una temperatura T1 del fluido calefactor mayor a 90°C, la temperatura de salida del serpentín 02 es mayor en el tanque con agua respecto del tanque con PCM. Sin embargo, la temperatura de confort T6 no se ve afectado considerablemente, esta ligera variación se corrige variando el caudal del serpentín nro. 02.

Ante una variación de la temperatura T1 del fluido calefactor de 90°C a 80°C, se puede apreciar que el tanque con agua logra mantener la temperatura T6 de confort alrededor de 19.5°C, sin embargo, para el tanque con PCM la temperatura en su interior T9 bajará de los 60°C con lo que el PCM iniciaría su proceso de solidificación. Para que el PCM no llegue a solidificarse manteniendo la temperatura confort, se pone en funcionamiento el calefacto eléctrico con lo que la temperatura T9 dentro del tanque llega a los 81°C y la temperatura de confort a los 22.5°C.

• Proceso de enfriamiento y solidificación

Cuando el acumulador deja de recibir cualquier aporte de energía térmica ya sea solar o eléctrica manteniéndose aún el sistema de calefacción en funcionamiento, el tanque acumulador entra a una etapa en el que deberá transferir toda la energía acumulada (calor sensible más calor latente) al recinto. En esta etapa el tanque acumulador sufre un enfriamiento rápido desde su temperatura de operación hasta llegar a los 60°C, esto se ve en las simulaciones donde ambos tanques que no logran mantener por un tiempo considerable la temperatura T4 de salida del serpentín nro. 02 y en consecuencia la temperatura T6 de confort bajará. sin embargo, cuando se logra incrementar el caudal F2 a 0.00017m3/s en el fluido calefactor, el tanque con PCM ofrece mejores resultados debido a que la Temperatura de confort llega a los 20.5°C manteniéndose así durante 3700s, mientras que el tanque con agua mantendrá solo el 18.9°C por menos tiempo.

Procesos v	TIPO	Т5-Т9	T4	T7	T6=20°C	T6=Max
Escenarios		(Tiempo)	(Tiemp	(Tiempo)	(Tiempo)	(Tiempo)
		((11011p) ()	(((110111110)
Acumulación de	AGU	60°C	-	-	-	-
15°C-60° sin	А	(2700s)	-	-	-	-
carga	PCM	60°C	-	-	-	-
		(11200s)	-	-	-	-
Acumulación de	AGU	80°C	-	-	-	-
60°C-80°C sin	А	(2750s)				
carga	PCM	80°C	-	-	-	-
		(1800s)				
Acumulación de	AGU	66.89°C	49.65°C	49.65°C	20°C	21.64°C
60°C-Tmax	А	(8000s)	(5000s)	(5000s)	(950s)	(6000s)
operación con	PCM	69°C	46.5°C	46.5°C	20°C	21°C
carga		(3500s)	(2500s)	(2500s)	(800s)	(1500s)
Operación	AGU	64.39°C	46.37°C	46.37°C	20°C	20.67°C
T1=90°C hasta los	А	(3000s)	(3000s)	(3000s)	(1500s)	(3000s)
3000s	PCM	63.53°C	41.08°C	41.08°C	-	18.64°C
		(3000s)	(3000s)	(3000s)		(3000s)
Operación T1=	AGU	58.56°C	43.68°C	43.68°C	-	19.65°C
80°C a los 5000s	А	(5000s)	(5000s)	(5000s)		(3000s)
	PCM	58.18°C	No es posible determinar, T9 está por debajo de			
		(5000s)	la tempera	atura de fusió	n	
Operación T1=	AGU	55.78°C	41.64°C	41.64°C	20°C	19.83°C
80°C e	А	(9000s)	(9000s)	(9000s)	(20s)	(8000s)
incremento de	PCM	58.6°C	No es posible determinar, T9 está por debajo de			
F2=0.00015m3/s		(7000s)	la temperatura de fusión			
a 0.0002m3/s a los						
5000s						
Operación	AGU	76.24°C	56.57°C	56.57°C	20°C	24.58°C
T1=80°C,	А	(11000s)	(10000s	(10000s)	(5100s)	(11000s)
Resistencia=9000	DOM	0100)	51.0.00	2000	22 5 (2 0
w a los 5000s	РСМ	81°C	51.26°C	51.26°C	20°C	22.56°C
	ACII	(9000s)	(9000s)	(9000s)	(500s)	(9000s)
Entriamiento	AGU	60°C	39.23°C	39.23°C	-	18.91°C
I max operación	A	(2300s)	(2300s)	(2300s)	2000	(2300s)
hasta 60°C con	PCM	61.58°C	42.94°C	42.94°C	20°C	20.49°C
$carga$ y $E2-0.00017m^{2}/c$		(3700s)	(3700s)	(3700s)	(750s)	(3700s)
F2=0.0001/1115/8	ACU	No hor com	in de ferre			
proceso de	AGU A	INO nay cambio de fase				
calidificación con	A	50°C	10 12°C	49 12°C	2000	22 22°C
carga con	PUNI	(16000a)	40.15°C	40.15° U (16000a)	$\frac{20 \text{ C}}{(0 \text{ c})}$	(16000c)
variación do		(109008)	(109005	(109008)	(08)	(109008)
Caudal E2 -)			
$Cautai F_2 = 0.00017m_3/s$						
0.000171115/8						

 $\textit{Tabla N^{\bullet} 11: Cuadro comparativo acumulador con PCM y Agua}$

Elaborado por el equipo de trabajo

Una vez que la temperaturaT9 del PCM llega a lo 60°C, este comienza a ceder calor latente por cambio de fase (del estado líquido a sólido), esto se puede apreciar en las simulaciones, en donde manteniendo un caudal F2 a 0.00017m3/s se logra mantener la temperatura de confort T6 por encima de los 20°C durante un tiempo 16900s (4Horas y 40 min aproximadamente). Finalmente, el acumulador diseñado es capaz de mantener 20600s(5Horas y 40 min) de operación autónoma con el calor almacenado.

• Diseño del controlador

De los análisis realizados, se ha determinado que el proceso más crítico el cual requiere controlarse es el proceso de operación y carga del acumulador, determinándose así dos controladores PID con los cuales se logra mantener la temperatura de confort en los siguientes casos:

Para T1(temperatura del fluido caloportador) mayor o igual a 90°C se logra mantener la temperatura de confort estable en 21°C al manipular el Flujo en el circuito calefactor F2.

Los parámetros de diseño del PID son:

$$K_{\rm p} = 4254.62$$

 $T_{\rm i} = 7.38$
 $T_{\rm d} = 466117.66$

Para T1 menor a 90" se logra mantener estable la temperatura de Confort en 21°C al manipular la potencia del calefactor eléctrico.

Los parámetros de diseño del PID son:

$$K_p = 1.76e - 05$$

 $T_i = 3.73e - 07$
 $T_d = -0.000156$
V. CONCLUSIONES

- Se concluye que, el diseño del tanque acumulador tipo intercambiador usando PCM, se ve favorecido para aplicación en sistemas de calefacción de ambientes en la región Puno, debido a que el diseño logra un tiempo de autonomía de 20,600s (5 Horas y 40 min aproximadamente) en horas de noche manteniendo la temperatura de confort en 21°C, así mismo, durante su funcionamiento en el día, logra mantener la temperatura de confort en 21°C sin afectar la disponibilidad de autonomía del mismo, esto quiere decir que se logra mantener el PCM en estado Líquido para el aprovechamiento de su energía almacenada durante la noche.
- El radio del volumen útil del PCM alrededor del serpentín es de 4cm y logra un tiempo de autonomía de 20,600s (5 Horas y 40 min aproximadamente).
- La temperatura crítica del fluido caloportador es de 90°C, con ello se ha podido determinar que, para valores menores a 90°C se debe regular la potencia de la resistencia eléctrica y para valores mayores a 90°C se debe regular el caudal del fluido calefactor.
- La implementación de controladores PID satisface la operatividad del sistema de calefacción durante el proceso de operación. Regulando la potencia de la resistencia y el caudal del fluido calefactor se logra mantener los parámetros establecidos como son la temperatura de confort T6 en 21°C y la temperatura de operación T9 en el interior del tanque por encima de los 60°C para así conservar en estado líquido el PCM dentro del acumulador permitiendo la disponibilidad de autonomía durante la noche.

VI. RECOMENDACIONES

- Se recomienda mejorar el diseño del acumulador para superar la demora en la fusión del PCM, ya que no siempre se tendrá una radiación alta durante el día. Mientras más baja sea la radiación solar más tiempo demorará la fusión del PCM.
- En una aplicación real en hoteles, auditorios, cines, locales comerciales, etc se recomienda el uso de tanques acumuladores con agua y PCM en conjunto, El tanque acumulador con agua se puede usar cuando se tenga presencia de radiación solar y los tanques acumuladores con PCM para usos en horario después de las 4 pm que es cuando baja la radiación solar.
- Se recomienda realizar investigaciones aplicando otros tipos de Materiales de cambio de Fase en los acumuladores de calor.
- Se recomienda continuar con las investigaciones construyendo un prototipo experimental basado en los parámetros de esta presente investigación. Esto permitirá estudiar el comportamiento del acumulador en diferentes estaciones de la región Puno en donde la radiación solar o las horas de sol varían según la estación, así mismo, durante el día la temperatura ambiental puede llegar a estar por debajo de los 15°C y por las noches por debajo de los 5°C.

VII. BIBLIOGRAFÍA

- Aquino Larico, E. R. (2018). Determinación De La Energía Solar Para El Diseño
 Bioclimático De Viviendas En La Ciudad De Juliaca Región Puno. *Revista de Investigaciones*, 7(1), 410–421. https://doi.org/10.26788/riepg.2018.1.66
- ASME B16.5. (2003). Pipe flanges and Flanged Fittings. In *Pipe flanges and Flanged Fittings*.
- ASME secc II. (2004). Codigo ASME Sección II, Materiales. In *Revue internationale de droit pénal* (Vol. 75, Issue 3). https://doi.org/10.3917/ridp.753.0811
- ASME SECC VIII div. 1. (2001). Rules for construction of pressure vessels. In ASME SECC VIII div. 1.
- Arroyo Rosa, J.M. (2010). Modulo de calefaccion
- Aven, A. V. (2008). Guía práctica de energía solar térmica.
- Berrio Huarahuara, W. R., & Hancco Mamani, F. (2017). Diseño de un prototipo de calefacción por m2 de superficie de piso radiante utilizando pcms aprovechando la energía solar térmica en la ciudad de puno. Universidad Nacional de Altiplano-Puno.
- Biosca Taronger, J. (2019). Modelado y analisis de un deposito de almacenamiento
 latente de energía térmica con itercambiador de tipo serpentin. In *Tesis Doctoral*.
 Universidad Politécnica de Valencia-España.
- Cengel, Y. A. (2007). Transferencia de Calor y Masa, un enfoque práctico. In MC GRAW HILLL INTERAMERICANA (Ed.), *Instituto Tecnológico y de Estudios Superiores de Monterrey* (3rd ed., Vol. 3).

García, D., Castell, A., & Cabeza, L. (2006). Estudio sobre el sistema de

almacenamiento de agua caliente sanitaria en un sistema solar térmico. *Espacio de Reflexión y Comunicación En Desarrollo Sostenible*, *3*, 9. https://core.ac.uk/download/pdf/41785561.pdf

Gonzales de Leon, S. (2013). Control PID con Sintonización Difusa y Control Difuso

(Tesis de Posgrado). Instituto Politecnico Nacional, Mexico D.F.

Jensen, T. (2009). *Tecnología de la Ingeniería Solar*. New York.: Production supervision.

Kee, S. Y., Munusamy, Y., & Ong, K. S. (2018). Review of solar water heaters incorporating solidliquid organic phase change materials as thermal storage. *Applied Thermal Engineering*, 2017.12.032, 131.
https://doi.org/10.1016/j.applthermaleng

Idae. (2007). *Guía práctica de la Energía; consumo eficiente y reponsanble*. Madrid: IDAE Editorial.

Laar, M., & Olortegui del Castillo, T. (2014). "ECOEFICIENCIA EN LAS ESCUELAS PÚBLICAS DEL PERÚ."

http://www.minam.gob.pe/proyecolegios/Ecolegios/contenidos/maletin/arquitect %0Aura/arquitectura-eco/EstudioPanoramico.pdf

- Lamberg, P., Lehtiniemi, R., & Henell, A. (2017). *Numerical and experimental investigation of melting and freezing processes in phase change material storage.*
- Mann, A., Germann, T., Ruiter, M., & Groche, P. (2020). The challenge of upscaling paraffin wax actuators. *ELSERVIER*, *190*. www.elsevier.com/locate/matdes The
- Martínes Ángel Y. (2012). CTC y los materiales con cambio de fase: gestión térmica eficiente Retrieved June 26, 2017, from

http://www.interempresas.net/Componentes_Mecanicos/Articulos/98083-CTC-y-los-materiales-con-cambio-de-fase-gestion-termica-eficiente.html

Méndez Muñiz, J. M., & Cuervo Garcia, R. (2010). *Energía Solar Térmica*. Madrid, España: Fundación Confemetal.

 Mercado Calapuja, E., & Machaca Cutipa, H. (2017). Sistema de califacción solar térmico controlado para mantener el confort térmico en una ambiente de la FIQ.
 Universidad Nacional de Altiplano-Puno.

Ministerio de vivienda construcción y saneamiento. (2006). Reglamento Nacional De Edificaciones. *Reglamento Nacional De Edificaciones*, 53(9), 1689–1699.
http://www3.vivienda.gob.pe/pnc/docs/normatividad/varios/Reglamento Nacional de Edificaciones.pdf

OGATA, K. (1998). *Ingenieria de control Moderna 3 ed*. Mexico: PRENTICE-HALL HISPANOAMERICA, S.A.

Oliver, A., Neila, F. J., & García-Santos, A. (2012). Clasificación y selección de materiales de cambio de fase según sus características para su aplicación en sistemas de almacenamiento de energía térmica - PCM choosing and 130 classification according to their characteristics for their application for therma, 62(305), 131–140. https://doi.org/10.3989/mc.2012.58010

Pan, C. (2019). Efficient modeling of latent thermal energy storage systems for optimal design and operational research. In *Degree of Doctor of Philosophy*. Lehigh University.

Pantoja Laces, W. A. (2013). análisis y comparación de sistemas de control pid y pid

difuso en lógica reconfigurable (Tesis de Pregrado). Universidad del Istmo, Tehuantepec.

- Paredes Perez, A. M. (2016). Estudio y diseño de una vivienda rural en el departamento de Puno utilizando materiales de cambio de fase para fines de confort
 [Universidad Nacional del Altiplano-Puno]. IN UNIVERSIDAD NACIONAL DEL ALTIPLANO. http://repositorio.unap.edu.pe/handle/UNAP/3286
- Parra Muñoz, R. O. (2014). Diseño de un sistema de calefacción central para una casa habitación. Universidad del Bío Bío.
- Patricio, E., Fiallos, A., Alberto, S., & Carrera, V. (2007). Diseño de un sistema de condensación para la emisión de vapor originado en el área de cocción de la planta de producción de la cervecería andina s.a. [ESCUELA POLITÉCNICA NACIONAL]. https://bibdigital.epn.edu.ec/bitstream/15000/476/1/CD-0850.pdf
- Perez Limachi, F. R., & Canaza Zavala, M. (2009). diseño e implementacion de un sistema de controlador por computadora en tiempo real de flujo y nivel de agua, utilizando la tarjeta de adquisicion de datos (daq), variador de velocidad y programacion labview (tesis de pregrado). UNIVERSIDAD NACIONAL DEL ALTIPLANO, PUNO-PERU.
- Pineda, J. (2004). Modificación, evaluación y análisis de eficiencia del colector solar de tubos al vacío comercial. Tesis de grado, Universidad Tecnológica de Pereira, Colombia.
- Pizarro Viveros, H., Ramos Cutipa, J., & Aquino Larico, E. (2019). Implementación de un sistema de calefacción solar para un aula universitaria de la Universidad
 Nacional de Juliaca. *ÑAWPARISUM*, 1(3), 86.

- Reglamento Nacional de Edificaciones. (2014). EM. 110 Confort Térmico y Lumínico con Eficiencia Energética. *El Peruano*, 1, 50. https://www.construccion.org/normas/rne2012/rne2006.htm
- Reyes, A., Vásquez, J., & Sepúlveda, F. (2016). Análisis de ciclos fusión-solidificación de ceras de parafina. *Revista de La Facultad de Ciencias Químicas*, 0(12), 1–9.

Rincón Ortega, A. Z. (2019). Evaluación analítica y experimental de un sistema de calentamiento solar de agua a baja temperatura con tecnología de almacenamiento térmico con material de cambio de fase (pcm) en términos energéticos y exergéticos. Universidad del Norte de Barranquilla- Colombia.

Senamhi. (2020). SENAMHI. http://puno.senamhi.gob.pe/web/%0A

Schallenberg Rodríguez, J.C.(2008) Energias Renovables y efeciencia energetica

Simanca, P. L. (2018). Construcción y pruebas de un captador solar de placa plana con acumulación de energía solar térmica con material de cambio de fase. *Innovación Para Un Nuevo País.*, 1, 7–208.

W., B. (2001). Ingenieria de Control 2a edicion. Mexico: ALFAOMEGA.

- Sira-Ramírez, H., Márquez, R., Rivas Echeverría, F., & Llanes Santiago,O. (2004). CONTROL DE SISTEMAS NO LINEAS, linealización aproximada, extendida y exacta.. PRENTICE – HALL.
- Zamora Jiménez, A. (2019). Diseño de una instalación solar térmica para el abastecimiento energético de acumuladores de calor latente de tipo PCM.
 Universidad Politécnica de Cartagena-Colombia.

ANEXOS

A. ANEXO 01

Suplementos de corrección

NCh1078.c73

Tabla 6 Suplemento S_o.

Modo del servicio de claefacción	Valores del suplemento S _o						
40 014014001011	0,11 a 0,34	0,35 a 0,81	0,82 a 1,74	> 1,75			
1 Redducción de la potencia durante la noche	0,07	0,07	0,07	0,07			
2Interrupción durante 9 a 12 h.	0,20	,015	0,15	0,15			
3Interrpción durante 12 a 16 h.	0,30	0,25	0,20	0,15			

Tabla 7 Suplemento S1 por orientación

Orientación	N	NE	E	SE	S	SO	0	NO
Suplemento S ₁	-0,05	-0,05	0	+0,05	+0,05	+0,05	0	-0,05

B. ANEXO 02

Ficha técnica de Radiador de aluminio DUBAL

Dubal

Radiador reversible de dos estéticas, permite su instalación con frontal plano o con aberturas. Radiadores formados por elementos acoplables entre si mediante manguitos de 1" rosca derechaizquierda y junta de estanquidad. Elementos fabricados por inyección a presión de la aleación de aluminio previamente fundida. Radiadores montados y probados a la presión de 9 bar. Pintura de acabado en doble capa. Imprimación base por electroforesis

				30	45	60	
Presión	máx. de trabaj	0	bar	6	6	6	
Temper	atura máx. de t	rabajo	°C	110	110	110	
Cotas	Alto (A)		mm	288	421	571	
	Entrecentros (B)	mm	218	350	500	
	Ancho (C)		mm	80	80	80	
	Profundo (D)		mm	147	82	82	
Peso		kg	1,45	1,13	1,43		
Capació	lad de agua		t	0,27	0,29	0,36	
Potenci	a Frontal	$\Delta T = 40^{\circ}$	W	62	68,4	89,4	
elemen	to	$\Delta T = 50^{\circ}$	W	82,9	92,4	120,8	
(1)	Frontal	$\Delta T = 40^{\circ}$	W	61,5	65,6	85,4	
	plano	$\Delta T = 50^{\circ}$	W	82	88,6	115,1	
Expone	nte "n" de la	Frontal ab	erturas	1,3	1,35	1,35	
curva c (1)	aracterística	Frontal plano		1,29	1,35	1,34	
Forma	de suministro			En baterias de 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 y 14			
Referen	cia (2)			194A1xx01	194A1xx01	194A2xx01	

PVP / Elemento

/ Liemento

 ΔT = (T. media radiador - T. ambiente) en °C Según UNE EN-442

```
(2) Accesorios no incluidos.
Dígitos xx = Ver tabla "Codificación de
radiadores Dubal".
```

Ejemplo: DUBAL60 de 8 elementos = 194A25801

13,60€

14,05€

19,55€

(inmersión) y posterior capa de polvo epoxí color blanco RAL 9010 (ambas capas secado al horno).

Accesorios compuestos por: tapones y reducciones, pintados y cincados con rosca a derecha o izquierda, juntas, soportes, purgador automático PA5 1⁻⁻ (D ó I) y spray pintura para retoques.

70	80
6	6
110	110
671	771
600	700
80	80
82	82
1,63	1,83
0,43	0,5
102,7	115,5
138,5	155,5
98	110,3
132,2	148,7
1,34	1,33
1,34	1,34
194A3xx01	194A3xx01
17,30 €	18,75€

Montaje

Si se desea ampliar un radiador a mayor número de elementos deben usarse los manguitos y las juntas correspondientes

Manguito M-T" A	194002003*		
Junta 1" 42 x 32 x 1	194003005*		
"En conjunto de 50 u	nidades		

Bitubo

Hasta 1,5 m la conexión puede ir al mismo lado

· Entre 1,5 m y 3 m la conexión debe ir cruzada

Fara más de 3 m la conexión debe ir por ambos lados
Monotubo:

MONOCUDO

Hasta 1,5 m la conexión puede ser estándar.

 De 1,5 a 2 m protongar la sonda hasta la mitad del radiador.

Entre 2 y 3 m la conexión debe ir por ambos lados.

La colocación de tapones y reducciones no precisa de estopada o similar, la estanguidad se realiza mediante la misma junta del manguito.

Instalación

En instalaciones con radiadores de aluminio se debe tener las siguientes precauciones que de no cumplirse simultáneamente, inhabilitan la Garantie

 Colocar siempre en cada radiador un purgador eutomético PAS-1 (D ó I).

 Tratar el agua de la instalación para mantener el PH entre 5 y 8.

 Evitar que el radiador una vez instalado quede completamente aislado de la instalación, impidiendo que la llave y el detentor queden cerrados simultáneamente por algún tiempo.

Prueba hidráulica

Se recomienda probar los radiadores después de la instalación a una presión de 1,3 veces la que deberán soportar.

Codificación radiadores DUBAL

Según el número de elementos deseados, sustituir los dígitos del código del producto por los que facilitamos en la tabla siguiente (xx).

Nº de elementos

		3	4	5	6	7	8	9	10	11	12	14
3(1	03	04	05	06	07	08	09	10	11	12	14
45	5	53	54	55	56	57	58	59	60	61	62	÷4
60	Ľ,	53	54	55	56	57	58	59	60	61	62	64
70		03	64	05	06	07	88	09	10	11	12	14
80	ß	53	54	55	56	57	58	59	60	61	67	64

C. ANEXO 03

Tabla de conductividad térmica de lana de roca bazáltica (IBAR BIOLA)

Tm Cº	Temperatura	Valor	Unidad de medida
Tm C⁰	24	0.034	λ(W/mK)
Tm C⁰	38	0.036	λ (W/mK)
Tm C⁰	93	0.043	λ(W/mK)
Tm C⁰	149	0.049	λ(W/mK)
Tm C⁰	204	0.057	λ(W/mK)
Tm C⁰	260	0.067	λ(W/mK)
Tm C⁰	316	0.076	λ(W/mK)
Tm C⁰	371	0.088	λ(W/mK)

D. ANEXO 04

Propiedades Termofísicas del Aire

PROPIEDADES TERMOFÍSICAS DEL AIRE SECO (1 atm)

 \triangle

Adaptado principalmente de los datos a 0.1 MPa reportados en la Tabla 2-110 de Perry (2019) con algunos datos de la Tabla A.4 de Incropera y DeWitt (2006). Se indica en el encabera de si los valeres han sido multiplicados por un factor constante. Des ejemplos y x104 – 9.75, significa y = 9.75, x10-6 Dec

Т	ρ	c _p	h	μ×10 ⁶	v ×10 ⁶	k	α×10 ⁶	Pr
°C	kg/m³	kJ/kg·K	kJ/kg	Pa-s	m²/s	W/m·K	m²/s	_
-150	2.8664	1.026	247.8	8.76	3.06	0.0118	4.02	0.760
-125	2.3827	1.018	273.2	10.44	4.38	0.0142	5.87	0.747
-100	2.0386	1.013	298.4	11.99	5.88	0.0165	7.99	0.737
-75	1.7814	1.008	323.7	13.45	7.55	0.0186	10.37	0.728
-50	1.5819	1.006	348.8	14.83	9.37	0.0207	13.00	0.721
-40	1.5140	1.005	358.9	15.36	10.14	0.0215	14.12	0.718
-30	1.4517	1.004	369.0	15.88	10.94	0.0223	15.27	0.716
-20	1.3944	1.004	379.0	16.39	11.75	0.0230	16.46	0.714
-10	1.3414	1.004	389.1	16.89	12.59	0.0238	17.68	0.712
0	1.2923	1.003	399.1	17.39	13.45	0.0246	18.94	0.710
10	1.2467	1.004	409.2	17.87	14.34	0.0253	20.23	0.709
20	1.2041	1.004	419.3	18.35	15.24	0.0260	21.55	0.707
30	1.1644	1.004	429.3	18.83	16.17	0.0268	22.90	0.706
40	1.1272	1.005	439.4	19.29	17.11	0.0275	24.28	0.705
50	1.0923	1.005	449.5	19.75	18.08	0.0282	25.68	0.704
60	1.0596	1.006	459.6	20.20	19.07	0.0289	27.12	0.703
70	1.0287	1.007	469.7	20.65	20.07	0.0296	28.59	0.702
80	0.9996	1.008	479.8	21.09	21.10	0.0303	30.08	0.701
90	0.9720	1.009	489.9	21.53	22.15	0.0310	31.60	0.701
100	0.9460	1.010	500.0	21.96	23.21	0.0317	33.15	0.700
110	0.9213	1.011	510.1	22.39	24.30	0.0323	34.72	0.700
120	0.8979	1.013	520.3	22.81	25.40	0.0330	36.31	0.700
130	0.8756	1.014	530.4	23.22	26.52	0.0337	37.93	0.699
140	0.8544	1.016	540.6	23.64	27.66	0.0343	39.57	0.699
150	0.8342	1.017	550.8	24.04	28.82	0.0350	41.24	0.699
160	0.8149	1.019	561.0	24.45	30.00	0.0356	42.93	0.699
170	0.7966	1.020	571.2	24.85	31.19	0.0363	44.64	0.699
180	0.7790	1.022	581.4	25.24	32.41	0.0369	46.37	0.699
190	0.7622	1.024	591.7	25.64	33.64	0.0376	48.12	0.699
200	0.7460	1.026	601.9	26.03	34.89	0.0382	49.90	0.699
225	0.7086	1.031	627.6	26.98	38.08	0.0398	54.42	0.700
250	0.6747	1.036	653.5	27.92	41.38	0.0413	59.07	0.701
275	0.6440	1.041	679.4	28.84	44.79	0.0428	63.83	0.702
300	0.6159	1.047	705.5	29.74	48.29	0.0443	68.72	0.703
350	0.5665	1.058	758.1	31.50	55.61	0.0472	78.81	0.706
400	0.5244	1.070	811.2	33.20	63.31	0.0501	89.33	0.709
450	0.4881	1.081	864.8	34.85	71.39	0.0529	100.27	0.712
500	0.4566	1.093	919.1	36.45	79.83	0.0557	111.61	0.715
600	0.4043	1.115	1029.3	39.53	97.79	0.0611	135.50	0.722
700	0.3627	1.135	1141.8	42.48	117.1	0.0663	160.99	0.727
800	0.3289	1.154	1256.3	45.31	137.7	0.0714	188.07	0.732
900	0.3009	1.170	1372.6	48.04	159.6	0.0763	216.79	0.736
1000	0.2773	1.185	1490.6	50.68	182.8	0.0812	247.16	0.740
1250	0.2318	1.213	1790.4	56.95	245.7	0.0930	330.65	0.743
1500	0.1991	1.232	2095.7	62.85	315.7	0.1043	425.25	0.742

OTROS DATOS: Composición (% mol): 78.09% N₂, 20.95% O₂, 0.93% Ar, 0.03% CO₂, 0.01% otros. M = 28.964 g/mol. $T_c = 132.45$ K. $P_c = 30.74$ bar. $c_p^\circ = 1.054 - 4.4 \times 10^{-4}T + 1.144 \times 10^{-10}T^2 - 8.114 \times 10^{-10}T^3 + 1.94 \times 10^{-13}T^4$ (c_p° en kJ/kg·K, T en K, 230 K - 1500 K).

T – temperatura. ρ – densidad. c_p – capacidad calorífica a presión constante. h – entalpía (la fuente no indica el estado de referencia). μ – viscosidad ν – viscosidad cinemática. k – conductividad térmica. α – difusividad térmica. Pr – número de Prandti. M – peso molecular. c_p° – capacidad calorífica de gas ideal a presión constante. T_e – temperatura crítica. P_e – presión crítica.

REVISIÓN 6 - 91388.19

E. ANEXO 05

Ficha técnica de Colectores solares de la marca Nohana3000

Colector Térmico Heat Pipe - 10 tubos

Ficha Técnica

Caracteristicas Tecnicas	
Modelo	nhr1018
Årea total	1,70 m ²
Área de apertura	1,135 m ²
Dimensiones: Long.xAnch.xPronf.	2020x907.5x140mm
Peso en vacío	42.5 Kg
Presión de trabajo	6 Bar
Temperatura de estancamiento	250 °C
Conexiones	1/2"
№ de Tubos	10
Material del Colector	Aluminio Anodizado
Aislamiento térmico	Tubos: Vacío - Colector: Poliuretano
Inclinación	15° - 90°

Características del Absorbedor

Material y dimensiones del tubo de vacío	Vidrio de Borosilicato Long. 1800 mm, Øext. = 58 mm,Øint.= 47 mm
Tratamiento Superficial del Tubo de vacío	Triple Capa - ALN/AIN-SS/CU
Coeficiente de Transmitancia del Vidrio	> 91 %
Coeficiente de Pérdida de Calor	< 0,60 W/(m ² K)
Presión de Vacío	< 5x10 ³ Pa
Material y diámetro del heat pipe	Cobre, Ø = 8 mm
Absorción	a = 0,95
Emisión	0,05 ε
Factor de pérdidas	1,623 W/m² K
Caudal recomendado	90 l/h
Conexión máx. de módulos	6 unid. Serie
Resistencias Climatológicas	Esquema Heat Pipe

-20 °C / 99 °C

Bola de Acero de 30 mm Ø Lanzada a una altura de 500 mn Resistencia al Granizo Temperatura de Trabajo

Principales Ventajas

- Sistema Modular
- Alto rendimiento con baja radiación
- Bajo coste de mantenimiento y reparación
- Ángulo de instalación entre 15 y 90°
- Mayor rendimiento que los sistemas
- convencionales
- Bajas perdidas de Calor en el Sistema.

nohana3000.com

Colector Térmico Heat Pipe - 20 tubos

Ficha Comercial

¿Qué es Heat Pipe?

Gracias a la tecnología de tubos de vacío conseguimos una mayor superficie de captación con unas perdidas mínimas, si a esto le unimos el sistema Heat Pipe, conseguimos un colector de altas prestaciones.

Esto convierte a nuestros colectores de la serie nhr en ideales para cualquier tipo de instalación con aprovechamiento de la Energía Solar, alcanzando un rendimiento muy superior a los sistemas convencionales.

Uso Industrial

Piscinas

Funcionamiento y aplicaciones

El Heat Pipe es una barra de cobre hueca en su interior, donde en uno de sus extremos hay un bulbo que esta en contacto con el flujo de fluido calor portador, que se calienta gracias a la condensación en el bulbo del fluido calor portador que hay en el interior de la barra de cobre, llegando a alcanzar temperaturas de estancamiento de hasta 250°C.

Gracias a este novedoso sistema nuestros captadores son perfectos tanto para el uso domestico como en grandes instalaciones donde se hace mas necesario un sistema de generación de Energía Térmica que ofrezca un rendimiento optimo durante todo el año

Integración Arquitectónica	Curve	ı de Rendimiento		
)))	Rendimiento Optico (h _{ia}) Coeficiente Perdida de Calor K1 Coeficiente Perdida de Calor K2	0.844 2.048 W/m ² K 0.013 W/m ² K ² (t _e -t _a)	
Características Tipológicas		Usos Recomendados		
Referencia producto	nhr2018	ACS	1	
Número de Tubos	20	Calefacción	1	
Peso (Kg)	75.6	Suelo Radiante	1	
Superficie del colector (m²)	3.65	Climatización	1	

2.27

2020x1805x140 mm

194

Número máximo de colectores

Superficie útil (m²)

nohana3000.com

1

1

F. ANEXO 06

	Tubería de cobre de temple rígido Tipo "L"									
Medida Nominal	Diámetro Exterior	Diámetro Interior	Espesor de Pared	Peso	Peso por tramo	Presión Máxima	Presión Constante	Flujo		
Pulgadas	Pulgadas	Pulgadas	Pulgadas	Lb/pie	libras	PSI	PSI	G. P. M.		
milímetros	milímetros	milímetros	milímetros	kg/m	kilogramos	kg/cm ²	kg/cm ²	L. P. M.		
1/4"	0.375"	0.315"	0.030"	0.126	2.524	7,200	1,440			
6.35 mm	9.525	8.001	0.762	0.187	1.146	506.16	101.23			
3/8"	0.500"	0.430"	0.035"	0.198	3.965	6,300	1,260	1.873		
9.50 mm	12.700	10.922	0.889	0.295	1.800	442.89	88.57	7.089		
1/2"	0.625"	0.545"	0.040"	0.285	5.705	5,760	1,152	3.656		
12.7 mm	15.875	13.843	1.016	0.424	2.590	404.92	80.98	13.493		
3/4"	0.875"	0.785"	0.045"	0.455	9.110	4,632	926	9.600		
19 mm 📲	22.225	19.939	1.143	0.678	4.136	325.62	65.09	36.336		
1"	1.125"	1.025"	0.050"	0.655	13.114	4,000	800	19.799		
25 mm	28.575	26.035	1.270	0.976	5.954	281.20	56.24	74.94		
1 1/4"	1.375"	1.265"	0.055"	0.885	17.700	3,600	720	35.048		
32 mm	34.925	32.131	1.397	1.317	8.036	253.08	50.61	132.660		
1 1/2"	1.625"	1.505"	0.060"	1.143	22.826	3,323	664	56.158		
38 mm	41.275	38.227	1.524	1.698	10.363	233.60	46.67	212.560		
2"	2.125"	1.985"	0.070"	1.752	35.042	2,965	593	119.099		
51 mm	53.975	50.419	1.778	2.608	15.909	208.43	41.68	450.790		
2 1/2"	2.625"	2.465"	0.080"	2.483	49.658	2,742	548	214.298		
64 mm	66.675	62.611	2.032	3.695	22.545	192.76	38.52	811.120		
3"	3.125"	2.945"	0.090"	3.332	66.645	2,592	518	347.397		
76 mm	79.375	74.803	2.286	4.962	30.257	182.21	36.41	1,314.90		
4"	4.125"	3.905"	0.110"	5.386	107.729	2,400	480	747.627		
102 mm	104 775	99 187	2 794	8 017	48 909	168 72	33.74	2 829 77		

Extracto de manual técnico del cobre-NACOBRE

G. ANEXO 07

Propiedades del agua

PROPIEDADES TERMOFÍSICAS DEL AGUA SATURADA

 \bigtriangledown

Adaptado principalmente de NIST Chemistry Webbook, SRD 09 (http://webbook.nist.gov/chemistry/fluid/). Algunos datos tomados de Poling (2000) y Cengel (2015). Se indica en el encabezado si los valores han sido multiplicados por un factor constante. Por ejemplo: $\mu \times 10^3 = 1.7918$ significa $\mu = 1.7918 \times 10^{-3}$ Pa-s.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ī	LÍQUIDO SATURADO						·	VAPOR SATURADO							
Inc. bar kg/mt J/log K L/log K <thl k<="" log="" th=""> <thl <="" k<="" log="" th=""><th>Т</th><th>Р</th><th>ρ</th><th>C_p</th><th>h</th><th>μ x10³</th><th>k</th><th>Pr</th><th>σ ×103</th><th>β×10⁴</th><th>λ</th><th>ρ</th><th>C_p</th><th>h</th><th>μ×10⁶</th><th>k</th><th>Pr</th></thl></thl>	Т	Р	ρ	C _p	h	μ x10 ³	k	Pr	σ ×103	β×10 ⁴	λ	ρ	C _p	h	μ×10 ⁶	k	Pr
0 0.0064121 0.096412 0.0977 1.0178 0.0177 1.0178 0.0177 1.0178 0 0.00100 0.011 0.011 0.011 0.011 0.011 0.011 0.01178 1.0178 0.0178 1.0178 0.0172 0.0171 0.01718 0.0171 0.01718 0.0171 0.01718 0.0171 0.01718 0.01718 0.01718 0.01718 0.01718 0.01714	°C	bar	kg/m³	kJ/kg·K	kJ/kg	Pa·s	W/m·K	_	N/m	K-1	kJ/kg	kg/m³	kJ/kg·K	kJ/kg	Pars	W/m·K	_
00.00 00.0061165 99.978 4.119 0.006 1.391 2.9 0.781 0.555 2.86 2.00013 9.216 0.0177 1.0177 4 0.008135 99.988 4.208 1.88 2.00417 2.0172 1.017 6 0.008135 99.988 4.208 1.88 2.00417 2.00178 2.1177 1.017 16 0.008135 99.988 4.198 4.20 0.722 0.0174 1.0178 0.01718 1.0177 1.0178 0.0178 1.0177 1.0178 0.0178 1.0177 1.0178 0.0178 1.0177 1.0178 0.0178 1.0177 1.0178 0.0178 1.0178 1.0178 0.0178 1.0178 1.0178 0.0181 1.017 1.0178 0.0182 1.0178 0.0182 1.0178 0.0182 1.0178 0.0181 1.017 0.0182 0.0181 1.017 0.0181 0.0191 1.017 0.0181 0.0181 0.0181 0.0181 0.0181 0.0181 0	0	0.0061121	999.792	4.2199	-0.04	1.7918	0.5610	13.478	75.648	-0.6760	2500.94	0.004851	1.8843	2500.90	9.2160	0.01707	1.0173
2 0.00780 99.8 4.21 8.39 1.67 0.55 1.68 1.50 0.51 0.0055 1.88 200.45 9.38 0.0173 1.017 6 0.00954 99.86 4.109 1.52 1.472 0.572 1.017 1.007 0.00726 1.88 2511.9 9.36 0.0174 1.017 10 0.01236 99.86 4.189 6.10 1.138 0.589 8.064 7.44 1.566 2451.5 0.01736 95.08 0.017 9.77 0.716 95.08 4.18 8.39 0.667 7.19 2.571 2.4417 0.02304 1.918 2.555 1.016 0.173 1.906 2.571.5 1.016 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.010 1.84 0.580 0.517 3.510 8.471 2.020 0.5514 1.531 2.511.5 1.010 1.021 1.016 10 0.02565 99.10 1.168	③ 0.01	0.0061165	999.793	4.2199	0.00	1.7912	0.5610	13.472	75.646	-0.6742	2500.91	0.004855	1.8844	2500.91	9.2163	0.01707	1.0173
4 0.00815 99.89 4.20 15.7 0.59 11.60 75.80 -0.0005 24417 0.00256 18.80 2511.2 9.36 0.0171 101 10 0.0122 99.66 4.19 6.20 13.6 0.580 8.447 74.22 0.02756 1.80 2511.2 9.71 0.1717 10.0124 1900 2523.3 9.91 0.112 10.0173 10.0124 1900 2523.4 9.73 0.0112 10.117 10.0173 0.0173 10.0124 1900 2537.4 9.73 0.0112 10.117 10.0174 1900 2537.4 9.73 0.0112 10.117 10.0174 1900 2537.4 9.73 0.0112 10.117 10.0174 10.0174 10.0174 10.0174 10.0174 10.0174 10.0174 10.0174 10.017 10.0174 10.0174 10.017 10.0174 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10.017 10	2	0.007060	999.89	4.213	8.39	1.674	0.565	12.49	75.37	-0.3305	2496.17	0.005563	1.886	2504.56	9.26	0.0172	1.017
b 0.00033 998.4 4.00 1.12 0.012 1.01 1.48 0.0126 1.86 211.3 9.36 0.0174 1.01 15 0.0176 990.64 4.18 4.30 1.136 0.598 8.04 7.42 0.01731 1.906 2523.3 9.59 0.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.017 1.018 1.017 1.0117 1.011 1.017	4	0.008135	999.93	4.208	16.8	1.567	0.569	11.60	75.08	-0.0005	2491.4	0.006365	1.888	2508.2	9.31	0.0173	1.017
10 0.0120 998.06 4.18 4.21 1.20 0.917 2417 0.0244 1.80 2213 9.21 0.0171 1.00 20 0.0233 998.06 4.18 0.33 1.002 0.587 7.001 7.17 2.001 1.912 2.445 0.0124 1.80 2.337.4 9.37 0.0112 1.011 20 0.02427 995.64 4.180 1.257 0.797 0.615 5.415 7.119 3.002 2.4288 0.00427 1.912 2.446.5 0.01997 1.912 2.445.5 0.0110 0.0110 1.011	6	0.009354	999.89	4.203	25.2	1.4/2	0.572	10.81	74.80	0.3085	2486.7	0.007266	1.890	2511.9	9.36	0.0174	1.017
10 0.0233 90 10.02 0.588 7.004 27.7 2.006 245.7 0.0717 1.902 2.573 0.713 0.912 244.5 0.973 0.9112 244.5 0.973 0.9112 244.5 0.973 0.9115 1.017 30 0.04247 98.51 4.160 12.7 0.719 0.815 5.415 7.119 0.0312 12.825 5.010 10.019 10.117 30 0.04247 98.51 4.160 14.57 0.719 0.813 5.412 1.311 222 5.55 10.01 0.0198 10.117 40 0.07395 99.116 4.112 20.81 0.827 1.910 68.7 4.224 12.940 0.06315 1.937 2.917 0.0204 1.015 50 0.127 1.014 4.59 2.921 5.757 1.910 1.955 0.0211 1.014 60 0.999 9.134 1.417 0.211 0.0414 1.918	15	0.01226	999.05	4.190	63.0	1.300	0.580	9.447	73.49	1.506	2477.2	0.009407	1,695	2519.2	9.47	0.0170	1.017
15 0.01170 972.00 4.182 10.48 0.980 6.907 6.115 7.197 2.571 2.441.7 0.0224 1912 2.545.5 10.01 0.0189 10.17 30 0.05247 995.94 4.180 1427 0.019 0.0181 10.17 3.032 2428.8 0.03961 1.322 2544.5 10.16 0.0181 0.0189 10.17 40 0.07385 992.17 4.180 167.5 0.6531 4.328 494.0 0.05556 1.331 2524.4 10.01 0.0191 10.16 50 0.1255 985.00 4.182 20.03 0.547 0.544 2.331 2.347 71.04 4.002 2.449 1.417 1.921 2.441.0 10.02 0.0201 10.15 50 0.579 98.51 4.143 123 2.03.0 1.447 1.950 2.0011 10.70 0.021 10.19 0.212 1.112 0.021 10.113 1.017 0.411 <td< td=""><td>20</td><td>0.02339</td><td>998.16</td><td>4,184</td><td>83.9</td><td>1.002</td><td>0.598</td><td>7.004</td><td>72.74</td><td>2.066</td><td>2453.5</td><td>0.01731</td><td>1.906</td><td>2537.4</td><td>9.73</td><td>0.0182</td><td>1.017</td></td<>	20	0.02339	998.16	4,184	83.9	1.002	0.598	7.004	72.74	2.066	2453.5	0.01731	1.906	2537.4	9.73	0.0182	1.017
30 0.04247 958.1 4.18 71.9 30.2 2428.8 0.03047 1918 255.5 10.01 0.0192 10.16 40 0.07385 992.18 4.180 167.7 0.633 4.823 74.00 0.0347 217.5 10.31 0.0192 10.16 45 0.09555 990.17 4.180 167.4 0.6531 4.282 2340.6 0.06315 1.317 257.5 10.32 0.0121 10.14 50 0.1275 981.16 4.182 20.93 0.644 3.531 67.54 4.224 2381.0 0.06315 1.347 291.5 10.52 0.0224 10.17 50 0.1275 981.6 4.182 22.04 237.5 538 0.221 0.0211 10.14 60 0.1997.3 4.160 22.11 0.240 0.663 22.22 1.57 0.158 1.682 22.042 2.0139 2.044.6 0.158 1.082 2.0201 2.014 0.0211 <td>25</td> <td>0.03170</td> <td>997.00</td> <td>4.182</td> <td>104.8</td> <td>0.890</td> <td>0.607</td> <td>6.130</td> <td>71.97</td> <td>2.571</td> <td>2441.7</td> <td>0.02308</td> <td>1.912</td> <td>2546.5</td> <td>9.87</td> <td>0.0186</td> <td>1.017</td>	25	0.03170	997.00	4.182	104.8	0.890	0.607	6.130	71.97	2.571	2441.7	0.02308	1.912	2546.5	9.87	0.0186	1.017
35 0.05529 99.99 4.180 146.7 0.719 0.623 4.823 70.40 3.457 2417.3 0.0395 1901.1 4.180 10.56 0.637 3.910 6.878 2.240.2 0.0551 19.97 2.273.5 10.31 0.0195 50 0.1255 981.00 4.182 203.0 0.540 0.644 4.553 673.4 4.234 2.940 0.0555 1.017 0.2028 1.014 60 0.1955 981.16 4.183 231.2 0.649 2.244 7.10 4.909 236.8 1.041 1.955 261.7 1.10 0.021 1.014 60 0.1965 981.16 4.183 230.3 0.544 2.755 5.55 232.56 0.352 261.75 1.103 0.0221 1.014 70 0.350 97.481 4.119 314.0 0.637 0.576 5.55 235.2 0.537 2017 2.1013 0.0221 1.014 70	30	0.04247	995.61	4.180	125.7	0.797	0.615	5.415	71.19	3.032	2429.8	0.03042	1.918	2555.5	10.01	0.0189	1.017
40 0.0738 992.18 4.180 167.5 0.631 4.328 696.0 3.833 2406.0 0.0535 1.931 0.217 932.4 10.47 0.0200 1.015 50 0.1255 985.66 4.182 209.3 0.547 65.10 4.294 2351.9 0.0175 195.5 10.57 0.220 200.01 10.57 55 0.1576 985.66 4.182 212.1 0.464 3.247 67.10 4.909 239.8 0.1047 1955 261.5 10.10 0.0212 1.014 60 0.1995 983.16 4.182 212.1 0.430 0.657 2.375 6.358 232.30 0.142 1.959 264.4 1.413 0.022.1 1.014 0 0.777 94.84 4.181 314.0 0.378 2.057 6.465 202.0 264.30 1.799 264.30 1.105 0.022.1 1.014 0 0.7777 94.859 4.200 397.0	35	0.05629	993.99	4.180	146.7	0.719	0.623	4.823	70.40	3.457	2417.9	0.03967	1.925	2564.5	10.16	0.0192	1.016
45 0.0959 990.17 4.180 0.184 0.0547 0.544 5.55 2391.9 0.08515 1.393 2582.4 1.047 0.0200 1.015 50 0.1576 985.66 4.183 230.3 0.540 0.444 3.533 67.10 4.909 2369.8 0.0147 1.555 260.1 10.77 0.0208 1.014 60 0.1595 983.16 4.185 221.2 0.466 0.552 2.552 6.447 5.536 235.7 0.1047 1.552 260.1 10.77 0.0208 1.011 70 0.3120 977.73 4.190 0.231 0.667 2.376 6.536 6.123 230.50 0.2422 1.999 283.46 1.141 0.0225 1.013 80 0.777 4.190 0.331 0.677 1.897 5.954 228.51 0.539 2.0212 243.1 1.161 0.0225 1.011 90 0.7018 965.30 4.205 0.833	40	0.07385	992.18	4.180	167.5	0.653	0.631	4.328	69.60	3.853	2406.0	0.05124	1.931	2573.5	10.31	0.0196	1.016
50 0.125 988.00 4.182 209.3 0.547 0.644 3.257 5.11 6.157 98.15 1.047 2091.5 10.62 0.0024 1.014 60 0.1995 98.16 4.185 221.2 0.464 0.554 2293 2357.7 5.155 2357.2 1.014 1.055 260.8 1.09.7 0.0212 1.014 70 0.3120 977.73 4.190 231.1 0.404 0.667 2.375 535 232.05 0.2422 1.999 2634.6 1.143 0.0212 1.011 75 0.3860 974.81 4.197 335.0 0.334 0.677 2.206 6.227 6.203 2.201 1.013 80 0.4741 977.73 4.193 314.0 0.378 0.867 2.206 6.222 2.201.2 2.241.2 1.999 2.201 1.191 0.201 1.011 80 0.471 96.77 1.847 58.87 7.232 2.295.1	45	0.09595	990.17	4.180	188.4	0.596	0.637	3.910	68.78	4.224	2394.0	0.06556	1.939	2582.4	10.47	0.0200	1.015
35 0.15/5 98.56 4.185 22.33 0.2020 0.249 0.10/2 1.992 2.992.5 0.13/2 1.993 1.0021 1.933 1.0021 1.033 1.027 0.0218 1.014 66 0.1959 98.16 4.185 252.1 0.447 5.84 2.933 0.1161 1.975 2.17.5 1.100 0.0216 1.011 75 0.3860 97.4.81 4.193 31.40 0.374 0.667 2.376 61.58 6.123 2230.6 0.2422 1.999 2.84.6 11.43 0.0225 1.011 80 0.4777 4.197 1.977 0.314 0.657 1.988 60.82 6.984 2.285.5 0.539 2.021 1.176 0.0225 1.011 90 0.7018 96.30 4.205 3.77.0 0.314 0.677 1.847 98.97 7.233 2.294.5 0.5049 2.042 1.011 1.04 95.95 1.290 0.2215 1.017	50	0.1235	988.00	4.182	209.3	0.547	0.644	3.553	67.94	4.575	2381.9	0.08315	1.947	2591.5	10.62	0.0204	1.015
b0 0.199 293.10 4.187 223.1. 0.039 0.231 233.0. 0.212 1018 70 0.3120 977.73 4.187 223.1. 0.404 0.663 2.552 64.47 5.834 233.0. 0.1844 1.985 2265.1 11.12 0.0221 1.011 70 0.350 974.81 4.193 14.00 0.786 0.627 5.834 5.323 0.560 0.2427 1.999 2564.61 11.42 0.0221 1.011 80 0.7787 968.59 4.201 356.0 0.333 0.677 1.986 0.622 5.925 0.4239 2.043 22651.5 1.139 0.0226 1.014 90 0.718 968.50 4.241 398.1 0.297 1.739 58.91 7.489 22061 255.6 1.221 0.0225 1.011 100 1.01325 98.37 4.989 2.284 4.0549 2.060 2.556 1.227 0.0205 1.017	50	0.1576	983.00	4.103	230.3	0.504	0.649	3.247	67.10	4.909	2309.8	0.1047	1.900	2000.1	10.77	0.0208	1.014
D D <thd< th=""> <thd< th=""> <thd< th=""> <thd< th=""></thd<></thd<></thd<></thd<>	65	0.1995	983.10	4.100	231.2	0.400	0.659	2.903	65 37	5.536	2337.7	0.1504	1.905	2617.5	11.10	0.0212	1.014
75 0.3860 974.81 4.193 314.0 0.378 0.667 2.376 63.58 6.123 2320.6 0.2422 1.999 263.4.6 11.43 0.0225 1.013 80 0.4741 971.77 4.197 335.0 0.354 0.670 2220 62.67 6.405 23080 0.2337 0.012 264.1.0 11.99 0.0225 1.014 90 0.7018 965.30 4.200 386.1 0.679 1.749 58.27 2.625.0 0.429 2.0647 627.5 1.30 0.0240 1.015 100 1.01325 958.3 4.216 419.2 0.282 0.679 1.749 58.91 7.429 2.266.4 0.599 2.018 0.0225 1.021 1101 1.434 950.9 4.228 461.4 0.225 0.682 1.157 1.489 2256.4 0.599 2.112 2.177 1.497 2.239 2.720.1 1.30 0.0225 1.021 120 <td>70</td> <td>0.3120</td> <td>977.73</td> <td>4,190</td> <td>293.1</td> <td>0.404</td> <td>0.663</td> <td>2.552</td> <td>64,47</td> <td>5.834</td> <td>2333.0</td> <td>0.1984</td> <td>1.986</td> <td>2626.1</td> <td>11.26</td> <td>0.0221</td> <td>1.013</td>	70	0.3120	977.73	4,190	293.1	0.404	0.663	2.552	64,47	5.834	2333.0	0.1984	1.986	2626.1	11.26	0.0221	1.013
80 0.4741 971,77 4.197 335.0 0.534 0.670 2220 62.67 6.405 2308.0 0.237 2012 2641.0 11.59 0.0225 1.014 80 0.7018 965.30 4.205 377.0 0.314 0.675 1.596 6.082 5295.0 0.359 2.041 2655.5 1.136 0.0225 1.016 100 1.01325 958.35 4.216 419.2 0.282 0.677 1.847 598.7 7.23 2264.0 0.5892 2.061 2657.5 1.210 0.0225 1.011 110 1.434 950.9 4.228 461.4 0.252 0.681 1.327 5.98 1.0217 1.172 2.177 1.261 0.0225 1.021 120 1.989 941.1 4.244 503.8 0.232 0.681 1.327 5.93 0.0248 1.012 2.172 1.021 0.1025 1.021 1.022 1.172 2.177 1.443 0.963	75	0.3860	974.81	4.193	314.0	0.378	0.667	2.376	63.58	6.123	2320.6	0.2422	1.999	2634.6	11.43	0.0225	1.013
B5 0.5787 968.59 4.201 355.0 0.333 0.673 2.081 61.75 6.682 2.285.3 0.339 2.027 2851.3 11.76 0.0235 1.015 90 0.7018 965.30 4.210 398.1 0.287 1.958 60.82 6.954 2285.5 0.4239 2.043 2695.5 11.30 0.0240 1.015 90 0.101325 958.35 4.216 4192 0.282 0.677 1.447 58.87 7.223 2265.4 0.5982 2.000 2675.6 12.27 1.021 1.011 110 1.434 950.8 0.622 0.683 1.441 54.97 8.545 2021 1.122 2.177 2705.9 1.266 0.0275 1.027 130 2.021 4.285 58.92 0.683 1.322 50.86 56.24 214.3 1.977 2.130 2.737 1.950 0.301 1.047 140 3.515 92.71 0.4307	80	0.4741	971.77	4.197	335.0	0.354	0.670	2.220	62.67	6.405	2308.0	0.2937	2.012	2643.0	11.59	0.0230	1.014
90 0.7018 965.30 4.205 377.0 0.314 0.675 1.958 6.082 6.554 2225.5 0.4239 2264.5 0.4239 2265.6 1.200 2265.6 1.227 0.0251 1.016 100 1.01325 958.35 4.216 419.2 0.225 0.679 1.749 58.97 7.223 2269.5 0.5282 2.000 2675.6 12.27 0.0251 1.017 110 1.434 950.9 4.224 60.81 0.225 0.682 1.780 58.45 2202.6 0.8269 2.124 2691.1 1.261 0.0225 1.027 130 2.703 934.7 4.261 546.4 0.213 0.684 1.327 52.93 9.078 2173.7 1.497 2.239 2720.1 13.30 0.0288 1.035 140 3.615 926.1 4.238 582.2 0.162 1.152 2.177 2.111 273.4 1.44 0.031 1.060 1.062 46.5	85	0.5787	968.59	4.201	356.0	0.333	0.673	2.081	61.75	6.682	2295.3	0.3539	2.027	2651.3	11.76	0.0235	1.014
95 0.8461 961.88 4.210 398.1 0.297 1.847 59.87 7.223 2269.5 0.5049 2.061 2667.5 12.10 0.0245 1.016 100 1.01325 958.35 4.216 401.4 0.255 0.621 1.580 56.96 8.016 229.6 0.8269 2.124 2691.1 1.26 0.0262 1.027 130 2.703 934.7 4.261 56.46 0.213 0.663 1.232 50.86 9.624 2144.3 1.967 2.311 2.731.4 1.365 0.0301 1.047 140 3.615 926.1 4.283 599.2 0.187 0.689 1.152 48.74 1.197 2.311 2.733.4 1.365 0.0301 1.060 160 6.172 1.029 44.41 1.139 2.048.8 4.122 2.594 2.767.9 14.68 0.0347 1.066 180 10.03 887.0 4.405 763.1 0.150 0.677 <td>90</td> <td>0.7018</td> <td>965.30</td> <td>4.205</td> <td>377.0</td> <td>0.314</td> <td>0.675</td> <td>1.958</td> <td>60.82</td> <td>6.954</td> <td>2282.5</td> <td>0.4239</td> <td>2.043</td> <td>2659.5</td> <td>11.93</td> <td>0.0240</td> <td>1.015</td>	90	0.7018	965.30	4.205	377.0	0.314	0.675	1.958	60.82	6.954	2282.5	0.4239	2.043	2659.5	11.93	0.0240	1.015
100 1.01325 998.35 4.216 419.2 0.282 0.69 1.749 58.91 7.489 226.4 0.3982 2.080 2275.4 0.201 2.080 2275.4 0.201 2.080 2.275.4 0.281 1.101 110 1.484 950.3 0.623 1.441 54.97 8.545 2202.1 1.122 2.177 2705.9 1.266 0.0275 1.027 140 3.615 926.1 4.283 589.2 0.197 0.683 1.327 52.93 9.674 2.141 1.152 1.035 1.057 1.035 1.035 1.035 1.045 1.057 2.447 1.019 2.113.7 2.447 2.394 2.745.9 1.3.99 0.0316 1.060 160 6.182 907.4 4.335 675.5 0.170 0.680 1.028 4.529 1.399 0.0316 1.047 170 7.922 897.6 4.447 807.4 0.420 1.629 1.139 2.0424 </td <td>95</td> <td>0.8461</td> <td>961.88</td> <td>4.210</td> <td>398.1</td> <td>0.297</td> <td>0.677</td> <td>1.847</td> <td>59.87</td> <td>7.223</td> <td>2269.5</td> <td>0.5049</td> <td>2.061</td> <td>2667.6</td> <td>12.10</td> <td>0.0245</td> <td>1.016</td>	95	0.8461	961.88	4.210	398.1	0.297	0.677	1.847	59.87	7.223	2269.5	0.5049	2.061	2667.6	12.10	0.0245	1.016
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	100	1.01325	958.35	4.216	419.2	0.282	0.679	1./49	58.91	7.489	2256.4	0.5982	2.080	26/5.6	12.27	0.0251	1.017
130 139 34.1 4.244 30.5 0.22 0.030 1.441 34.37 0.243 20.61 1.112 2.107 2.103 0.243 0.0213 1.035 140 3.615 926.1 4.283 589.2 0.197 0.683 1.322 52.86 9.624 2144.3 1.967 2.311 273.4 1.355 0.0316 1.047 150 4.762 917.0 4.307 632.2 0.182 0.682 1.152 48.74 10.19 2113.7 2.475 2.394 2745.9 1.3.99 0.0316 1.067 160 6.12 977.4 4.368 715.1 0.160 0.677 1.029 44.41 11.39 2048.8 4.122 2.594 2767.9 14.86 0.037 1.079 170 7.922 897.5 4.436 852.3 0.134 0.663 0.910 37.67 13.50 1939.7 7.861 2.990 2792.0 15.71 0.0401 1.171	110	1.434	950.9	4.228	461.4	0.255	0.682	1.580	56.96	8.016	2229.6	0.8269	2.124	2691.1	12.61	0.0262	1.021
140 3.615 926.1 4.283 589.2 0.197 0.683 1.232 50.86 9.624 214.3 1.957 2.311 273.3 1.355 0.0301 1.047 150 4.762 917.0 4.307 632.2 0.182 0.682 1.152 48.74 10.19 2113.7 2.547 2.394 2.745.9 14.40 0.0316 1.067 170 7.922 897.5 4.356 75.5 0.170 0.680 1.085 46.59 10.77 2082.0 3.260 2.488 2.757.9 14.48 0.0331 1.077 170 7.922 897.5 4.405 763.1 0.150 0.673 0.982 42.19 12.05 2014.2 5.159 2.713 2.777.9 14.68 0.0341 1.141 200 15.55 864.7 4.446 852.3 0.134 0.663 0.910 37.67 13.50 13.937 7.861 2.990 15.71 0.0041 1.171	130	2 703	934.7	4.244	546.4	0.232	0.684	1.327	52.93	9.078	2173.7	1.122	2.777	2703.9	13.30	0.0275	1.027
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	140	3.615	926.1	4,283	589.2	0.197	0.683	1.232	50.86	9.624	2144.3	1.967	2.311	2733.4	13.65	0.0301	1.047
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	150	4.762	917.0	4.307	632.2	0.182	0.682	1.152	48.74	10.19	2113.7	2.547	2.394	2745.9	13.99	0.0316	1.060
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	160	6.182	907.4	4.335	675.5	0.170	0.680	1.085	46.59	10.77	2082.0	3.260	2.488	2757.4	14.34	0.0331	1.077
180 10.03 887.0 4.405 763.1 0.150 0.673 0.982 42.19 12.05 2014.2 5.159 2.713 2777.2 15.03 0.0364 1.118 190 12.55 864.7 4.447 807.4 0.142 0.669 0.943 39.95 12.75 1977.9 6.395 2.844 2785.3 15.37 0.0382 1.143 200 15.55 864.7 4.496 852.3 0.128 0.657 0.884 35.38 14.32 1899.6 9.588 3.150 2797.3 16.06 0.0421 1.202 220 23.20 840.2 4.615 943.6 0.122 0.650 0.883 33.07 15.22 1812.7 13.99 3.528 2802.9 16.41 0.0442 1.276 240 33.47 813.4 4.772 1037.6 0.111 0.632 0.832 25.04 18.60 1715.2 19.97 4.011 2800.0 17.49 0.0513 1.369 <td>170</td> <td>7.922</td> <td>897.5</td> <td>4.368</td> <td>719.1</td> <td>0.160</td> <td>0.677</td> <td>1.029</td> <td>44.41</td> <td>11.39</td> <td>2048.8</td> <td>4.122</td> <td>2.594</td> <td>2767.9</td> <td>14.68</td> <td>0.0347</td> <td>1.096</td>	170	7.922	897.5	4.368	719.1	0.160	0.677	1.029	44.41	11.39	2048.8	4.122	2.594	2767.9	14.68	0.0347	1.096
190 12.55 876.1 4.447 807.4 0.142 0.669 0.943 39.95 12.75 1977.9 6.395 2.844 2785.3 15.37 0.0382 1.143 200 15.55 864.7 4.496 852.3 0.134 0.663 0.910 37.67 13.50 1939.7 7.861 2.900 2792.0 15.71 0.0401 1.171 210 19.08 852.7 4.551 897.3 0.128 0.657 0.863 33.07 15.22 1857.4 11.62 3.329 280.9 16.41 0.0421 1.232 230 27.97 827.1 4.688 990.2 0.116 0.641 0.847 30.74 16.22 1812.7 13.99 3.528 2800.9 16.76 0.0464 1.276 240 33.47 813.4 4.772 1037.6 0.111 0.632 0.837 28.99 17.34 16.52 17.14 30.04 1.425 250 39.767	180	10.03	887.0	4.405	763.1	0.150	0.673	0.982	42.19	12.05	2014.2	5.159	2.713	2777.2	15.03	0.0364	1.118
200 15.55 864.7 4.496 852.3 0.134 0.663 0.910 37.77 13.50 1939.7 7.861 2.990 2792.0 15.71 0.0401 1.171 210 19.08 852.7 4.551 897.3 0.128 0.657 0.884 35.38 14.32 1899.6 9.588 31.50 2797.3 16.60 0.0421 1.202 230 27.97 827.1 4.688 990.2 0.116 0.641 0.847 30.74 16.22 1812.7 13.99 3.528 2800.9 16.76 0.0464 1.202 240 33.47 813.4 4.772 1037.6 0.111 0.632 0.837 28.99 17.34 1765.4 16.75 3.754 2800.0 17.12 0.0487 1.319 250 39.75 51.23 1185.0 0.102 0.609 0.832 23.69 20.03 1661.6 23.71 4.308 2796.6 17.88 0.0540 1.425	190	12.55	876.1	4.447	807.4	0.142	0.669	0.943	39.95	12.75	1977.9	6.395	2.844	2785.3	15.37	0.0382	1.143
19.08 65.7.7 4.331 69.7.3 0.122 0.687 0.884 33.38 14.32 1899.6 9.368 3.100 279.7.3 16.06 0.0421 1.202 220 23.20 840.2 4.615 943.6 0.122 0.650 0.883 33.07 15.22 1817.7 11.62 33.29 2800.9 16.41 0.0442 1.237 240 33.47 813.4 4.772 1037.6 0.111 0.632 0.837 28.39 17.34 1765.4 16.75 3.754 280.0 17.12 0.0487 1.319 250 39.76 798.9 4.870 1085.8 0.106 0.621 0.832 26.04 18.60 1715.2 19.97 4.011 280.0.9 17.49 0.0513 1.369 270 55.03 767.5 5.123 1183.0 0.097 0.581 0.851 18.99 23.66 1543.0 33.16 5.073 2779.9 18.70 0.0606 1.565	200	15.55	864.7	4.496	852.3	0.134	0.663	0.910	37.67	13.50	1939.7	7.861	2.990	2792.0	15.71	0.0401	1.171
21.0 21.0 24.01 2	210	19.08	840.2	4.001	043.6	0.128	0.650	0.863	33.07	14.32	1899.0	9.000	3,100	2/9/.3	16.00	0.0421	1.202
240 33.47 813.4 4.772 1037.6 0.111 0.632 0.837 28.39 17.34 1765.4 167.5 3.754 280.0 17.12 0.0487 1.319 250 39.76 798.9 4.870 1085.8 0.106 0.621 0.832 26.04 18.60 1715.2 19.97 4.011 2800.9 17.49 0.0513 1.369 260 45.92 783.6 4.986 1135.0 0.102 0.609 0.832 21.69 20.03 1661.6 23.71 4.308 2796.6 17.88 0.0570 1.425 270 55.03 767.5 5.123 1185.3 0.097 0.596 0.838 21.34 21.70 1604.4 28.07 4.656 2789.7 18.28 0.0571 1.490 280 64.17 750.5 5.289 1236.9 0.994 0.581 0.881 18.99 23.66 1543.0 33.16 5.073 2779.9 1.8.70 0.660 1.652<	230	27.97	827.1	4.688	990.2	0.116	0.641	0.847	30.74	16.22	1812.7	13.99	3.528	2802.9	16.76	0.0464	1.276
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	240	33.47	813.4	4.772	1037.6	0.111	0.632	0.837	28.39	17.34	1765.4	16.75	3.754	2803.0	17.12	0.0487	1.319
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	250	39.76	798.9	4.870	1085.8	0.106	0.621	0.832	26.04	18.60	1715.2	19.97	4.011	2800.9	17.49	0.0513	1.369
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	260	46.92	783.6	4.986	1135.0	0.102	0.609	0.832	23.69	20.03	1661.6	23.71	4.308	2796.6	17.88	0.0540	1.425
280 64.17 750.3 5.289 1236.9 0.094 0.581 0.851 18.99 23.66 1543.0 33.16 5.073 2779.9 18.70 0.0606 1.565 290 74.42 731.9 5.493 1290.0 0.090 0.565 0.872 16.66 26.00 1476.7 39.13 5.582 2766.7 19.15 0.0666 1.565 300 85.88 712.1 5.750 1345.0 0.086 0.547 0.902 14.36 28.87 1404.7 46.17 6.220 2749.6 19.65 0.0666 1.755 310 98.65 690.7 6.085 1402.2 0.022 0.046 12.09 2.49 132.57 54.54 7.045 227.9 20.21 0.0758 1.877 320 112.84 667.1 6.537 1462.2 0.075 0.489 1.095 7.70 43.68 1140.2 77.05 9.753 2666.0 21.61 0.0949 2.219	270	55.03	767.5	5.123	1185.3	0.097	0.596	0.838	21.34	21.70	1604.4	28.07	4.656	2789.7	18.28	0.0571	1.490
290 74.42 731.9 5.493 1290.0 0.090 0.565 0.872 16.66 26.00 1476.7 39.13 5.582 2766.7 19.15 0.0647 1.652 300 85.88 712.1 5.750 1345.0 0.086 0.547 0.902 14.36 28.87 1404.7 46.17 6.220 274.9.6 19.65 0.0696 1.755 310 98.65 690.7 6.085 1402.2 0.078 0.529 0.946 12.09 32.49 1325.7 54.44 8.159 270.0.6 20.85 0.0839 2.027 330 128.58 640.8 7.186 1525.9 0.075 0.489 1.095 7.70 43.68 1140.2 77.05 9.753 2666.0 21.61 0.0949 2.219 340 146.01 610.7 8.208 1594.5 0.070 0.469 1.234 5.63 53.30 1027.3 92.76 12.24 2621.8 2.55.0 0.111 2.4	280	64.17	750.3	5.289	1236.9	0.094	0.581	0.851	18.99	23.66	1543.0	33.16	5.073	2779.9	18.70	0.0606	1.565
300 85.88 712.1 5.750 1345.0 0.086 0.547 0.902 14.36 28.87 1404.7 46.17 6.202 2749.6 19.65 0.0996 1.755 310 98.65 690.7 6.085 1402.2 0.082 0.529 0.946 12.09 32.49 1325.7 54.54 7.045 2727.9 20.21 0.0758 1.877 320 112.84 667.1 6.537 1462.2 0.075 0.489 1.007 9.86 37.21 1238.4 64.64 8.159 2700.6 20.85 0.0819 2.027 330 128.58 640.8 7.186 1525.9 0.075 0.489 1.095 7.70 43.68 1140.2 77.05 9.753 2666.0 21.61 0.0949 2.219 340 146.01 610.7 8.208 1594.5 0.070 0.469 1.234 5.63 53.30 1027.3 92.76 12.24 2621.8 2.55 0.111 2.447 </td <td>290</td> <td>74.42</td> <td>731.9</td> <td>5.493</td> <td>1290.0</td> <td>0.090</td> <td>0.565</td> <td>0.872</td> <td>16.66</td> <td>26.00</td> <td>1476.7</td> <td>39.13</td> <td>5.582</td> <td>2766.7</td> <td>19.15</td> <td>0.0647</td> <td>1.652</td>	290	74.42	731.9	5.493	1290.0	0.090	0.565	0.872	16.66	26.00	1476.7	39.13	5.582	2766.7	19.15	0.0647	1.652
310 90.65 600.7 6.065 140.22 0.329 0.329 0.329 132.77 34.34 7.045 272.79 20.21 0.0738 1.877 320 112.84 66.71 6.537 146.22 0.078 0.509 1.007 9.86 37.21 123.84 66.46 8.159 20.021 0.0499 2.027 330 128.58 640.8 7.186 1525.9 0.075 0.489 1.095 7.70 43.68 1140.2 77.05 9.753 2666.0 21.61 0.0949 2.217 340 146.01 610.7 8.208 1594.5 0.070 0.469 1.234 5.63 53.30 1027.3 92.76 12.24 2621.8 22.55 0.111 2.447 350 165.29 574.7 10.12 1670.9 0.066 0.447 1.490 3.67 69.92 892.7 113.6 16.69 2563.6 23.82 0.118 3.877 365 198.21	300	85.88	/12.1	5.750	1345.0	0.085	0.547	0.902	14.35	28.87	1404.7	46.17	6.220	2749.6	19.65	0.0696	1./55
320 112.44 60.71 6.337 1532.4 60.75 6.367 1507 5.86 57.11 123.64 60.64 8.139 176.05 12.85 330 128.58 64.08 7.186 152.59 0.750 0.489 1.087 5.63 53.30 1027.3 92.76 12.24 266.0 2.161 0.0949 2.219 340 146.01 610.7 8.208 1594.5 0.070 0.469 1.234 5.63 53.30 1027.3 92.76 12.24 266.0 2.161 0.0949 2.219 350 165.29 574.7 10.12 1670.9 0.066 0.447 1.490 3.67 69.92 892.7 113.6 16.69 2563.6 23.82 0.138 2.737 365 198.21 495.7 21.41 1817.8 0.067 0.416 2.920 1.08 147 605.2 166.3 41.80 242.9 2.70 0.225 5.056 3.77 <td< td=""><td>320</td><td>98.00</td><td>667.1</td><td>6.537</td><td>1402.2</td><td>0.082</td><td>0.529</td><td>1.007</td><td>0.86</td><td>37.21</td><td>1323./</td><td>54.54</td><td>8 150</td><td>2700.6</td><td>20.21</td><td>0.0758</td><td>2.027</td></td<>	320	98.00	667.1	6.537	1402.2	0.082	0.529	1.007	0.86	37.21	1323./	54.54	8 150	2700.6	20.21	0.0758	2.027
340 146.01 610.7 8.208 1594.5 0.070 0.469 1.234 5.63 53.30 102.7.3 92.76 12.24 262.1.8 22.55 0.111 2.447 350 165.29 574.7 10.12 1670.9 0.066 0.447 1.490 3.67 69.92 892.7 113.6 16.69 2563.6 23.82 0.136 2.925 360 186.66 527.6 15.00 1761.7 0.060 0.425 2.126 1.88 107 719.8 143.9 27.35 2481.5 25.72 0.182 3.877 365 198.21 495.7 21.41 1817.8 0.057 0.416 2.920 1.08 147 605.2 166.3 41.80 2422.9 27.20 0.225 5.056 370 210.44 451.4 45.16 1890.7 0.052 0.425 5.532 0.39 257 443.8 201.8 96.60 233.4,5 29.68 0.324 8.853 </td <td>330</td> <td>128.58</td> <td>640.8</td> <td>7,186</td> <td>1525.9</td> <td>0.075</td> <td>0.489</td> <td>1.095</td> <td>7,70</td> <td>43.68</td> <td>1140.2</td> <td>77.05</td> <td>9,753</td> <td>2666.0</td> <td>21.61</td> <td>0.0949</td> <td>2.219</td>	330	128.58	640.8	7,186	1525.9	0.075	0.489	1.095	7,70	43.68	1140.2	77.05	9,753	2666.0	21.61	0.0949	2.219
350 165.29 574.7 10.12 1670.9 0.066 0.447 1.490 3.67 69.92 892.7 113.6 16.69 2563.6 23.82 0.136 2.925 360 186.66 527.6 15.00 1761.7 0.060 0.425 2.126 1.88 107 719.8 143.9 27.35 2481.5 25.72 0.182 3.877 365 198.21 495.7 21.41 1817.8 0.057 0.416 2.920 1.08 147 605.2 166.3 41.80 2422.9 27.20 0.225 5.056 370 210.44 451.4 45.16 1890.7 0.052 0.425 5.532 0.39 257 443.8 201.8 96.60 233.45 29.68 0.324 8.853 372 215.54 422.3 102.1 1935.3 0.049 0.467 10.72 0.16 452 340.3 226.8 207.4 2275.5 31.53 0.438 14.93	340	146.01	610.7	8.208	1594.5	0.070	0.469	1.234	5.63	53.30	1027.3	92.76	12.24	2621.8	22.55	0.111	2.447
360 186.66 527.6 15.00 1761.7 0.060 0.426 2.126 1.88 107 719.8 143.9 27.36 2481.5 25.72 0.182 3.877 365 198.21 495.7 21.41 1817.8 0.057 0.416 2.920 1.08 147 605.2 166.3 41.80 2422.9 27.20 0.225 5.056 370 210.44 451.4 45.16 1890.7 0.052 0.425 5.532 0.39 257 443.8 201.8 96.60 2334.5 29.68 0.324 8.853 372 215.54 422.3 102.1 1935.3 0.049 0.467 10.72 0.16 452 340.3 226.8 207.4 227.5 31.53 0.438 14.93 0737.99 20.64 322.0 m 20.64 352.0 m 0.832.0 m 27.683.1 47.0 m	350	165.29	574.7	10.12	1670.9	0.066	0.447	1.490	3.67	69.92	892.7	113.6	16.69	2563.6	23.82	0.136	2.925
365 198.21 495.7 21.41 1817.8 0.057 0.416 2.920 1.08 147 605.2 166.3 41.80 2422.9 27.20 0.225 5.056 370 210.44 451.4 45.16 1890.7 0.052 0.425 5.532 0.39 257 443.8 201.8 96.60 2334.5 29.68 0.324 8.853 372 215.54 422.3 102.1 1935.3 0.049 0.467 10.72 0.16 452 340.3 226.8 207.4 227.5 31.53 0.438 14.93 0137.99 205.64 320. m 0.047 m 0 m 0 302.1 m 343.8 143.9	360	186.66	527.6	15.00	1761.7	0.060	0.426	2.126	1.88	107	719.8	143.9	27.36	2481.5	25.72	0.182	3.877
370 210.44 451.4 45.16 1890.7 0.052 0.425 5.532 0.39 257 443.8 201.8 96.60 2334.5 29.68 0.324 8.853 372 215.54 422.3 102.1 1935.3 0.049 0.467 10.72 0.16 452 340.3 226.8 207.4 227.5 31.53 0.438 14.93 0137.99 20.64 320.64 0.047 m 0 m 0 370.4 47.0 -	365	198.21	495.7	21.41	1817.8	0.057	0.416	2.920	1.08	147	605.2	166.3	41.80	2422.9	27.20	0.225	5.056
372 215.54 422.5 102.1 1935.3 0.449 0.467 10.72 0.16 452 340.3 226.8 207.4 2275.5 31.53 0.438 14.93 01219 20.64 320 m 20831 4.70 m	370	210.44	451.4	45.16	1890.7	0.052	0.425	5.532	0.39	257	443.8	201.8	96.60	2334.5	29.68	0.324	8.853
	372	215.54	422.3	102.1	1935.3	0.049	0.467	10.72	0.16	452	340.3	322.0	207.4	2275.5	31.53	0.438	14.93

OTROS DATOS: M = 18.015 g/mol. $c_p^\circ = 1.7896 + 1.0674 \times 10^{-4}T + 5.8562 \times 10^{-7}T^2 - 1.9956 \times 10^{-10}T^3$ (c_p° en kJ/kg·K, T en K, 273 K - 1800 K). $\rho_{helo} = 961.7 \text{ kg/m}^3 a 0 \,^{\circ}\text{C}$. $\lambda_{ha} = 333.6 \text{ kJ/kg a } 0 \,^{\circ}\text{C}$.

@ – punto triple. @ – punto crítico. T – temperatura de saturación. P – presión de saturación. ρ – densidad. c_p – capacidad calorífica a presión constante. h – entalpía. μ – viscosidad. k – conductividad térmica. Pr – número de Prandti. σ – tensión superficial. β – coeficiente de expansión térmica. λ – entalpía de vaporización. M – peso molecular. c_p° – capacidad calorífica de gas ideal a presión constante. λ_{twa} – entalpía de fusión.

REVISIÓN 6 - 91388.19

H. ANEXO 08

Propiedades de parafina RT60

Property	Values
Range of melting temperature (°C)	58-60
Phase change enthalpy (kJ/kg)	195
Density (kg/m ³)	874 (solid), 786 (liquid)
Thermal conductivity (W/mK)	0.24 (solid), 0.21 (liquid)
Specific heat (kJ/kg K)	2.4 (solid), 2.2 (liquid)
Volumetric expansion (%)	10
Mass of PCM used (kg)	3
Maximum operating temperature (°C)	130
Flash point (°C)	210
Fire point (°C)	230

Temp. [°C]	dyn. viscosity [mPa.s]	kin. viscosity [mm²/s]	Density [g/cm ³]
60	6.89	8.78	0.7844
65	6.13	7.84	0.7812
70	5.48	7.05	0.7780
75	4.93	6.37	0.7748
80	4.46	5.78	0.7716
85	4.06	5.28	0.7685
90	3.70	4.84	0.7653
95	3.39	4.45	0.7621
100	3.12	4.12	0.7590
105	2.88	3.82	0.7558

I. ANEXO 09

Curva de expanción de la parafina WAX RT60

Fig. 3. Volume expansion data of SIGMA-ALDRICH paraffin wax mp 58-62 °C [11].

J. ANEXO 10

Eficienca de soldadura-fuente ASME SECC VIII Div. 1

86

120

K. ANEXO 11

Máxima tensión admisible en función de la temperatura

							1				Î.		1			1			-				
	600	-	÷	÷	÷	÷	-	-	÷	÷	-	÷	÷	:	÷	-	÷	÷	-	:	÷	÷	
מומכו	550	:	:	12,7	12,7	12,9	12,7	12,7	12,7	12,9	12,7	12,9	12,7	12,7	12,9	÷	12,7	18,9	:	:	:	:	0
perat	500	:	31,6	31,6	31,7	33,6	31,6	31,6	31,7	33,6	31,6	33,6	31,6	31,6	33,6	31,6	31,6	68,4	:	:	:	28,2	1/5M
tem	450	-	62,6	62,7	63,2	67,1	62,6	62,7	63,2	67,1	62,7	67	62,6	62,6	67	62,7	62,7	115	:	÷	÷	62,6	lCr-
de la	400	:	89,1	88,9	95	101	89,1	88,9	95	101	88,9	101	89,1	89,1	101	88,9	88,9	130	:	:	:	88,9	ición
inción	350	101	101	108	118	128	101	108	118	128	117	122	101	101	122	117	117	130	:	:	114	114	na alea
en fu	300	107	107	115	125	136	107	115	125	136	118	129	107	107	129	118	118	130	:	:	114	114	e es ui
(Pa),	250	108	108	118	128	138	108	118	128	138	118	136	114	114	136	118	118	130	:	48,3	114	114	17 qu
ole (M	200	108	108	118	128	138	108	118	128	138	118	138	118	118	138	118	118	130	:	48,3	114	114	nglón
lmisil	150	108	108	118	128	138	108	118	128	138	118	138	118	118	138	118	118	130	:	48,3	114	114	to el re
ón ac	100	108	108	118	128	138	108	118	128	138	118	138	118	118	138	118	118	130	:	48,3	114	114	except
tensi	65	108	108	118	128	138	108	118	128	138	118	138	118	118	138	118	118	130	:	18,3	114	114	bono
Máxima	30 a 40	108	108	118	128	138	108	118	128	138	118	138	118	118	138	118	118	130	:	48,3 4	114	114	cero al cai
de fluencia	MPa -	205	205	220	240	260	205	220	240	260	240	250	205	205	250	240	240	515	:	:	250	250	el material es a
de rotura	MPa	380	380	415	450	485	380	415	450	485	415	485	415	415	485	415	415	690	1206	415	400	400	os renglones (
Grupo	Nº	-	-	1	-	7	1	-	1	2	-	7	1	-	7	1	-	:	:	÷	-	1	in todos l
Tipo Grado	Clase	С	C	09	65	70	55	09	65	70	WPB	:	09	LF1	LF2	E/B	в	B7	H2	в	÷	:	(2) I
Denomi-	nación	SA-283	SA-285	SA-515	SA-515	SA-515	SA-516	SA-516	SA-516	SA-516	SA-234	SA-105	SA-181	SA-350	SA-350	SA-53	SA-106	SA-193	SA-194	SA-307	SA-36	SA-36	sin costura.
Forma del (2)	producto	Placa	Accesorios (1)	Forjado	Forjado	Forjado	Forjado	Caño soldado	Caño sin costura	Perno (2)	Tuerca	Perno	Placa, lámina	Barra	cesorios soldados o								
Ren glón	N	-	0	3	4	5	9	٢	~	6	10	Ξ	12	13	14	15	16	17	18	19	20	21	(I) Ac

Compendio de Cálculo Estructural - FCEFyN - UNC

417

Julio Massa – Juan Giró – Alejandro Giudici - 2017

L. ANEXO 12

BRIDAS CLASE 150 ASME B16.5

PIPE FLANGES AND FLANGED FITTINGS

ASME B16.5-2003

CLASS 150 PIPE FLANGES AND FLANGED FITTINGS

Table 7 Templates for Drilling Class 150 Flanges

				-	-			
1	2	3	4	5	6	7	8	9

						I	Length of Bol L	ts,
			Drilling [No	tes (2), (3)]			[Notes (1), (4	0]
Nominal	Outside Diameter	Diameter	Diameter			Stud I [Note	Bolts (1)]	Machine Bolts
Pipe Size, NPS	of Flange, <i>O</i>	of Bolt Circle, W	of Bolt Holes, in.	Number of Bolts	Diameter of Bolts, in.	2 mm Raised Face	Ring Joint	2 mm Raised Face
1/2	90	60.3	5/8	4	¹ / ₂	55		50
3/4	100	69.9	5/8	4	1/2	65		50
1	110	79.4	5/8	4	1/2	65	75	55
$1^{1}/_{4}$	115	88.9	5/8	4	1/2	70	85	55
$1^{1}/_{2}$	125	98.4	5/8	4	1/2	70	85	65
2	150	120.7	3/4	4	5/8	85	95	70
$2^{1}/_{2}$	180	139.7	3/4	4	5/8	90	100	75
3	190	152.4	3/4	4	5/8	90	100	75
$3^{1}/_{2}$	215	177.8	3/4	8	5/8	90	100	75
4	230	190.5	3/4	8	5/8	90	100	75
5	255	215.9	7/8	8	3/4	95	110	85
6	280	241.3	7/8	8	3/4	100	115	85
8	345	298.5	7/8	8	3/4	110	120	90
10	405	362.0	1	12	7/8	115	125	100
12	485	431.8	1	12	7/8	120	135	100
14	535	476.3	$1^{1}/_{8}$	12	1	135	145	115
16	595	539.8	$1^{1}/_{8}$	16	1	135	145	115
18	635	577.9	$1^{1}/_{4}$	16	$1^{1}/_{8}$	145	160	125
20	700	635.0	$1^{1}/_{4}$	20	$1^{1}/_{8}$	160	170	140
24	815	749.3	$1^{3}/_{8}$	20	$1^{1}/_{4}$	170	185	150

GENERAL NOTES:

(a) Dimensions of Table 7 are in millimeters, except for diameters of bolts and bolt holes, which are in inch units. For dimensions in inch units, refer to Annex F, Table F7.

(b) For other dimensions, see Tables 8 and 9.

NOTES:

(1) Length of stud bolt does not include the height of the points. See para. 6.10.2.

(2) For flange bolt holes, see para. 6.5.

(3) For spot facing, see para. 6.6.

(4) Bolt lengths not shown in table may be determined in accordance with Annex D. See para. 6.10.2.

M. ANEXO 13

Dimensiones de empaquetaduras para bridas ASME B16.5-Estracto de ASME B16.21

TABLE 4 GASKET DIMENSIONS FOR ASME/ANSI B16.5 CLASS 150 PIPE FLANGES AND FLANGED FITTINGS

Nominal		Flat		Full	Face Gask	et	Nominal	Nominal			Full	Face Gask	et
Pipe Size	Gasket ID	Ring OD	OD	No. of Holes	Hole Diameter	Bolt Circle Diameter	Pipe Size	Gasket ID	Ring	OD	No. of Holes	Hole Diameter	Bolt Circle Diameter
V2	0.84	1.88	3.50	4	0.62	2.38	8	8.62	11.00	13.50	8	0.88	11.75
3/4	1.06	2.25	3.88	4	0.62	2.75	10	10.75	13.38	16.00	12	1.00	14.25
1	1.31	2.62	4.25	4	0.62	3.12	12	12.75	16.13	19.00	12	1.00	17.00
11/4	1.66	3.00	4.63	4	0.62	3.50	14	14.00	17.75	21.00	12	1.12	18.75
11/2	1.91	3.38	5.00	4	0.62	3.88	16	16.00	20.25	23.50	16	1.12	21.25
2	2.38	4.12	6.00	4	0.75	4.75	18	18.00	21.62	25.00	16	1.25	22.75
21/2	2.88	4.88	7.00	4	0.75	5.50	20	20.00	23.88	27.50	20	1.25	25.00
3	3.50	5.38	7.50	4	0.75	6.00	24	24.00	28.25	32.00	20	1.38	29.50
31/2	4.00	6.38	8.50	8	0.75	7.00							
4	4.50	6.88	9.00	8	0.75	7.50							
5	5.56	7.75	10.00	8	0.88	8.50							
6	6.62	8.75	11.00	8	0.88	9.50				· .			

GENERAL NOTE: Dimensions are in inches.

N. ANEXO 14

Factores de diseño según fabricante GARLOK

Datos "M" e "Y"

Los datos "M" e "Y" se deben usar para los diseños de bridas solo según lo especificado en el Código de Recipiente de Presión y Caldera, División 1, Sección VIII, Apéndice 2. No están diseñados para usarse como valores de tensión de asiento de la junta en el servicio real. Nuestras tablas de torsión del perno proporcionan dicha información y se deben usar como tal.

"M" - Factor de Mantenimiento

Un factor que proporciona la precarga necesaria en los tornillos de las bridas para mantener la carga de compresión en una junta después de que se aplicó presión interna en una junta. La tensión operativa de la red sobre una junta presurizada debe ser de al menos (m) x (presión de diseño, psi).

"Y" - Tensión Mínima del Asiento del Diseño

La tensión mínima de compresión en libras por pulgada cuadrada (o bar) en el área de contacto de la junta que es necesaria para proporcionar un sellado a una presión interna de 2 psig (0.14 bar).

Estilo	Espesor	м	Y (psi)
3000	1/16"	4.2	3050
	1/8"	5.2	4400
123/3125	1/16"	2.0	2500
	1/8"	2.0	2500

O. ANEXO 15

Placas de refuerzo para boquillas en recipientes a presión

P. ANEXO 16

Tabla de valores

Tabla P.1. Valores para el modelamiento y simulación

Las propiedades de los materiales se consideran constantes a una temperatura promedio

de funcionamiento. 45°C.

ρ _{agua} [Kg/m ³]	990.17	n	1.34
V _{recip} [m ³]	0.17	$\Delta T_{nom}[^{\circ}C]$	40
$C_{p,agua}\left[rac{j}{Kg - °C} ight]$	4180	Ner	50
r _{2,s1} [m]	0.014287	$V_1[m^3]$	0.00999
r _{1,s1} [m]	0.013017	$V_2[m^3]$	0.006244
L _{s1} [m]	26.893	V ₃ [m ³]	0.00516
$D_{h,s1}[m]$	0.02604	V ₄ [m ³]	0.006244
μ _{agua} [Pa.s]	0.000596	r _{t3} [m]	0.0365125
Pr _{agua}	3.91	r _{t2} [m]	0.014287
β_{agua}	0.0004224	r _{t1} [m]	0.013017
$K_{agua}\left[\frac{W}{m - °C}\right]$	0.637	L _{t,1} [m]	20
$K_{tubo}\left[\frac{W}{m-{}^{\circ}C}\right]$	380	L _{t,2} [m]	20
g[m/s]	9.81	D _{h,t} [m]	0.02604
r _{2,s2} [m]	0.014287	$K_{aisl,t}\left[\frac{W}{m - {}^{\circ}C}\right]$	0.035
r _{1,s2} [m]	0.013017	ρ _{pcm.liq} [Kg/m ³]	786
L _{s2} [m]	18.765	V _{pcm.liq} [m ³]	0.1590
D _{h,s2} [m]	0.02604	$C_{P,PCMsol}\left[rac{j}{Kg - °C} ight]$	2400
r _{r3} [m]	0.305	T _{m1} [°C]	58
r _{r2} [m]	0.228	$L_{h,pcm}\left[\frac{kJ}{Kg}\right]$	195,000
r _{r1} [m]	0.2225	T _{m2} [°C]	60

l[m]	1.2	$C_{P,PCMliq}\left[\frac{j}{Kg - °C}\right]$	2200
$K_{recip}\left[\frac{W}{m-°C}\right]$	41	ρ _{pcm.sol} [Kg/m ³]	874
$K_{aisl}\left[\frac{W}{m - °C}\right]$	0.043	D _i [m]	0.447
ρ _{air} [Kg/m ³]	1.2	N _{vueltas}	12
$C_{p,air}\left[\frac{j}{Kg - °C}\right]$	1007	$\beta_{pcm.liq}$	0.002114
µ _{air} [Pa.s]	0.00001825	Pr _{pcm.liq}	57.4095
Pr _{air}	0.7309	$K_{pcm.liq}\left[\frac{W}{m-°C}\right]$	0.21
β_{air}	0.00342863	μ _{pcm.liq} [Pa.s]	0.00548
$K_{air}\left[\frac{W}{m-°C}\right]$	0.02514	$K_{pcm.sol}\left[\frac{W}{m-°C}\right]$	0.24
$V_a[m^3]$	173.4	ε _c	0.23
$M_{\text{ren.air}}\left[\frac{\text{Kg}}{\text{s}}\right]$	0.1486	T _m [°C]	59
Q _{nom} [W]	102.7	$Q_{pers}[W]$	0.58
m _{air} [kg]	133.75	T _a [°C]	15

Q. ANEXO 17

Planos de fabricación del tanque acumulador de calor

