

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA CIVIL Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

"FORMULACIÓN MATEMÁTICA PARA DETERMINAR DEFORMACIONES VOLUMÉTRICAS EN ARCILLAS FRENTE A VARIACIONES TÉRMICAS"

TESIS

PRESENTADA POR:

HIDEN JAIME MACHACA HUANCOLLO

PARA OBTAR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

PUNO – PERÚ

2022

DEDICATORIA

A Dios por permitirme cumplir mis sueños, por perdonarme y protegerme siempre en el trajinar de mi vida.

A mis padres Evangelina Huancollo y Constancio Machaca por darme la vida y apoyarme constantemente. En especial mi amor y gratitud a mi madre que me educo en los valores del trabajo y la humildad, este grado se la dedico a ella por todo el esfuerzo.

A mi hermano Santos por su humilde apoyo incondicional, a mis hermanas Kely y Zaday por estar siempre a la vanguardia.

A mi amigo y educador Prof. Fernando Saboya por su amistad y asesoría constante en la investigación de la Ingeniería Civil.

A mis amigos(as) por sus mensajes de constante motivación.

HIDEN J. MACHACA

AGRADECIMIENTOS

A Dios por permitirme llegar a concluir mis estudios de pregrado.

A mi familia por su motivación y ánimo.

A la Universidad Nacional del Altiplano por ser la entidad que me formo en sus ambientes como profesional, a todos los docentes de la Escuela Profesional de Ingeniería Civil, y en especial a mi director de Tesis Dr. Samuel Huaquisto Cáceres quien, con toda su sapiencia, tolerancia y sabios consejos, estuvo predispuesto en todo momento para el asesoramiento y apoyo de la presente tesis. A los jurados por su tiempo, predisposición y consejos tan acertados, M.Sc. Mariano Roberto García Loayza, Ing. Tania Zapata Coacalla, Ing. Gleny Zoila De La Riva Tapia.

ÍNDICE GENERAL

DEDICATORIA

AGRADECIMIENTOS

ÍNDICE GENERAL

ÍNDICE DE FIGURAS

ÍNDICE DE TABLAS

ÍNDICE DE ACRÓNIMOS

RESUMEN	
ABSTRACT	

CAPITULO I

INTRODUCCIÓN

1.1 Problema de la investigación14				
1.2 Antecedentes de la investigación				
1.3 Formulación del problema17				
1.3.1 Problema general17				
1.3.2 Problemas específicos (PE)17				
1.4 Importancia y utilidad del estudio17				
1.5 Objetivos de la investigación				
1.5.1 Objetivo general				
1.5.2 Objetivos específicos (OE) 18				
1.6 Hipótesis de la investigación				
1.6.1 Hipótesis general18				
1.6.2 Hipótesis específicas (HE)19				
1.7 Organización del trabajo				

CAPITULO II

REVISIÓN DE LITERATURA

2.1	Marco t	eórico
	2.1.1	Generalidades21
	2.1.2	Influencia de la temperatura en arcillas
2.1.3 Influencia de la temperatura en la tensión de pre- consolidación (σ ')		
		32
	2.1.4	Modelos termo-mecánicos existentes
	2.1.5	Influencia de la temperatura en la microestructura de las arcillas 43
		CAPITULO III
		MATERIALES Y MÉTODOS
3.1	Introdu	cción 55
3.2	Materia	les
	3.2.1	Suelo
	3.2.2	Equipo para la reconstitución de muestras57
	3.2.3	Triaxial convencional
	3.2.4	Triaxial térmico
3.3	Metodo	logía
	3.3.1	Procedimiento para la reconstitución de muestras
	3.3.2	Procedimiento estándar para ensayos de consolidación térmica a
temn	eraturas	superiores al ambiente (temperatura controlada)

CAPITULO IV

RESULTADOS Y DISCUSIÓN

4.1	Datos e	xperimentales obtenidos en laboratorio	. 68
	4.1.1	Clasificación del suelo	. 68

4.1.	.2 Parámetros de resistencia del suelo	74
4.1.	.3 Ensayos de consolidación térmica	
4.2 Desar	rrollo de la formulación matemática	96
4.3 Valid	lación del modelo	
V. CONCLUS	IONES	116
VI. RECOME	NDACIONES	
VII. REFERE	NCIAS	119
ANEXOS		

TEMA: Análisis numérico y experimental.

AREA: Geotecnia.

FECHA DE SUSTENTACIÓN: 08 DE JUNIO DEL 2022.

ÍNDICE DE FIGURAS

Figura 2.1:	Comportamiento del volumen en la arcilla por la variación térmica 22
Figura 2.2:	Efectos del incremento de la temperatura en una consolidación isotrópica de
	una arcilla saturada23
Figura 2.3:	Deformaciones volumétricas térmicas resultantes sobre etapas de carga y
	descarga térmicas
Figura 2.4:	Curvas de deformación volumétrica térmica a diferentes nivel de sobre-
	consolidación (OCR)
Figura 2.5:	Trayectorias de incremento de la tensión media efectiva y la temperatura en
	los ensayos de consolidación isotrópica
Figura 2.6:	Curvas de consolidación isotrópica
Figura 2.7:	Curvas de presión de poro normalizada inducida por temperatura
Figura 2.8:	Relación entre la temperatura vs la tensión de pre-consolidación
Figura 2.9:	Relación entre la tensión de pre-consolidación con la temperatura
Figura 2.10:	Diagrama de la superficie termo-elasto-plástico isotrópico35
Figura 2.11:	Diagrama tridimensional p' x q x T
Figura 2.12:	Diagrama termo elasto – plástica para arcillas saturadas
Figura 2.13:	Dominio termo – elástico de los modelos en el plano (p' x T)41
Figura 2.14:	Ensayos de permeabilidad en arcilla Boom Clay a diferentes niveles de
	temperatura
Figura 2.15:	Relaciones de flujo de tiempo vs agua inyectada en cada nivel de
	temperatura en dirección paralela al plano de estratificación45
Figura 2.16:	Relaciones de flujo de tiempo vs agua inyectada en cada nivel de
	temperatura en dirección perpendicular al plano de estratificación45
Figura 2.17:	Relación de la conductividad hidráulica vs la temperatura en dirección
	paralela a la estratificación. Fuente: (Chen et al., 2017)
Figura 2.18:	Relación de la conductividad hidráulica vs la temperatura en dirección
	perpendicular a la estratificación. Fuente: (Chen et al., 2017)
Figura 2.19:	Variación de la permeabilidad intrínseca respecto a la temperatura 48
Figura 2.20:	Microestructura de la arcilla Boom Clay perpendicular al plano de
	estratificación. a) x500 b) x2000
Figura 2.21:	Microestructura de la arcilla Boom Clay paralelo al plano de estratificación.
	a) x500 b) x2000

Figura 2.22:	Resonancia Magnética Nuclear en la arcilla Boom Clay	50	
Figura 2.23:	Tipos de contacto en suelos	52	
Figura 3.1:	Muestra recolectada por muestreadores tipo Shelby5		
Figura 3.2:	Extracción de las muestras de los tubos Shelby	56	
Figura 3.3:	Muestra homogeneizada y guardada en un recipiente de tecnopor	57	
Figura 3.4:	Equipo para la reconstitución de muestras.	58	
Figura 3.5:	Vista al interior del equipo de reconstitución	58	
Figura 3.6:	Molde bipartido para la reconstitución de muestras	59	
Figura 3.7:	Equipo triaxial convencional	59	
Figura 3.8:	Bombas de control de presión en el equipo triaxial	60	
Figura 3.9:	Partes principales de un triaxial térmico	61	
Figura 3.10:	Cobertor de aislamiento térmico del triaxial térmico	61	
Figura 3.11:	Celda térmica triaxial	62	
Figura 3.12:	Equipo de control de temperatura	62	
Figura 3.13:	Equipo triaxial térmico con todas sus partes	62	
Figura 3.14:	Muestra N°1	64	
Figura 3.15:	Procedimiento estándar para ensayos de consolidación térmica	a	
	temperaturas superiores al ambiente (temperatura controlada)	65	
Figura 3.16:	Saturación del equipo triaxial	66	
Figura 3.17:	Instalación de la celda triaxial térmica	67	
Figura 4.1:	Curva del ensayo estándar limite líquido	70	
Figura 4.2:	Ensayo de análisis granulométrico.	71	
Figura 4.3:			
Figura A A.	Proceso de instalación de las muestras en el equipo triaxial	75	
1 Iguia 7.7.	Recolección de datos en tiempo real del ensayo en el Software	75 76	
Figura 4.5:	Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador	75 76 79	
Figura 4.5: Figura 4.6:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro	75 76 79 80	
Figura 4.5: Figura 4.6: Figura 4.7:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras	 75 76 79 80 81 	
Figura 4.5: Figura 4.6: Figura 4.7: Figura 4.8:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras Índice de vacíos vs esfuerzo medio efectivo	 75 76 79 80 81 82 	
Figura 4.5: Figura 4.6: Figura 4.6: Figura 4.7: Figura 4.8: Figura 4.9:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras Índice de vacíos vs esfuerzo medio efectivo Curvas de consolidación mecánica y térmica del E6 en el software	 75 76 79 80 81 82 de 	
Figura 4.5: Figura 4.6: Figura 4.7: Figura 4.8: Figura 4.9:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras Índice de vacíos vs esfuerzo medio efectivo Curvas de consolidación mecánica y térmica del E6 en el software control	 75 76 79 80 81 82 de 83 	
Figura 4.5: Figura 4.6: Figura 4.6: Figura 4.7: Figura 4.8: Figura 4.9: Figura 4.10:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras Índice de vacíos vs esfuerzo medio efectivo Curvas de consolidación mecánica y térmica del E6 en el software control Procedimientos del ensayo de consolidación térmica	 75 76 79 80 81 82 de 83 84 	
Figura 4.5: Figura 4.6: Figura 4.6: Figura 4.7: Figura 4.8: Figura 4.9: Figura 4.10: Figura 4.11:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras Índice de vacíos vs esfuerzo medio efectivo Curvas de consolidación mecánica y térmica del E6 en el software control Procedimientos del ensayo de consolidación térmica Curvas de consolidación mecánica más térmica a 40°C	 75 76 79 80 81 82 de 83 84 88 	
Figura 4.4: Figura 4.5: Figura 4.6: Figura 4.7: Figura 4.8: Figura 4.9: Figura 4.10: Figura 4.11: Figura 4.12:	Proceso de instalación de las muestras en el equipo triaxial Recolección de datos en tiempo real del ensayo en el Software Curvas de deformación axial vs esfuerzo desviador Curvas de deformación axial vs incremento de la presión de poro Trayectorias de esfuerzos efectivos y totales de las muestras Índice de vacíos vs esfuerzo medio efectivo Curvas de consolidación mecánica y térmica del E6 en el software control Procedimientos del ensayo de consolidación térmica Curvas de consolidación mecánica más térmica a 40°C Curvas de consolidación mecánica y térmica en escala logarítmica o	 75 76 79 80 81 82 de 83 84 88 del 	

Figura 4.13:	Curvas de consolidación mecánica y térmica en escala logarítmica del
	espécimen E7
Figura 4.14:	Curvas de consolidación mecánica y térmica en escala logarítmica del
	espécimen E8
Figura 4.15:	Curvas de consolidación mecánica más térmica a 55°C92
Figura 4.16:	Curvas de consolidación mecánica y térmica en escala logarítmica del
	espécimen E993
Figura 4.17:	Curvas de consolidación mecánica y térmica en escala logarítmica del
	espécimen E1094
Figura 4.18:	Curvas de consolidación mecánica y térmica en escala logarítmica del
	espécimen E1194
Figura 4.19:	Diagrama de simulación para la consolidación térmica97
Figura 4.20:	Diagrama de curvas de consolidación térmica para diferentes niveles de
	temperatura. Fuente: Elaboración propia
Figura 4.21:	Comparación de las deformaciones volumétricas totales térmicas del
	modelo y el experimental para el CP a 100kPa a 40°C 107
Figura 4.22:	Comparación de las deformaciones volumétricas totales térmicas del
	modelo y el experimental para el CP a 200kPa a 40°C 108
Figura 4.23:	Comparación de las deformaciones volumétricas totales térmicas del
	modelo y el experimental para el CP a 400kPa a 40°C 109
Figura 4.24:	Comparación de las deformaciones volumétricas totales térmicas del
	modelo y el experimental para el CP a 100kPa a 55°C 110
Figura 4.25:	Comparación de las deformaciones volumétricas totales térmicas del
	modelo y el experimental para el CP a 200kPa a 55°C 111
Figura 4.26:	Comparación de las deformaciones volumétricas totales térmicas del
	modelo y el experimental para el CP a 400kPa a 55°C 112

Figura 4.27: Porcentaje de error de aproximación del modelo numérico......115

ÍNDICE DE TABLAS

Tabla 1:	Resumen de ecuaciones termo-mecánicas
Tabla 2:	Variación de la viscosidad y la densidad del agua en los poros con la
	temperatura
Tabla 3:	Tabla de control para la reconstitución de las muestras
Tabla 4:	Contenido de humedad natural
Tabla 5:	Resultados de los límites de consistencia
Tabla 6:	Ensayo de gravedad especifica de los sólidos (Gs)72
Tabla 7:	Ensayo de consolidación edométrica73
Tabla 8:	Planilla de cálculo de las propiedades de los especímenes78
Tabla 9:	Planilla de cálculo de las propiedades de los ensayos E6, E7 y E8
Tabla 10:	Planilla de cálculo de las propiedades físicas de los ensayos E9, E10 y E11.
Tabla 11:	Variación de la función M(T) en relación a la temperatura101
Tabla 12:	Resumen de los datos experimentales necesarios para ejecutar el modelo.
Tabla 13:	Calibración de E _{vult}

ÍNDICE DE ACRÓNIMOS

E-050	: Norma técnica de suelos y cimentaciones del RNE del Perú.		
RNE	: Reglamento Nacional de Edificaciones.		
OC	: Suelo en estado sobre-consolidado.		
NC	: Suelo en estado normalmente consolidado.		
OCR	: Índice que indica el nivel de sobre-consolidación del suelo		
IP	: Índice de plasticidad de un suelo.		
LL	: Limite liquido de un suelo.		
LP	: Límite de plasticidad de un suelo.		
C α(T 0)	: Coeficiente de consolidación secundaria de un suelo.		
Δe	: Variación del índice de vacíos de un suelo.		
Evult	: Asíntota del modelo hiperbólico.		
t	: Tiempo.		
Т	: Temperatura.		

RESUMEN

El incremento de temperatura en arcillas genera una compresión del suelo (asentamiento) y la disminución de temperatura genera una expansión del suelo sobre un estado de esfuerzos. En el presente trabajo de investigación se desarrolló una formulación matemática (modelo numérico) para predecir tales deformaciones volumétricas por variaciones de temperatura en arcillas. Para ello, se realizaron ensayos de consolidación térmica a 40 y 55°C en laboratorio y se desarrolló en gabinete la formulación matemática. El modelo requiere del coeficiente de consolidación secundaria a temperatura ambiente (C α (To)) y la calibración del parámetro " \mathcal{E}_{vult} " a través de ensayos o de una base de datos empírica. Por último, la valides del modelo propuesto fue corroborado por los ensayos experimentales realizados en laboratorio. Después de las comparaciones de los resultados numéricos y experimentales, se concluyó que la formulación matemática predice al 98% las deformaciones volumétricas térmicas en arcillas saturadas normalmente consolidadas a diferentes estados de esfuerzos.

Palabras clave: Deformaciones volumétricas, arcilla, variación térmica.

ABSTRACT

The increase in temperature in clays generates a compression of the soil (settlement) and the decrease in temperature generates an expansion of the soil over a stress state. In the present research work, a mathematical formulation (numerical model) was developed to predict such volumetric deformations due to temperature variations in clays. For them, thermal consolidation tests were carried out at 40 and 55°C in the laboratory and the mathematical formulation was developed in the office. The model requires the coefficient of secondary consolidation at room temperature (C α (To)) and the calibration of the parameter " ε_{vult} " through tests or an empirical database. Finally, the validity of the proposed model was corroborated by experimental tests carried out in the laboratory. After comparisons of the numerical and experimental results, it was concluded that the mathematical formulation predicts 98% of the thermal volumetric strains in normally consolidated saturated clays at different stress states.

Keywords: Volumetric deformations, Clay, thermal variation.

CAPITULO I

INTRODUCCIÓN

1.1 PROBLEMA DE LA INVESTIGACIÓN

Sabemos que en materiales como el acero y/o el concreto (principales materiales de la ingeniería civil), cuando son expuestas a cambios de temperatura sus propiedades mecánicas varían. Por tanto, es justificable intuir que lo mismo ocurre en materiales como la arcilla. Este tema es aún muy poco estudiado en la región.

La geotecnia es una especialidad de la ingeniería civil encargada de estudiar el comportamiento mecánico del suelo para la fundación de diferentes tipos de estructuras. Ello implica estudiar los efectos de carga, agua, temperatura, productos químicos y otros como la geología para predecir, mejorar y/o disminuir la resistencia y deformación del suelo.

Algunas estructuras propensas a los efectos de la variación térmica son las fundaciones para edificaciones, capas de un pavimento, fundación de puentes, presas de embalse, túneles, taludes, etc.

En la normativa peruana E-050 del RNE indica simplemente la profundidad mínima de cimentación de 0.80m para prevenir los efectos de hielo-deshielo en los cambios de volumen del suelo de fundación. Sin embargo, aún son ciegos a los avances en investigación y tecnología ya desenvuelta en países como Estados Unidos, Canadá, Inglaterra y Brasil en relación a los efectos de la variación térmica en las arcillas.

En la actualidad se sabe que el incremento de temperatura en arcillas genera una compresión del suelo (asentamiento) y la disminución de temperatura genera una expansión del suelo sobre una carga efectiva constante, dependiendo del nivel de preconsolidación. Por ello, se están desenvolviendo modelos matemáticos que incluyan el

factor temperatura, de tal forma, nos permita predecir el comportamiento de las arcillas expuestas a variaciones térmicas. Sin embargo, sería más óptimo separar los efectos de la carga mecánica y carga térmica para plantear nuevos modelos constitutivos en la ingeniería geotécnica.

1.2 ANTECEDENTES DE LA INVESTIGACIÓN

Campanella & Mitchell (1968) fueron los primeros en desarrollar un modelo termo-elástico para estimar la magnitud del exceso de presión de poro inducida térmicamente y las deformaciones volumétricas que lo acompaña durante el calentamiento y enfriamiento sin drenaje. Concluyeron que un incremento de temperatura resulta en una disminución de volumen por la suma de los siguientes efectos: expansión térmica del agua de los poros y minerales, la reorientación de fuerzas interparticulares, y el drenaje del agua; pero no evaluaron las posibles deformaciones plásticas volumétricas de la microestructura del suelo.

Hueckel & Borsetto (1990) propusieron el primer modelo termo-plástico para suelos saturados integrando un mecanicismo de ablandamiento térmico en el modelo CAM CLAY modificado, que permitió considerar los efectos del incremento de temperatura en las deformaciones volumétricas y en la resistencia al corte del suelo. El mecanismo de ablandamiento térmico permite observar la variación de la tensión de preconsolidación medio efectico (p'co) con incrementos de temperatura bajo tensión confinante constante.

Cui et. al. (2000) publicaron un modelo termo-elasto-plástico para suelos saturados y no saturados, los autores propusieron un gráfico bidimensional donde es posible obervar una curva límite de plastificación térmica que relaciona el incremento de temperatura (ΔT°) con la tensión media efectiva (p'). Los autores permitieron entender

mejor el proceso de endurecimiento térmico de las arcillas en estado normalmente consolidado y sobreconsolidado.

Laloui et al. (2014) Desenvolvió un modelo matemático a través de la nueva teoría de la mecánica de suelos para arcillas propuesta por la Universidad de Cambridge, donde establece que la deformación termoplástica comienza cuando el punto de tensión alcanza la superficie de plastificación térmica en el plano esfuerzo medio efectivo versus temperatura (p'xT).

Tao et al. (2016) evaluaron las características térmicas de los suelos en una variedad de tipos de suelos y niveles de saturación. Donde realizaron investigaciones con respecto al efecto del contenido de humedad, densidad seca, grado de saturación, tamaño de partícula y composición de mineralogía sobre la conductividad térmica de los suelos. Demostraron que la conductividad térmica normalizada puede correlacionar la conductividad térmica real con los parámetros termofísicos de los suelos (es decir, el contenido de humedad, el grado de saturación, la porosidad y la conductividad térmica de las partículas sólidas). La precisión del método de predicción se puede mejorar empleando los parámetros empíricos para ajustar los datos experimentales.

Kurz et al. (2016) presentaron una investigación donde describen que las deformaciones térmicas pueden dividirse en dos componentes: elásticos (recuperables) y plásticos (no recuperables). El componente plástico incluye deformaciones viscosas definidas por un coeficiente de velocidad de fluencia que varía con el índice de plasticidad y la temperatura (T), pero no con el nivel de tensión o la relación de sobreconsolidación (OCR). Los autores definieron un nuevo modelo elástico-termoviscoplástico (ETVP). El artículo proporciona un análisis de sensibilidad de resultados simulados de ensayos de compresión triaxial sin drenaje (CIU) para arcillas normalmente consolidadas y ligeramente sobreconsolidadas.

1.3 FORMULACIÓN DEL PROBLEMA

1.3.1 Problema general

¿Es posible predecir mediante una fórmula matemática las deformaciones térmicas volumétricas que ocurren en las arcillas?

1.3.2 Problemas específicos (PE)

- PE1: ¿Cuáles son las componentes necesarias para desarrollar la formulación matemática?
- PE2: ¿Cuál es la ecuación final para predecir las deformaciones volumétricas térmicas?
- PE3: ¿Es razonablemente aceptable la predicción del modelo en relación a los datos experimentales?

1.4 IMPORTANCIA Y UTILIDAD DEL ESTUDIO

La presente investigación se realizó afín de entender y empezar la investigación sobre la influencia de la temperatura en las propiedades mecánicas de las arcillas. Una razón principal es, elaborar una formulación matemática que nos permita predecir las deformaciones volumétricas térmicas mediante el uso parámetros obtenidos a través de ensayos de laboratorio muy simple y económico.

En la actualidad el estudio sobre los efectos de la temperatura en arcillas se viene desenvolviendo para su comprensión y aplicación en fundaciones térmicas, fundaciones offshore, depósitos de materiales radioactivos, tuberías enterradas que conducen fluidos a altas temperaturas, mejoramiento de suelos, diseños geotécnicos expuestos a variaciones térmicas artificiales o naturales, etc.

A través de la lectura se pudo constatar que la temperatura a través de la mecánica de suelos tiene muchas otras aplicaciones como la creación de microclimas para viviendas a través de fundaciones térmicas, muy aplicable en una región tan frígida como Puno.

Pero investigaciones como esa requieren presupuesto y asesoría al cien por ciento, políticas que aún no se han implementado en el Perú lamentablemente.

La posibilidad de considerar los efectos de la variación térmica en los diseños de estructuras geotécnicas en la ciudad de Puno es la justificación más importante de la presente investigación, lo cual nos llevara al desarrollo de futuras investigaciones en el campo de la ingeniería geotécnica.

1.5 OBJETIVOS DE LA INVESTIGACIÓN

1.5.1 Objetivo general

Elaborar una formulación matemática para predecir las deformaciones volumétricas en arcillas por variaciones térmicas.

1.5.2 Objetivos específicos (OE)

- OE1: Analizar e identificar los componentes necesarios sobre el comportamiento térmico de las arcillas para desarrollar la formulación matemática.
- OE2: Desarrollar la formulación matemática para predecir las deformaciones volumétricas en arcillas por variaciones térmicas, considerando el primer objetivo específico (OE1).
- OE3: Realizar una validación de la formulación matemática en base a datos experimentales obtenidos en laboratorio.

1.6 HIPÓTESIS DE LA INVESTIGACIÓN

1.6.1 Hipótesis general

Se observó que la formulación matemática predice en el rango aceptable las deformaciones térmicas volumétricas en arcillas saturadas, bajo cualquier estado de esfuerzo efectivo constante.

1.6.2 Hipótesis específicas (HE)

- HE1: Como los componentes obligatorios del suelo en estudio a considerar son el índice de vacíos final de la consolidación mecánica (e), el coeficiente de consolidación secundaria a temperatura ambiente (Cα), el tiempo de inicio de la consolidación secundaria térmica (to), la viscosidad cinemática del agua en los poros a temperatura ambiente ζ(To) y por último la velocidad de incremento de temperatura (en °C/min).
- HE2: Fue desenvuelta una formulación matemática en base a la primera hipótesis específica (HE1).
- HE3: La validación del modelo con los datos experimentales fue satisfactoria.

1.7 ORGANIZACIÓN DEL TRABAJO

La presente investigación está organizada de la siguiente manera:

En el CAPÍTULO 2 se describe la literatura revisada, la investigación realizada en relación al efecto de la temperatura en arcillas, los modelos existentes y revisiones extraordinarias para la justificación de la formulación matemática.

En el CAPÍTULO 3 se describe la metodología realizada en la presente investigación, se presenta los datos experimentales a usar y se plantea la formulación matemática.

En el CAPÍTULO 4 se describe los resultados y la discusión de todo el procedimiento desarrollado en el capítulo 3, y, se presenta la comparación de datos numéricos y experimentales para validar la formulación matemática.

Posterior a los resultados se describe las conclusiones de la presente investigación donde a partir de los objetivos propuestos y los resultados obtenidos se consiguen concluir la viabilidad de la investigación.

Luego se describe las recomendaciones de la investigación, así mismo plantea futuras investigaciones.

En la bibliografía, se describe las referencias del trabajo de investigación desarrollado.

Finalmente, de describe los anexos de la investigación.

CAPITULO II

REVISIÓN DE LITERATURA

2.1 MARCO TEÓRICO

2.1.1 Generalidades

En este capítulo se describe las referencias teóricas relacionado al tema de investigación, los conceptos de las definiciones entorno a la influencia de la temperatura en arcillas, así como modelos constitutivos actualmente existentes.

2.1.2 Influencia de la temperatura en arcillas

En la actualidad en nuestra región, muy poco se comenta sobre la influencia de la temperatura en las propiedades mecánicas de la arcilla para su uso en la ingeniería civil, pero es entendible el bajo interés en profundizar investigaciones sobre el tema, ya que la misma norma E-050 apenas comenta del efecto hielo-deshielo en las cimentaciones de edificaciones. En el presente ítem se dará a conocer algunos avances sobre la investigación del tema a nivel mundial, con el propósito de conocer y justificar el tema de la presente tesis.

Sabemos que las propiedades mecánicas de un material varían con la temperatura, como, el agua cambia de estado a ciertos niveles de temperatura, por tanto, lo mismo ocurre en el suelo.

Algunos de los autores que iniciaron el estudio de la influencia de la temperatura en las propiedades del suelo fueron (Campanella & Mitchell, 1968). Ellos estudiaron la influencia de la temperatura en el comportamiento mecánico de una arcilla predominantemente de ilita. Se dieron cuenta de que un aumento de temperatura da como resultado una disminución de volumen por la suma de los siguientes efectos:

• Expansión térmica del agua de los poros y minerales;

- La reorientación de fuerzas inter-particulares, y;
- Por drenaje de agua.

Los autores también observaron que después del primer ciclo de calentamientoenfriamiento, la arcilla tiende a un estado sobre-consolidado, donde las deformaciones volumétricas térmicas plásticas ya no son significativas, como se muestra en la Figura 2.1.

Figura 0.1: Comportamiento del volumen en la arcilla por la variación térmica. Fuente: (Campanella & Mitchell, 1968).

(Campanella & Mitchell, 1968) también realizaron ensayos de consolidación isotrópica en estado saturado a temperatura controlada, donde observaron que en cuanto mayor fuese la temperatura de consolidación generaron una aceleración de deformaciones volumétricas, induciendo una disminución en la tensión de pre-consolidación (σ 'v) como se observa en la Figura 2.2. En la misma figura los autores observaron que para soportar una misma carga el índice de vacíos tuvo que ser menor en cuanto mayor era la temperatura, lo cual indica que la arcilla tendió a densificarse a mayor temperatura. Otra

observación importante de los autores fue que los coeficientes de consolidación (Cc) en la curva virgen y el coeficiente de expansión (Cs) durante la etapa de descarga permanecieron constantes, por ende, independientes de la variación térmica.

Figura 0.2: Efectos del incremento de la temperatura en una consolidación isotrópica de una arcilla saturada.

Además de describir los efectos de la temperatura en las arcillas Campanella & Mitchell (1968) propusieron ecuaciones para determinar el cambio de volumen y la presión poro al aumentar la temperatura, que se presentan a continuación:

En condiciones drenadas:

$$(\Delta Vw)_{\Delta T} = \alpha_w V_w \Delta T \qquad \qquad Eq. \ 0.1$$

Donde:

$(\Delta V w)_{\Delta T}$	=	Variación del agua en los poros por la variación de
	tem	peratura.
α_w	=	Coeficiente de expansión térmica del agua en el suelo.
V_w	=	Volumen de agua en los poros.
ΔT	=	Variación de temperatura.

$$(\Delta V s)_{\Delta T} = \alpha_s V_s \Delta T \qquad \qquad Eq. \ 0.2$$

Donde:

$(\Delta V s)_{\Delta T}$	=	Variación de volumen de los minerales del suelo.
α_s	=	Coeficiente de expansión térmica de los minerales del
	suel	0.
V_s	=	Volumen de los minerales del suelo.
ΔT	=	Variación de temperatura.

Para un suelo arcilloso saturado con esfuerzo efectivo constante, debido al cambio de temperatura, el volumen de agua drenada es:

$$(\Delta V dr)_{\Delta T} = (\Delta V w)_{\Delta T} + (\Delta V s)_{\Delta T} - (\Delta V m)_{\Delta T}$$
 Eq. 0.3

Donde:

$$(\Delta Vm)_{\Delta T}$$
 = Variación del volumen total del espécimen por el incremento de temperatura.

Si los granos del suelo están en contacto mineral a mineral y la temperatura cambia, entonces tendrán la misma deformación para todos los granos del suelo y un coeficiente de expansión térmica isotrópica. Además, un cambio adicional en el volumen puede resultar de un cambio inducido por la temperatura en las fuerzas entre partículas que requieren cierta reorientación o movimiento relativo de los granos del suelo para permitir que la estructura del suelo lleve el mismo esfuerzo efectivo. Si el cambio en el volumen del suelo debido a este efecto es designado por (Δ VST) Δ T, entonces el cambio total en el volumen del suelo será:

$$(\Delta Vm)_{\Lambda T} = \alpha_{\rm s} V_m \Delta T + (\Delta V_{\rm ST})_{\Lambda T} \qquad \qquad Eq. \ 0.4$$

Condiciones no drenadas:

La suma de los cambios en el volumen del suelo debido a la temperatura y la presión es igual a la suma de los cambios en el volumen de la masa del suelo debido a los cambios de temperatura y presión.

$$(\Delta V w)_{\Delta T} + (\Delta V s)_{\Delta T} + (\Delta V w)_{\Delta P} + (\Delta V s)_{\Delta P} = (\Delta V m)_{\Delta T} + (\Delta V m)_{\Delta P} \qquad 0.5$$

Donde:

$\Delta V w$	=	Variación en el volumen de agua de los poros.
ΔVs	=	Variación en el volumen de los minerales del suelo.
ΔVm	=	Variación en el volumen de la masa del suelo.

$$(\Delta Vw)_{\Delta P} = m_w V_w \Delta u \qquad \qquad Eq. \ 0.6$$

$$(\Delta V s)_{\Delta P} = m_s V_s \Delta u + m''_s V_s \Delta \sigma'' \qquad Eq. 0.7$$

Donde:

m_w	=	Compresibilidad da agua.
m_s	=	Compresibilidad de los minerales del suelo sobre presión
-	hic	lrostática.
$\Delta \mu$	=	Incremento de presión de poro.
$m"_{s}V_{S}\Delta\sigma"$	= a t car	Variación de volumen de los minerales del suelo debido un incremento del esfuerzo efectivo (que es generado por mbios en las fuerzas de los contactos interparticulares).

Y;

$$(\Delta Vm)_{\Delta P} = m_v V_m \Delta \sigma'' \qquad \qquad Eq. \ 0.8$$

 m_v = Compresibilidad de la masa de la estructura del suelo.

Para un esfuerzo efectivo constante durante el cambio de temperatura, se considera:

$$\Delta \sigma' = -\Delta u \qquad \qquad Eq. \ 0.9$$

Considerando la ecuación 2.4 y substituyendo en las respectivas variables tenemos:

$$\Delta \mu = \frac{n\Delta T(\alpha_S - \alpha_W) + (\Delta V_{ST})_{\Delta T} / V_m}{m_v + nm_w} \qquad \qquad Eq. \ 0.10$$

$$\alpha_{ST} = \frac{(\Delta V_{ST})_{\Delta T} / V_m}{\Delta T} \qquad \qquad Eq. \ 0.11$$

Donde:

 $\alpha_{ST} = \begin{array}{c} \text{Coeficiente físico-químico de variación de volumen estructural} \\ n = \begin{array}{c} \text{Porosidad.} \end{array}$

$$\Delta \mu = \frac{n\Delta T(\alpha_S - \alpha_W) + \alpha_{ST}\Delta T}{m_v + nm_w} \qquad \qquad Eq. \ 0.12$$

Como mv >> mw solo para suelos, entonces:

$$\Delta \mu = \frac{n \Delta T (\alpha_S - \alpha_W) + \alpha_{ST} \Delta T}{m_v} \qquad \qquad Eq. \ 0.13$$

La ecuación 2.13 representa la variación de la presión de poro en función al incremento de temperatura.

Como los autores anteriores concluyeron que la arcilla se encuentra en un estado sobre-consolidado después de un ciclo de calentamiento-enfriamiento, (Baldi, Hueckel, & Pellegrini, 1988) estudiaron las deformaciones térmicas volumétricas en arcillas de

baja porosidad a diferentes niveles de sobre-consolidación. Durante las pruebas termomecánicas, realizaron pruebas con ciclos de calentamiento-enfriamiento en arcilla caolín y arcilla Boom Clay a tensión efectiva constante, donde observaron que las muestras altamente sobre-consolidadas (OC) tienden a tener un comportamiento termoelástico, mientras que las ligeramente sobre- consolidadas y normalmente consolidadas (NC) tienden a tener un comportamiento termoplástico, es decir una parte significativa de las deformaciones no son reversibles como se ve en la Figura 2.3 (a) y (b).

En la Figura 2.4 podemos ver la completa dependencia de las deformaciones volumétricas de la temperatura y la tensión efectiva. Las arcillas muy sobre-consolidadas tienden a hincharse a bajas temperaturas y contraerse a valores más altos. Las arcillas ligeramente sobre-consolidadas y normalmente consolidadas tienden a encogerse tanto a bajas como a altas temperaturas. Este mismo comportamiento fue observado por (Plum & Esrig, 1969).

Figura 0.3: Deformaciones volumétricas térmicas resultantes sobre etapas de carga y descarga térmicas.

Fuente: (Baldi et al., 1988)

En relación con las pruebas que se muestran en la Figura 2.3 (a) y (b) (Baldi et al., 1988) no aclara cuál fue el propósito de someter las probetas a diversos procesos térmicos de carga, además de no considerar el efecto tiempo en el que se sometió cada etapa. Sin embargo, la observación de (Baldi et al., 1988) sobre los tipos de deformación volumétrica que presentan las probetas por el aumento de temperatura según el estado de tensión (OCR), fue fundamental para proceder con las formulaciones de modelos termomecánicos que existen actualmente.

Figura 0.4: Curvas de deformación volumétrica térmica a diferentes nivel de sobreconsolidación (OCR).

Fuente: (Baldi et al., 1988)

Más recientemente (Laloui & Cekerevac, 2003) realizaron tres ensayos de consolidación isotrópica a diferentes niveles de temperatura en una arcilla Caulim saturado reconstituido (IP=24) cuyas trayectorias de incremento de la tensión media efectiva y la temperatura se muestran en la Figura 2.5. Se puede observar en la misma figura que el primer ensayo denominado test 1 fue consolidado a una temperatura ambiente de 20°C, sin embargo, los ensayos Test 2 y 3 sufrieron incrementos de temperatura (Δ T) de 40°C y 70°C a tensión media efectiva a temperatura constante.

Los resultados de los ensayos de (Laloui & Cekerevac, 2003) se observa en la Figura 2.6. En donde se puede observar que las curvas de consolidación de los ensayos Test 2 y 3 en comparación a la curva del Test 1 presentaron una disminución significativa de volumen denominado "compactación térmica" por los mismos autores. A diferencia de los resultados observados por (Campanella & Mitchell, 1968) y (Baldi et al., 1988) se

puede observar en la Figura 2.5 que la diferencia entre las deformaciones entre los ensayos 2 y 3 (60°C-90°C) es mucho menor en comparación con los ensayos 1 y 2 (22°C-60°C), lo que sugiere que el aumento de las deformaciones térmicas en la arcilla no es lineal ni directamente proporcional al aumento de temperatura. Por las características del suelo del planeta, compuesto por minerales, agua y gas; cada componente reaccionará de manera diferente al aumento de temperatura. Por lo tanto, puede haber un límite en el que el aumento de temperatura ya no tenga un efecto significativo sobre las deformaciones volumétricas.

Figura 0.5: Trayectorias de incremento de la tensión media efectiva y la temperatura en los ensayos de consolidación isotrópica.

Fuente: (Laloui & Cekerevac, 2003).

Figura 0.6: Curvas de consolidación isotrópica. Fuente: (Laloui & Cekerevac, 2003)

Hasta el momento se ha discutido de cómo influye la variación térmica y/o carga térmica en el volumen de las arcillas, sin embargo ello conduce directamente a formularse la siguiente pregunta ¿Entonces cómo influye el incremento y/o disminución de la temperatura en la presión de poro? para ello se encontró el artículo de (Bai, Guo, & Han, 2014) en donde publico los resultados de ensayos de consolidación isotrópica en una arcilla con LL=31% y un IP= 13.8%. Los ensayos primero fueron sometidos a una consolidación drenada a una temperatura de 25°C por 1320min, luego cerraron las válvulas de drenaje y empezaron a incrementar la temperatura progresivamente (Δ T=+10°C) y esperando estabilizar la temperatura en cada etapa en condiciones no drenadas por otros 1320min. Los resultados de los ensayos se presentan en la Figura 2.7.

(Bai et al., 2014) observaron incrementos graduales de la temperatura en el exceso de presión de poro normalizada, en donde identificaron que en cuanto se incrementa la temperatura aumenta la presión de poro y viceversa. Sin embargo, la observación más

importante fue que en cuanto menor era la tensión confinante durante el incremento de temperatura mayor fue el exceso de presión de poro inclusive podiendo llegar a anular la tensión efectiva dentro de los especímenes.

Figura 0.7: Curvas de presión de poro normalizada inducida por temperatura. Fuente: (Bai et al., 2014)

2.1.3 Influencia de la temperatura en la tensión de pre- consolidación (σ 'v)

En el anterior ítem se revisó la bibliografía sobre la influencia de la variación térmica en el cambio de volumen de las arcillas, en donde los autores tuvieron que realizar ensayos de consolidación isotrópica (hidrostática) y ensayos edometricos a temperatura controlada adoptando diferentes trayectorias de incremento de carga mecánica y térmica. Tales ensayos también permitieron entender como varia la tensión de pre-consolidación en función a la temperatura, los cuales se presentan en el presente ítem.

Uno de los primeros autores a observar este comportamiento fueron (Sallfors & Tidfors, 1989) quienes estudiaron la variación de la tensión de pre-consolidación en cinco tipos de arcilla a través de ensayos de consolidación a deformación controlada (CRS), en donde observaron que el efecto de la temperatura en la tensión de pre-consolidación depende de la magnitud de incremento de temperatura, contenido de arcilla, microestructura y contenido de humedad por el cual tiende a ser una disminución lineal como se observa en la Figura 2.8.

Figura 0.8: Relación entre la temperatura vs la tensión de pre-consolidación. Fuente:(Sallfors & Tidfors, 1989)

Sin embargo, contrario a las conclusiones de (Sallfors & Tidfors, 1989) autores como Eriksson (1989) y (Cui, Sultan, & Delage, 2000) afirman que la tensión de preconsolidación tiende a una diminución no lineal con relación al incremento de temperatura como se observa en la Figura 2.9.

Figura 0.9: Relación entre la tensión de pre-consolidación con la temperatura. Fuente: (Cui et al., 2000)

La disminución de la tensión de pre-consolidación con respecto al incremento de la temperatura estudiado por los autores hasta ahora mencionados está relacionado a los efectos de calentamiento en la etapa de consolidación. Sin embargo, (Hong, Pereira, Tang, & Cui, 2013) estudiaron el comportamiento de las arcillas cuando con sometidos a un ciclo de calentamiento – resfriamiento en los mismos tipos de ensayos de consolidación, en donde, concluyeron que cuando una arcilla es sometida simplemente a un proceso de calentamiento la tensión de pre-consolidación disminuye, pero, cuando es sometido a un ciclo de calentamiento-resfriamiento la tensión de pre-consolidación de pre-consolidación un proceso de calentamiento fue denominado por (Hong et al., 2013) como un proceso de densificación térmica.

2.1.4 Modelos termo-mecánicos existentes

Poder entender el comportamiento de la tensión de pre-consolidación, permitió a los investigadores introducir la variable temperatura (T) en una dimensión de la actual teoría de la mecánica de suelos avanzada como se observa en la Figura 2.10.

La Figura 2.10 representa gráficamente el comportamiento termo – elasto – plástico de la arcilla en el cuadrante de la tensión media efectiva (p') versus la temperatura (T). El grafico indica que la tensión media efectiva disminuye en cuanto la temperatura incrementa, es decir, si un espécimen es cargado hasta p'= p'c (To) y luego descargado hasta p'c (T1) para después incrementar la temperatura hasta T1, el espécimen empezara a presentar deformaciones termo-elásticas hasta tocar la línea entrecortada (isotropic yield limit) denominado en el idioma español como la "línea límite de plastificación térmica (LY)", a partir de esa línea limite LY el espécimen experimentara deformaciones termo-plásticas.

Gracias al grafico de la figura 2.10 los autores (Laloui & François, 2009) presentaron el diagrama tridimensional que se observa en la Figura 2.11, en donde, en cuanto mayor la temperatura el dominio termo-elástico disminuye. En la figura 2.11 aparece una nueva superficie límite denominado en inglés como "deviatoric yield limit" que representa la misma superficie LY pero en el espacio (3D).

Figura 0.10: Diagrama de la superficie termo-elasto-plástico isotrópico. Fuente: (Laloui & François, 2009)

En la Figura 2.11 se presenta el diagrama tridimensional que relaciona las variables de la teoría CAM CLAY más una variable adicional representada por la temperatura, los cuales se describen a continuación:

- $q = tensión desviadora (\sigma 1 \sigma 3)$
- p' = tensión media efectiva $(\sigma 1 + 2\sigma 3)/3$
- T = temperatura

Figura 0.11: Diagrama tridimensional p' x q x T. Fuente: (Laloui & François, 2009)

Los investigadores como Cui et al. (2000) y Abuel Naga et al. (2007) observaron que el diagrama presentado en la figura 2.10 describe el comportamiento térmico de arcillas sobre-consolidadas y en arcillas normalmente consolidadas, por ello, los autores ya mencionados introdujeron una recta "LY" en la coordenada (p', To) que representa la trayectoria térmica para arcillas normalmente consolidadas como se observa en la Figura 2.12.

La recta LY en la figura 2.12 quiere decir, que cuando se empieza a incrementar la temperatura en una arcilla normalmente consolidada a tensión media efectiva constante, inmediatamente empieza a existir deformaciones plásticas volumétricas

térmicas, en cambio, en arcillas sobre-consolidadas las deformaciones plásticas empiezan

cuando tocan la línea "TY" a un determinado nivel de incremento térmico.

Figura 0.12: Diagrama termo elasto – plástica para arcillas saturadas. Fuente: (Hong et al., 2013)

(Hong et al., 2013) realizaron una revisión y comparación de resultados de los modelos de Cui et al. (2000), Abuel Naga et al. (2007) y Laloui & François (2009), denominándolos como modelos C, A y L respectivamente.

Los tres modelos C, A y L tienen como utilidad predecir el comportamiento termomecánico de las arcillas, lo que significa determinar la variación volumétrica (dEv) y la variación de la tensión media efectiva (dp') en función a la variación térmica (Δ T). (Hong et al., 2013) realizo un resumen de todas las ecuaciones termo-mecánicas propuestas por los tres modelos que se presentan en la Tabla 1, para luego describir las variables que fueron consideradas en cada modelo.

Comportamiento termo - elástico

Los tres modelos presentan una ecuación para determinar la deformación volumétrica elástica total ($d\varepsilon_v^e$), compuesta por dos partes: por carga mecánica y por carga térmica. Para el modelo C y L es la siguiente ecuación:

$$d\varepsilon_{v}^{e} = \alpha dT + \frac{dp'}{K}$$

Y para el Modelo A:

$$d\varepsilon_{v}^{e} = \frac{\alpha_{A}}{T}dT + \frac{dp'}{K}$$

Donde:

- α y αA : Son los coeficientes de expansión volumétrica térmica de los modelos C, L y A respectivamente.
- K : módulo de compresibilidad o más conocido como módulo de bulk. (independe de la temperatura).
- dT : Variación de la temperatura.
- dp' : Variación de la tensión media efectiva.

Para el modelo L, los valores de α incrementa con la temperatura y el OCR:

$$\alpha = [\alpha_o + \zeta (T - T_o)] \frac{1}{d} \frac{p'_{co}}{p'}$$

Donde:

- α_o : coeficiente de expansión térmica a To.
- ζ : es la proporción de la variación de α con respecto a la temperatura.
- p'_{co} : es la tensión de pre-consolidación a una temperatura To.
- *d* : es un parámetro del modelo relacionado a la proporción de los esfuerzos (p', q) en la superficie de plastificación.

En relación al módulo de bulk "K", para los modelos C y A es la equivalente del

modelo CAM CLAY:

$$K = \frac{v_o * p'}{k}$$

Donde:

- v_o : volumen especifico inicial.
- k : es el coeficiente elástico en el plano (ln(p'), v).

Sin embargo, para el modelo L, considera el módulo hipoelastico definido por:

$$K = K_{ref} \left(\frac{p'}{p'_{ref}}\right)^{n'}$$

Donde:

- Kref: es el módulo de bulk referente a p'ref.
- nc : es un parámetro del suelo.

Tabla 1: Resumen de ecuaciones termo-mecánicas.

FUENTE: Extraído de (Hong et al., 2013).

40

Comportamiento termo - plástico

Para poder modelar el comportamiento termo-plástico los autores propusieron diagramas para representar el dominio termo-elastico de las arcillas, de tal manera poder definir curvas limite representadas por las letras LY y TY como se observa en la figura 2.13.

Las letras LY y TY representan lo siguiente:

- LY = "Loading Yield Limit", esta curva describe el comportamiento termo-elasto-plástico para arcillas normalmente consolidadas.
- TY = "Thermal Yield Limit", esta curva describe el comportamiento termo-elasto-plástico para arcillas sobre-consolidadas.

Figura 0.13: Dominio termo – elástico de los modelos en el plano (p' x T).

Fuente: (Hong et al., 2013)

Para poder graficar las curvas TY y LY los autores de los tres modelos presentaron las ecuaciones respectivas que se muestran en la tabla 1. Tales ecuaciones están conformadas por variables que se obtienen a partir de ensayos en laboratorio y otros no. Los cuales se describen a continuación:

Para los modelos C y A:

- $p'_{co} = es$ la tensión de pre-consolidación a una temperatura To.
- Tc = es la temperatura cuando la curva TY interseca el eje de temperatura.
- β y TY son parámetros del suelo que se obtienen en laboratorio de los modelos C y A respectivamente.
- ro = es el coeficiente que gobierna la curvatura de LY en el modelo C.
- LY = es un parámetro del suelo natural en el modelo A que se obtiene en laboratorio.

Para el modelo L:

• rT = es un coeficiente de gobierna la curvatura del modelo L.

Por lo descrito hasta el momento se puede entender que los modelos para que fuesen aplicados necesitan datos de laboratorio y muchas otras variables complejas de entender. Además, los tres modelos proponen una modificación total de los modelos actuales como el CAM CLAY, ya que incluyen los efectos de la temperatura en el comportamiento de las arcillas como "carga térmica".

Sabemos en la actualidad que las propiedades del suelo varían por efectos de incremento de carga ($\Delta \sigma$), y, dependiendo del tipo de suelo empiezan a aparecer otros esfuerzos dentro de la masa en compresión, como por ejemplo la tensión cizallante o la presión intersticial. Los modelos presentados hasta ahora agruparon este comportamiento del suelo como originado por "carga mecánica", entonces, todos los efectos por temperatura lo denominaron como originados por "carga térmica".

Por tanto, quiere decir que la mecánica de suelos en estado saturado tendría que estudiar el comportamiento del suelo (arcillas) a partir de dos tipos de carga: carga mecánica + carga térmica. Pero como pudo observarse en los modelos presentados, juntar los dos tipos de carga hace del modelo mucho más complicado de desenvolver, explicar y entender.

La presente tesis empieza con la filosofía de poder separar los efectos de estas cargas, y, plantear una ecuación simplificada para determinar la variación volumétrica originada solo por carga térmica.

2.1.5 Influencia de la temperatura en la microestructura de las arcillas

Antes de los años 2000 fue complicado para los investigadores poder observar el comportamiento microestructural de las arcillas frente a la influencia de la temperatura, en la actualidad es posible realizar ensayos microscópicos gracias al avance de la tecnología.

Los autores (Delage, Sultan, & Cui, 2000) realizaron una investigación sobre la influencia del incremento de temperatura en la porosidad de una arcilla Boom Clay para luego relacionar con la permeabilidad total e intrínseca del mismo. En la Figura 2.14 se observa la variación de la permeabilidad y la porosidad durante los efectos de calentamiento y resfriamiento, en donde, los autores afirmaron que la permeabilidad total incrementa en cuanto aumenta la temperatura y disminuye en cuanto empieza el resfriamiento, consecuentemente concluyeron que la permeabilidad intrínseca de una muestra cargada a una determinada temperatura depende apenas de su porosidad, independientemente de la trayectoria termomecánica anteriormente seguida, es decir, variaciones de volumen creadas por tensión y/o temperatura tiene el mismo efecto sobre el sistema intrínseco.

Figura 0.14: Ensayos de permeabilidad en arcilla Boom Clay a diferentes niveles de temperatura.

Fuente: (Delage et al., 2000)

De tal forma (Delage et al., 2000) cita la ecuación de (Hillel, 1980) para determinar la variación de la viscosidad dinámica del agua en relación a la temperatura:

$$\mu(T) = -0.00046575 \ln(T) + 0.00239138 (Pa.s)$$

Donde:

- $\mu(T) =$ Viscosidad dinámica del agua
- T = Temperatura

Recientemente los autores (Chen et al., 2017) publicaron una investigación más detallada a nivel microscópico sobre la influencia de la temperatura en la microestructura de una arcilla Boom Clay. (Chen et al., 2017) realizaron ensayos de permeabilidad, Microscopia Electrónica de Barredura (SEM) y ensayos de Resonancia Magnética Nuclear (RMN).

Figura 0.15: Relaciones de flujo de tiempo vs agua inyectada en cada nivel de temperatura en dirección paralela al plano de estratificación.

Fuente: (Chen et al., 2017)

Figura 0.16: Relaciones de flujo de tiempo vs agua inyectada en cada nivel de temperatura en dirección perpendicular al plano de estratificación.

Fuente: (Chen et al., 2017)

En la Figuras 2.15 y 2.16 se observa una relación lineal satisfactoria entre el flujo de tiempo y volumen de agua inyectada paralela y perpendicular al plano de estratificación de la muestra, en donde, los autores (Chen et al., 2017) concluyeron que el volumen de agua inyectada dentro de una misma duración incrementa en cuanto mayor

es la temperatura, indicando una mayor permeabilidad en relación a una temperatura más alta, y, considerando que la presión de inyección es la misma, entonces lo que varía es el caudal de flujo interno para diferentes temperaturas en forma linear.

En las figuras 2.17 y 2.18 se observa la conductibilidad hidráulica en relación a la temperatura paralela y perpendicular a la estratificación, los autores (Chen et al., 2017) observaron que la conductividad hidráulica a 80°C es 2.4 veces más que la de temperatura ambiente y afirmaron que existe una correlación positiva y básicamente reversible durante un ciclo de calentamiento-resfriamiento. Debido a la relación linear, concluyeron que la conductividad hidráulica es independiente de la anisotropía de la muestra.

Este comportamiento los autores (Chen et al., 2017) explican que la permeabilidad de la arcilla aumenta debido a la disminución de la viscosidad y la densidad del agua en los poros en cuanto se incrementa la temperatura como se observa en la Tabla 2.

 Tabla 2: Variación de la viscosidad y la densidad del agua en los poros con la temperatura.

Temperature (°C)	Viscosity (10 ⁻³ Pa s)	Density (g/cm ³)
23	0.9579	0.9985
40	0.656	0.9927
60	0.4688	0.9845
80	0.3565	0.9742

FUENTE: Extraído de (Chen et al., 2017).

En relación a la permeabilidad intrínseca (Chen et al., 2017) evaluaron en dirección vertical y horizontal, y, en la figura 2.19 se puede observar que disminuyen aproximadamente un 10% (para todas las pruebas) durante la fase de calentamiento, y luego aumentan ligeramente durante la fase de enfriamiento. El comportamiento de la permeabilidad intrínseca es totalmente diferente a los datos obtenidos de las pruebas de permeabilidad total, este fenómeno está ligado al cambio en el volumen térmico del suelo.

Además, este fenómeno se puede atribuir al comportamiento de cambio de volumen térmico de Boom Clay. La contracción térmica plástica de las muestras durante la fase de calentamiento da como resultado una disminución de la permeabilidad intrínseca.

Figura 0.17 Relación de la conductividad hidráulica vs la temperatura en dirección paralela a la estratificación. Fuente: (Chen et al., 2017)

Figura 0.18 Relación de la conductividad hidráulica vs la temperatura en dirección perpendicular a la estratificación. Fuente: (Chen et al., 2017)

Figura 0.19 Variación de la permeabilidad intrínseca respecto a la temperatura. Fuente: (Chen et al., 2017)

Para poder entender el comportamiento a nivel microscópico se presenta el ensayo de Microscopia Electrónica de Barredura (SEM) y el ensayo de Resonancia Magnética Nuclear (RMN) realizado por los autores (Chen et al., 2017).

En los ensayos de Microscopia Electrónica de Barredura (SEM) observaron planos de estratificación de la microestructura de la arcilla Boom Clay. En la Figura 2.20 se observa una microestructura flácida curvada con leves líneas blanquecinas alrededor de las partículas, y, en la Figura 2.21 se observan discontinuidades que generan una zona de poros alongada entre el plano del estrato adyacente junto a un alineamiento bien desenvuelto de las partículas de la arcilla, este orden explica las propiedades transversales e isotrópicas de la argcilla indicando que esas discontinuidades destacan una alta permeabilidad horizontal a lo largo del plano de estratificación.

Figura 0.20 Microestructura de la arcilla Boom Clay perpendicular al plano de estratificación. a) x500 b) x2000

Fuente: (Chen et al., 2017)

Figura 0.21 Microestructura de la arcilla Boom Clay paralelo al plano de estratificación. a) x500 b) x2000

Fuente: (Chen et al., 2017)

En el ensayo de Resonancia Magnética Nuclear (RMN) (Chen et al., 2017) observaron que las curvas de distribución T2 que se observa en la Figura 2.22 se mueven para la derecha en paralelo con el aumento de temperatura, indicando un aumento en el tiempo de relajamiento T2. El tiempo de relajamiento creciente T2 significa que el tamaño de los poros ocupados con agua en la arcilla aumenta con el incremento de

temperatura mostrando que el calentamiento produce vacíos mayores entre las partículas

de la arcilla.

Resumiendo los autores (Chen et al., 2017) concluyeron que la arcilla Boom Clay sufre contracción térmica debido al aumento del índice de vacíos, debilitamiento microestructural y pérdida de rigidez por calentamiento, como consecuencia de una disminución de la permeabilidad intrínseca y, además, otro aumento de la permeabilidad absoluta al disminuir la viscosidad del fluido durante el calentamiento.

Hasta el momento se puede afirmar que el efecto de la temperatura en las arcillas está directamente ligado a la viscosidad del fluido en los vacíos de la arcilla. Ya que según las investigaciones, la parte intrínseca (relacionada a la parte solida de una muestra) es casi independiente de los efectos térmicos.

En resumen, los autores presentados concluyeron que el incremento de temperatura genera una disminución de la viscosidad del agua en los poros, debilitamiento microestructural e incremento de la permeabilidad, que conduce a un

aumento la velocidad de deformación de la muestra. Sin embargo, todo lo descrito hasta el momento explica teóricamente el comportamiento presentado en los resultados experimentales de (Machaca, 2020), ya que, no se encontró formulaciones matemáticas que incluyan la viscosidad para poder describir tal comportamiento observado.

Con la finalidad de poder encontrar formulaciones matemáticas en la mecánica de suelos saturado que incluyan la viscosidad, revisando la literatura, se encontró al Doctor Ingeniero Ian Shumann Marques Martins profesor del Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE) de la Universidade Federal do Rio de Janeiro (UFRJ), quien desde su tesis doctoral hasta la actualidad viene investigando una nueva e impresionante teoría que cubre y explica vacíos de la mecánica de suelos de Terzagui, el cual le permitió realizar grandes avances en la comprensión de la consolidación secundaria.

A continuación se presenta y describe un nuevo enfoque de la mecánica de suelos propuesta por (Martins, 1992).

(Martins, 1992) empieza detallando los tipos de contacto existentes en una arcilla, inclusive sugeridos por Terzagui en 1941. Los contactos entre partículas en arcillas son de dos tipos: "contactos tipo film bond" y "contactos tipo solid bond" como se observa en la figura 2.23.

(Martins, 1992) cito a (Terzagui, 1941) quien describió que las partículas de una arcilla están envueltas por una capa de agua adsorbida, misma que está fuertemente adherida a la superficie de los granos. A medida que se aparta de la superficie de los granos, la viscosidad del agua adsorbida va disminuyendo, hasta que a partir de una cierta distancia "d" las propiedades del mismo se convierten en de una agua común. Esta agua es el agua libre que se indica en la figura 2.23 que es el cual se expulsa en un ensayo de consolidación.

Figura 0.23 Tipos de contacto en suelos. Fuente: (Martins, 1992)

De acuerdo con esta definición los contactos entre partículas se pueden dar a través de un agua adsorbida solida (contacto solido-solido o solid bond) y a través de una capa de agua adsorbida liquida (film bond). Según (Martins, 1992) ambos contactos transmiten esfuerzos efectivos, en consecuencia es necesario subdividir la tensión efectiva en dos partes: una parte soportada por los contactos tipo agua sólida y otra parte por los contactos tipo filme viscoso.

(Martins, 1992) explica que cuando una masa de suelo es cargada hasta un cierto límite, los contactos tipo "solid bond" se quiebran y las partículas pasan a tener contactos tipo "film bond". Estando la arcilla en estado lubrificado y con exceso de presión neutra, continúa un periodo de consolidación con incremento de esfuerzos efectivos. Después de que la mayor parte del exceso de agua sea drenada, la arcilla aún se encuentra en estado lubrificado. De esta forma el movimiento relativo entre las partículas continua, hasta que finalmente, sean reestablecidos los contactos tipo "solid bond", la variación de volumen del suelo en esta etapa es conocida como consolidación secundaria que, al contrario de la consolidación primaria, es independiente de la longitud de la trayectoria de drenaje.

(Terzagui, 1941) había definido que una vez se termina la consolidación primaria todos los esfuerzos que actúan son esfuerzos efectivos. En donde a partir de ahí no existe

variación en la tensión efectiva aun cuando la arcilla, se encuentre en estado lubrificado y continúe sufriendo compresión. Esta etapa fue denominado como el periodo de solidificación, en donde, apenas ocurre reacomodo de los contactos de los granos.

La definición del anterior párrafo fue cuestionada por (Martins, 1992) atribuyendo que contradice totalmente el principio de los esfuerzos efectivos publicadas por el propio Terzagui cinco años antes (Terzagui, 1936). Porque no existe ninguna duda de que la variación de volumen está directamente ligada a la variación de los esfuerzos efectivos.

(Martins, 1992) a través de diferentes fuentes bibliográficas y estudios experimentales concluye que durante la consolidación secundaria (en un ensayo edometrico) existe disipación de las tensiones cizallantes y que después del fin de la consolidación primaria la tensión horizontal incrementa en el tiempo. Esto indica que, durante la consolidación secundaria, la tensión octaédrica estaría creciendo con el tiempo lo que justificaría la disminución de volumen después del llamado consolidación primaria.

Después de varios estudios experimentales (Martins, 1992) y (Andrade, 2009) concluyeron que en las arcillas existe una parte de la resistencia a compresión cuyo valor depende exclusivamente de la velocidad de deformación que ocurre durante la consolidación primaria y secundaria, y, esta velocidad de deformación está ligada al contenido de agua adsorbida en el suelo.

Esas consideraciones llevaron a (Martins, 1992) a admitir que una arcilla puede resistir los esfuerzos cizalhantes aplicadas por medio de dos parcelas independientes:

- Una de fricción, que depende de la tensión normal efectiva σ ';
- Y otra de viscosidad, que depende del índice de vazios y de la velocidad de distorsión ($\dot{\gamma} = \frac{d\gamma}{dt}$).

La parcela de la viscosidad seria consecuencia de la distorsión del agua adsorbida en los contactos viscosos, el cual (Martins, 1992) escribió:

En donde:

- $\tau = es$ la tensión cizallante aplicada.
- $\sigma' = es$ la tensión normal efectiva.
- ϕ mob = ángulo de fricción movilizado.
- $\eta(e) = coeficiente de viscosidad del suelo para el índice de vacíos e.$

Considerando la ecuación presentada la consolidación secundaria paso a ser interpretado como una relajación de esfuerzos drenada en donde existe movilización paulatina de la parcela de la viscosidad. De tal forma, al final de la consolidación secundaria los esfuerzos cizallantes residuales serian aquellas soportadas apenas por fricción.

CAPITULO III

MATERIALES Y MÉTODOS

3.1 INTRODUCCIÓN

La presente tesis consiste en desarrollar un trabajo numérico con el objetivo desenvolver una formulación matemática para predecir deformaciones volumétricas por carga térmica en arcillas. Para ello, con la finalidad de comprobar su validez se usará datos experimentales obtenidos en laboratorio.

Los ensayos experimentales fueron realizados en el laboratorio de geotecnia de la Universidad Estatal del Norte Fluminense (UENF) de Brasil. Por motivos en que equipos triaxiales especiales como el triaxial térmico aun no fue adquirido por ninguna universidad del Perú.

Estos ensayos fueron realizados por el autor de la presente tesis durante su estadía en la UENF como estudiante de postgrado.

A continuación, se presenta los materiales y métodos utilizados en la presente tesis, para realizar los ensayos en laboratorio.

3.2 MATERIALES

3.2.1 Suelo

El programa experimental, consistió en la caracterización de la muestra y ensayos triaxiales, se llevó a cabo con una arcilla marina típica de la costa sur de Brasil. Estos se acondicionaron en muestreadores tipo Shelby de paredes delgadas. La arcilla se extrajo de los muestreadores y se deformo completamente para luego homogeneizarla. El objetivo de este procedimiento fue obtener una sola muestra, eliminando la posible heterogeneidad de sedimentos marinos que pudieran existir en los Shelbys. Parte del

material homogeneizado se separó para las pruebas de caracterización, y otra parte para

la reconstitución de los cuerpos de prueba para realizar los ensayos triaxiales térmicos.

Figura 0.1 Muestra recolectada por muestreadores tipo Shelby.

Figura 0.2 Extracción de las muestras de los tubos Shelby.

Figura 0.3 Muestra homogeneizada y guardada en un recipiente de tecnopor.

3.2.2 Equipo para la reconstitución de muestras

Para la reconstitución de las muestras se instaló un consolidómetro en el laboratorio de la centrífuga geotécnica de la Universidad Estatal del Norte Fluminense (figura 3.4). Este consolidómetro consta de molde partido, contenedor con sistema de reacción para aplicación de carga, actuador hidráulico, interfaz aire-aceite, panel con válvulas reguladoras de presión, computadora, convertidor / acondicionador AD, una celda de carga y un transductor.

Figura 0.4 Equipo para la reconstitución de muestras.

Figura 0.5 Vista al interior del equipo de reconstitución.

Figura 0.6 Molde bipartido para la reconstitución de muestras.

3.2.3 Triaxial convencional

Equipo para realizar investigación en mecánica de suelos, que tiene la capacidad de someter un espécimen a diferentes estados de tensión efectiva en un espacio axisimétrico. La Figura 3.7 muestra los equipos fabricados por la empresa "GDS Instruments".

Figura 0.7 Equipo triaxial convencional

Figura 0.8 Bombas de control de presión en el equipo triaxial.

3.2.4 Triaxial térmico

Es un equipo adquirido recientemente por el Laboratorio de Centrífuga Geotécnica de la UENF. El triaxial térmico permite desarrollar investigaciones relacionadas con el comportamiento termomecánico de las arcillas, es un equipo que permite el control de la temperatura de los ensayos que se pueden realizar en el triaxial convencional.

Además de las partes de un triaxial convencional, el nuevo equipo fue reemplazado por una celda resistente al calor y un sistema de control de temperatura autónomo e independiente con tres termopares. La figura 3.9 muestra la celda triaxial térmica, los termopares y los cables que conducen el calentamiento por energía eléctrica. Cada uno se describirá en los elementos siguientes.

Figura 0.9 Partes principales de un triaxial térmico.

Figura 0.10 Cobertor de aislamiento térmico del triaxial térmico.

Figura 0.11 Celda térmica triaxial.

Figura 0.12 Equipo de control de temperatura.

Figura 0.13 Equipo triaxial térmico con todas sus partes.

3.3 METODOLOGÍA

3.3.1 Procedimiento para la reconstitución de muestras

Como se menciona en el ítem 3.2, a partir de una masa de arcilla homogeneizada con un contenido de humedad promedio de 91%, se reconstituyeron todas las muestras (CP). La muestra se describe como una arcilla marina deformada inalterada.

Para reconstituir una muestra se necesita una masa de suelo de 230 g. El procedimiento para colocar la masa en el molde bipartido (Figura 3.6) se describe a continuación:

- Primero: coloque papel de filtro en la base del molde, luego se introduce manualmente la masa total de 230.0g en el molde partido (Figura 3.9) mediante una ligera presión con las manos del técnico hasta que quede nivelada con la extensión del molde. Cualquier exceso de masa se retira y elimina.
- Segundo: colocar otro papel de filtro por encima del molde con extensión, y luego la tapa superior de aluminio, con el fin de distribuir la carga normal en el consolidómetro.
- Tercero: la masa contenida en el molde se coloca en el interior del consolidometro. Para la reconstitución, el consolidómetro permite la aplicación de esfuerzos normales preestablecidos. Estos se distribuyeron en cinco etapas, que son: 7, 15, 30, 50 y 100 kPa como se muestra en la Tabla 6. Cada etapa tuvo una duración estándar de 24 horas.

En la Tabla 6, es posible registrar cada etapa de la preparación de las muestras. Las presiones ya están programadas y aparecen en la primera columna de la tabla. Así, al final de la última etapa, se pueden calcular el índice de vacíos de la muestra, la altura final de la muestra, el diámetro y finalmente el contenido de humedad final.

Presión (kPa)	Hora y fecha inicial	Hora y fecha final	Presión inicial (kPa) (Pi)	Presión final (kPa) (Pf)	Deformación inicial (Di)	Deformación final (Df)
7						
15						
30						
50						
100						
FUENTE: Elaborado por el equipo de trabajo.						

Tabla 3: Tabla de control para la reconstitución de las muestras.

Figura 0.14 Muestra Nº1.

Después de completar la etapa de 100KPa, la muestra se extrae cuidadosamente del molde bipartido y se retira cualquier exceso de altura, dejando todas las muestras con las dimensiones aproximadas de 3.8 cm de diámetro y 7.6 cm de altura, como se muestra en la Figura 3.14.

3.3.2 Procedimiento estándar para ensayos de consolidación térmica a temperaturas superiores al ambiente (temperatura controlada)

Los ensayos de consolidación térmica se realizarán en un equipo denominado triaxial térmico del cual se describe en el ítem 3.2.4. Por tanto, todos los ensayos de consolidación térmica están en condiciones isotrópicas ($\sigma 1=\sigma 2=\sigma 3$).

Para determinar el procedimiento estándar de los ensayos se realizaron pruebas con diferentes metodologías, para luego optar por el procedimiento con mejores resultados.

El procedimiento que se presenta en la figura 3.15 permitirá observar y recopilar datos por separado de las deformaciones volumétricas totales por efectos de la consolidación mecánica (temperatura ambiente) y la consolidación térmica (mayor a temperatura ambiente).

Los datos experimentales recopilados de los ensayos de consolidación térmica permitirán cumplir con el tercer objetivo específico de la presente tesis, el cual es validar la formulación matemática propuesta.

Figura 0.15 Procedimiento estándar para ensayos de consolidación térmica a temperaturas superiores al ambiente (temperatura controlada).

A continuación, se describe cada etapa de la metodología que se presenta en la figura 3.15:

Saturación: Proceso de saturación del equipo triaxial para garantizar que no exista burbujas de aire en las vías de inyección de agua a presión controlada.
 Luego de instalar la muestra en el equipo se procede a la saturación de la muestra hasta obtener un B>=0.98. El tiempo de saturación de una muestra tiene una duración mínima de 6 horas.

Figura 0.16 Saturación del equipo triaxial.

- Consolidación mecánica: Consiste en la consolidación isotrópica de la muestra a temperatura ambiente en el triaxial térmico. Después de la saturación, para someter la muestra a un determinado esfuerzo efectivo (100kPa, 200kPa y 400kPa) se incrementa la presión confinante y la contrapresión se mantiene constante en el sistema triaxial. Los ensayos se detienen cuando la curva de consolidación que muestra el software en tiempo real, indique que la muestra se encuentra en la etapa de la consolidación secundaria. Un ensayo de consolidación mecánica tiene una duración mínima de 24 horas.
- **Consolidación térmica:** Consiste en la consolidación de la muestra a una temperatura constante mayor al ambiente. Esta etapa empieza cuando la muestra se encuentra en la etapa de la consolidación secundaria, desde ese

momento se incrementa la temperatura en la celda triaxial a una velocidad constante de 0.5°C / min hasta llegar a la temperatura objetivo de 40°C o 55°C, para luego mantenerlas constante por un tiempo mínimo de 24 horas. Durante esta etapa es importante prevenir cualquier tipo de intercambio térmico con el medio.

Figura 0.17 Instalación de la celda triaxial térmica.

CAPITULO IV

RESULTADOS Y DISCUSIÓN

En el presente capitulo se presentará los resultados y discusiones de la presente tesis, empezando por la clasificación geotécnica del suelo en estudio, los ensayos triaxiales convencionales y térmicos en laboratorio hasta la formulación matemática del objetivo principal.

4.1 DATOS EXPERIMENTALES OBTENIDOS EN LABORATORIO

4.1.1 Clasificación del suelo

Contenido de humedad natural del suelo en estudio

El contenido de humedad natural de una muestra inalterada se determinó según la normativa ASTM D 2216 el cual se presenta en la tabla 4. La humedad natural del suelo en estudio es del 91.2%.

Contenido de humedad						
capsula n⁰	10	238	82			
suelo+tara+agua (g)	49.54	51	56			
suelo+tara (g)	32.9	33.53	35.23			
tara (g)	14.84	14.18	14.23			
agua (g)	16.64	17.47	16.86			
suelo seco (g)	18.06	19.35	18.56			
Humedad (%)	92.14	90.28	90.87			
Humedad média (%)	91.2					

Tabla 4: Contenido de humedad natural.

FUENTE: Elaborado por el equipo de trabajo.

Límites de consistencia

Los límites de Atterberg, límites de plasticidad o límites de consistencia, se utilizan para caracterizar el comportamiento de los suelos finos. Estos límites se dividen en tres tipos:

- Límite líquido: cuando el suelo pasa de un estado plástico a un estado líquido.
 Para la determinación de este límite se utiliza la copa de Casagrande.
- Límite plástico: cuando el suelo pasa de un estado semisólido a un estado plástico.
- Límite de retracción o contracción: cuando el suelo pasa de un estado semisólido a un estado sólido y se contrae al perder humedad.

Los límites mencionados fueron determinados mediante la normativa ASTM

D4318, el cual permitirá clasificar el tipo suelo en que se estudia. En la tabla 5 se presenta

los resultados de los límites de consistencia determinados en laboratorio.

	Lí	mites de C	onsistenci	a		
Interesado	Hiden J. Mach	Hiden J. Machaca Huancollo				13/02/2020
Local:	Bacia de Carr	ipos			Ensayo:	1
Pozo:	1605	1605				
Muestra:	Arcilla marina	inalterada				
		l ímite l	iquido			
Cansula No	130	02	160	158	36	
Peso tara+suelo+agua (g)	11 52	11 02	12.38	11 / 5	12.67	
Peso tara+suelo (g)	8.76	8 76	9.06	8.67	9.21	
Peso da agua (g)	2 76	3 16	3.32	2 78	3.46	*******
Peso tara (n)	6.09	5 74	5.94	6.08	5 99	
Peso de suelo seco (a)	2 67	3.02	3 12	2 59	3.22	
Humedad (%)	103.370787	104.635762	106.410256	107.335907	107.453416	
Número de golpes	45	30	24	21	17	~~~~~
	•	Límite p	olastico	-		
Capsula No.	183	13	12	8	187	
Peso tara+suelo+agua (g)	7.45	8	5.76	8.03	7.08	
Peso tara+suelo (g)	7.17	7.71	5.43	7.7	6.79	
Peso da agua (g)	0.28	0.29	0.33	0.33	0.29	
Peso tara (g)	6.47	7.02	4.63	6.89	6.06	
Peso de suelo seco (g)	0.7	0.69	0.8	0.81	0.73	
Humedad (%)	40	42.0289855	41.25	40.7407407	39.7260274	
Humedad media (%)	40.75					

Tabla 5: Resultados de los límites de consistencia.

FUENTE: Elaborado por el equipo de trabajo.

Figura 0.1: Curva del ensayo estándar limite líquido.

En resumen, los límites de consistencia resultaron:

Límite Liquido	106.00 %
Límite plastico	40.75 %
IP	65.25 %

Los límites de consistencia obtenidos sugieren que la arcilla es altamente plástica con un IP del 65.2%. Según el SUCS la muestra en estudio es clasificado como CH (arcilla inorgánica de alta plasticidad).

Análisis granulométrico

El ensayo se realizó de acuerdo a la normativa ASTM D422, donde presenta los procedimientos para el análisis granulométrico por tamizado y sedimentación. En la figura 4.2 se presenta la curva granulométrica determinada en el ensayo.

De acuerdo a la curva granulométrica se observa que el material es muy fino, con solo un 2.4% de arena fina, un 27.5% de limo y un 70.1% de arcilla. La fracción fina con alta plasticidad y alta actividad coloidal de 0.93.

Características Granulométricas Fracciones granulometricas y Clasificación Unificada

Figura 0.2: ensayo de análisis granulométrico.

Gravedad especifica de los sólidos (Gs)

La gravedad específica de los sólidos del suelo es un parámetro muy importante para el estudio de una muestra, por ser una variable adimensional. Para determinar este parámetro se realiza un ensayo en laboratorio según las recomendaciones de la Norma ASTM D854.

La Gravedad Específica de los Sólidos del suelo es la relación entre el peso en el aire de los sólidos de un espécimen de suelo a una temperatura dada, y el peso en el aire de un volumen igual (al de los sólidos) de agua destilada a la misma temperatura.

Según la Tabla 6 el Gs del suelo en estudio en la presente tesis es 2.69.

Gravedad Específica de los Sólidos (Gs)					
Interesado	ado Hiden J. Machaca Huancollo			13/02/2020	
Local:	Bacia de Campos			1	
Pozo:	1605				
Muestra:	Arcilla marina inalterada				
Dianamatua			2	40	
Picnometro no.		4	3	12	
Volumen nominal del frasco (ml)		100	100	100	
T = tempera	tura(oC)	30	29	28	
Wfa = peso f	rasco+água	158.3	158.33	158.36	
Ws = peso d	el suelo	8.32	8.32	8.32	
Wfas = peso	frasco+agua+suelo	163.54	163.56	163.58	
Ws-Wfas+W	fa	3.08	3.09	3.1	

Tabla 6: Ensayo de gravedad especifica de los sólidos (Gs).

FUENTE: Elaborado por el equipo de trabajo.

0.996

2.690

2.694

2.68

2.69

0.996

2.682

2.686

0.996

2.674

2.679

Consolidación edométrica

Densidad de los solidos: Gs=(Ws Gwt)/(Ws-Wfas+Wfa)

Gravedad especifica de los solidos: Gds=Gs / Gwt (20oC)

Gwt (segun abaco)

Promedio: Gs

Promedio: Gds

La consolidación edométrica refiere a un ensayo en laboratorio que se realiza según las recomendaciones de la norma ASTM D-2435. Este ensayo permite determinar las propiedades de consolidación de un suelo. Para ello se aplican cargas diferentes a una muestra del terreno y se cuantifica la respuesta de la deformación. Los resultados se usan como pronóstico del suelo a consecuencia de un cambio del esfuerzo efectivo.

Según la Tabla 7 el coeficiente de compresión (Cc) resulto 1.01 y el coeficiente de expansión (Cs) fue de 0.12, los cuales indican que el suelo en estudio es de alta compresibilidad. El ensayo también permite observar la variación del coeficiente de consolidación vertical (Cv) y la permeabilidad total (K).

	Resultados de Ensayo de Consolidación Edométricca								icca										
	Interesado	Hiden J. N	lachaca Hu	uancollo			Fecha:	12/05	/2020										
	Obra:	Investigac	ion				Ensayo:	1											
	Sondaje:	RL1605A					Muestra:	M1											
					Dat	tos de la i	nuestra												
Diamet	tro: 4.99 cm	ı		Área inicia	al: 19.56 c	cm²		Peso total	de la mues	tra: 55.540	a								
Altura ir	nicial: 1.91	cm		Humedad	l inicial: 9	1.2 %		Peso de la	muestra se	eca: 29.046	Sa								
Volume	en de la mu	iestra: 37.3	5 cm³	Índice vac	ios inicia	l: 2.45		Peso espe	cífico: 14.5	7 kN/m³	0								
Volume	en de sólido	os: 10.84 ci	m³	Grado de	saturacio	on inicial: 9	9.9 %	Peso espe	cífico seco	: 7.62 kN/m	1 ³								
Volume	en de vacio	s: 26.51 cn	1 ³	Porosidad	l inicial: 7	1.0 %		Peso espe	cífico satur	ado: 14.58	kN/m³								
Volume	en de agua:	: 26.49 cm ³	3	Humedad	l final: 76.	7 %		'											
												Planilla de Resultados del Ensavo							
				PI	lanilla de	e Resultad	dos del En	sayo											
				PI	lanilla de	e Resultad	dos del En	sayo											
	Esfuerzo	Altura	Altura	PI Variacion	anilla de Altura	e Resultad	dos del En	sayo											
Est.	Esfuerzo normal	Altura inicial:	Altura final:	PI Variacion da altura	anilla de Altura média	e Resultad	dos del En	sayo e	e/eo	av	mv	k							
Est. (nº.)	Esfuerzo normal σn (kPa)	Altura inicial: Ho (mm)	Altura final: Hf (mm)	Pl Variacion da altura DH (mm)	anilla de Altura média Hm (mm)	e Resultad t90 (s)	dos del En cv (cm²/s)	sayo e	e/eo	av (1/kPa)	mv (1/kPa)	k (cm/s)							
Est. (nº.)	Esfuerzo normal σn (kPa) 0.000	Altura inicial: Ho (mm)	Altura final: Hf (mm)	Pl Variacion da altura DH (mm) -	Altura Média Média Mm (mm)	e Resultad t90 (s)	dos del En cv (cm²/s)	sayo e 2.446	e/eo 1.000	av (1/kPa) -	mv (1/kPa) -	k (cm/s)							
Est. (nº.) -	Esfuerzo normal on (kPa) 0.000 1.226	Altura inicial: Ho (mm) - 19.1	Altura final: Hf (mm) - 19.09	Pl Variacion da altura DH (mm) - 0.01	Altura Média Mm (mm) - 19.095	e Resultad t90 (s)	cv cv (cm²/s)	e 2.446 2.445	e/eo 1.000 0.999	av (1/kPa) - 0.001	mv (1/kPa) - 0.000	k (cm/s)							
Est. (nº.) - 1 2	Esfuerzo normal σn (kPa) 0.000 1.226 2.452	Altura inicial: Ho (mm) - 19.1 19.09	Altura final: Hf (mm) - 19.09 19.08	Variacion da altura DH (mm) - 0.01 0.01	Altura média Hm (mm) - 19.095 19.085	t90 (s)	cv (cm²/s)	e 2.446 2.445 2.443	e/eo 1.000 0.999 0.999	av (1/kPa) - 0.001 0.001	mv (1/kPa) - 0.000 0.000	k (cm/s)							
Est. (nº.) - 1 2 3	Esfuerzo normal σn (kPa) 0.000 1.226 2.452 4.904	Altura inicial: Ho (mm) - 19.1 19.09 19.08	Altura final: Hf (mm) - 19.09 19.08 19.04	Pl Variacion da altura DH (mm) - 0.01 0.01 0.04	Altura média Hm (mm - 19.095 19.085 19.06	e Resultad t90 (s)	dos del En cv (cm²/s)	e 2.446 2.445 2.443 2.436	e/eo 1.000 0.999 0.999 0.996	av (1/kPa) - 0.001 0.001 0.003	mv (1/kPa) - 0.000 0.000 0.001	k (cm/s)							
Est. (nº.) - 1 2 3 4	Esfuerzo normal σn (kPa) 0.000 1.226 2.452 4.904 9.808	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04	Altura final: Hf (mm) - 19.09 19.08 19.04 18.832	Pl Variacion da altura DH (mm) - 0.01 0.01 0.04 0.208	Altura média Hm (mm 19.095 19.085 19.06 18.936	t90 (s)	cv (cm²/s)	e 2.446 2.445 2.443 2.436 2.398	e/eo 1.000 0.999 0.999 0.996 0.980	av (1/kPa) - 0.001 0.003 0.008	mv (1/kPa) - 0.000 0.000 0.001 0.002	k (cm/s)							
Est. (n°.) - 1 2 3 4 5	Esfuerzo normal on (kPa) 0.000 1.226 2.452 4.904 9.808 19.617	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04 18.832	Altura final: Hf (mm) - 19.09 19.08 19.04 18.832 18.44	Pl Variacion da altura DH (mm) - 0.01 0.01 0.04 0.208 0.392	Altura média mí (mm) - 19.095 19.085 19.06 18.936 18.636	e Resultad t90 (s) 2160	dos del En cv (cm²/s) 0.000341	e 2.446 2.445 2.443 2.436 2.398 2.327	e/eo 1.000 0.999 0.999 0.996 0.980 0.951	av (1/kPa) - 0.001 0.003 0.008 0.007	mv (1/kPa) - 0.000 0.000 0.001 0.002 0.002	k (cm/s) 7.23E-07							
Est. (n°.) - 1 2 3 4 5 6	Esfuerzo normal on (kPa) 0.000 1.226 2.452 4.904 9.808 19.617 39.234	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04 18.832 18.44	Altura final: Hf (mm) - 19.09 19.08 19.04 18.832 18.44 17.762	PI Variacion da altura DH (mm) - 0.01 0.01 0.04 0.208 0.392 0.678	Altura média Hm (mm 19.095 19.085 19.06 18.936 18.636 18.101	e Resultad t90 (s) 2160 3744.6	dos del En cv (cm²/s) 0.000341 0.000185	e 2.446 2.445 2.443 2.436 2.398 2.327 2.205	e/eo 1.000 0.999 0.999 0.996 0.980 0.951 0.901	av (1/kPa) - 0.001 0.001 0.003 0.008 0.007 0.006	mv (1/kPa) - 0.000 0.000 0.001 0.002 0.002 0.002	k (cm/s) 7.23E-07 3.48E-07							
Est. (n°.) - 1 2 3 4 5 6 7	Esfuerzo normal on (kPa) 0.000 1.226 2.452 4.904 9.808 19.617 39.234 78.468	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04 18.832 18.44 17.762	Altura final: Hf (mm) - 19.09 19.08 19.04 18.832 18.44 17.762 16.122	Pl Variacion da altura: DH (mm) - 0.01 0.01 0.04 0.208 0.392 0.678 1.64	Altura média Im (mm - 19.095 19.085 19.06 18.936 18.636 18.101 16.942	e Resultad t90 (s) 2160 3744.6 6242.4	dos del En cv (cm²/s) 0.000341 0.000185 9.75E-05	e 2.446 2.445 2.443 2.436 2.398 2.327 2.205 1.909	e/eo 1.000 0.999 0.999 0.996 0.980 0.951 0.901 0.780	av (1/kPa) - 0.001 0.003 0.003 0.008 0.007 0.006 0.008	mv (1/kPa) - 0.000 0.000 0.001 0.002 0.002 0.002 0.002	k (cm/s) 7.23E-07 3.48E-07 2.29E-07							
Est. (n°.) 1 2 3 4 5 6 7 8	Esfuerzo normal σn (kPa) 0.000 1.226 2.452 4.904 9.808 19.617 39.234 78.468 156.935	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04 18.832 18.44 17.762 16.122	Altura final: Hf (mm) - 19.09 19.08 19.04 18.832 18.44 17.762 16.122 14.49	Pl Variacion da altura DH (mm) - 0.01 0.01 0.04 0.208 0.392 0.678 1.64 1.632	Altura média mídia m (mm - 19.095 19.085 19.06 18.936 18.636 18.101 16.942 15.306	e Resultad t90 (s) 2160 3744.6 6242.4 5078.4	dos del En cv (cm²/s) 0.000341 0.000185 9.75E-05 9.78E-05	e 2.446 2.445 2.443 2.436 2.398 2.327 2.205 1.909 1.615	e/eo 1.000 0.999 0.999 0.996 0.980 0.951 0.901 0.780 0.660	av (1/kPa) - 0.001 0.003 0.008 0.007 0.006 0.008 0.004	mv (1/kPa) - 0.000 0.000 0.001 0.002 0.002 0.002 0.003 0.001	k (cm/s) 7.23E-07 3.48E-07 2.29E-07 1.26E-07							
Est. (n°.) - 1 2 3 4 5 6 7 8 9	Esfuerzo normal on (kPa) 0.000 1.226 2.452 4.904 9.808 19.617 39.234 78.468 156.935 39.234	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04 18.832 18.44 17.762 16.122 14.49	Altura final: Hf (mm) - 19.09 19.08 19.04 18.832 18.44 17.762 16.122 14.49 14.8	Pl Variacion da altura DH (mm) 0.01 0.01 0.04 0.208 0.392 0.678 1.64 1.632 -0.31	Altura média Hm (mm - 19.095 19.085 19.06 18.936 18.636 18.636 18.101 16.942 15.306 14.645	e Resultad t90 (s) 2160 3744.6 6242.4 5078.4	dos del En cv (cm²/s) 0.000341 0.000185 9.75E-05 9.78E-05	e 2.446 2.445 2.443 2.436 2.398 2.327 2.205 1.909 1.615 1.671	e/eo 1.000 0.999 0.999 0.996 0.980 0.951 0.901 0.780 0.660 0.683	av (1/kPa) - 0.001 0.003 0.008 0.007 0.006 0.008 0.004 0.000	mv (1/kPa) - 0.000 0.000 0.001 0.002 0.002 0.002 0.003 0.001 0.000	k (cm/s) 7.23E-07 3.48E-07 2.29E-07 1.26E-07							
Est. (n°.) - 1 2 3 4 5 6 7 8 9 10	Esfuerzo normal on (kPa) 0.000 1.226 2.452 4.904 9.808 19.617 39.234 78.468 156.935 39.234 9.808	Altura inicial: Ho (mm) - 19.1 19.09 19.08 19.04 18.832 18.44 17.762 16.122 14.49 14.8	Altura final: Hf (mm) 19.09 19.08 19.04 18.832 18.44 17.762 16.122 14.49 14.8 15.12	Pl Variacion da altura DH (mm) - 0.01 0.01 0.04 0.208 0.392 0.678 1.64 1.632 -0.31 -0.32	Altura média mí (mm) 19.095 19.085 19.085 19.06 18.936 18.636 18.636 18.101 16.942 15.306 14.645 14.96	e Resultad t90 (s) 2160 3744.6 6242.4 5078.4	cv (cm²/s) 0.000341 0.000185 9.75E-05 9.78E-05	e 2.446 2.445 2.443 2.436 2.398 2.327 2.205 1.909 1.615 1.671 1.728	e/eo 1.000 0.999 0.996 0.980 0.951 0.901 0.780 0.660 0.683 0.706	av (1/kPa) - 0.001 0.003 0.008 0.007 0.006 0.008 0.004 0.000 0.002	mv (1/kPa) - 0.000 0.001 0.002 0.002 0.002 0.002 0.003 0.001 0.000 0.001	k (cm/s) 7.23E-07 3.48E-07 2.29E-07 1.26E-07							

FUENTE: Elaborado por el equipo de trabajo.

4.1.2 Parámetros de resistencia del suelo

En el presente ítem se presentará los ensayos triaxiales realizados a temperatura ambiente para determinar los parámetros de resistencia de la arcilla. En los siguientes párrafos se presenta los procedentitos empleados respectivamente.

El uso de un equipo de triaxial permite observar y determinar las propiedades de una muestra dentro del campo de esfuerzos efectivos. Por tanto, se realizaron ensayos triaxiales consolidados no drenados (CIU) a temperatura ambiente, que permitieron determinar la variación de la resistencia no drenada y la presión de poro en relación a la deformación axial. Los resultados también permitirán observar la trayectoria de esfuerzos totales y efectivos.

Como primer paso consiste en determinar las propiedades físicas iniciales de la muestra reconstituida antes de instalar en el equipo triaxial. Las propiedades son la humedad inicial, índice de vacíos inicial, peso específico inicial y la porosidad inicial. Para ello, es necesario registrar los siguientes datos:

- Pesar tres muestras en taras pequeñas para determinar el contenido de humedad inicial.
- Medir el diámetro y la altura de la muestra.
- Pesar la muestra.

Estos procedimientos pueden observarse en la figura 4.3.

Figura 0.3 Proceso de instalación de las muestras en el equipo triaxial.

Cuando se termine de instalar la muestra en el equipo triaxial, por ser ya un equipo automatizado se recurre a programar en el software de control del ensayo del modo siguiente:

- Primero: proceso de saturación hasta alcanzar un valor de B mayor o igual a 0.98.
- Segundo: proceso de consolidación mecánica hasta observar la etapa de la consolidación secundaria.
- Tercero: inicio del proceso de cizallamiento no drenado a una velocidad de 0.06mm/min.

Después de programar las etapas a seguir en el software de control se inicia el ensayo. Para continuar durante el ensayo se puede observar las gráficas en tiempo real

que nos permiten cerciorarse del correcto funcionamiento del equipo, como se observa en la figura 4.4. Las variables a observar pueden ser el esfuerzo desviador, presión de poro, esfuerzo medio efectivo y la variación de volumen. La primera característica de un ensayo triaxial no drenado es que el volumen se mantiene contante.

Def. Axial (ε %)Vs Esf. Desviador (q)

Def. Axial (ε %)Vs Pres. de poro (u)

Esf. Medio Efectivo (p') Vs Esf. Desviador (q)

Figura 0.4 Recolección de datos en tiempo real del ensayo en el Software.

Con el objetivo de trazar la Línea de Estado Critico (LEC) del suelo en estudio, se realizó tres ensayos triaxiales tipo CIU con esfuerzos confinantes de 100, 200 y 400kPa respectivamente. Por tanto, prosiguiendo con la presentación de los resultados, en la Tabla 8 se muestra la planilla típica de cálculo de las propiedades de cada uno de los especímenes; en donde los datos en color negro son adquiridos en laboratorio, y, los datos en color azul se adquieren a través de cálculos matemáticos típicamente conocidos en la

mecánica de suelos, por último los datos en color rojo son las respectivas propiedades de

la muestra en estudio que se obtuvieron a través de los anteriores datos.

Las propiedades respectivas calculadas en color rojo, cuentan con su descripción

en la misma planilla respectivamente. Los cuales se mencionan a continuación:

- Humedad inicial de la muestra.
- Índice de vacíos inicia de la muestra.
- Porosidad inicial de la muestra.
- Peso específico saturado inicial de la muestra.
- Volumen total de deformación de la muestra después de la consolidación mecánica.
- Índice de vacíos final mecánico de la muestra (después de la consolidación mecánica).

Cuerpo de prueba	C	P1	С	P2	C	P3
Muestra	Arcilla marina		Arcilla marina		Arcilla marina	
Ensayo	CIU		CIU		CIU	
Fecha	17/10/20		04/10/20		10/10/20	
σ_3 (kPa)	1()0	20	DO	40	00
OCR	1.0	00	1.	00	1.	00
Temperatura (°c)	25	°C	25	°C	25	°C
B	0.9	97	0.	97	0.	97
capsula n ^o	94	88			137	87
suelo+tara+água (g)	8.580	21.300	14.190	17.640	14.190	17.640
suelo+tara (g)	7.420	15.530	10.800	12.800	10.812	12.811
tara (g)	5.950	5.710	6.130	6.120	6.130	6.120
água (g)	1.160	5.770	3.390	4.840	3.378	4.829
suelo seco (g)	1.470	9.820	4.670	6.680	4.682	6.691
Humedad (%)	73.789	71.589	72.591	72.455	72.149	72.172
w_i = Humedad media inicial (%)	72.	.69	72	.52	72	.16
D = diametro (cm)	3.2	78	3.	80	3.	84
$H_o = altura inicial (cm)$	7.	67	7.	66	7.	68
$W_{STaA} = peso de suelo+tara+água (g)$	134	.89	135	5.69	138	3.03
$W_{Ta} = peso tara (g)$	0.0	00	0.	00	0.	00
G _S (g/cm ³)	2.6	i 90	2.6	590	2.6	590
$\gamma_{\rm W} =$ peso específico da água (g/cm ³)	1.0	00	1.	00	1.00	
$A = Area (cm^2)$	11.22		11.34		11	.58
V _{Ti} = Volumen total inicial (cm ³)	86.07		86.87		88.94	
W _T = peso total del suelo (g)	134.89		135.69		138.03	
γ = peso específico (g/cm³)	1.57		1.	56	1.55	
γ_d = peso específico seco (g/cm ³)	0.91		0.91		0.90	
W _s = peso del suelo seco (g)	78.11		78.65		80	.18
$W_W = peso \ água \ (g)$	56.78		57.04		57	.85
V_S = volumen de los sólidos (cm ³)	29.	29.04		29.24		.80
V _{Vi} = volumen de vacios inicial (cm ³)	57.	.04	57.64		59	.14
V_W = volumen del água (cm ³)	56.	.78	57.04		57.85	
V_A = volumen de aire (cm ³)	0.2	26	0.	60	1.28	
S = grado de saturación(%)	99.	.55	98	.97	97.	.83
$e_o = $ índice de vacios	1.9	96	1.	97	1.98	
n = pososidade (%)	66.	.26	66	.34	66.49	
γ_{sat} = peso específico saturado (g/cm ³)	1.	57	1.	57	1.	57
γ_{sub} = peso específico sumer. (g/cm ³)	0.:	57	0.	57	0.	57
capsula n <u>°</u>	188	137	188	39	83	50
suelo+tara+água (g)	18.050	19.650	17.130	23.990	19.420	17.210
suelo+tara (g)	13.311	14.394	13.037	17.697	15.203	13.499
tara (g)	5.880	6.100	5.880	6.470	6.220	5.730
água (g)	4.739	5.256	4.093	6.293	4.217	3.711
suelo seco (g)	7.431	8.294	7.157	11.227	8.983	7.769
Humedad (%)	63.773	63.371	57.189	56.052	46.944	47.767
w_f = Humedad media final (%)	63.	.57	56	.62	47	.30
$\Delta v = v \operatorname{anacion} \operatorname{de volumen} \operatorname{despues}$	12	77	10.01		22.05	
V Volumen total final (em ³)	12. 72	.∠1 80	18	.~1 66	23 65	.07 08
$v_{\rm H}$ = volumen de vacios final (cm ³)	13.	77	20	.00 43	25	.00 27
v_{VI} - volument de vacios final macanica	15	416	39 1 2	<i>5</i> 484	JJ 1 1	. <i></i>
$c_f = \text{indice de vacios final + tarrico}$	1.5	110	1.5	-0-	1.1	UJ -1
$v_1 = neso específico seco final (\sigma/cm^3)$	10	58	11	45	1 2	32
1a – peso específico seco mai (g/clir)	1.0		1.1		1.2	

<i>Tadia 6. Fiantilia de calculo de las propleadaes de los especime</i>	Tabla 8:	Planilla d	e cálculo	de las	propiedades	de los	especímen
---	----------	------------	-----------	--------	-------------	--------	-----------

FUENTE: Elaborado por el equipo de trabajo.

Las Figuras 4.5 y 4.6 presentan las curvas de esfuerzo desviador (σ d) y presión de poro (Δ u) x deformación axial (E1) de los ensayos E1, E2, E3. En la Figura 4.8 se observa que los ensayos E1, E2, E3 alcanzaron una resistencia al corte no drenado de 85.4kPa, 162.5kPa y 317.17kPa respectivamente. Se puede decir que cuanto mayor sea el esfuerzo confinante, mayor será la resistencia y el incremento de presión de poro, como se muestra en la Figura 4.6.

Figura 0.5 Curvas de deformación axial vs esfuerzo desviador.

Figura 0.6 Curvas de deformación axial vs incremento de la presión de poro.

Con los resultados presentados en las figuras 4.5 y 4.6, es posible determinar la trayectoria de los esfuerzos efectivos y totales de los ensayos. La trayectoria de los esfuerzos efectivos de un espécimen se observa en un gráfico bidimensional donde el eje de abscisas está representado por la variable del esfuerzo medio efectivo (p') y el eje de las ordenadas por la variable del esfuerzo desviador (q). Las equivalencias de las variables p' y q se presentan en las siguientes ecuaciones:

$$p = (\sigma_1 + \sigma_2 + \sigma_3)/3 \qquad \qquad Eq. 0.1$$

$$p' = (\sigma'_1 + \sigma'_2 + \sigma'_3)/3$$
 Eq. 0.2

$$q = \sigma_1 - \sigma_3 \qquad \qquad Eq.$$

Sin embargo, la magnitud de los esfuerzos horizontales $\sigma'2$ y $\sigma'3$ en ensayos desarrollados en el triaxial convencional son iguales ($\sigma'2 = \sigma'3$) por la geometría circular de la celda (condición axisimétrica), por lo tanto, los parámetros p' y q tendrían las siguientes equivalencias:

$$p = (\sigma_1 + 2\sigma_3)/3$$
 Eq. 0.4

$$p' = (\sigma'_1 + 2\sigma'_3)/3$$
 Eq. 0.5

$$q = \sigma_1 - \sigma_3 \qquad \qquad Eq. \ 0.6$$

La figura 4.7 muestra la trayectoria de los esfuerzos efectivos de los ensayos triaxiales respectivamente. Se puede observar la disminución del esfuerzo medio efectivo (p') durante la falla hasta alcanzar la Línea de Estado Crítico (LEC - envolvente). Los resultados permitieron determinar una envolvente de M= 1.04 con un ángulo de rozamiento interno efectivo (ϕ ') de 24.4°.

Figura 0.7 Trayectorias de esfuerzos efectivos y totales de las muestras.

Figura 0.8 Índice de vacíos vs esfuerzo medio efectivo.

4.1.3 Ensayos de consolidación térmica

En el presente ítem se presenta los resultados de los ensayos de consolidación térmica para cumplir con el objetivo principal de la presente tesis.

La metodología empleada para realizar los ensayos de consolidación térmica ya se presentó en el ítem 3.3.2. Sin embargo, es necesario ampliar más en detalles sobre el procedimiento para su mejor entendimiento.

Como primer detalle se recalca que estos ensayos fueron realizados en un equipo triaxial térmico automatizado. Por tanto, todos los ensayos de consolidación se realizaron dentro de la teoría de una consolidación isotrópica.

En resumen, los ensayos consisten en instalar un espécimen en el triaxial térmico, para luego someter a un proceso consecutivo de saturación, consolidación mecánica y por último la consolidación térmica. Sin embargo, antes de instalar el espécimen en el equipo, es necesario determinar las propiedades físicas del mismo.

El procedimiento para determinar las propiedades físicas de los especímenes son los mismos ya descritos en el ítem 4.2.2. Estos procedimientos fueron empleados para todos los especímenes con el objetivo de ensayar en muestras con una semejanza máxima posible.

En la figura 4.9 se presenta el control a tiempo real del ensayo E6 (100kPa, 40°C), en donde se puede observar las curvas de consolidación mecánica y térmica respectivamente. Semejante comportamiento se observó para los demás ensayos, los cuales se presentarán en los próximos sub-items respectivamente.

Figura 0.9 Curvas de consolidación mecánica y térmica del E6 en el software de control.

4.1.3.1 Ensayos de consolidación térmica a 40 ° C

Este ítem tiene como objetivo presentar y analizar los resultados de los ensayos de consolidación térmica a 40°C.

Como descrito en la metodología se realizaron tres ensayos de consolidación isotrópica térmica representados de la siguiente forma: E6, E7 y E8. Por consiguiente, son tres especímenes cuyas propiedades físicas de cada una se muestra en la Tabla 9. Para

determinar estas propiedades se siguieron los mismos procedimientos ya descritos en el ítem 4.2.2.

Sin embargo, a diferencia de los ensayos triaxiales mostrados en el ítem 4.2.2, estos especímenes no fueron cizallados. Porque el objetivo es obtener las curvas de consolidación térmica a 40°C de la forma como ya fue descrito en el ítem 3.3.2. En forma complementaria se aclara en cuanto los especímenes fueron extraídos del consolidometro, se determina los datos iniciales para después instalar en el triaxial térmico como se observa en la figura 4.10. Luego de instalar se coloca la celda triaxial térmica y sus componentes, para después programar en el software del equipo (GDSlaw v2.2.7) los procedimientos de saturación, consolidación mecánica y por último la consolidación térmica a 40°C.

Toma de datos iniciales del espécimen

Instalación en el triaxial térmico

Figura 0.10 Procedimientos del ensayo de consolidación térmica.

Para adquirir la temperatura de 40°C se controló la velocidad de calentamiento a través de un aparato electrónico programada a conducir calor a 0.5°C/min. El tiempo empleado para llegar desde los 23°C (temperatura ambiente) hasta los 40°C por el aparato fue de 30min.

Los datos de variación de volumen, temperatura, presión de poro, tiempo, esfuerzos actuantes fueron controlados a través de sensores debidamente calibrados que se recopilaron por medio del software (GDSlaw v2.2.7).

Cuerpo de prueba	CP6		CP7		CP8		
Muestra	Arcilla marina		Arcilla marina		Arcilla marina		
Ensayo	CIU		C	ſU	CIU		
Fecha	11/11/20		14/11/20		18/11/20		
σ_3 (kPa)	10	00	20	00	40	00	
OCR	1.	00	1.	00	1.	00	
Temperatura (°c)	40	°C	40	°C	40	°C	
<u>B</u>	0.	99	0.	99	0.	99	
capsula n <u>°</u>	87	88	94	102	39	94	
suelo+tara+água (g)	20.030	17.800	19.760	21.240	22.470	18.500	
suelo+tara (g)	14.090	13.100	13.820	15.280	16.130	13.140	
tara (g)	6.090	5.700	5.980	6.010	6.650	6.220	
agua (g)	5.940	4.700	5.940	5.960	6.340	5.360	
suelo seco (g)	8.000	7.400	7.840	9.270	9.480	6.920	
Humedad (%)	74.250	63.514	75.765	64.293	66.878	77.457	
$w_i = Humedad media inicial (%)$	68	.88	70	.03	72	.17	
D = diametro (cm)	3.	/9	3.	84	3.	80	
$H_0 = altura inicial (cm)$	7.	68	/.	68	/.	00	
$W_{STaA} = peso de suelo+tara+agua (g)$	130	0.07	130	0.57	134	F.90	
$W_{Ta} = peso tara (g)$	0.	00	0.	00	0.	00	
G _S (g/cm ³)	2.6	590	2.6	590	2.690		
$\gamma_{\rm W}$ = peso específico da água (g/cm ³)	1.	00	1.	00	1.00		
$\mathbf{A} = \mathbf{Area} \ (\mathbf{cm}^2)$	11.31		11	.56	11.35		
V _{Ti} = Volumen total inicial (cm ³)	86.83		88.74		86.91		
W _T = peso total del suelo (g)	136.07		136	136.57		134.90	
γ = peso específico (g/cm³)	1.57		1.54		1.55		
γ_d = peso específico seco (g/cm ³)	0.93		0.91		0.90		
W _s = peso del suelo seco (g)	80.57		80.32		78	.35	
$W_W = peso del agua (g)$	55	.50	56.25		56	.55	
$V_{\rm S}$ = volumen de los sólidos (cm ³)	29.95		29.86		29	.13	
V_{Vi} = volumen de vacios inicial (cm ³)	56.87		58.88		57	.78	
V_W = volumen del agua (cm ³)	55	.50	56.25		56	.55	
V_A = volumen de aire (cm ³)	1.	37	2.63		1.23		
S = grado de saturación(%)	97.	.58	95.54		97.86		
$e_0 = $ indice de vacios	1.	90 50	1.	97 25	1.	98 10	
$\mathbf{n} = \mathbf{pososidad} (76)$	1	.3U 50	66.35		66.48		
$\gamma_{sat} = peso específico sumar (g/cm3)$	1.	50 58	1.	57 57	1.	57 57	
$\gamma_{sub} = pcso cspecifico sunci. (g/cm)$	20	50	70	07	20	04	
suelo tara tágua (g)	25.000	21.880	10 550	20.910	16.820	20.380	
suelo+tara (g)	23.000	15 700	19.550	15 610	13 330	15 650	
tara (g)	6.390	5.730	5.930	6.110	6.400	5.960	
agua (g)	7.080	6.180	4.870	5.300	3.490	4.730	
suelo seco (g)	11.530	9.970	8.750	9.500	6.930	9.690	
Humedad (%)	61.405	61.986	55.657	55.789	50.361	48.813	
w_f = Humedad média final (%)	61	.70	55	55.72		49.59	
$\Delta V =$ Variacion de volumen despues							
consolidación (cm ³)	12	.85	18	18.95		.11	
$V_{Tf} = Volumen total final (cm3)$	73	.97	69	.79	61	.80	
V_{Vf} = volumen de vacios final (cm ³)	44	.02	39	.93	32	.67	
$\mathbf{e}_{\mathbf{f}} = $ índice de vacios final mecanico	1.4	824	1.3	637	1.1	464	
$\mathbf{e}_{\mathbf{f}} = \hat{\mathbf{n}}\mathbf{dice} \ \mathbf{de} \ \mathbf{vacios} \ \mathbf{final} + \mathbf{termico}$	1.4	556	1.3	170	1.0	964	
γ_d = peso específico seco final (g/cm ³)	1.0	89	1.1	51	1.268		

Tabla 9:	Planilla de	cálculo de	las propiedades	de los ensavos	E6. E7 v E8.
1 4014 >1	1 101111110 010	curcuro uc	ins propreadures	ac too enouyos	20, 27, 9, 20,

FUENTE: Elaborado por el equipo de trabajo.

En la figura 4.11 se presentan las curvas de consolidación mecánica y térmica de los tres especímenes respectivamente. De las cuales se obtuvieron los datos más importantes para la presente tesis, los cuales son:

- El coeficiente de consolidación secundaria a temperatura ambiente (Cα(To));
- Las curvas de consolidación térmica.

En las figuras 4.12, 4.13 y 4.14 se presentan las curvas de consolidación mecánica y térmica en escala logarítmica, las cuales permitieron determinar los C α (To) de cada espécimen. Además puede observarse en las mismas figuras que las curvas de consolidación térmica indican un incremento de deformaciones volumétricas aceleradas como predicho en la revisión bibliográfica, también se puede notar que estas deformaciones son mayores en cuanto mayor fue el esfuerzo efectivo actuante (σ '3).

Por tanto, se puede afirmar que el comportamiento térmico del suelo en estudio (arcilla de alta plasticidad) coincide con las conclusiones de anteriores estudios experimentales ya presentados en la revisión de literatura.

Por último, queda comprobar la validez de la ecuación propuesta en la presente tesis para predecir las deformaciones volumétricas por variaciones térmicas a través del método comparativo entre las curvas experimentales obtenidas con las graficadas por el modelo propuesto en el ítem 4.1.

Figura 0.12 Curvas de consolidación mecánica y térmica en escala logarítmica del espécimen E6.

Figura 0.13 Curvas de consolidación mecánica y térmica en escala logarítmica del espécimen E7.

Figura 0.14 Curvas de consolidación mecánica y térmica en escala logarítmica del espécimen E8.

4.1.3.2 Ensayos de consolidación térmica a 55 °C

Los ensayos que se presentan en este ítem son similares a los ensayos E6, E7 y E8, con la única diferencia en que se consolidaron térmicamente a 55°C. Estos ensayos permitirán complementar en la verificación más óptima al objetivo principal de la presente tesis.

Los ensayos pertenecientes a este ítem fueron denominados con los símbolos E9, E10 y E11, con sus respectivos especímenes (muestras de prueba) denominados CP9, CP10 y CP11 las cuales se presentan en la Tabla 10. El procedimiento empleado para el cálculo de sus propiedades físicas y la ejecución del ensayo en el equipo triaxial son los mismos como los presentados en los ítems 3.3.2 y 4.2.3.1.

Es necesario mencionar que la decisión de consolidar térmicamente los especímenes a 55°C se basó en la capacidad de soportar el incremento de la presión de vapor en la celda triaxial. Es decir, en cuanto mayor fuese la temperatura a consolidar mayor será la presión de vapor dentro de la celda triaxial, que en caso de no ser controlado puede llegar a una explosión térmica. Por tanto, los límites de temperatura en que se pueden ensayar dependen de las recomendaciones del fabricante del equipo, en este caso fue una Tmax de 65°C.

Cuerpo de prueba	СР9		CP10		CP11	
Muestra	Arcilla	marina	Arcilla marina		Arcilla marina	
Ensayo	CIU		CIU		CIU	
Fecha	10/12/20		09/03/21		16/03/21	
σ_3 (kPa)	10	00	20)0	400	
OCR	1.	00	1.	00	1.	00
Temperatura (°c)	55	°C	55	°C	55	°C
B	0.	99	0.	99	0.	99
capsula n <u>°</u>	39	94	102	94	102	87
suelo+tara+água (g)	20.410	22.140	20.450	18.980	21.690	21.240
suelo+tara (g)	14.740	15.350	14.280	14.060	15.630	14.790
tara (g)	6.390	5.940	6.090	6.150	6.060	6.110
agua (g)	5.670	6.790	6.170	4.920	6.060	6.450
suelo seco (g)	8.350	9.410	8.190	7.910	9.570	8.680
Humedad (%)	67.904	72.157	75.336	62.200	63.323	74.309
$w_i = Humedad media inicial (%)$	70	.03	68	.77	68	.82
D = diametro (cm)	3.	80	3.	80	3.	80
$H_0 = altura micial (cm)$	7.	66	7.	68	7.	66
$W_{STaA} = peso de suelo+tara+água (g)$	136	5.34	137	.23	136	5.34
$W_{Ta} = peso tara (g)$	0.	00	0.	00	0.	00
G_{S} (g/cm ³)	2.6	590	2.690		2.690	
$\gamma_{\rm W}$ = peso específico da água (g/cm ³)	1.	00	1.00		1.00	
$\mathbf{A} = \mathbf{Area} \ (\mathbf{cm}^2)$	11.35		11.34		11	.34
V _{Ti} = Volumen total inicial (cm ³)	86.91		87.10		86.90	
W_T = peso total del suelo (g)	136	5.34	137.23		136.34	
$\gamma = \text{peso específico } (g/cm^3)$	1.	57	1.58		1.57	
γ_d = peso específico seco (g/cm ³)	0.	92	0.93		0.93	
$W_s = peso del suelo seco (g)$	80	80.19		81.31		.76
$W_W = peso del agua (g)$	56	.15	55.92		55.58 30.02	
$V_{\rm S}$ = volumen de los sólidos (cm ³)	29.	.81	30.23		30	.02
V_{Vi} = volumen de vacios inicial (cm ³)	57.	.10	56.87		56.87	
$V_W =$ volumen del agua (cm ³)	56	.15	55.92		55.58	
$V_A =$ volumen de aire (cm ³)	0.94		0.96		1.30	
S = grado de saturación(%)	98.		98	.32	97.72	
$e_0 = \text{indice de vacios}$ n = pososidad(9/2)	1.	92 70	1.	88 30	1.	89 15
m = pososiuau (70)	1	.70 58	1	50	1	.43 58
$\gamma_{sat} = peso específico sumer (g/cm3)$	1.	58	1.	59	1.	58
$r_{sub} = peso especifico sumer. (g/em/)$		30	20	04	20	04
suelo_tara_água (g)	07	20 190	18 160	16 260	18 720	19 8 90
suelo+tara (g)	14 300	15 140	14 080	12.660	15 240	15.910
tara (g)	6.110	6.390	6.400	5.950	6.110	5.650
agua (g)	4.670	5.050	4.080	3.600	3.480	3.980
suelo seco (g)	8.190	8.750	7.680	6.710	9.130	10.260
Humedad (%)	57.021	57.714	53.125	53.651	38.116	38.791
$w_f = Humedad média final (%)$	57	.37	53	.39	38	.45
$\Delta V = Variacion de volumen despues$						
consolidación (cm3)	13	.84	19	.20	25	.32
V _{Tf} = Volumen total final (cm ³)	73	.07	67	.90	61	.58
V_{Vf} = volumen de vacios final (cm ³)	43	.26	37	.67	31	.55
$e_f = $ índice de vacios final mecanico	1.5	055	1.2	970	1.0	947
$e_f = $ índice de vacios final + termico	1.4	181	1.2	036	1.0	115
$\gamma_d = peso específico seco final (g/cm3)$	1.0	97	1.1	.98	1.3	312

Tabla 10: Planilla de cálculo de las propiedades físicas de los ensayos E9, E10 y E11.

FUENTE: Elaborado por el equipo de trabajo.

En la figura 4.15 se presenta las curvas de consolidación mecánica y térmica obtenidas de los ensayos E9, E10 y E11 respectivamente. Además del mismo comportamiento observado en el anterior ítem (ensayos a 40°C), se observa que las deformaciones volumetrías térmicas fueron 34% mayores en comparación a las muestras consolidadas térmicamente a 40°C. Concluyendo que en cuanto mayor fuese la temperatura a consolidar mayores serán las deformaciones volumétricas térmicas.

Además de la influencia del incremento de la temperatura en las deformaciones volumétricas, se puede observar el mismo efecto del incremento del esfuerzo actuante en cada ensayo.

Figura 0.15 Curvas de consolidación mecánica más térmica a 55°C.

En las figuras 4.16, 4.17 y 4.18 se presentan las curvas de consolidación mecánica y térmica en escala logarítmica, las cuales permitieron determinar los $C\alpha(To)$ de cada espécimen. Además, puede observarse en las mismas figuras que las curvas de

consolidación térmica indican una aceleración de deformaciones volumétricas como predicho en la revisión bibliográfica.

Por tanto, entre los ítems 4.2.3.1 y 4.2.3.2 se presentaron los seis ensayos de consolidación térmica planteados como uno de los objetivos específicos de la presente tesis. Como objetivo final queda realizar la evaluación de la capacidad de predicción del modelo propuesto con los resultados experimentales de los ensayos E6, E7, E8, E9, E10 y E11.

Figura 0.16 Curvas de consolidación mecánica y térmica en escala logarítmica del espécimen E9.

Figura 0.17 Curvas de consolidación mecánica y térmica en escala logarítmica del espécimen E10.

Figura 0.18 Curvas de consolidación mecánica y térmica en escala logarítmica del espécimen E11.

De los resultados experimentales se puede observar diferencias entre las curvas de consolidación térmica. Sin embargo, gracias a la metodología de reconstitución de los especímenes es posible llegar a algunas conclusiones.

Primero, las magnitudes de deformación volumétrica total durante la consolidación mecánica fueron similares entre cada espécimen consolidada a 100, 200 y 400kPa respectivamente. Lo que permite concluir que la consolidación secundaria térmica será apenas dependiente de los efectos del incremento de temperatura en la microestructura de los especímenes.

Segundo, las deformaciones volumétricas térmicas a 55°C fueron mayores que los de 40°C. Además, en el tiempo de inicio de la consolidación térmica (to) puede observarse que la aceleración de deformaciones a 55 °C es notablemente mayor que a 40°C. Lo que indicaría que el mayor efecto de la temperatura en la microestructura estaría al inicio del proceso de incremento de temperatura, es decir la mayor deformación volumétrica se concentrara al inicio del ensayo.

Tercero, en una escala adecuada como en las figuras 4.11 y 4.15 se puede observar que en cuanto el afecto de la aceleración de deformaciones por incremento de temperatura alcance su límite. Las deformaciones a ese nivel de temperatura tenderán a estabilizarse en el tiempo, lo que generaría un nuevo coeficiente de consolidación secundaria denominado $C\alpha(T)$.

A raíz de las observaciones anteriores se puede percibir que la consolidación secundaria tiende a cumplir un comportamiento dentro de las leyes de la viscosidad. Por tanto, los resultados de la presente tesis contribuyen a fortalecer la nueva teoría de la consolidación secundaria formulada por muchos autores en el mundo como descrito en la revisión bibliográfica.

4.2 DESARROLLO DE LA FORMULACIÓN MATEMÁTICA

Para desarrollar una formulación matemática, es necesario plantear una hipótesis teórica que permita marcar un punto de inicio para el desenvolvimiento de la filosofía matemática.

De tal forma, desde las observaciones y conclusiones de los autores presentados en la revisión bibliográfica se plantea la siguiente hipótesis: "Las deformaciones volumétricas térmicas totales en suelos normalmente consolidados y saturados, son respuesta de la aceleración de deformaciones en la compresión secundaria debido a la fluencia mejorada por la disminución de la resistencia viscosa causada por el incremento de temperatura".

De las curvas de consolidación mecánica más térmica de los resultados en laboratorio se puede realizar un diagrama generalizado que se presenta en la figura 4.19. En donde, separando la consolidación primaria y secundaria, se puede identificar un coeficiente de consolidación secundaria (C α) para una temperatura To en que se realizó la consolidación mecánica. El coeficiente está definido por la siguiente ecuación:

$$C\alpha(To) = \frac{e - e_o}{\log(t) - \log(to)}$$
(1)

El cual se puede expresar de la siguiente manera:

$$C\alpha(To) = \frac{\Delta e}{\log\left(\frac{t}{to}\right)}$$
(2)

En donde e representa el índice de vacíos.

Figura 0.19 Diagrama de simulación para la consolidación térmica. Fuente: Elaboración propia

Sin embargo, en cuanto se incrementa la temperatura durante la consolidación secundaria aparece un colapso en las deformaciones volumétricas, formando en el tiempo una nueva curva de consolidación para una determinada temperatura T> To como se observa en el diagrama de la figura 4.20. Por tanto, esta nueva curva adquiere un nuevo coeficiente de consolidación secundaria C α a una temperatura T, que se puede expresar por la siguiente ecuación:

$$C\alpha(T) = \frac{\Delta e}{\log\left(\frac{t}{to}\right)}$$
(3)

Según los resultados experimentales de (Towhata et al., 1993) sugieren que existe una curva de consolidación térmica para cada nivel de temperatura alcanzada, tal comportamiento se expresa con más detalle en el diagrama presentado en la figura 4.20. Por tanto, esto permite determinar un coeficiente de consolidación secundaria para cada nivel de temperatura que se expresaría con la misma ecuación (3) con una modificación de la siguiente manera:

Figura 0.20 Diagrama de curvas de consolidación térmica para diferentes niveles de temperatura. Fuente: Elaboración propia

Por tanto, por la similitud de la trayectoria de las curvas de consolidación secundaria a diferentes temperaturas, el valor de $C\alpha(T)$ sería equivalente al $C\alpha(To)$ multiplicado por otro coeficiente que se puede expresar de la siguiente manera:

$$C\alpha(T) = M * C\alpha(To)$$
(5)

En donde M sería un coeficiente dependiente de la temperatura.

Para determinar el valor equivalente de M se recurre a la revisión bibliográfica, específicamente a las conclusiones de Martins (1992), Delage et al. (2000), Andrade (2009) y Chen et al. (2017) quienes ayudaron a entender la influencia de la temperatura en la microestructura de las arcillas.

Recordando que durante la consolidación secundaria si existe variación de los esfuerzos efectivos para que exista variación de volumen. Tales esfuerzos efectivos están representados por los esfuerzos octaédricos los cuales crecen durante la consolidación secundaria. Sin embargo, la arcilla tiene dos formas de transmitir esfuerzos efectivos, mediante la parcela friccionante y la parcela viscosa diferenciada por los tipos de contactos entre las partículas sólidas. La consolidación secundaria ocurre porque todos los contactos viscosos están en proceso de transformación hacia los contactos friccionantes y termina cuando todos llegan a completar su conversión en mucho tiempo, para un determinado incremento de carga.

Los contactos viscosos se caracterizan porque tienen una capa de agua que separa el contacto entre las partículas sólidas, esta capa es un agua más viscosa que el agua común y se le conoce como agua adsorbida. Entonces, cuando se incrementa la temperatura, la viscosidad y la densidad del agua empiezan a disminuir. Tal disminución incrementa la permeabilidad total de la masa del suelo y disminuye ligeramente la permeabilidad intrínseca debilitando la microestructura, y, en consecuencia, acelera las deformaciones volumétricas secundarias.

Por tanto, M está relacionada con la variación de la viscosidad cinemática del fluido en la masa del suelo, en cuanto se incrementa o disminuye la temperatura. De tal manera la función M(T) tendría la siguiente equivalencia:

$$M(T) = \frac{C\alpha(T)}{C\alpha(To)} \approx \frac{\zeta(To)}{\zeta(T)}$$
(6)

En donde:

- ζ (To) = Es la viscosidad cinemática del agua a temperatura ambiente (To).
- $\zeta(T) = \text{Es la viscosidad cinemática del agua a temperatura T}.$

Por tanto, la ecuación (6) tendría la siguiente equivalencia:

$$M(T) = \frac{\zeta(To)}{\zeta(T)} \tag{7}$$

Como se concluyó la equivalencia de La función M(T) en la ecuación (6), quien depende de la variación de la viscosidad cinemática del agua durante el incremento o disminución de la temperatura. Para determinar la variación de la viscosidad recurrimos a la ecuación publicada en el artículo de (Delage et al., 2000), quienes presentan la variación de la viscosidad dinámica del agua en relación a la temperatura:

$$\mu(T) = -0.00046575 \ln(T) + 0.00239138 (Pa.s)$$

Donde:

- $\mu(T) =$ Viscosidad dinámica del agua
- T = Temperatura

Sin embargo, para obtener la variación de la viscosidad cinemática del agua necesitamos la variación de la densidad del agua en relación a la temperatura. Para ello recurrimos a la ecuación de Gong (2015) publicada en el artículo de (Chen et al., 2017):

$$\rho_w = -5.5 \ x \ 10^{-6} T^2 + 2.28 \ x \ 10^{-5} T + 0.99997 \ (\text{gr/cm3})$$

En donde:

- $\rho w = Densidad del agua a una temperatura T.$
- T = Temperatura.

En la Tabla 11 se presenta la variación de la viscosidad dinámica, densidad del agua, viscosidad cinemática y la variación de la función M(T) en relación a la temperatura.

T (°C)	μw (Pa.s)	ρ (gr/cm3)	ρ (kg/m3)	$v = \mu/\rho (m2/s)$	$M = (\zeta(To))/(\zeta(T))$
23	0.00093102	0.9975849	997.5849	9.33278E-07	1
24	0.0009112	0.9973492	997.3492	9.13623E-07	1.021512441
25	0.00089219	0.9971025	997.1025	8.94781E-07	1.043023159
26	0.00087392	0.9968448	996.8448	8.76688E-07	1.064549631
27	0.00085634	0.9965761	996.5761	8.59286E-07	1.086108037
28	0.00083941	0.9962964	996.2964	8.42526E-07	1.107713453
29	0.00082306	0.9960057	996.0057	8.26363E-07	1.129380015
30	0.00080727	0.995704	995.704	8.10755E-07	1.151121059
31	0.000792	0.9953913	995.3913	7.95667E-07	1.172949233
32	0.00077721	0.9950676	995.0676	7.81066E-07	1.194876601
33	0.00076288	0.9947329	994.7329	7.66921E-07	1.216914732
34	0.00074898	0.9943872	994.3872	7.53205E-07	1.239074767
35	0.00073548	0.9940305	994.0305	7.39893E-07	1.261367495
36	0.00072236	0.9936628	993.6628	7.26963E-07	1.283803403
37	0.00070959	0.9932841	993.2841	7.14393E-07	1.306392734
38	0.00069717	0.9928944	992.8944	7.02164E-07	1.329145527
39	0.00068508	0.9924937	992.4937	6.90257E-07	1.352071661
40	0.00067328	0.992082	992.082	6.78658E-07	1.375180895
41	0.00066178	0.9916593	991.6593	6.6735E-07	1.398482897
42	0.00065056	0.9912256	991.2256	6.56319E-07	1.421987278
43	0.0006396	0.9907809	990.7809	6.45552E-07	1.445703621
44	0.00062889	0.9903252	990.3252	6.35038E-07	1.469641509
45	0.00061843	0.9898585	989.8585	6.24763E-07	1.493810547
46	0.00060819	0.9893808	989.3808	6.14718E-07	1.518220388
47	0.00059817	0.9888921	988.8921	6.04893E-07	1.542880755
48	0.00058837	0.9883924	988.3924	5.95278E-07	1.567801466
49	0.00057876	0.9878817	987.8817	5.85864E-07	1.592992448
50	0.00056936	0.98736	987.36	5.76644E-07	1.618463767
51	0.00056013	0.9868273	986.8273	5.67609E-07	1.644225637
52	0.00055109	0.9862836	986.2836	5.58752E-07	1.670288451
53	0.00054222	0.9857289	985.7289	5.50067E-07	1.696662792
54	0.00053351	0.9851632	985.1632	5.41545E-07	1.723359455
55	0.00052496	0.9845865	984.5865	5.33183E-07	1.750389471
56	0.00051657	0.9839988	983.9988	5.24973E-07	1.77776412
57	0.00050833	0.9834001	983.4001	5.1691E-07	1.805494955
58	0.00050023	0.9827904	982.7904	5.08988E-07	1.833593821
59	0.00049227	0.9821697	982.1697	5.01204E-07	1.862072878
60	0.00048444	0.981538	981.538	4.93551E-07	1.890944618

Tabla 11: Variación de la función M(T) en relación a la temperatura.

FUENTE: Elaborado por el equipo de trabajo.

Por tanto, reemplazando la ecuación (7) en la ecuación (5) se obtiene la siguiente ecuación (8) que representa el coeficiente de consolidación secundaria a una determinada temperatura (T).

$$C\alpha(T) = \frac{\zeta(To)}{\zeta(T)} \ x \ C\alpha(To)$$
(8)

En donde:

$$\zeta(T) = \frac{-46.58 * 10^{-5} * ln(T) + 23.92 * 10^{-4}}{-5.5 * 10^{-3} * T^2 + 2.28 * 10^{-2} * T + 999.97}$$
$$(t_0 < t y T > To).$$

Hasta el momento se ha considerado la influencia de la viscosidad en el comportamiento térmico de las arcillas, es decir la parcela viscosa. Sin embargo para desarrollar el modelo es necesario considerar la parcela friccionante, es decir aquella que es afectada por el estado de esfuerzos actuante.

Para ello se ha revisado muchos modelos termo-mecánicos, pero ninguno de ellos considera el factor tiempo. Los modelos revisados son capaces de predecir la deformación volumétrica total por temperatura, menos en función del tiempo.

Revisando los resultados experimentales se puede observar la semejanza con las curvas hiperbólicas. Entonces se recurrió a revisar el modelo hiperbólico de Duncan y Chan (1960).

El modelo hiperbólico de Duncan y Chan (1960) sugiere que la relación de esfuerzo vs deformación en suelos puede ser representada por una ley hiperbólica en análisis incrementales de elementos finitos. Este modelo asume que la relación de incremento de esfuerzo desviador y deformación está gobernada por la ley de Hooke generalizada.

Después de una serie de investigaciones complementarias Kondner et al. (1963) mostraron que la curva esfuerzo desviador (σ 1- σ 3) vs deformación (ϵ 1) en suelos puede ser representada razonablemente por una hipérbola definida con la siguiente ecuación:

$$(\sigma_{1-}\sigma_{3}) = \frac{\varepsilon_{1}}{\frac{1}{Ei} + \frac{\varepsilon_{1}}{(\sigma_{1-}\sigma_{3})ult}}$$
(9)

Donde:

- Ei = Es el modulo tangente inicial de la curva esfuerzo desviador vs deformación axial.
- $(\sigma_{1}-\sigma_{3})ult$ = Es la asíntota del esfuerzo desviador relacionado con la resistencia del suelo.

El modelo hiperbólico es un modelo elástico no lineal que tiene como base predecir la curva esfuerzo vs deformación desde la semejanza a una curva hiperbólica. Lo que quiere decir que la ecuación (9) es una función de una curva hiperbólica.

Por tanto, después de meses de investigación en gabinete se logró formular una ecuación que predice las deformaciones volumétricas térmicas a partir del modelo hiperbólico. De esta forma se complementó la parcela fricionanate al comportamiento termo-mecánico de las arcillas.

Para obtener una ecuación que describa la trayectoria de las deformaciones térmicas de acuerdo a los resultados en laboratorio, seria sustituyendo las variables independientes y dependientes de la ecuación (9) de la siguiente forma:

- $(\sigma_{1-}\sigma_3)$ sustituido por ε_v
- ε₁ sustituido por "t"
- Ei sustituido por $C_{\alpha}(T)$
- $(\sigma_{1-}\sigma_{3})$ ult sustituido por ε_{vult}

Donde:

- $\varepsilon_v = deformation volumetrica equivalente a: \frac{\Delta e}{1+e_0}$
- t = tiempo
- $C_{\alpha}(T) = coeficiente de consolidacion secundaria a una temperatura T.$
- $\varepsilon_{vult} = asintota \ de \ la \ hiperbola.$

Reemplazando las sustituciones la ecuación (9) quedaría de la siguiente forma:

$$\varepsilon_{v} = \frac{t}{\frac{1}{C_{\alpha}(T)} + \frac{t}{\varepsilon_{vult}}}$$
(10)

En donde el tiempo es una variable independiente y C α (T) se calcula con la ecuación (8). Sin embargo ε_{vult} se determina mediante la calibración del modelo a través de ensayos en laboratorio.

Para calibrar la asíntota Duncan y Chan (1960) plantearon realizar una transformada en donde la curva hiperbólica se convierte en una recta, de la siguiente forma:

Sustituido las variables la transformada quedaría de la siguiente forma:

Después de haber obtenido ε_{vult} en tres diferentes estados de esfuerzos (σ '3) se puede calibrar con la siguiente ecuación:

$$Rf = \frac{\varepsilon_r}{\varepsilon_{vult}}$$

Donde:

 ε_r : Punto de inflexión máximo de la curva en función del esfuerzo efectivo constante.

Rf: Coeficiente de calibración.

4.3 VALIDACIÓN DEL MODELO

En el presente ítem se recurre a validar la formulación matemática desenvuelta mediante la comparación de resultados numéricos (de la formula) con datos experimentales (de laboratorio).

Para obtener los resultados numéricos en relación a los ensayos de laboratorio,

son necesarios los siguientes datos:

- Coeficiente de consolidación secundaria a temperatura ambiente ($C\alpha(To)$).
- Registro de la evolución del tiempo durante la consolidación térmica (tiempo de inicio de la consolidación térmica) (to).
- Temperatura objetivo en la que se realizara la consolidación térmica (T).
- La asíntota ε_{vult} que se obtiene de la calibración del modelo.

OCR	σ'v (kPa)	T(°C)	Cα (To)	to (min)	to (hr)	Evult	Cα (T)
1	100	40	0.01716812	1753.33	29.22	1.3323	0.006912
1	100	55	0.01844692	916.10	15.27	3.7821	0.02538
1	200	40	0.01929399	1232.88	20.55	2.164	0.011972
1	200	55	0.02029003	912.00	15.20	4.3994	0.02789
1	400	40	0.02145867	1268.30	21.14	2.2482	0.014744
1	400	55	0.02217549	1209.23	20.15	4.2901	0.026862

 Tabla 12: Resumen de los datos experimentales necesarios para ejecutar el modelo.

FUENTE: Elaborado por el equipo de trabajo.

Tabla 13: Calibración de Evult.

p'(kPa)	٤r	Evult	Rf
100	0.0171	0.0375	0.456
200	0.0238	0.0381	0.62467192
400	0.0182	0.0327	0.55657492
			0.54574895

FUENTE: Elaborado por el equipo de trabajo.

A continuación, se presenta los gráficos comparativos entre el modelo y los datos experimentales:

repositorio.unap.edu.pe No olvide citar adecuadamente esta tesis

Figura 0.21 Comparación de las deformaciones volumétricas totales térmicas del modelo y el experimental para el CP a 100kPa a 40°C.

Figura 0.22 Comparación de las deformaciones volumétricas totales térmicas del modelo y el experimental para el CP a 200kPa a 40°C.

25

20 1.090

1.100

1.110

1.120

Indice de vacios (e)

Figura 0.23 Comparación de las deformaciones volumétricas totales térmicas del modelo y el

experimental para el CP a 400kPa a 40°C.

1.130

1.140

1.150

Figura 0.24 Comparación de las deformaciones volumétricas totales térmicas del modelo y el experimental para el CP a 100kPa a 55°C.

Figura 0.25 Comparación de las deformaciones volumétricas totales térmicas del modelo y el experimental para el CP a 200kPa a 55°C.

Figura 0.26 Comparación de las deformaciones volumétricas totales térmicas del modelo y el experimental para el CP a 400kPa a 55°C.

En las figuras 4.21, 4.22 y 4.23 se presentan la comparación de las deformaciones volumétricas térmicas totales de las muestras consolidadas a una temperatura de 40°C en esfuerzos efectivos de 100, 200 y 400kPa respectivamente. Puede observarse que las deformaciones calculadas por la formulación matemática propuesta en la ecuación (10) tienen una buena concordancia con los resultados experimentales. Pero también puede notarse que todas las predicciones resultaron ser menor que las experimentales, esto puede atribuirse al efecto de no considerar en el modelo la viscosidad cinemática real del

agua adsorbida de entre los contactos viscosos del suelo. Ya que hasta la actualidad no se conoce cuan mayor es la viscosidad del agua adsorbida en relación al agua común en los poros del mismo.

En la parte (b) de las figuras mencionadas en el anterior párrafo, se muestra la relación entre la variación del índice de vacíos con el incremento de temperatura, en donde se observa que al inicio del ensayo las muestras experimentaron una pequeña expansión térmica. En cambio, el modelo no puede predecir esa pequeña etapa de la expansión térmica, considerándolo simplemente como un proceso continuo de deformación volumétrica. Sin embargo, eso no afecta considerablemente en la precisión del modelo.

En la figura 4.23 se puede observar que la curva del modelo tiene una mayor concordancia con la experimental en relación a los anteriores ensayos. Entonces, en cuanto mayor sea el esfuerzo actuante y la temperatura, mayor será la precisión del modelo.

En las figuras 4.24, 4.25 y 4.26 se presentan la comparación de las deformaciones volumétricas térmicas totales de las muestras consolidadas a una temperatura de 55°C a esfuerzos efectivos de 100, 200 y 400kPa respectivamente. Puede observarse que las deformaciones calculadas por la formulación matemática propuesta en la ecuación (10) tienen una mayor concordancia con los resultados experimentales, en relación a los ensayos a 40°C.

Este resultado puede atribuirse a la razón en que, cuanto mayor es la temperatura en la microestructura del suelo, la viscosidad del agua adsorbida disminuye con mayor velocidad, de esta forma asemejándose al de un agua común. Entonces si el modelo asume la evolución de la viscosidad en relación a un agua común, los ensayos a mayores temperaturas tenderán a ser más coincidentes con el modelo.

113

Para poder cuantificar el error de aproximación de los resultados numéricos se realizó un cálculo estadístico. Para dicho cálculo se tomaron datos provenientes de los resultados numéricos y experimentales, por tanto, estratégicamente los datos pertenecen al intervalo de tiempo donde ambas curvas tienden a ser paralelas. Además los datos son tomados obligatoriamente del final de ambas curvas, con el objetivo de cuantificar la deformación volumétrica total de cada uno.

En cuanto se seleccionaron los datos, se realizó la diferencia entre ambos resultados en un mismo tiempo del ensayo. Luego se calculó la media aritmética para cada ensayo, obteniendo seis datos finales. Con los datos finales se calculó el porcentaje de error de aproximación de cada resultado numérico, y en consecuencia se determinó una desviación estándar de 0.19 como se observa en la figura 4.27.

Según el análisis estadístico se determinó que el error de aproximación del modelo numérico oscila entre el 0.5 al 2%. Por tanto, la ecuación matemática propuesta en la presente tesis tiene la eficacia de predecir al 98% de las deformaciones volumétricas por variación de temperatura.

Por la evaluación comparativa de los resultados, se concluye que el modelo propuesto puede predecir razonablemente las deformaciones térmicas volumétricas totales en arcillas normalmente consolidadas bajo varios estados de esfuerzos.

Figura 0.27: Porcentaje de error de aproximación del modelo numérico.

Las magnitudes de las deformaciones por temperatura oscilan entre el 10 al 15% de las deformaciones totales por consolidación mecánica. Además, se concluye que la magnitud de las deformaciones volumétricas por temperatura, se incrementa en cuanto mayor sea la temperatura de consolidación.

Cabe mencionar que el modelo requiere de mínimo tres ensayos en laboratorio para calibrar el modelo. Un límite del modelo es que no considera la viscosidad cinemática del agua adsorbida, lo que conduce a una ligera imprecisión del modelo a temperaturas menores a 50°C.

Según la evaluación estadística, el porcentaje de error del modelo propuesto disminuye en cuanto mayor sea el estado de esfuerzos actuante y mayor sea la temperatura de consolidación.

Si bien, el modelo propuesto mostro ser una iniciativa certera para la predicción de deformaciones térmicas para suelos saturados normalmente consolidados. Sin embargo, no se puede llegar a esa conclusión para suelos no saturados, o, para suelos sobre-consolidados. El cual invita a realizar más estudios en el área de la termomecánica de suelos.

V. CONCLUSIONES

- La caracterización de la muestra presentó límites de consistencia de LL=106%, LP=40.7%, IP=65.2% y un índice de consistencia de IC=0.2. Permitiendo clasificar el suelo marino como una arcilla blanda de color gris oscuro de alta compresibilidad.
- La metodología utilizada para moldear los especímenes se consideró adecuada porque permitió que todos los especímenes tuvieran propiedades e índices similares.
- En la presente investigación se logró formular satisfactoriamente una ecuación matemática, que permite predecir las deformaciones volumétricas térmicas totales a través de la base teórica de la consolidación secundaria.
- Para desarrollar el modelo propuesto los componentes obligatorios a considerar fueron el coeficiente de consolidación secundaria a temperatura ambiente (C α (To)), el tiempo de inicio y final de la consolidación térmica (to, t), la temperatura ambiente (°C), la velocidad de incremento de temperatura (°C/min), la viscosidad cinemática a temperatura ambiente del agua en los poros ζ (*To*), el índice de vacíos inicial de cada espécimen (eo) y la asíntota del modelo Evult. Estos componentes identificados son dependientes de la variación de temperatura y afectan directamente en la deformación volumétrica del suelo. Por tanto, en base a estos componentes se desarrolló la formulación matemática propuesta en la presente tesis.
- La formulación matemática propuesta en la presente tesis para determinar las deformaciones volumétricas totales por variaciones térmicas es:

$$\varepsilon_{v} = \frac{t}{\frac{1}{C_{\alpha}(T)} + \frac{t}{\varepsilon_{vult}}}$$
116

En donde:

$$\mathcal{E}_{v} = \frac{\Delta e}{1 + e_{o}}$$

$$C\alpha(T) = \frac{\zeta(To)}{\zeta(T)} \ x \ C\alpha(To)$$

$$\zeta(T) = \frac{-46.58 * 10^{-5} * \ln(T) + 23.92 * 10^{-4}}{-5.5 * 10^{-3} * T^{2} + 2.28 * 10^{-2} * T + 999.97}$$

 ε_{vult} : Se obtiene a través de la calibración del modelo

T: Temperatura (T>To), t: tiempo ($t_o < t$), e: índice de vacíos.

- De acuerdo a los resultados experimentales y numéricos obtenidos, el modelo propuesto predice al 98% la respuesta al cambio de volumen térmico en arcillas saturadas normalmente consolidadas en cualquier estado de esfuerzos. Sin embargo, el modelo se limita a conclusiones para su eficacia en la predicción de deformaciones volumétricas térmicas en suelos no saturados y en suelos sobreconsolidados.
- De los resultados experimentales se concluye que el comportamiento térmico del suelo en estudio fue lo esperado de acuerdo a la revisión bibliográfica. En cuanto culmino la consolidación mecánica, se pudo observar una aceleración de deformaciones volumétricas únicamente por el incremento de la temperatura.
- Las magnitudes de las deformaciones por temperatura oscilan entre el 10 al 15% de la deformación total por consolidación mecánica. Además, se concluye que la magnitud de las deformaciones volumétricas por temperatura, se incrementa en cuanto mayor sea la temperatura de consolidación.

VI. RECOMENDACIONES

Este trabajo se desarrolló con el fin de inducir una línea de investigación sobre la influencia de la temperatura en la geotecnia, por tanto, se recomienda:

- Recomiendo considerar el presente modelo para continuar en la optimización de modelos constitutivos en el comportamiento termo-visco-elasto-plástico de los suelos.
- Realizar estudios sobre la influencia de la temperatura en suelos no saturados.
- Realizar estudios sobre la influencia de la temperatura en suelos sobreconsolidados.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Andrade, M. (2009). CONTRIBUIÇÃO AO ESTUDO DAS ARGILAS MOLES DA CIDADE DE SANTOS. Universidade Federal Do Rio de Janeiro.
- Bai, B., Guo, L., & Han, S. (2014). Pore pressure and consolidation of saturated silty clay induced by progressively heating/cooling. *Mechanics of Materials*, 75, 84–94. https://doi.org/10.1016/j.mechmat.2014.04.005
- Baldi, G., Hueckel, T., & Pellegrini, R. (1988). Thermal volume changes of mineral-water system in low-porosity clay soil. *Canadian Geotechnical Journal*, c(January 1988). https://doi.org/10.1139/t88-089
- Campanella, G., & Mitchell, K. (1968). Influence of temperature variations on soil behavior.
- Chen, W. Z., Ma, Y. S., Yu, H. D., Li, F. F., Li, X. L., & Sillen, X. (2017). Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay. *Journal of Rock Mechanics and Geotechnical Engineering*, 9, 383– 395. https://doi.org/10.1016/j.jrmge.2017.03.006
- Cui, Y. J., Sultan, N., & Delage, P. (2000). A thermomechanical model for saturated clays. *Canadian Geotechnical Journal*, 620, 607–620.
- Delage, P., Sultan, N., & Cui, J. (2000). On The Thermal Consolidation Of Boom Clay. Canadian Geotechnical Journal, 37(August), 343–354. https://doi.org/10.1139/cgj-37-2-343
- Hong, P. Y., Pereira, J. M., Tang, A. M., & Cui, Y. J. (2013). On some advanced thermomechanical models for saturated clays. *INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS*, (February), 2952–2971. https://doi.org/10.1002/nag

Laloui, L., & Cekerevac, C. (2003). Thermo-plasticity of clays: An isotropic yield

mechanism. *Computers and Geotechnics*, 30, 649–660. https://doi.org/10.1016/j.compgeo.2003.09.001

- Martins, I. (1992). Fundamentos de Um Modelo de Comportamento de Solos Argilosos Saturados.
- Plum, R. L., & Esrig, M. I. (1969). Some Temperature Effects on Soil Compressibility And Pore Water Pressure, (10), 231–242.
- Sallfors, G., & Tidfors, M. (1989). Temperature Effect on Preconsolidation Pressure. *Geotechnical Testing Journal*, 12, 93–97.
- Towhata, I., Kuntiwattanakul, P., Seko, I., & Ohishi, K. (1993). VOLUME CHANGE OF CLAYS INDUCED BY HEATING AS OBSERVED IN CONSOLIDATION TEST. Soil and Fundation (Japanese Society of Soil Mechanic and Foundation Engineering), 33(4), 170–183.
- Abu-Hamdeh, N. H.; Reeder, R. C. SOIL THERMAL CONDUCTIVITY: EFFECTS OF DENSITY, MOISTURE, SALT CONCENTRATION, AND ORGANIC MATTER. Soil sci. soc. am. j. 64:1285-1290, p. 1285–1290, 2000.
- Abuel-Naga, H. M. Et Al. THERMOMECHANICAL MODEL FOR SATURATED CLAYS. géotechnique, v. 59, n. 3, p. 273–278, 2009.
- Abuel-Naga, H. M.; Bergado, D. T.; Lim, B. F. EFFECT OF TEMPERATURE ON SHEAR STRENGTH AND YIELDING BEHAVIOR OF SOFT BANGKOK CLAY. v. 47, n. 3, p. 423–436, 2007.
- Alonso, E.; Gens, A.; Josa, A. CONSTITUTIVE MODEL FOR PARTIALLY SATURATED SOILS. géotechnique, n. january, 1990.
- Bag, R.; Rabbani, A. APPLIED CLAY SCIENCE EFFECT OF TEMPERATURE ON SWELLING PRESSURE AND COMPRESSIBILITY CHARACTERISTICS OF SOIL. applied clay science, v. 136, p. 1–7, 2016.

- Bai, B.; Guo, L.; Han, S. PORE PRESSURE AND CONSOLIDATION OF SATURATED SILTY CLAY INDUCED BY PROGRESSIVELY HEATING/COOLING. mechanics of materials, v. 75, p. 84–94, 2014.
- Baldi, G.; Hueckel, T.; Pellegrini, R. THERMAL VOLUME CHANGES OF MINERAL-WATER SYSTEM IN LOW-POROSITY CLAY SOIL. canadian geotechnical journal, v. c, n. january 1988, 1988.
- Burghignoli, A.; Desideri, A.; Miliziano, S. A LABORATORY STUDY ON THE THERMOMECHANICAL BEHAVIOUR OF CLAYEY SOILS. canadian geotechnical journal, p. 764–780, 2000.
- Campanella, G.; Mitchell, K. INFLUENCE OF TEMPERATURE VARIATIONS ON SOIL BEHAVIOR, 1968.
- Cekerevac, C.; Laloui, L. EXPERIMENTAL ANALYSIS OF THE CYCLIC BEHAVIOUR OF KAOLIN AT HIGH TEMPERATURE. géotechnique, n. 8, p. 651–655, 2010.
- Chen, W. Z. et al. EFFECTS OF TEMPERATURE AND THERMALLY-INDUCED MICROSTRUCTURE CHANGE ON HYDRAULIC CONDUCTIVITY OF BOOM CLAY. journal of rock mechanics and geotechnical engineering, v. 9, p. 383–395, 2017.
- Cui, Y. J.; Sultan, N.; Delage, P. A THERMOMECHANICAL MODEL FOR SATURATED CLAYS. canadian geotechnical journal, v. 620, p. 607–620, 1999.
- De Bruyn, D.; Thimus, J.-F. THE INFLUENCE OF TEMPERATURE ON MECHANICAL CHARACTERISTICS OF BOOM CLAY: THE RESULTS OF AN INITIAL LABORATORY PROGRAMME. engineering geology, v. 41, n. 1–4, p. 117–126, 1994.

- Delage, P.; Sultan, N.; Cui, J. ON THE THERMAL CONSOLIDATION OF BOOM CLAY. canadian geotechnical journal, v. 37, n. august, p. 343–354, 2000.
- Graham, J. Et Al. MODIFIED CAM-CLAY MODELLING OF TEMPERATURE EFFECTS IN CLAYS. canadian geotechnical journal, v. 621, p. 608–621, 2001.
- Houston, B. S. L.; Houston, W. N.; Williams, N. D. THERMO-MECHANICAL BEHAVIOR OF SEAFLOOR SEDIMENTS. v. i, n. 11, p. 1249–1263, 1986.
- Hueckel, T.; Baldi, G. THERMOPLASTICITY OF SATURATED CLAYS: EXPERIMENTAL CONSTITUTIVE STUDY. journal of geotechnical engineering, v. 12, 1990.
- Hueckel, T.; Borsetto, M. THERMOPLASTICITY OF SATURATED SOILS AND SHALES: CONSTITUTIVE EQUATIONS. ASCE, v. 9410, n. December 1990, 2014.
- HUeckel, T.; Francois, B.; Laloui, L. TEMPERATURE-DEPENDENT INTERNAL FRICTION OF CLAY IN A CYLINDRICAL HEAT SOURCE PROBLEM. Géotechnique, n. 10, p. 831–844, 2011.
- Kuntiwattanakul, P. et al. TEMPERATUE EFFECTS ON UNDRAINED SHEAR CHARACTERISTIC OF CLAY. Soil and Fundation, V. 35, N. 1, P. 147–162, 1995.
- Kurz, D. et al. SEMI-EMPIRICAL ELASTIC THERMOVISCOPLASTIC MODEL FOR CLAY. Canadian Geotechnical Journal, V. 1599, N. June, P. 1583–1599, 2016.
- Laloui, L. et al. ISSUES INVOLVED WITH THERMOACTIVE GEOTECHNICAL SYSTEMS : CHARACTERIZATION OF THERMOMECHANICAL SOIL BEHAVIOR AND SOIL-STRUCTURE INTERFACE BEHAVIOR. THE Journal Of The deep Foundations Institute, V. 8, N. 2, P. 13, 2014.
- Laloui, L.; Cekerevac, C. THERMO-PLASTICITY OF CLAYS: AN ISOTROPIC YIELD MECHANISM. Computers and Geotechnics, V. 30, P. 649–660, 2003.

- Uchaipichat, A., & Khalili, N. (2009). EXPERIMENTAL INVESTIGATION OF THERMO-HYDRO-MECHANICAL BEHAVIOUR OF AN UNSATURATED SILT. Géotechnique, 59(4), 339-353.
- Abuel-Naga, H. M., Bergado, D. T., Bouazza, A., & Pender, M. (2009). THERMOMECHANICAL MODEL FOR SATURATED CLAYS. Géotechnique, 59(3), 273-278.
- Andrade, M. E. S. (2009). CONTRIBUIÇÃO AO ESTUDO DAS ARGILAS MOLES DA CIDADE DE SANTOS (Doctoral Dissertation, Dissertação de M. Sc., COPPE/UFRJ, Rio De Janeiro, RJ, Brasil).
- Bishop, A. W., & Henkel, D. J. (1962). THE MEASUREMENT OF SOIL PROPERTIES IN THE TRIAXIAL TEST.
- Terzaghi, K. (1941). UNDISTURBED CLAY SAMPLES AND UNDISTURBED CLAYS. Harvard University.

ANEXOS

ANEXO 1

DESARROLLO DE CÁLCULO DEL MODELO

				CP6				
ef :	1.4824		T (°C) :	40.00				
to (hr) :	1753.3333		σ'v(kPa) :	100.00				
	DATOS EXP	ERIMENTAL			D	ATOS MODEL	.0	
t (min)	е	εν(%)= Δe/(1+eo)	ΔTº	t	t/€v(%)	Cα (T)	£v(%)	е
1753.3333	1.4824	0.0000	24.3890	0.0000	#¡DIV/0!	0.0069	0.0000	1.4824
1753.5000	1.4823	0.0040	24.3780	0.1667	41.3044	0.0069	0.0012	1.4824
1753.6667	1.4823	0.0027	24.3520	0.3333	123.9133	0.0069	0.0023	1.4823
1753.8333	1.4823	0.0040	24.3710	0.5000	123.9133	0.0069	0.0034	1.4823
1754.0000	1.4823	0.0027	24.3710	0.6667	247.8267	0.0069	0.0046	1.4823
1754.1667	1.4823	0.0027	24.3850	0.8333	309.7833	0.0069	0.0057	1.4823
1754.3333	1.4823	0.0054	24.4140	1.0000	185.8700	0.0069	0.0069	1.4822
1754.5000	1.4823	0.0054	24.3490	1.1667	216.8483	0.0069	0.0080	1.4822
1754.6667	1.4823	0.0054	24.3780	1.3333	247.8267	0.0069	0.0092	1.4822
1754.8333	1.4822	0.0067	24.4100	1.5000	223.0440	0.0069	0.0103	1.4821
1755.0000	1.4822	0.0081	24.3960	1.6667	206.5222	0.0069	0.0114	1.4821
1755.1667	1.4822	0.0081	24.4360	1.8333	227.1744	0.0069	0.0126	1.4821
1755.3333	1.4822	0.0081	24.4470	2.0000	247.8267	0.0069	0.0137	1.4821
1755.5000	1.4821	0.0108	24.4610	2.1667	201.3592	0.0069	0.0148	1.4820
1755.6667	1.4821	0.0108	24.4800	2.3333	216.8483	0.0069	0.0159	1.4820
1755.8333	1.4821	0.0121	24.5120	2.5000	206.5222	0.0069	0.0171	1.4820
1756.0000	1.4820	0.0148	24.5640	2.6667	180.2376	0.0069	0.0182	1.4820
1756.1667	1.4821	0.0121	24.6640	2.8333	234.0585	0.0069	0.0193	1.4819
1756.3333	1.4820	0.0148	24.6980	3.0000	202.7673	0.0069	0.0204	1.4819
1756.5000	1.4820	0.0161	24.7630	3.1667	196.1961	0.0069	0.0215	1.4819
1/56.6667	1.4820	0.0175	24.8650	3.3333	190.6359	0.0069	0.0227	1.4818
1756.8333	1.4819	0.0188	24.9990	3.5000	185.8700	0.0069	0.0238	1.4818
1757.0000	1.4819	0.0215	25.1120	3.6667	170.3808	0.0069	0.0249	1.4818
1/5/.166/	1.4818	0.0229	25.2460	3.8333	167.6475	0.0069	0.0260	1.4818
1757 5000	1.4010	0.0229	25.3040	4.0000	172 1010	0.0069	0.0271	1.4017
1757.5000	1.4010	0.0242	25.5060	4.1007	153 / 165	0.0069	0.0202	1.4017
1757.8333	1.4017	0.0262	25.0970	4.5555	167 2830	0.0009	0.0293	1.4017
1758.0000	1.4017	0.0200	25.0070	4.6667	150.8510	0.0009	0.0304	1.4010
1758 1667	1.4010	0.0303	26.1370	4.8333	149 7286	0.0009	0.0326	1.4010
1758 3333	1 4815	0.0350	26.1070	5 0000	142 9769	0.0000	0.0337	1 4816
1758 5000	1 4815	0.0377	26 4170	5 1667	137 1898	0.0069	0.0348	1 4815
1758.6667	1.4814	0.0404	26.6020	5.3333	132.1742	0.0069	0.0359	1.4815
1758.8333	1.4814	0.0417	26,7630	5.5000	131.9077	0.0069	0.0370	1.4815
1759.0000	1.4814	0.0417	26.9090	5.6667	135.9049	0.0069	0.0381	1.4815
1759.1667	1.4813	0.0444	27.0870	5.8333	131.4232	0.0069	0.0391	1.4814
1759.3333	1.4812	0.0471	27.2290	6.0000	127.4537	0.0069	0.0402	1.4814
1759.5000	1.4812	0.0498	27.4300	6.1667	123.9133	0.0069	0.0413	1.4814
1759.6667	1.4811	0.0511	27.6220	6.3333	123.9133	0.0069	0.0424	1.4814
1759.8333	1.4811	0.0538	27.7680	6.5000	120.8155	0.0069	0.0435	1.4813
1760.0000	1.4810	0.0551	27.9210	6.6667	120.8911	0.0069	0.0445	1.4813
1760.1667	1.4809	0.0592	28.1250	6.8333	115.4647	0.0069	0.0456	1.4813
1760.3333	1.4809	0.0619	28.8640	7.0000	113.1383	0.0069	0.0467	1.4812
1760.5000	1.4808	0.0632	29.0090	7.1667	113.3675	0.0069	0.0478	1.4812
1760.6667	1.4808	0.0659	29.1950	7.3333	111.2691	0.0069	0.0488	1.4812
1760.8333	1.4807	0.0686	29.5780	7.5000	109.3353	0.0069	0.0499	1.4812
1761.0000	1.4807	0.0699	29.6650	7.6667	109.6156	0.0069	0.0510	1.4811
1761.1667	1.4806	0.0726	29.8260	7.8333	107.8505	0.0069	0.0520	1.4811
1761.3333	1.4805	0.0753	30.0040	8.0000	106.2114	0.0069	0.0531	1.4811
1761.5000	1.4805	0.0780	30.2010	8.1667	104.6854	0.0069	0.0542	1.4811
1761.6667	1.4804	0.0807	30.3500	8.3333	103.2611	0.0069	0.0552	1.4810
1761.8333	1.4803	0.0834	30.4700	8.5000	101.9287	0.0069	0.0563	1.4810
1762.0000	1.4803	0.0861	30.6160	8.6667	100.6796	0.0069	0.0573	1.4810
1/62.1667	1.4802	0.0874	30.7950	8.8333	101.0370	0.0069	0.0584	1.4810
1/62.3333	1.4802	0.0901	30.9660	9.0000	99.8704	0.0069	0.0594	1.4809
1/02.5000	1.4801	0.0928	31.1260	9.1007	98.//15	0.0069	0.0605	1.4809
1/62.6667	1.4800	0.0955	31.2790	9.3333	97.7345	0.0069	0.0615	1.4809

1762.8333	1.4800	0.0968	31.4690	9.5000	98.0981	0.0069	0.0626	1.4809
1763.0000	1.4799	0.0995	31.5780	9.6667	97.1213	0.0069	0.0636	1.4808
1763,1667	1.4799	0.1009	31,7890	9.8333	97.4785	0.0069	0.0647	1.4808
1763 3333	1 4798	0 1049	31 8730	10,0000	95 3179	0.0069	0.0657	1 4808
1763 5000	1 4707	0.1045	32 0100	10.0000	0/ /830	0.0000	0.0668	1.4000
1762 6667	1 4707	0.1070	22.0190	10.2222	04 9472	0.0009	0.0000	1.4007
1703.0007	1.4797	0.1009	32.1030	10.3333	94.0472	0.0069	0.0070	1.4007
1763.8333	1.4796	0.1116	32.3110	10.5000	94.0547	0.0069	0.0688	1.4807
1764.0000	1.4795	0.1157	32.4450	10.6667	92.2146	0.0069	0.0699	1.4807
1764.1667	1.4795	0.1170	32.5990	10.8333	92.5789	0.0069	0.0709	1.4806
1764.3333	1.4794	0.1211	32.7150	11.0000	90.8698	0.0069	0.0719	1.4806
1764.5000	1.4794	0.1224	32.8280	11.1667	91.2329	0.0069	0.0730	1.4806
1764.6667	1.4793	0.1251	32.9630	11.3333	90.6033	0.0069	0.0740	1.4806
1764.8333	1.4793	0.1264	33.0950	11.5000	90.9577	0.0069	0.0750	1.4805
1765.0000	1.4792	0.1305	33.2290	11.6667	89.4220	0.0069	0.0760	1.4805
1765.1667	1.4791	0.1318	33.3210	11.8333	89.7739	0.0069	0.0771	1.4805
1765.3333	1.4791	0.1332	33.4230	12.0000	90.1188	0.0069	0.0781	1.4805
1765.5000	1.4791	0.1345	33.5330	12.1667	90.4567	0.0069	0.0791	1.4804
1765 6667	1 4790	0 1358	33 6960	12 3333	90 7880	0.0069	0.0801	1 4804
1765 8333	1 4789	0 1399	33 7660	12 5000	89,3606	0.0069	0.0811	1 4804
1766.0000	1 / 780	0.1000	33 9010	12.0000	88.8435	0.0000	0.0822	1 / 80/
1766 1667	1 / 788	0.1420	33 0050	12.0007	80 1713	0.0000	0.0022	1 / 803
1766 2222	1 / 700	0.1439	34 0700	12.0000	89 6740	0.0009	0.0032	1 / 1003
1700.3333	1.4/00	0.1400	34.0790	13.0000	00.07 19	0.0069	0.0042	1.4003
1766.5000	1.4/8/	0.1480	34.1640	13.1667	88.9923	0.0069	0.0852	1.4803
1/66.6667	1.4/8/	0.1506	34.3200	13.3333	88.5095	0.0069	0.0862	1.4803
1766.8333	1.4787	0.1506	34.3860	13.5000	89.6159	0.0069	0.0872	1.4802
1767.0000	1.4786	0.1547	34.5390	13.6667	88.3556	0.0069	0.0882	1.4802
1767.1667	1.4785	0.1574	34.5900	13.8333	87.9043	0.0069	0.0892	1.4802
1767.3333	1.4785	0.1587	34.6410	14.0000	88.2095	0.0069	0.0902	1.4802
1767.5000	1.4784	0.1601	34.7540	14.1667	88.5095	0.0069	0.0912	1.4801
1767.6667	1.4784	0.1627	34.8200	14.3333	88.0706	0.0069	0.0922	1.4801
1767.8333	1.4783	0.1654	34.8900	14.5000	87.6460	0.0069	0.0932	1.4801
1768.0000	1.4783	0.1668	34.9740	14.6667	87.9385	0.0069	0.0942	1.4801
1768.1667	1.4782	0.1681	35.0680	14.8333	88.2263	0.0069	0.0952	1.4800
1768.3333	1.4782	0.1708	35.1560	15.0000	87.8126	0.0069	0.0962	1.4800
1768.5000	1.4782	0.1708	35.2680	15.1667	88.7883	0.0069	0.0972	1.4800
1768 6667	1 4781	0 1749	35 2830	15 3333	87 6925	0.0069	0.0982	1 4800
1768 8333	1 4780	0 1762	35 4 180	15 5000	87 9690	0.0069	0.0992	1 4799
1769.0000	1 4780	0.1789	35 4260	15 6667	87 5778	0.0069	0.1002	1 4799
1760 1667	1 4770	0.1705	35 5130	15 8333	87 1083	0.0000	0.1002	1 / 700
1760 2222	1 4770	0.1010	25 5720	16,0000	07.1903	0.0003	0.1011	1.47.95
1769.5555	1.4779	0.1010	35.5720	16,1667	00.1101	0.0009	0.1021	1.47.99
1709.5000	1.4//0	0.1043	35.5900	10.1007	07.7343	0.0069	0.1031	1.4790
1709.0007	1.4//8	0.1870	35.7100	10.3333	87.3034	0.0069	0.1041	1.4798
1769.8333	1.4///	0.1883	35.7680	16.5000	87.6244	0.0069	0.1051	1.4798
1770.0000	1.4//6	0.1923	35.8010	10.0007	86.6527	0.0069	0.1060	1.4798
1//0.1667	1.4777	0.1910	35.8530	16.8333	88.1355	0.0069	0.1070	1.4797
1770.3333	1.4776	0.1937	35.8710	17.0000	87.7719	0.0069	0.1080	1.4797
1770.5000	1.4776	0.1950	35.9730	17.1667	88.0212	0.0069	0.1090	1.4797
1770.6667	1.4775	0.1977	35.9980	17.3333	87.6666	0.0069	0.1099	1.4797
1770.8333	1.4774	0.2004	36.1000	17.5000	87.3215	0.0069	0.1109	1.4797
1771.0000	1.4774	0.2018	36.1110	17.6667	87.5654	0.0069	0.1119	1.4796
1771.1667	1.4773	0.2044	36.1620	17.8333	87.2285	0.0069	0.1128	1.4796
1771.3333	1.4773	0.2058	36.1770	18.0000	87.4682	0.0069	0.1138	1.4796
1771.5000	1.4772	0.2085	36.2210	18.1667	87.1391	0.0069	0.1148	1.4796
1771.6667	1.4772	0.2098	36.2540	18.3333	87.3748	0.0069	0.1157	1.4795
1771.8333	1.4771	0.2125	36.3160	18.5000	87.0530	0.0069	0.1167	1.4795
1772 0000	1,4771	0.2139	36.3310	18,6667	87,2849	0.0069	0.1176	1,4795
1772 1667	1 4770	0 2165	36 3920	18 8333	86,9702	0.0069	0 1186	1 4795
1772 3222	1 / 770	0.2170	36 / 000	10.0000	87 1082	0.0000	0.1106	1 / 70/
1772 5000	1 4760	0.2173	36 1510	10 1667	86 3630	0.0003	0.1130	1 / 70/
1772 6667	1 4760	0.2213	26 4600	10 2222	96 5000	0.0009	0.1200	1.4704
1//2.000/	1.4709	0.2233	30.4090	19.3333	00.5900	0.0009	0.1215	1.4794
1772.8333	1.4/68	0.2246	36.5130	19.5000	86.8135	0.0069	0.1224	1.4794
1773.0000	1.4768	0.2260	36.5460	19.6667	87.0344	0.0069	0.1234	1.4793

r		1				·····		
1773.1667	1.4767	0.2300	36.5820	19.8333	86.2321	0.0069	0.1243	1.4793
1773.3333	1.4767	0.2287	36.5860	20.0000	87.4682	0.0069	0.1253	1.4793
1773 5000	1 4767	0 2313	36 6330	20 1667	87 1716	0.0069	0 1262	1 4793
1772 6667	1 4766	0.2207	26 6720	20.1001	07 20 40	0.0000	0.1202	1 4702
1773.0007	1.4700	0.2327	30.0730	20.5555	07.5040	0.0009	0.1271	1.47.92
1//3.8333	1.4766	0.2340	36.6630	20.5000	87.5939	0.0069	0.1281	1.4792
1774.0000	1.4765	0.2367	36.6880	20.6667	87.3026	0.0069	0.1290	1.4792
1774.1667	1.4765	0.2381	36.6990	20.8333	87.5094	0.0069	0.1300	1.4792
1774.3333	1.4764	0.2408	36.7580	21.0000	87.2239	0.0069	0.1309	1.4792
1774.5000	1.4764	0.2408	36.8010	21.1667	87.9162	0.0069	0.1318	1.4791
1774 6667	1 4764	0 2434	36 8010	21 3333	87 6293	0.0069	0 1328	1 4791
1774 8333	1 4763	0.2461	36.8020	21 5000	87 3487	0.0069	0 1337	1 / 701
1775.0000	1.4760	0.2401	26.0020	21.0000	07.07407	0.0000	0.1337	1,4701
1775.0000	1.4702	0.2400	30.0340	21.0007	07.0742	0.0009	0.1340	1.4791
1//5.166/	1.4762	0.2502	36.8890	21.8333	87.2723	0.0069	0.1356	1.4790
1775.3333	1.4762	0.2515	36.8530	22.0000	87.4682	0.0069	0.1365	1.4790
1775.5000	1.4761	0.2529	36.8890	22.1667	87.6621	0.0069	0.1374	1.4790
1775.6667	1.4761	0.2556	36.9470	22.3333	87.3915	0.0069	0.1384	1.4790
1775.8333	1.4760	0.2569	36.9550	22.5000	87.5827	0.0069	0.1393	1.4789
1776 0000	1 4760	0 2569	36 9730	22 6667	88 2315	0 0069	0 1402	1 4789
1776 1667	1 4759	0.2609	36 9980	22 8333	87 5058	0 0060	0 1411	1 4789
1776 2222	1.4750	0.2000	27,0060	22.0000	07.5050	0.0000	0.1411	1 4700
1770.5355	1.4759	0.2009	37.0000	23.0000	00.1445	0.0009	0.1420	1.4709
1776.5000	1.4759	0.2636	37.0310	23.1667	87.8773	0.0069	0.1430	1.4789
1776.6667	1.4758	0.2650	37.0750	23.3333	88.0602	0.0069	0.1439	1.4788
1776.8333	1.4757	0.2690	37.1000	23.5000	87.3589	0.0069	0.1448	1.4788
1777.0000	1.4757	0.2704	37.1080	23.6667	87.5408	0.0069	0.1457	1.4788
1777.1667	1.4756	0.2730	37.1590	23.8333	87.2887	0.0069	0.1466	1.4788
1777 3333	1 4756	0 2744	37 1770	24 0000	87 4682	0.0069	0 1475	1 4787
1777 5000	1 4755	0 2771	37 2130	24 1667	87 2206	0.0069	0 1484	1 4787
1777 6667	1.4755	0.2771	27 2100	24.1007	07.2200	0.0000	0.1404	1 4707
1777.0007	1.4755	0.2790	37.2100	24.3333	00.9770	0.0009	0.1494	1.4707
1///.8333	1.4755	0.2798	37.2180	24.5000	87.5734	0.0069	0.1503	1.4/8/
1778.0000	1.4754	0.2825	37.2540	24.6667	87.3294	0.0069	0.1512	1.4787
1778.1667	1.4753	0.2865	37.3050	24.8333	86.6812	0.0069	0.1521	1.4786
1778.3333	1.4753	0.2878	37.3380	25.0000	86.8551	0.0069	0.1530	1.4786
1778.5000	1.4752	0.2905	37.3560	25.1667	86.6246	0.0069	0.1539	1.4786
1778.6667	1.4752	0.2905	37.3780	25.3333	87.1983	0.0069	0.1548	1.4786
1778 8333	1 4752	0 2919	37 3970	25 5000	87 3675	0.0069	0 1557	1 4785
1779.0000	1 4751	0.2032	37 4470	25.6667	87 5351	0.0000	0.1566	1 / 785
1770 1667	1 4751	0.2002	27 4590	25.0007	07.0001	0.0000	0.1500	1 4705
1779.1007	1.4750	0.2940	37.4360	20.0000	07.7012	0.0009	0.1575	1.4705
1779.3333	1.4750	0.2986	37.5240	26.0000	87.0742	0.0069	0.1584	1.4785
1779.5000	1.4749	0.3013	37.5860	26.1667	86.8500	0.0069	0.1593	1.4785
1779.6667	1.4749	0.3026	37.5680	26.3333	87.0147	0.0069	0.1602	1.4784
1779.8333	1.4749	0.3040	37.6080	26.5000	87.1780	0.0069	0.1610	1.4784
1780.0000	1.4748	0.3067	37.6880	26.6667	86.9567	0.0069	0.1619	1.4784
1780.1667	1.4747	0.3107	37.6950	26.8333	86.3638	0.0069	0.1628	1.4784
1780.3333	1.4746	0.3134	37.7540	27.0000	86.1543	0.0069	0.1637	1.4783
1780 5000	1 4746	0 3161	37 7790	27 1667	85 9484	0.0069	0 1646	1 4783
1780 6667	1 /7/6	0.3161	37 8/20	27 3322	86 1757	0.0000	0 1655	1 / 792
1790 0222	1 4745	0.0101	27 0740	27 5000	9E 0062	0.0009	0.1035	1 4700
1/00.8333	1.4/45	0.3201	37.0740	27.5000	00.9003	0.0069	0.1004	1.4/83
1/81.0000	1.4/44	0.3215	37.9220	27.6667	86.0653	0.0069	0.16/2	1.4783
1781.1667	1.4744	0.3242	37.9220	27.8333	85.8653	0.0069	0.1681	1.4782
1781.3333	1.4743	0.3268	37.9840	28.0000	85.6685	0.0069	0.1690	1.4782
1781.5000	1.4743	0.3282	38.0350	28.1667	85.8252	0.0069	0.1699	1.4782
1781.6667	1.4742	0.3295	38.0680	28.3333	85.9807	0.0069	0.1708	1.4782
1781.8333	1.4741	0.3336	38.1520	28.5000	85.4402	0.0069	0.1716	1.4781
1782 0000	1 4741	0 3349	38 1890	28 6667	85 5948	0 0069	0 1725	1 4781
1782 1667	1 4741	0 3363	38 2300	28 8333	85 7/80	0.0000	0 1734	1 / 781
1702.1007	1 4740	0.0000	20 2040	20.0000	05.7400	0.0009	0.1734	1 4704
1/02.3333	1.4/40	0.3403	30.2910	29.0000	03.2210	0.0009	0.1743	1.4/01
1/82.5000	1.4/40	0.3403	38.2980	29.1667	85./108	0.0069	0.1/51	1.4781
1782.6667	1.4739	0.3430	38.3490	29.3333	85.5245	0.0069	0.1760	1.4780
1782.8333	1.4739	0.3443	38.4180	29.5000	85.6745	0.0069	0.1769	1.4780
1783.0000	1.4738	0.3484	38.4230	29.6667	85.1605	0.0069	0.1777	1.4780
1783.1667	1.4737	0.3511	38.4840	29.8333	84.9827	0.0069	0.1786	1.4780
1783.3333	1.4736	0.3537	38.5360	30.0000	84.8076	0.0069	0.1794	1.4779

				CP7				
ef :	1.3637		T (°C) :	40.00				
to (hr) :	1232.8833		σ'v(kPa) :	200.00				
	DATOS EXP	ERIMENTAL			D	ATOS MODEL	.0	
t (min)	е	εν(%)= Δe/(1+eo)	ΔTº	t	t/Ev(%)	Cα (T)	٤٧(%)	e
1232.8833	1.3637	0.0000	21.9050	0.0000	#¡DIV/0!	0.0120	0.0000	1.3637
1233.0500	1.3640	-0.0113	21.9340	0.1667	-14.7044	0.0120	0.0020	1.3637
1233.2167	1.3640	-0.0099	21.9160	0.3333	-33.6101	0.0120	0.0040	1.3636
1233.3833	1.3640	-0.0099	21.8970	0.5000	-50.4151	0.0120	0.0060	1.3636
1233.5500	1.3640	-0.0099	21.9080	0.6667	-67.2202	0.0120	0.0080	1.3635
1233.7167	1.3640	-0.0099	21.8720	0.8333	-84.0252	0.0120	0.0099	1.3635
1233.8833	1.3640	-0.0099	21.9160	1.0000	-100.8303	0.0120	0.0119	1.3635
1234.0500	1.3640	-0.0099	21.9120	1.1667	-117.6353	0.0120	0.0139	1.3634
1234.2167	1.3640	-0.0099	21.9410	1.3333	-134.4404	0.0120	0.0158	1.3634
1234.3833	1.3640	-0.0099	21.8650	1.5000	-151.2454	0.0120	0.0178	1.3633
1234.5500	1.3640	-0.0113	21.9090	1.6667	-147.0442	0.0120	0.0198	1.3633
1234.7167	1.3640	-0.0113	21.8720	1.8333	-161.7486	0.0120	0.0217	1.3632
1234.8833	1.3640	-0.0128	21.8980	2.0000	-156.8471	0.0120	0.0237	1.3632
1235.0500	1.3641	-0.0142	21.8900	2.1667	-152.9259	0.0120	0.0256	1.3631
1235.2167	1.3640	-0.0128	21.8900	2.3333	-182.9883	0.0120	0.0276	1.3631
1235.3833	1.3640	-0.0128	21.8970	2.5000	-196.0589	0.0120	0.0295	1.3630
1235.5500	1.3640	-0.0128	21.9040	2.6667	-209.1295	0.0120	0.0315	1.3630
1235.7167	1.3641	-0.0142	21.9080	2.8333	-199.9801	0.0120	0.0334	1.3629
1235.8833	1.3641	-0.0142	21.8720	3.0000	-211.7436	0.0120	0.0353	1.3629
1236.0500	1.3641	-0.0142	21.9410	3.1667	-223.5071	0.0120	0.0373	1.3629
1236.2167	1.3641	-0.0142	21.9340	3.3333	-235.2707	0.0120	0.0392	1.3628
1236.3833	1.3641	-0.0142	21.9480	3.5000	-247.0342	0.0120	0.0411	1.3628
1236.5500	1.3640	-0.0128	21.9730	3.6667	-287.5530	0.0120	0.0430	1.3627
1236.7167	1.3640	-0.0128	21.9840	3.8333	-300.6236	0.0120	0.0449	1.3627
1236.8833	1.3640	-0.0113	21.9870	4.0000	-352.9060	0.0120	0.0469	1.3626
1237.0500	1.3640	-0.0099	22.0050	4.1007	-420.1262	0.0120	0.0488	1.3626
1237.2107	1.3040	-0.0099	22.0570	4.3333	450.9312	0.0120	0.0507	1.3020
1237.3033	1.3040	-0.0099	22.1630	4.5000	-455.7305	0.0120	0.0526	1.3020
1237.5500	1 2620	0.0039	22.1000	4.0007	692 2940	0.0120	0.0545	1 2624
1237.8833	1 3630	-0.0071	22.2000	5 0000	-588 1767	0.0120	0.0504	1 3624
1238.0500	1 3640	-0.0005	22.5000	5 1667	-520 9565	0.0120	0.0505	1 3623
1238 2167	1 3639	-0.0071	22.4000	5 3333	-752 8661	0.0120	0.0620	1 3623
1238 3833	1 3639	-0.0071	22 6730	5 5000	-776 3932	0.0120	0.0639	1 3622
1238.5500	1.3639	-0.0057	22.7630	5.6667	-999.9003	0.0120	0.0658	1.3622
1238.7167	1.3639	-0.0057	22.9090	5.8333	-1029.3092	0.0120	0.0677	1.3621
1238.8833	1.3638	-0.0043	23.0250	6.0000	-1411.6240	0.0120	0.0695	1.3621
1239.0500	1.3638	-0.0028	23.2060	6.1667	-2176.2537	0.0120	0.0714	1.3620
1239.2167	1.3638	-0.0043	23.3220	6.3333	-1490.0476	0.0120	0.0733	1.3620
1239.3833	1.3638	-0.0014	23.4670	6.5000	-4587.7780	0.0120	0.0751	1.3620
1239.5500	1.3638	-0.0043	23.6020	6.6667	-1568.4711	0.0120	0.0770	1.3619
1239.7167	1.3637	0.0000	23.7540	6.8333	#¡DIV/0!	0.0120	0.0788	1.3619
1239.8833	1.3638	-0.0014	23.9070	7.0000	-4940.6840	0.0120	0.0807	1.3618
1240.0500	1.3637	0.0000	24.0160	7.1667	#¡DIV/0!	0.0120	0.0825	1.3618
1240.2167	1.3637	0.0000	24.2300	7.3333	#¡DIV/0!	0.0120	0.0844	1.3617
1240.3833	1.3637	0.0028	24.4330	7.5000	2646.7950	0.0120	0.0862	1.3617
1240.5500	1.3636	0.0043	24.5490	7.6667	1803.7418	0.0120	0.0881	1.3617
1240.7167	1.3636	0.0043	24.7020	7.8333	1842.9536	0.0120	0.0899	1.3616
1240.8833	1.3636	0.0057	24.8290	8.0000	1411.6240	0.0120	0.0917	1.3616
1241.0500	1.3636	0.0071	25.0760	8.1667	1152.8263	0.0120	0.0935	1.3615
1241.2167	1.3635	0.0085	25.2030	8.3333	980.2944	0.0120	0.0954	1.3615
1241.3833	1.3635	0.0099	25.3990	8.5000	857.0574	0.0120	0.0972	1.3614
1241.5500	1.3635	0.0113	25.5220	8.6667	764.6297	0.0120	0.0990	1.3614
1241.7167	1.3634	0.0142	25.7620	8.8333	623.4673	0.0120	0.1008	1.3614
1241.8833	1.3634	0.0156	25.8780	9.0000	577.4825	0.0120	0.1026	1.3613
1242.0500	1.3634	0.0156	26.0170	9.1667	588.1767	0.0120	0.1045	1.3613
1242.2167	1.3633	0.0184	26.2270	9.3333	506.7368	0.0120	0.1063	1.3612

1242.3833	1.3633	0.0198	26.3980	9.5000	478.9439	0.0120	0.1081	1.3612
1242.5500	1.3632	0.0213	26.5580	9.6667	454.8566	0.0120	0.1099	1.3611
1242.7167	1.3632	0.0241	26.7610	9.8333	408.2638	0.0120	0.1117	1.3611
1242.8833	1.3631	0.0269	26.9140	10.0000	371.4800	0.0120	0.1134	1.3611
1243.0500	1.3631	0.0283	27.0740	10.1667	358.7878	0.0120	0.1152	1.3610
1243.2167	1.3630	0.0312	27.2520	10.3333	331.5178	0.0120	0.1170	1.3610
1243.3833	1.3629	0.0340	27.4410	10.5000	308,7927	0.0120	0.1188	1.3609
1243 5500	1 3629	0.0354	27 5720	10 6667	301 1465	0.0120	0 1206	1 3609
1243 7167	1 3628	0.0383	27 8080	10 8333	283 1962	0.0120	0 1224	1 3608
1243 8833	1 3628	0.0397	27 9240	11 0000	277 2833	0.0120	0.1241	1 3608
1240.0000	1 3627	0.0007	28 0840	11 1667	254 2441	0.0120	0.1241	1 3608
1244.0000	1 3627	0.0453	28.0040	11 3333	2/0 0751	0.0120	0.1233	1 3607
1244.2107	1 2626	0.0455	20.2000	11.5555	249.9701	0.0120	0.1277	1 2607
1244.3033	1.3020	0.0402	20.4100	11.5000	230.7305	0.0120	0.1294	1.3007
1244.5500	1.3025	0.0510	28.5010	11.0007	226.7354	0.0120	0.1312	1.3000
1244.7167	1.3625	0.0524	28.7890	11.8333	225.7327	0.0120	0.1330	1.3606
1244.8833	1.3624	0.0553	28.8990	12.0000	217.1729	0.0120	0.1347	1.3606
1245.0500	1.3624	0.0567	29.0770	12.1667	214.6845	0.0120	0.1365	1.3605
1245.2167	1.3623	0.0609	29.2550	12.3333	202.4422	0.0120	0.1382	1.3605
1245.3833	1.3623	0.0623	29.4260	12.5000	200.5148	0.0120	0.1400	1.3604
1245.5500	1.3622	0.0666	29.5750	12.6667	190.2188	0.0120	0.1417	1.3604
1245.7167	1.3621	0.0694	29.7320	12.8333	184.8555	0.0120	0.1435	1.3603
1245.8833	1.3621	0.0694	29.9170	13.0000	187.2562	0.0120	0.1452	1.3603
1246.0500	1.3620	0.0737	30.1030	13.1667	178.7152	0.0120	0.1469	1.3603
1246.2167	1.3619	0.0779	30.2740	13.3333	171.1059	0.0120	0.1487	1.3602
1246.3833	1.3618	0.0808	30.4080	13.5000	167.1660	0.0120	0.1504	1.3602
1246.5500	1.3618	0.0822	30.5800	13.6667	166.3120	0.0120	0.1521	1.3601
1246.7167	1.3617	0.0850	30.7140	13.8333	162.7289	0.0120	0.1538	1.3601
1246.8833	1.3616	0.0893	30.8850	14.0000	156.8471	0.0120	0.1556	1.3601
1247.0500	1.3616	0.0907	31.0560	14.1667	156.2344	0.0120	0.1573	1.3600
1247.2167	1.3615	0.0949	31.1870	14.3333	150.9946	0.0120	0.1590	1.3600
1247.3833	1.3614	0.0992	31.3330	14.5000	146.2039	0.0120	0.1607	1.3599
1247.5500	1.3613	0.1020	31.4780	14.6667	143.7765	0.0120	0.1624	1.3599
1247,7167	1.3612	0.1063	31.6820	14.8333	139.5939	0.0120	0.1641	1.3599
1247 8833	1 3612	0 1091	31 8020	15 0000	137 4958	0.0120	0 1658	1 3598
1248 0500	1 3611	0 1119	31 9870	15 1667	135 5040	0.0120	0 1675	1 3598
1248 2167	1 3610	0 1176	32 1080	15 3333	130 3910	0.0120	0 1692	1 3597
1248 3833	1 3609	0 1204	32 2610	15 5000	128 7069	0.0120	0.1709	1 3597
1248 5500	1 3608	0.1204	32 4060	15.6667	125.6559	0.0120	0.1705	1 3597
1240.0000	1 3607	0.1247	32 5660	15.8333	124 1706	0.0120	0.1720	1 3596
1240.7107	1 3606	0.1213	32,6830	16.0000	124.1700	0.0120	0.1740	1 3596
1240.0000	1 2605	0.1310	32,0030	16 1667	119 9607	0.0120	0.1700	1 2505
1249.0500	1 2604	0.1300	32.0340	16 2222	116 4471	0.0120	0.1777	1 2505
1249.2107	1 2604	0.1403	32.9740	16 5000	116 4500	0.0120	0.1795	1 2505
1249.3033	1 2602	0.1417	22 2270	16 6667	114 2004	0.0120	0.1010	1 2504
1249.000	1.3003	0.1409	32 4000	16 0007	112 1540	0.0120	0.102/	1.3094
1249./10/	1.3002	0.1400	22 5250	17,0000	113.1540	0.0120	0.1044	1.0094
1249.0033	1.3001	0.1030	33.5350	17.0000	100 4574	0.0120	0.1000	1.3593
1250.0500	1.3000	0.15/3	33.7130	17.1007	109.15/1	0.0120	0.18//	1.3593
1250.2167	1.3599	0.1015	33.8010	17.3333	107.3164	0.0120	0.1894	1.3593
1250.3833	1.3598	0.1658	33.8920	17.5000	105.5702	0.0120	0.1910	1.3592
1250.5500	1.3597	0.1/00	34.0270	17.6667	103.9112	0.0120	0.1927	1.3592
1250.7167	1.3597	0.1729	34.1800	17.8333	103.1720	0.0120	0.1943	1.3591
1250.8833	1.3596	0.1771	34.3330	18.0000	101.6369	0.0120	0.1960	1.3591
1251.0500	1.3595	0.1799	34.4530	18.1667	100.9626	0.0120	0.1976	1.3591
1251.2167	1.3594	0.1842	34.5550	18.3333	99.5376	0.0120	0.1993	1.3590
1251.3833	1.3592	0.1899	34.6820	18.5000	97.4442	0.0120	0.2009	1.3590
1251.5500	1.3591	0.1941	34.7950	18.6667	96.1690	0.0120	0.2026	1.3589
1251.7167	1.3591	0.1969	34.9630	18.8333	95.6316	0.0120	0.2042	1.3589
1251.8833	1.3590	0.2012	35.0070	19.0000	94.4396	0.0120	0.2058	1.3589
1252.0500	1.3588	0.2069	35.1850	19.1667	92.6580	0.0120	0.2075	1.3588
1252.2167	1.3588	0.2097	35.2870	19.3333	92.2007	0.0120	0.2091	1.3588
1252.3833	1.3586	0.2154	35.4140	19.5000	90.5482	0.0120	0.2107	1.3588
1252.5500	1.3585	0.2196	35.5090	19.6667	89.5546	0.0120	0.2124	1.3587

1252.7167	1.3584	0.2239	35.5750	19.8333	88.5988	0.0120	0.2140	1.3587
1252 8833	1 3583	0 2295	35 7200	20 0000	87 1373	0.0120	0 2156	1 3586
1052.0500	4 0500	0.0004	25.0000	00 4007	00 7040	0.0100	0.0470	4 0500
1253.0500	1.3582	0.2324	35.8230	20.1667	86.7919	0.0120	0.2172	1.3580
1253.2167	1.3581	0.2380	35.9250	20.3333	85.4257	0.0120	0.2188	1.3586
1253.3833	1.3580	0.2423	36.0270	20.5000	84.6149	0.0120	0.2204	1.3585
1253,5500	1.3579	0.2479	36.1440	20.6667	83.3530	0.0120	0.2220	1.3585
1253 7167	1 2579	0.2522	36 2600	20 8333	82 6001	0.0120	0.2226	1 2595
1255.7107	1.5570	0.2322	30.2000	20.0333	02.0091	0.0120	0.2250	1.5505
1253.8833	1.3577	0.2564	36.3510	21.0000	81.8898	0.0120	0.2253	1.3584
1254.0500	1.3576	0.2593	36.4710	21.1667	81.6376	0.0120	0.2269	1.3584
1254.2167	1.3575	0.2649	36.5550	21.3333	80.5204	0.0120	0.2284	1.3583
1254 3833	1 3573	0 2706	36 6570	21 5000	79 4500	0.0120	0 2300	1 3583
1204.0000	1.0070	0.2700	26 7770	21.0000	79,4000	0.0120	0.2000	1.0000
1254.5500	1.3572	0.2763	30.7770	21.0007	/8.4230	0.0120	0.2316	1.3583
1254.7167	1.3571	0.2791	36.8280	21.8333	78.2245	0.0120	0.2332	1.3582
1254.8833	1.3570	0.2834	36.9810	22.0000	77.6393	0.0120	0.2348	1.3582
1255.0500	1.3569	0.2876	37.0220	22.1667	77.0714	0.0120	0.2364	1.3581
1255 2167	1 3568	0 2033	37 0010	22 3333	76 1504	0.0120	0.2380	1 3581
1255.2107	1.5500	0.2355	07.0070	22.5555	70.1304	0.0120	0.2300	1.0001
1255.3833	1.3567	0.2975	37.2370	22.5000	/5.622/	0.0120	0.2396	1.3581
1255.5500	1.3566	0.3018	37.2950	22.6667	75.1099	0.0120	0.2411	1.3580
1255.7167	1.3565	0.3046	37.3720	22.8333	74.9583	0.0120	0.2427	1.3580
1255.8833	1.3564	0.3103	37.4740	23.0000	74.1264	0.0120	0.2443	1.3580
1256 0500	1 3563	0.31/15	37 5320	23 1667	73 65/6	0.0120	0.2450	1 3570
4050.000	1.0000	0.0140	07.0040	20.1007	70.0040	0.0120	0.2433	1.0019
1250.2167	1.3563	0.3159	37.6010	23.3333	/ 3.8518	0.0120	0.2474	1.35/9
1256.3833	1.3562	0.3202	37.7140	23.5000	73.3920	0.0120	0.2490	1.3579
1256.5500	1.3561	0.3244	37.7730	23.6667	72.9442	0.0120	0.2505	1.3578
1256 7167	1 3560	0 3287	37 8560	23 8333	72 5080	0.0120	0 2521	1 3578
1256 9922	1 3559	0.3344	37.0330	24 0000	71 7775	0.0120	0.2527	1 3577
1250.0055	1.5550	0.3344	37.9330	24.0000	71.7775	0.0120	0.2337	1.5577
1257.0500	1.3557	0.3386	38.0020	24.1667	/1.368/	0.0120	0.2552	1.3577
1257.2167	1.3556	0.3429	38.1040	24.3333	70.9701	0.0120	0.2568	1.3577
1257.3833	1.3555	0.3471	38.1990	24.5000	70.5812	0.0120	0.2583	1.3576
1257 5500	1 3555	0 3500	38 1990	24 6667	70 4859	0.0120	0 2599	1 3576
1257 7167	1 3554	0.3528	38 2830	2/ 8333	70 2022	0.0120	0.2614	1 2576
1257.7107	1.5554	0.3320	30.2030	24.0333	10.3922	0.0120	0.2014	1.5570
1257.8833	1.3553	0.3585	38.3920	25.0000	69.7443	0.0120	0.2629	1.3575
1258.0500	1.3552	0.3613	38.4290	25.1667	69.6586	0.0120	0.2645	1.3575
1258.2167	1.3551	0.3655	38.5230	25.3333	69.3045	0.0120	0.2660	1.3574
1258 3833	1 3550	0.3698	38 6330	25 5000	68 9586	0.0120	0 2676	1 3574
1259.5500	1 2540	0.0000	29 6510	26.6667	60.2617	0.0120	0.267.0	1 2574
1256.5500	1.5549	0.3755	30.0310	23.0007	00.3017	0.0120	0.2091	1.3374
1258.7167	1.3548	0.3797	38.7350	25.8333	68.0354	0.0120	0.2706	1.3573
1258.8833	1.3547	0.3825	38.7680	26.0000	67.9671	0.0120	0.2721	1.3573
1259.0500	1.3546	0.3882	38.8370	26.1667	67.4042	0.0120	0.2737	1.3573
1259 2167	1 3545	0 3896	38 9140	26 3333	67 5868	0.0120	0 2752	1 3572
1250 2822	1 2544	0 2053	30.0340	26 5000	67.0305	0.0120	0.2767	1 3570
1259.5055	1.5544	0.3955	39.0340	20.5000	07.0395	0.0120	0.2707	1.5572
1259.5500	1.3543	0.3981	39.0310	26.6667	66.9810	0.0120	0.2782	1.3572
1259.7167	1.3542	0.4024	39.0740	26.8333	66.6876	0.0120	0.2797	1.3571
1259.8833	1.3541	0.4066	39.1610	27.0000	66.4004	0.0120	0.2812	1.3571
1260.0500	1.3541	0.4095	39.1690	27.1667	66.3480	0.0120	0.2828	1.3571
1260 2167	1 35/0	0 / 1 27	30 30/0	27 3333	66 0602	0.0120	0.28/3	1 3570
1000.2107	1.0040	0.4107	20.040	07 5000	66.0400	0.0120	0.2043	1.0070
1200.3833	1.3539	0.4165	39.3400	27.5000	00.0198	0.0120	0.2858	1.35/0
1260.5500	1.3538	0.4208	39.4320	27.6667	65.7490	0.0120	0.2873	1.3569
1260.7167	1.3537	0.4236	39.4390	27.8333	65.7027	0.0120	0.2888	1.3569
1260.8833	1.3536	0.4279	39.5010	28.0000	65.4395	0.0120	0.2903	1.3569
1261 0500	1 3535	0 4321	39 5780	28 1667	65 1815	0.0120	0 2918	1 3568
1064 0407	1 2525	0.4225	20 6000	20.1007	65 2520	0.0120	0.2010	1 2500
1201.210/	1.3535	0.4335	39.0290	20.3333	00.3530	0.0120	0.2933	0000.1
1261.3833	1.3534	0.4392	39.7120	28.5000	64.8892	0.0120	0.2947	1.3568
1261.5500	1.3533	0.4406	39.7810	28.6667	65.0588	0.0120	0.2962	1.3567
1261.7167	1.3532	0.4463	39.7820	28.8333	64.6061	0.0120	0.2977	1.3567
1261 8833	1 3531	0 4401	39 8910	29 0000	64 5696	0.0120	0 2002	1 3567
1262.0500	1 2504	0.4500	20.0510	20.0000	61 5225	0.0120	0.2007	1 2500
1202.0500	1.3531	0.4520	39.9330	29.1007	04.5335	0.0120	0.3007	1.3000
1262.2167	1.3529	0.4576	40.0040	29.3333	64.0985	0.0120	0.3022	1.3566
1262.3833	1.3529	0.4590	40.0110	29.5000	64.2637	0.0120	0.3036	1.3566
1262.5500	1.3528	0.4619	40.0700	29.6667	64.2303	0.0120	0.3051	1.3565
1262 7167	1 3527	0 4675	40 1650	29 8333	63 8083	0.0120	0 3066	1 3565
1262.0022	1 2506	0.4704	40 1020	20,0000	62 7700	0.0100	0.0000	1 2565
1202.0033	1.3020	0.4704	40.1030	30.0000	03.1102	0.0120	0.3000	C00C.1

				CP8				
ef :	1.1464607		T (°C) :	40.00				
to (hr) :	1268.3000		σ'v(kPa) :	400.00				
	DATOS EXP	ERIMENTAL			D	ATOS MODEL	0	
t (min)	е	εν(%)= Δe/(1+eo)	ΔΤ⁰	t	t/Ev(%)	Cα (T)	£v(%)	е
1268.3000	1.1465	0.0000	23.4340	0.0000	#¡DIV/0!	0.0147	0.0000	1.1465
1268.4667	1.1462	0.0144	23.4340	0.1667	11.5790	0.0147	0.0025	1.1464
1268.6333	1.1462	0.0128	23.4160	0.3333	26.0527	0.0147	0.0049	1.1464
1268.8000	1.1462	0.0128	23.4230	0.5000	39.0790	0.0147	0.0073	1.1463
1268.9667	1.1461	0.0160	23.4230	0.6667	41.6843	0.0147	0.0098	1.1463
1269.1333	1.1462	0.0128	23.4050	0.8333	65.1317	0.0147	0.0122	1.1462
1269.3000	1.1462	0.0128	23.4400	1.0000	78.1580	0.0147	0.0146	1.1461
1269.4667	1.1462	0.0112	23.4550	1.1667	104.2107	0.0147	0.0171	1.1461
1269.6333	1.1462	0.0128	23.4660	1.3333	104.2107	0.0147	0.0195	1.1460
1269.8000	1.1402	0.0120	23.4730	1.5000	117.2370	0.0147	0.0219	1.1400
1209.9007	1.1402	0.0112	23.4990	1 9222	101 0520	0.0147	0.0243	1.1459
1270.1333	1.1403	0.0090	23.5520	2 0000	178 6/69	0.0147	0.0207	1.1459
1270.3000	1 1462	0.0112	23.6220	2.0000	193 5341	0.0147	0.0201	1 1458
1270.6333	1.1462	0.0112	23.6980	2.3333	208.4213	0.0147	0.0339	1.1457
1270.8000	1.1462	0.0112	23.7560	2.5000	223.3086	0.0147	0.0363	1.1457
1270.9667	1.1462	0.0144	23.8250	2.6667	185.2634	0.0147	0.0386	1.1456
1271.1333	1.1462	0.0128	23.9600	2.8333	221.4477	0.0147	0.0410	1.1456
1271.3000	1.1461	0.0160	24.0280	3.0000	187.5792	0.0147	0.0434	1.1455
1271.4667	1.1461	0.0160	24.0800	3.1667	198.0003	0.0147	0.0457	1.1455
1271.6333	1.1461	0.0160	24.2460	3.3333	208.4213	0.0147	0.0481	1.1454
1271.8000	1.1461	0.0176	24.3920	3.5000	198.9476	0.0147	0.0504	1.1454
1271.9667	1.1461	0.0160	24.4940	3.6667	229.2635	0.0147	0.0528	1.1453
1272.1333	1.1461	0.0160	24.6540	3.8333	239.6845	0.0147	0.0551	1.1453
1272.3000	1.1460	0.0192	24.7810	4.0000	208.4213	0.0147	0.0575	1.1452
1272.4667	1.1460	0.0192	24.9080	4.1667	217.1056	0.0147	0.0598	1.1452
1272.6333	1.1460	0.0224	25.0680	4.3333	193.5341	0.0147	0.0621	1.1451
1272.0000	1.1400	0.0224	25.2400	4.5000	104 5266	0.0147	0.0669	1.1451
1272.9007	1 1 1 4 5 9	0.0240	25.3910	4.0007	201 4740	0.0147	0.0600	1.1450
1273.3000	1 1459	0.0256	25.5440	5 0000	195,3950	0.0147	0.0001	1 1449
1273.4667	1.1459	0.0272	25.9370	5.1667	190.0312	0.0147	0.0737	1.1449
1273.6333	1.1458	0.0288	26.0600	5.3333	185.2634	0.0147	0.0760	1.1448
1273.8000	1.1458	0.0304	26.2130	5.5000	180.9975	0.0147	0.0783	1.1448
1273.9667	1.1458	0.0304	26.3980	5.6667	186.4822	0.0147	0.0806	1.1447
1274.1333	1.1458	0.0304	26.5870	5.8333	191.9670	0.0147	0.0828	1.1447
1274.3000	1.1457	0.0336	26.7120	6.0000	178.6469	0.0147	0.0851	1.1446
1274.4667	1.1457	0.0368	26.9000	6.1667	167.6432	0.0147	0.0874	1.1446
1274.6333	1.1457	0.0368	27.0780	6.3333	172.1741	0.0147	0.0897	1.1445
1274.8000	1.1456	0.0384	27.3150	6.5000	169.3423	0.0147	0.0919	1.1445
1274.9667	1.1456	0.0400	27.4600	6.6667	166.7371	0.0147	0.0942	1.1444
1275.1333	1.1456	0.0400	27.6200	6.8333	170.9055	0.0147	0.0964	1.1444
1275.3000	1.1456	0.0416	27.7730	7.0000	168.3403	0.0147	0.0987	1.1443
1275.4007	1 1455	0.0448	28 1300	7 3 3 3 3	152 8/23	0.0147	0.1009	1.1443
1275.8000	1 1454	0.0496	28,3150	7 5000	151 2735	0.0147	0.1052	1 1442
1275.9667	1.1453	0.0528	28.4680	7.6667	145.2634	0.0147	0.1076	1.1442
1276.1333	1.1453	0.0544	28.6570	7.8333	144.0559	0.0147	0.1099	1.1441
1276.3000	1.1453	0.0560	28.8540	8.0000	142.9175	0.0147	0.1121	1.1441
1276.4667	1.1452	0.0592	28.9960	8.1667	138.0087	0.0147	0.1143	1.1440
1276.6333	1.1451	0.0624	29.1810	8.3333	133.6034	0.0147	0.1165	1.1440
1276.8000	1.1451	0.0640	29.3340	8.5000	132.8686	0.0147	0.1187	1.1439
1276.9667	1.1450	0.0672	29.5160	8.6667	129.0227	0.0147	0.1209	1.1439
1277.1333	1.1450	0.0672	29.6840	8.8333	131.5039	0.0147	0.1231	1.1438
1277.3000	1.1449	0.0720	29.8980	9.0000	125.0528	0.0147	0.1253	1.1438
1277.4667	1.1448	0.0752	30.0150	9.1667	121.9487	0.0147	0.1275	1.1437
1277.6333	1.1448	0.0752	30.1860	9.3333	124.1659	0.0147	0.1297	1.1437

1277.8000	1.1447	0.0800	30.3640	9.5000	118.8002	0.0147	0.1319	1.1436
4077.0007	4 4 4 4 7	0.0000	20 4000	0.0007	440.0000	0.04.47	0 4 2 4 0	4 4 4 9 0
1277.9007	1.1447	0.0032	30.4990	9.0007	110.2330	0.0147	0.1340	1.1430
1278.1333	1.1446	0.0848	30.6090	9.8333	116.0081	0.0147	0.1362	1.1435
1070 2000	1 1 1 1 4 5	0.0006	20 7010	10 0000	111 65/2	0.01/7	0 1201	1 1/25
1270.0000	1.1445	0.0030	50.7510	10.0000		0.0147	0.1304	1.1400
1278.4667	1.1445	0.0928	30.9510	10.1667	109.6009	0.0147	0.1405	1.1434
1278.6333	1.1444	0.0944	31.0960	10.3333	109,5095	0.0147	0.1427	1.1434
4070.0000		0.0070	04.0000	40 5000	407.0074	0.04.47	0.4.4.40	4 4 4 9 4
1278.8000	1.1444	0.0976	31.2390	10.5000	107.6274	0.0147	0.1448	1.1434
1278.9667	1.1443	0.1008	31.4200	10.6667	105.8648	0.0147	0.1470	1.1433
1270 1333	1 1//2	0 10/0	31 5620	10 8333	10/ 2107	0.01/7	0 1/01	1 1/33
1273.1333	1.1442	0.1040	51.5020	10.0000	104.2107	0.0147	0.1431	1.1433
1279.3000	1.1442	0.1072	31.6650	11.0000	102.6553	0.0147	0.1513	1.1432
1279.4667	1,1441	0.1120	31,7810	11.1667	99.7445	0.0147	0.1534	1.1432
1070 6000	1 1 1 1 0	0.1126	21 0200	11 2222	00.9074	0.0147	0.1555	1 1 1 2 1
12/9.0333	1.1440	0.1130	31.9380	11.3333	99.8074	0.0147	0.1555	1.1431
1279.8000	1.1439	0.1184	32.0470	11.5000	97.1694	0.0147	0.1577	1.1431
1279 9667	1 1/130	0 1100	32 2440	11 6667	97 2633	0 0147	0 1598	1 1430
1210.0001	1.1400	0.1100	52.2440	11.0007	57.2000	0.0147	0.1000	1.1400
1280.1333	1.1438	0.1231	32.3200	11.8333	96.0904	0.0147	0.1619	1.1430
1280.3000	1.1437	0.1263	32.4660	12.0000	94.9768	0.0147	0.1640	1.1429
1000 4667	1 1 1 2 7	0 1 2 0 5	20 5600	10 1667	02 01 02	0.0147	0.1661	1 1 4 2 0
1200.4007	1.1437	0.1295	32.3000	12.1007	93.9103	0.0147	0.1001	1.1429
1280.6333	1.1436	0.1343	32.6850	12.3333	91.8046	0.0147	0.1682	1.1428
1280 8000	1 1435	0 1391	32 8050	12 5000	89 8368	0.0147	0 1703	1 1428
1000.0007	1 4 4 0 4	0.1407	22.0000	10 0007	00.0004	0.04.47	0 4 7 0 4	1 4 4 0 0
1200.9667	1.1434	0.1407	32.9250	12.0007	90.0001	0.0147	0.1724	1.1428
1281.1333	1.1434	0.1423	33.0780	12.8333	90.1598	0.0147	0.1745	1.1427
1281 3000	1 1/22	0 1471	33 1370	13 0000	88 3525	0 01/17	0 1766	1 1/127
4001 1007	4 4 4 6 6	0.1771	00.1070	10.0000	07 50 10	0.0147	0.1700	1.1721
1281.4667	1.1432	0.1503	33.3150	13.1667	87.5813	0.0147	0.1787	1.1426
1281.6333	1.1431	0.1551	33.3850	13.3333	85.9469	0.0147	0.1808	1.1426
1281 8000	1 1/21	0 1592	33 1860	13 5000	85 2622	0.01/7	0.1820	1 1/25
1201.0000	1.1431	0.1505	55.4000	13.5000	05.2055	0.0147	0.1029	1.1420
1281.9667	1.1430	0.1599	33.5960	13.6667	85.4527	0.0147	0.1849	1.1425
1282 1333	1 1429	0 1647	33 6800	13 8333	83 9756	0 0147	0 1870	1 1424
1000 0000	4 4 4 0 0	0.4070	00.0000	44,0000	00.0005	0.01.17	0.4004	4 4 4 0 4
1282.3000	1.1429	0.1679	33.8000	14.0000	83.3685	0.0147	0.1891	1.1424
1282.4667	1.1428	0.1695	33.9020	14.1667	83.5652	0.0147	0.1911	1.1424
1282 6333	1 1427	0 1743	33 9710	14 3333	82 2213	0.0147	0 1032	1 1423
1202.0000	1.1421	0.1740	00.07 10	14.0000	02.2210	0.0147	0.1002	1.1420
1282.8000	1.1426	0.1807	34.0990	14.5000	80.2330	0.0147	0.1952	1.1423
1282.9667	1.1426	0.1807	34.2110	14.6667	81.1552	0.0147	0.1973	1.1422
1002 1222	1 1 1 2 1	0 1071	24 2060	1/ 0222	70 2714	0.01/7	0 1002	1 1 4 2 2
1203.1333	1.1424	0.1071	54.5000	14.0355	19.2114	0.0147	0.1995	1.1422
1283.3000	1.1424	0.1887	34.3360	15.0000	79.4827	0.0147	0.2014	1.1421
1283 4667	1 1423	0 1935	34 4300	15 1667	78 3733	0 0147	0 2034	1 1421
4000 0000	4 4 4 9 9	0.4000	04.5000	45 0000	77.0470	0.04.47	0.0054	4 4 4 0 4
1283.0333	1.1422	0.1983	34.5360	15.3333	11.3170	0.0147	0.2054	1.1421
1283.8000	1.1421	0.2031	34.5940	15.5000	76.3117	0.0147	0.2074	1.1420
1283 9667	1 1421	0 2047	34 7220	15 6667	76 5297	0 0147	0 2095	1 1420
1200.0001	1.1721	0.2041	04.7220	10.0007		0.0147	0.2000	
1284.1333	1.1420	0.2079	34.7730	15.8333	76.1539	0.0147	0.2115	1.1419
1284.3000	1.1419	0.2111	34.8310	16.0000	75.7896	0.0147	0.2135	1.1419
1284 4667	1 1/118	0 2150	34 8830	16 1667	74 8773	0.0147	0 2155	1 1/18
1001007	1.1710	0.2100	04.0000	10.1007		0.0177	0.2100	
1284.6333	1.1418	0.2191	34.9770	16.3333	/4.5449	0.0147	0.2175	1.1418
1284.8000	1.1417	0.2207	35.0610	16.5000	74.7598	0.0147	0.2195	1.1417
1284 9667	1 1416	0 2271	35 1120	16 6667	73 3879	0.01/17	0 2215	1 1/17
1204.0007	1.1410	0.2211	05.1120	10.0007	70.0070	0.01+1	0.2213	1.141/
1285.1333	1.1416	0.2287	35.2070	16.8333	/3.6033	0.0147	0.2235	1.141/
1285.3000	1.1415	0.2319	35.2760	17.0000	73.3068	0.0147	0.2255	1.1416
1285 /667	1 1/1/1	0 2367	35 2070	17 1667	72 5250	0.01/7	0 2275	1 1/16
1203.4007	1.1414	0.2307	33.3270	17.1007	12.3230	0.0147	0.2210	1.1410
1285.6333	1.1413	0.2383	35.4210	17.3333	/2.7376	0.0147	0.2295	1.1415
1285.8000	1.1413	0.2415	35.4370	17.5000	72.4644	0.0147	0.2315	1.1415
1285 0667	1 1/10	0.2447	35 1900	17 6667	72 1092	0.01/7	0.0304	1 1 / 1 / 5
1203.3007	1.141Z	0.2441	33.4000	17.0007	12.1302	0.0147	0.2004	1.1410
1286.1333	1.1411	0.2495	35.5390	17.8333	71.4778	0.0147	0.2354	1.1414
1286.3000	1.1411	0.2511	35.6080	18.0000	71.6863	0.0147	0.2374	1.1414
1006 4007	1 1 4 0 0	0.0575	25 6500	10 1607	70 5500	0.01/7	0.0202	1 1 1 1 2
1200.400/	1.1409	0.23/3	0,0290	10.100/	10.5520	0.0147	0.2393	1.1413
1286.6333	1.1409	0.2591	35.7100	18.3333	70.7603	0.0147	0.2413	1.1413
1286 8000	1,1408	0 2623	35 7290	18 5000	70 5328	0.0147	0 2433	1 1412
1000.0007	4 4 4 0 0	0.0000	25.1200	40.0007	70 7000	0.04.47	0.0450	4 4 4 4 0
1286.9667	1.1408	0.2639	35.8300	10.000/	10.1369	0.0147	0.2452	1.1412
1287.1333	1.1407	0.2671	35.8740	18.8333	70.5138	0.0147	0.2472	1.1412
1287 3000	1 1407	0 2703	35 9690	19 0000	70 2060	0 0147	0 2/01	1 1/11
4007 4007	4 4 4 6 6	0.2100	00.0000	10.0000	0.2300	0.0147	0.2701	
1287.4667	1.1406	0.2751	36.0020	19.1667	69.6757	0.0147	0.2510	1.1411
1287.6333	1.1405	0.2783	36.0090	19.3333	69.4738	0.0147	0.2530	1.1410
1287 8000	1 1404	0 2831	36.0530	19 5000	68 8850	0.0147	0 25/0	1 1410
1201.0000	1.1404	0.2001		35,000	00.0000	0.0147	0.2.043	1.1410
1287.9667	1.1403	0.2879	36.1040	-19.6667	68.3159	0.0147	0.2568	1.1409
1288.1333	1.1402	0.2895	36.1300	19.8333	68.5142	0.0147	0.2588	1.1409
	·				· ·=		ron	ocitoria lina

No olvide citar adecuadamente esta tesis

4000 0000	4 4 4 9 4	0.0040	00 4 0 0 0	00.0000	07.0005	0.04.47	0.0007	4 4 4 9 9
1288.3000	1.1401	0.2943	36.1880	20.0000	67.9635	0.0147	0.2607	1.1409
1288.4667	1.1401	0.2959	36.2680	20.1667	68.1594	0.0147	0.2626	1.1408
1288.6333	1.1400	0.2991	36.2570	20.3333	67.9877	0.0147	0.2645	1.1408
1288.8000	1.1400	0.3023	36.2570	20.5000	67.8196	0.0147	0.2664	1.1407
1288.9667	1.1399	0.3039	36.3260	20.6667	68.0112	0.0147	0.2683	1.1407
1289.1333	1.1398	0.3087	36.3590	20.8333	67.4940	0.0147	0.2702	1.1407
1289.3000	1.1398	0.3103	36.3600	21.0000	67.6832	0.0147	0.2721	1.1406
1289.4667	1.1397	0.3151	36.4540	21.1667	67.1815	0.0147	0.2740	1.1406
1289.6333	1.1396	0.3183	36.4360	21.3333	67.0300	0.0147	0.2759	1.1405
1289.8000	1.1396	0.3199	36.4690	21.5000	67.2159	0.0147	0.2778	1.1405
1289.9667	1.1396	0.3215	36.5410	21.6667	67.3999	0.0147	0.2797	1.1405
1290.1333	1.1395	0.3247	36.5710	21.8333	67.2492	0.0147	0.2816	1.1404
1290.3000	1.1394	0.3295	36.6070	22.0000	66.7758	0.0147	0.2835	1.1404
1290.4667	1.1394	0.3295	36.6220	22.1667	67.2816	0.0147	0.2853	1.1403
1290.6333	1.1393	0.3327	36.6760	22.3333	67.1357	0.0147	0.2872	1.1403
1290.8000	1.1393	0.3343	36.6990	22.5000	67.3131	0.0147	0.2891	1.1403
1290.9667	1.1392	0.3391	36.7420	22.6667	66.8521	0.0147	0.2909	1.1402
1291.1333	1.1391	0.3407	36.7420	22.8333	67.0275	0.0147	0.2928	1.1402
1291.3000	1.1391	0.3439	36.7860	23.0000	66.8887	0.0147	0.2947	1.1401
1291.4667	1.1390	0.3471	36.8010	23.1667	66.7525	0.0147	0.2965	1.1401
1291.6333	1.1390	0.3487	36.8630	23.3333	66.9243	0.0147	0.2984	1.1401
1291.8000	1.1389	0.3535	36.8770	23.5000	66.4873	0.0147	0.3002	1.1400
1291.9667	1.1388	0.3582	36.9320	23.6667	66.0621	0.0147	0.3021	1.1400
1292.1333	1.1387	0.3598	36.9640	23.8333	66.2317	0.0147	0.3039	1.1399
1292.3000	1.1387	0.3630	36.9750	24.0000	66.1072	0.0147	0.3057	1.1399
1292.4667	1.1386	0.3662	37.0230	24.1667	65.9849	0.0147	0.3076	1.1399
1292.6333	1.1385	0.3694	37.0850	24.3333	65.8648	0.0147	0.3094	1.1398
1292.8000	1.1385	0.3710	37.1100	24.5000	66.0300	0.0147	0.3112	1.1398
1292.9667	1.1384	0.3742	37.1360	24.6667	65.9110	0.0147	0.3130	1.1397
1293.1333	1.1384	0.3774	37.1610	24.8333	65.7940	0.0147	0.3149	1.1397
1293.3000	1.1383	0.3790	37.2120	25.0000	65.9561	0.0147	0.3167	1.1397
1293.4667	1.1383	0.3822	37.2200	25.1667	65.8402	0.0147	0.3185	1.1396
1293.6333	1.1382	0.3838	37.2780	25.3333	66.0001	0.0147	0.3203	1.1396
1293.8000	1.1382	0.3854	37.3040	25.5000	66.1586	0.0147	0.3221	1.1395
1293.9667	1.1382	0.3870	37.3150	25.6667	66.3159	0.0147	0.3239	1.1395
1294.1333	1.1381	0.3902	37.3990	25.8333	66.1994	0.0147	0.3257	1.1395
1294.3000	1.1381	0.3918	37.4240	26.0000	66.3545	0.0147	0.3275	1.1394
1294.4667	1.1380	0.3934	37.4420	26.1667	66.5084	0.0147	0.3293	1.1394
1294.6333	1.1379	0.3982	37.5260	26.3333	66.1256	0.0147	0.3311	1.1394
1294.8000	1.1379	0.3998	37.5010	26.5000	66.2780	0.0147	0.3329	1.1393
1294.9667	1.1378	0.4030	37.5590	26.6667	66.1655	0.0147	0.3346	1.1393
1295.1333	1.1378	0.4030	37.6030	26.8333	66.5790	0.0147	0.3364	1.1392
1295.3000	1.1377	0.4062	37.6430	27.0000	66.4651	0.0147	0.3382	1.1392
1295.4667	1.1377	0.4094	37.7230	27.1667	66.3529	0.0147	0.3400	1.1392
1295.6333	1.1376	0.4110	37.7560	27.3333	66.5002	0.0147	0.3417	1.1391
1295.8000	1.1376	0.4126	37.8070	27.5000	66.6464	0.0147	0.3435	1.1391
1295.9667	1.1375	0.4174	37.8400	27.6667	66.2796	0.0147	0.3453	1.1390
1296.1333	1.1374	0.4206	37.8730	27.8333	66.1718	0.0147	0.3470	1.1390
1296.3000	1.1374	0.4206	37.9320	28.0000	66.5680	0.0147	0.3488	1.1390
1296.4667	1.1374	0.4238	37.9830	28.1667	66.4589	0.0147	0.3505	1.1389
1296.6333	1.1373	0.4286	38.0120	28.3333	66.1038	0.0147	0.3523	1.1389
1296.8000	1.1372	0.4302	38.0700	28.5000	66.2454	0.0147	0.3540	1.1389
1296.9667	1.1372	0.4302	38.1390	28.6667	66.6328	0.0147	0.3558	1.1388
1297.1333	1.1371	0.4350	38.1900	28.8333	66.2810	0.0147	0.3575	1.1388
1297.3000	1.1371	0.4366	38.1650	29.0000	66.4200	0.0147	0.3593	1.1387
1297.4667	1.1370	0.4398	38.2560	29.1667	66.3159	0.0147	0.3610	1.1387
1297.6333	1.1370	0.4414	38.3250	29.3333	66.4532	0.0147	0.3627	1.1387
1297.8000	1.1369	0.4446	38.3330	29.5000	66.3500	0.0147	0.3644	1.1386
1297.9667	1.1368	0.4478	38.3940	29.6667	66.2482	0.0147	0.3662	1.1386
1298.1333	1.1368	0.4494	38.4270	29.8333	66.3833	0.0147	0.3679	1.1386
1298.3000	1.1367	0.4526	38.4860	30.0000	66.2824	0.0147	0.3696	1.1385

				CP9				
ef :	1.50547		T (⁰C):	55.00				
to (hr) :	916.1000		σ'v(kPa):	100.00				
	DATOS EXPE	RIMENTAL	- (- /		D	ATOS MODEL	0	
		Ev(%)=						
t (min)	е	Δe/(1+eo)	ΔT⁰	t	t/Ev(%)	Cα (T)	£v(%)	е
916.1000	1.5055	0.0000	23.7040	0.0000	#;DIV/0!	0.0254	0.0000	1.5055
916.2667	1.5062	-0.0295	23.7040	0.1667	-5.6582	0.0254	0.0042	1.5054
916 4333	1 5062	-0.0281	23 7220	0 3333	-11 8553	0 0254	0 0084	1 5053
916 6000	1 5061	-0.0268	23 7220	0 5000	-18 6721	0 0254	0.0126	1 5052
916 7667	1 5062	-0.0281	23 7410	0.6667	-23 7105	0.0254	0.0168	1 5051
916 9333	1 5062	-0.0281	23 7230	0.8333	-29 6382	0.0254	0.0210	1 5049
917 1000	1 5062	-0.0295	23 7660	1 0000	-33 9492	0.0254	0.0252	1 5048
917 2667	1 5062	-0.0281	23 7340	1 1667	-41 4934	0.0254	0.0202	1 5047
917 4333	1 5062	_0.0281	23 7730	1 3333	-47 4211	0.0204	0.0234	1 5046
917 6000	1.5062	-0.0201	23.7730	1 5000	-53 3487	0.0254	0.0303	1 5045
917 7667	1.5062	-0.0254	23 7810	1.6667	-65 5160	0.0204	0.0011	1 5044
017 0333	1 5061	-0.0254	23.7010	1.0007	-03.5100	0.0254	0.0410	1 50/13
018 1000	1.5061	0.0254	23.0170	2 0000	78 6102	0.0254	0.0400	1 5040
018 2667	1.5001	-0.0254	23.0300	2.0000	-85 1708	0.0254	0.0501	1.5042
918 / 222	1 5061	_0.02.04	23.7000	2.1001	-00.1700	0.0204	0.0042	1 50/0
918 6000	1.5001	-0.0241 _0.0292	23.0300	2.3333	-100 8256	0.0234	0.0000	1.5040
Q12 7667	1.5000	-0.0220 _0.0200	23.0700	2.3000	-117 1500	0.0204	0.0024	1.5039
018 0333	1.5000	-0.0220	23.9140	2.0007	132 2604	0.0254	0.0005	1.5030
010 1000	1.5000	-0.0214	23.9030	2.0333	140.0404	0.0204	0.0700	1.5037
010 2667	1.5060	-0.0214	24.0070	2 1667	120 1251	0.0254	0.0740	1.5030
919.2007	1.5060	-0.0220	24.1070	3.1007	-139.1251	0.0254	0.0707	1.5035
919.4333	1.5000	-0.0201	24.1390	3.3333	-100.9730	0.0254	0.0020	1.5034
919.0000	1.5060	-0.0214	24.2020	3.5000	-103.3004	0.0254	0.0000	1.5033
919.7007	1.0000	-0.0214	24.3000	3.0007	-171.1005	0.0254	0.0900	1.0002
919.9333	1.5059	-0.0107	24.4000	3.0333	-204.5034	0.0254	0.0949	1.5031
920.1000	1.5059	-0.0174	24.3470	4.0000	-229.0090	0.0254	0.0909	1.5030
920.2007	1.5059	-0.0107	24./1/0	4.1007	-222.2003	0.0254	0.1029	1.5029
920.4333	1.5059	-0.0107	24.0070	4.5555	-231.1770	0.0204	0.1009	1.5020
920.0000	1.5059	-0.0167	24.9700	4.5000	-240.0092	0.0204	0.1109	1.5027
920.7007	1.5059	-0.0101	25.1100	4.0007	-290.4341	0.0204	0.1149	1.0020
920.9333	1.5050	-0.0134	25.2070	5 0000	-300.9930	0.0204	0.1100	1.5025
921.1000	1.5050	-0.0134	25.3340	5.0000	409 7656	0.0204	0.1220	1.5024
921.2007	1.5050	-0.0121	25.4090	5.1007	407.0010	0.0254	0.1207	1.5023
921.4333	1.5057	-0.0107	25.5690	5.5555	-497.9213	0.0204	0.1307	1.0022
921.0000	1.5057	-0.0094	25.7990	5.5000	-300.0339	0.0254	0.1340	1.5021
921.7007	1.5057	-0.0080	20.9700	5.0007	-705.3000	0.0204	0.1300	1.5020
921.9333	1.5050	-0.0067	20.1040	5.0333	-071.3023	0.0254	0.1420	1.5019
922.1000	1.5050	-0.0067	20.2000	6.0000	-090.2304	0.0254	0.1404	1.3010
922.2007	1.5050	-0.0054	20.4200	6 2222	-1101.4431	0.0254	0.1505	1.0017
022 6000	1.0000	-0.0027	20.0000	0.3333 6 E000	1610 0440	0.0204	0.1042	1.5010
922.0000	1.5050	-0.0040	20.00/0	0.000	-1010.2443 2490.6067	0.0254	0.1001	1 5015
022.1001	1.0000	-0.0027	20.0320	0.000/	-2403.000/ 5103 6037	0.0204	0.1020	1.5014
922.9333	1.5055	-0.0013	21.0400 27.1000	7 0000	-3103.0937 #:DIV//01	0.0204	0.1000	1.5015
923.1000	1.5055	0.0000	27.1000	7.0000		0.0254	0.1037	1.5012
923.2007	1.5054	0.0027	27.3310	7.1007	2070.3272	0.0204	0.1730	1.5011
923.4333	1.5054	0.0027	27.4930	7.5555	1967 2050	0.0254	0.1774	1.5010
923.0000	1.5054	0.0040	27.0040	7.5000	1145 2101	0.0204	0.1012	1.5009
022.1001	1.5055	0.0007	21.0200	7 2222	721 2000	0.0204	0.1001	1.5000
924 1000	1.5052	0.0107	21.3130	8 0000	995 8107	0.0234	0.1009	1.5007
024.1000	1.5055	0.0000	20.1200	8 1667	677 7060	0.0204	0.1321	1.5000
024.2007	1.5052	0.0121	20.2000	0.100/ g 2222	622 1017	0.0204	0.1900	1.5000
024 6000	1.5051	0.0134	20.3920	0.3333 8 E000	520 0/14	0.0204	0.2003	1.5005
924.0000	1.5051	0.0101	20.0990	0.0000 8 6667	167 2555	0.0204	0.2041	1.5004
024.7007	1.5050	0.0107	20.0400	0.0001 Q Q222	402.000	0.0204	0.2019	1.5005
924.9333	1.5050	0.0107	20.9370	0.0000	4/ 1.24/ U //Q 1202	0.0204	0.2117	1.5002
923.1000 025.0667	1.5050	0.0201	23.0030	0 1667	440.1292 260 2270	0.0204	0.2104	1.5001
323.2001	1.5040	0.0204	29.2490	3.100/ 0.2222	221 017C	0.0254	0.2192	1.0000
320.4000	1.0040	0.0201	23.3330	J.J.J.J.J	331.34/0	0.0204	0.2229	repositori

925 6000	1 5047	0.0308	29 5550	9 5000	308 4947	0.0254	0 2267	1 4998
925 7667	1 5046	0.0348	29 7150	9.6667	277 6869	0.0254	0 2304	1 4997
925 9333	1 5045	0.0375	29 8350	9 8333	262 2978	0.0254	0 2341	1 4996
926 1000	1 5045	0.0402	30 0240	10 0000	248 9607	0.0254	0 2379	1 4995
926 2667	1 5044	0.0442	30 1340	10 1667	230 1000	0.0254	0 2416	1 4994
926 4333	1 5043	0.0482	30 3120	10 3333	214 3828	0.0254	0 2453	1 4993
926 6000	1 5042	0.0509	30 4580	10 5000	206 3753	0.0254	0 2490	1 4992
926 7667	1 5042	0.0522	30 5670	10 6667	204 2754	0.0254	0 2527	1 4991
926 9333	1 5041	0.0562	30 7450	10.8333	192 6481	0.0254	0.2563	1 4991
927 1000	1 5040	0.0576	30 8730	11 0000	191.0628	0.0254	0.2600	1 4990
927.2667	1.5039	0.0629	31.0000	11.1667	177.4507	0.0254	0.2637	1.4989
927 4333	1 5038	0.0656	31 1280	11 3333	172 7482	0.0254	0 2673	1 4988
927 6000	1 5037	0.0696	31 2910	11 5000	165 1758	0.0254	0 2710	1 4987
927 7667	1 5037	0.0723	31 4340	11 6667	161 3634	0.0254	0 2746	1 4986
927 9333	1 5036	0.0763	31 5640	11 8333	155 0545	0.0254	0 2783	1 4985
928 1000	1 5035	0.0790	31 6630	12 0000	151 9082	0.0254	0 2819	1 4984
928 2667	1 5034	0.0830	31 7940	12 1667	146 5656	0.0254	0 2855	1 4983
928 4333	1 5033	0.0857	31 9500	12 3333	143 9304	0.0254	0 2891	1 4982
928 6000	1 5032	0.0897	32 0710	12 5000	139 3437	0.0254	0 2927	1 4981
928,7667	1.5032	0.0910	32.1800	12.6667	139.1251	0.0254	0.2963	1.4981
928,9333	1.5031	0.0951	32,3030	12.8333	134,9998	0.0254	0.2999	1.4980
929.1000	1.5030	0.0991	32.4270	13.0000	131.2090	0.0254	0.3035	1.4979
929.2667	1.5029	0.1018	32.5400	13.1667	129.3940	0.0254	0.3071	1.4978
929.4333	1.5028	0.1071	32.6680	13.3333	124.4803	0.0254	0.3106	1.4977
929.6000	1.5027	0.1098	32.7440	13.5000	122.9623	0.0254	0.3142	1.4976
929,7667	1.5026	0.1151	32.8540	13.6667	118.6906	0.0254	0.3178	1.4975
929.9333	1.5025	0.1192	32.9630	13.8333	116.0884	0.0254	0.3213	1.4974
930.1000	1.5024	0.1218	33.0830	14.0000	114.9049	0.0254	0.3248	1.4973
930.2667	1.5023	0.1272	33.2030	14.1667	111.3771	0.0254	0.3284	1.4972
930.4333	1.5022	0.1299	33.2620	14.3333	110.3640	0.0254	0.3319	1.4972
930.6000	1.5022	0.1326	33.4250	14.5000	109.3918	0.0254	0.3354	1.4971
930.7667	1.5020	0.1379	33.4910	14.6667	106.3521	0.0254	0.3389	1.4970
930.9333	1.5020	0.1406	33.5930	14.8333	105.5119	0.0254	0.3424	1.4969
931.1000	1.5018	0.1459	33.7060	15.0000	102.7819	0.0254	0.3459	1.4968
931.2667	1.5018	0.1486	33.7640	15.1667	102.0514	0.0254	0.3494	1.4967
931.4333	1.5016	0.1540	33.8840	15.3333	99.5843	0.0254	0.3529	1.4966
931.6000	1.5015	0.1580	33.9610	15.5000	98.1074	0.0254	0.3564	1.4965
931.7667	1.5015	0.1593	34.0630	15.6667	98.3290	0.0254	0.3598	1.4965
931.9333	1.5013	0.1647	34.1570	15.8333	96.1433	0.0254	0.3633	1.4964
932.1000	1.5013	0.1674	34.2490	16.0000	95.6009	0.0254	0.3667	1.4963
932.2667	1.5012	0.1714	34.3510	16.1667	94.3328	0.0254	0.3702	1.4962
932.4333	1.5011	0.1754	34.3840	16.3333	93.1227	0.0254	0.3736	1.4961
932.6000	1.5010	0.1781	34.5140	16.5000	92.6583	0.0254	0.3771	1.4960
932.7667	1.5009	0.1834	34.5700	16.6667	90.8616	0.0254	0.3805	1.4959
932.9333	1.5008	0.1874	34.6310	16.8333	89.8037	0.0254	0.3839	1.4959
933.1000	1.5007	0.1901	34.7440	17.0000	89.4155	0.0254	0.3873	1.4958
933.2667	1.5006	0.1941	34.8210	17.1667	88.4240	0.0254	0.3907	1.4957
933.4333	1.5005	0.1968	34.8540	17.3333	88.0677	0.0254	0.3941	1.4956
933.6000	1.5005	0.1995	34.9120	17.5000	87.7210	0.0254	0.3975	1.4955
933.7667	1.5004	0.2035	35.0140	17.6667	86.8087	0.0254	0.4009	1.4954
933.9333	1.5003	0.2049	35.0650	17.8333	87.0549	0.0254	0.4043	1.4953
934.1000	1.5003	0.2075	35.1590	18.0000	86.7347	0.0254	0.4076	1.4953
934.2667	1.5002	0.2115	35.2180	18.1667	85.8757	0.0254	0.4110	1.4952
934.4333	1.5001	0.2142	35.3050	18.3333	85.5802	0.0254	0.4144	1.4951
934.6000	1.5001	0.2156	35.3310	18.5000	85.8218	0.0254	0.4177	1.4950
934.7667	1.5000	0.2196	35.3710	18.6667	85.0110	0.0254	0.4211	1.4949
934.9333	1.4999	0.2223	35.4660	18.8333	84.7366	0.0254	0.4244	1.4948
935.1000	1.4998	0.2263	35.5680	19.0000	83.9690	0.0254	0.4277	1.4948
935.2667	1.4998	0.2276	35.5680	19.1667	84.2073	0.0254	0.4311	1.4947
935.4333	1.4997	0.2303	35.6440	19.3333	83.9519	0.0254	0.4344	1.4946
935.6000	1.4996	0.2343	35.7060	19.5000	83.2240	0.0254	0.4377	1.4945
935.7667	1.4996	0.2343	35.7570	19.6667	83.9353	0.0254	0.4410	1.4944

r	·····	·····					r	
935.9333	1.4995	0.2370	35.7900	19.8333	83.6902	0.0254	0.4443	1.4943
936.1000	1.4995	0.2397	35.8660	20.0000	83.4505	0.0254	0.4476	1.4943
936 2667	1 4994	0 2423	35 9070	20 1667	83 2161	0 0254	0 4509	1 4942
026 /222	1 4002	0.2464	35.0510	20 2222	82 5250	0.0254	0.4541	1 /0/1
930.4333	1.4995	0.2404	33.9310	20.3333	02.0009	0.0254	0.4541	1.4941
936.6000	1.4992	0.2490	36.0120	20.5000	82.3176	0.0254	0.4574	1.4940
936.7667	1.4992	0.2517	36.0170	20.6667	82.1040	0.0254	0.4607	1.4939
936.9333	1.4991	0.2544	36.0960	20.8333	81.8950	0.0254	0.4639	1.4939
937.1000	1.4990	0.2571	36.1290	21.0000	81.6902	0.0254	0.4672	1.4938
937.2667	1,4990	0.2597	36.1980	21.1667	81.4897	0.0254	0.4704	1.4937
937 4333	1 4989	0 2611	36 2600	21 3333	81 7102	0 0254	0 4737	1 4936
037 6000	1 /099	0.2651	36 3000	21.5000	91 1009	0.0254	0.1760	1.1000
937.0000	1.4900	0.2001	30.3000	21.5000	01.1000	0.0254	0.4709	1.4955
937.7667	1.4987	0.2691	36.3190	21.6667	80.5097	0.0254	0.4801	1.4934
937.9333	1.4987	0.2705	36.3800	21.8333	80.7273	0.0254	0.4834	1.4934
938.1000	1.4987	0.2718	36.4030	22.0000	80.9429	0.0254	0.4866	1.4933
938.2667	1.4986	0.2745	36.4460	22.1667	80.7604	0.0254	0.4898	1.4932
938.4333	1.4986	0.2758	36.4540	22.3333	80.9726	0.0254	0.4930	1.4931
938.6000	1.4985	0.2798	36.5150	22.5000	80.4060	0.0254	0.4962	1.4930
938 7667	1 4984	0 2838	36 5660	22 6667	79 8553	0.0254	0 4994	1 4930
038 0333	1 /083	0.2852	36 5000	22 8333	80.0648	0.0254	0.5026	1 /020
020 1000	1.4303	0.2052	26.000	22.0000	00.0040	0.0254	0.5020	1.4929
333.1000	1.4903	0.2002	30.0320	23.0000	00.0492	0.0204	0.5057	1.4920
939.2667	1.4983	0.2879	36.6760	23.1667	80.4780	0.0254	0.5089	1.4927
939.4333	1.4982	0.2905	36.7520	23.3333	80.3099	0.0254	0.5121	1.4926
939.6000	1.4981	0.2946	36.7520	23.5000	79.7806	0.0254	0.5152	1.4926
939.7667	1.4980	0.2972	36.8220	23.6667	79.6226	0.0254	0.5184	1.4925
939.9333	1.4980	0.2999	36.8070	23.8333	79.4674	0.0254	0.5215	1.4924
940 1000	1 4979	0 3013	36 8650	24 0000	79 6674	0 0254	0 5247	1 4923
940 2667	1 /070	0 3030	36 0130	24 1667	70 5130	0.0254	0.5278	1 /023
040 4222	1.4079	0.3053	26 0210	24.1007	70.7111	0.0254	0.5270	1.4020
940.4355	1.4970	0.3055	30.9310	24.3333	79.7111	0.0254	0.5309	1.4922
940.6000	1.4978	0.3079	37.0000	24.5000	79.5592	0.0254	0.5341	1.4921
940.7667	1.4978	0.3079	37.0080	24.6667	80.1004	0.0254	0.5372	1.4920
940.9333	1.4977	0.3120	37.0330	24.8333	79.6033	0.0254	0.5403	1.4919
941.1000	1.4976	0.3160	37.0410	25.0000	79.1189	0.0254	0.5434	1.4919
941.2667	1.4975	0.3173	37.1280	25.1667	79.3103	0.0254	0.5465	1.4918
941,4333	1,4975	0.3200	37,1460	25.3333	79.1674	0.0254	0.5496	1.4917
941 6000	1 4974	0 3240	37 1680	25 5000	78 7004	0.0254	0 5527	1 4916
0/1 7667	1 4072	0.3254	37 2100	25.6667	70.0004	0.0264	0.5559	1.4016
941.7007	1.4973	0.5254	07.0000	25.0007	70.0000	0.0254	0.5556	1.4910
941.9333	1.4973	0.3267	37.2300	25.8333	79.0756	0.0254	0.5588	1.4915
942.1000	1.4972	0.3294	37.2700	26.0000	78.9387	0.0254	0.5619	1.4914
942.2667	1.4972	0.3320	37.3650	26.1667	78.8041	0.0254	0.5650	1.4913
942.4333	1.4971	0.3347	37.3290	26.3333	78.6716	0.0254	0.5680	1.4912
942.6000	1.4971	0.3361	37.4590	26.5000	78.8541	0.0254	0.5711	1.4912
942.7667	1.4970	0.3374	37.4670	26.6667	79.0351	0.0254	0.5741	1.4911
942 9333	1 4970	0 3401	37 5070	26 8333	78 9029	0.0254	0 5772	1 4910
943 1000	1 4969	0.3428	37 4930	27 0000	78 7727	0.0254	0.5802	1 4909
013 2667	1 /069	03454	37 5620	27 1667	78 6446	0.0254	0.5832	1 /000
042 4222	1.4900	0.0404	37.5020	27.1007	70.0440	0.0204	0.5052	1.4909
943.4333	1.496/	0.3495	37.5950	21.3333	10.21/5	0.0254	0.5863	1.4908
943.6000	1.4967	0.3495	37.6200	27.5000	/8.6945	0.0254	0.5893	1.4907
943.7667	1.4967	0.3521	37.6280	27.6667	78.5693	0.0254	0.5923	1.4906
943.9333	1.4967	0.3521	37.6970	27.8333	79.0426	0.0254	0.5953	1.4906
944.1000	1.4966	0.3548	37.7400	28.0000	78.9158	0.0254	0.5983	1.4905
944.2667	1.4965	0.3575	37.7730	28.1667	78.7909	0.0254	0.6013	1.4904
944,4333	1.4965	0.3575	37.8350	28.3333	79.2571	0.0254	0.6043	1.4903
944 6000	1 4965	0 3602	37 8500	28 5000	79 1306	0.0254	0 6073	1,4903
941 7667	1 / 06/	0.3615	37 9080	28 6667	70 2086	0.0254	0.6102	1 / 002
044.0202	1 4000	0.3013	27.0500	20.0007	70 0004	0.0234	0.0102	1 4004
944.9333	1.4903	0.3055	37.9590	20.0333	/0.0031	0.0254	0.0132	1.4901
945.1000	1.4963	0.3669	37.9780	29.0000	/9.0496	0.0254	0.6162	1.4900
945.2667	1.4962	0.3695	38.0110	29.1667	78.9277	0.0254	0.6191	1.4900
945.4333	1.4962	0.3709	38.0620	29.3333	79.0922	0.0254	0.6221	1.4899
945.6000	1.4961	0.3736	38.1130	29.5000	78.9714	0.0254	0.6250	1.4898
945.7667	1.4960	0.3762	38.1310	29.6667	78.8523	0.0254	0.6280	1.4897
945,9333	1.4961	0.3749	38.1890	29.8333	79.5785	0.0254	0.6309	1,4897
9/6 1000	1 /060	0 3780	38 2220	30,0000	70 17/9	0.0254	0.6330	1 / 806
340.1000	1.4900	0.5709	50.2220	50.0000	13.1140	0.0204	0.0008	1.4030

				CP10				
ef:	1.29789613		T (°C) :	55.00				
to (hr) :	912.0000		σ'v(kPa) :	200.00				
	DATOS EXP	ERIMENTAL			DATOS MODELO			
t (min)	е	εν(%)= Δe/(1+eo)	ΔTº	t	t/€v(%)	Cα (T)	£v(%)	е
912.0000	1.2979	0.0000	22.9420	0.0000	#¡DIV/0!	0.0279	0.0000	1.2979
912.1667	1.2982	-0.0115	22.9420	0.1667	-14.4720	0.0279	0.0046	1.2978
912.3333	1.2981	-0.0086	22.9490	0.3333	-38.5919	0.0279	0.0093	1.2977
912.5000	1.2981	-0.0072	22.9770	0.5000	-69.4654	0.0279	0.0139	1.2976
912.6667	1.2981	-0.0086	22.9670	0.6667	-77.1838	0.0279	0.0185	1.2975
912.8333	1.2981	-0.0072	22.9420	0.8333	-115.7757	0.0279	0.0231	1.2974
913.0000	1.2980	-0.0043	22.9420	1.0000	-231.5513	0.0279	0.0277	1.2973
913.1667	1.2980	-0.0043	22.9420	1.1667	-270.1432	0.0279	0.0323	1.2972
913.3333	1.2980	-0.0058	22.9660	1.3333	-231.5513	0.0279	0.0369	1.2970
913.5000	1.2980	-0.0058	22.9240	1.5000	-260.4953	0.0279	0.0414	1.2969
913.6667	1.2980	-0.0029	22.9490	1.6667	-578.8783	0.0279	0.0460	1.2968
913.8333	1.2979	-0.0014	22.9490	1.8333	-1273.5323	0.0279	0.0506	1.2967
914.0000	1.2979	0.0000	22.9490	2.0000	#¡DIV/0!	0.0279	0.0551	1.2966
914.1667	1.2979	-0.0014	22.9490	2.1667	-1505.0837	0.0279	0.0596	1.2965
914.3333	1.2980	-0.0029	22.9560	2.3333	-810.4297	0.0279	0.0641	1.2964
914.5000	1.2979	0.0000	22.9990	2.5000	#¡DIV/0!	0.0279	0.0686	1.2963
914.6667	1.2979	0.0014	22.9990	2.6667	1852.4107	0.0279	0.0731	1.2962
914.8333	1.2979	0.0000	23.0130	2.8333	#jDIV/0!	0.0279	0.0776	1.2901
915.0000	1 2079	0.0014	23.0000	3.0000	2003.9020	0.0279	0.0021	1.2900
015 2222	1.2970	0.0029	23.1230	3 2 2 2 2 2 2	771 9379	0.0279	0.0000	1 2059
915.5555	1 2078	0.0043	23.1040	3 5000	607 8222	0.0279	0.0911	1 2957
915.6667	1 2978	0.0030	23 2680	3 6667	849 0216	0.0279	0.0000	1 2956
915 8333	1 2978	0.0040	23 3370	3 8333	665 7101	0.0279	0 1044	1 2955
916 0000	1 2978	0.0058	23 4020	4 0000	694 6540	0.0279	0 1088	1 2954
916,1667	1.2977	0.0072	23.5290	4.1667	578.8783	0.0279	0.1132	1.2953
916.3333	1.2977	0.0072	23.6130	4.3333	602.0335	0.0279	0.1176	1.2952
916.5000	1.2977	0.0086	23.6820	4.5000	520.9905	0.0279	0.1220	1.2951
916.6667	1.2977	0.0086	23.8090	4.6667	540.2864	0.0279	0.1264	1.2950
916.8333	1.2977	0.0086	23.8970	4.8333	559.5824	0.0279	0.1308	1.2949
917.0000	1.2977	0.0101	24.0300	5.0000	496.1814	0.0279	0.1352	1.2948
917.1667	1.2976	0.0130	24.1830	5.1667	398.7829	0.0279	0.1395	1.2947
917.3333	1.2976	0.0115	24.2590	5.3333	463.1027	0.0279	0.1439	1.2946
917.5000	1.2976	0.0130	24.3680	5.5000	424.5108	0.0279	0.1482	1.2945
917.6667	1.2976	0.0144	24.4700	5.6667	393.6373	0.0279	0.1526	1.2944
917.8333	1.2976	0.0130	24.5790	5.8333	450.2387	0.0279	0.1569	1.2943
918.0000	1.2976	0.0144	24.7430	6.0000	416.7924	0.0279	0.1612	1.2942
918.1667	1.2975	0.0158	24.8700	6.1667	389.4272	0.0279	0.1655	1.2941
918.3333	1.2975	0.0158	24.9970	6.3333	399.9523	0.0279	0.1698	1.2940
918.5000	1.2975	0.0173	25.1060	6.5000	376.2709	0.0279	0.1741	1.2939
918.6667	1.29/5	0.0187	25.2520	0.000/	356.2328	0.0279	0.1/84	1.2938
910.0333	1.29/4	0.0216	25.3540	0.0333 7.0000	310.4535	0.0279	0.102/	1.293/
010 1667	1 2073	0.0210	25.5000	7 1667	202 8113	0.0279	0.10/0	1 2035
919 3333	1 2973	0.0245	25.0150	7 3333	282.0443	0.0279	0.1912	1 2935
919 5000	1 2973	0.0259	25 9130	7 5000	289 4392	0.0279	0 1997	1 2934
919,6667	1,2972	0.0288	26.0330	7.6667	266,2840	0.0279	0.2039	1,2932
919.8333	1.2972	0.0302	26.1500	7.8333	259.1170	0.0279	0.2082	1.2931
920.0000	1.2972	0.0317	26.3340	8.0000	252.6015	0.0279	0.2124	1.2930
920.1667	1.2972	0.0317	26.4470	8.1667	257.8640	0.0279	0.2166	1.2929
920.3333	1.2971	0.0331	26.5930	8.3333	251.6862	0.0279	0.2208	1.2928
920.5000	1.2971	0.0345	26.7170	8.5000	246.0233	0.0279	0.2250	1.2927
920.6667	1.2971	0.0360	26.8690	8.6667	240.8134	0.0279	0.2291	1.2926
920.8333	1.2970	0.0374	27.0140	8.8333	236.0042	0.0279	0.2333	1.2925
921.0000	1.2970	0.0389	27.1350	9.0000	231.5513	0.0279	0.2375	1.2924
921.1667	1.2970	0.0403	27.2770	9.1667	227.4165	0.0279	0.2416	1.2923
921.3333	1.2969	0.0417	27.4360	9.3333	223.5668	0.0279	0.2458	1.2922

·····								
921.5000	1.2969	0.0446	27.5640	9.5000	212.8778	0.0279	0.2499	1.2922
921.6667	1.2968	0.0475	27.7020	9.6667	203.4845	0.0279	0.2541	1.2921
921 8333	1 2968	0.0489	27 8730	9 8333	200 9048	0 0279	0 2582	1 2920
022.0000	1 2067	0.0100	27.0560	10,0000	109 4726	0.0270	0.2002	1.2020
922.0000	1.2907	0.0504	27.9500	10.0000	190.4720	0.0279	0.2023	1.2919
922.1667	1.2966	0.0547	28.0730	10.1667	185.8504	0.0279	0.2664	1.2918
922.3333	1.2966	0.0547	28.1930	10.3333	188.8971	0.0279	0.2705	1.2917
922.5000	1.2966	0.0576	28.4330	10.5000	182.3467	0.0279	0.2746	1.2916
922 6667	1 2965	0.0605	28 4980	10 6667	176 4201	0 0279	0 2787	1 2915
022.0001	1 2064	0.0000	20.1000	10.0007	171 0222	0.0270	0.2000	1.2010
922.0333	1.2904	0.0035	20.0000	10.0333	171.0322	0.0279	0.2020	1.2914
923.0000	1.2964	0.0662	28.7600	11.0000	166.1129	0.0279	0.2868	1.2913
923.1667	1.2963	0.0691	28.9060	11.1667	161.6035	0.0279	0.2909	1.2912
923.3333	1.2962	0.0734	29.1020	11.3333	154.3676	0.0279	0.2949	1.2911
923 5000	1 2962	0 0749	29 1860	11 5000	153 6254	0 0279	0 2990	1 2910
023 6667	1 2061	0.0777	20 3020	11 6667	150 0706	0.0270	0 3030	1 2000
323.0007	1.2301	0.0777	29.3020	11.0007	130.0730	0.0275	0.0000	1.2303
923.8333	1.2960	0.0806	29.4840	11.8333	146.7870	0.0279	0.3070	1.2908
924.0000	1.2960	0.0835	29.5500	12.0000	143.7215	0.0279	0.3111	1.2907
924.1667	1.2959	0.0878	29.6770	12.1667	138.5512	0.0279	0.3151	1.2907
924.3333	1.2959	0.0878	29.8120	12.3333	140.4492	0.0279	0.3191	1.2906
924 5000	1 2957	0.0936	29 9760	12 5000	133 5873	0 0279	0.3231	1 2905
024 6667	1 2057	0.0000	30.0850	12.0000	131 2076	0.0270	0.0201	1 2004
324.0007	1.2907	0.0900	30.0050	12.0007	101.02/0	0.0279	0.3270	1.2904
924.8333	1.2956	0.0993	30.2480	12.8333	129.1989	0.0279	0.3310	1.2903
925.0000	1.2955	0.1022	30.3580	13.0000	127.1902	0.0279	0.3350	1.2902
925.1667	1.2954	0.1080	30.4670	13.1667	121.9504	0.0279	0.3390	1.2901
925.3333	1.2953	0.1108	30.5980	13.3333	120.2864	0.0279	0.3429	1.2900
925 5000	1 2953	0 1123	30 7400	13 5000	120 2286	0 0279	0 3469	1 2899
025.6667	1 2052	0.1120	20.9520	12 6667	115 7757	0.0270	0.0100	1.2000
925.0007	1.2952	0.1100	30.0030	13.0007	110.7707	0.0279	0.3506	1.2090
925.8333	1.2951	0.1224	30.9950	13.8333	113.0515	0.0279	0.3547	1.2897
926.0000	1.2950	0.1267	31.0640	14.0000	110.5131	0.0279	0.3587	1.2897
926.1667	1.2949	0.1296	31.1880	14.1667	109.3437	0.0279	0.3626	1.2896
926.3333	1.2949	0.1324	31.3340	14.3333	108.2251	0.0279	0.3665	1.2895
926.5000	1.2948	0.1368	31,4790	14.5000	106.0261	0.0279	0.3704	1.2894
926 6667	1 2947	0 1396	31 5380	14 6667	105 0336	0 0279	0.3743	1 2893
026.0007	1 2046	0.1000	21 6590	14.0007	102.0000	0.0270	0.0740	1.2000
920.0333	1.2940	0.1440	31.0300	14.0333	103.0403	0.0279	0.3762	1.2092
927.0000	1.2945	0.1468	31.8000	15.0000	102.1550	0.0279	0.3821	1.2891
927.1667	1.2945	0.1497	31.9200	15.1667	101.3037	0.0279	0.3859	1.2890
927.3333	1.2944	0.1526	32.0150	15.3333	100.4845	0.0279	0.3898	1.2889
927.5000	1.2943	0.1555	32.1490	15.5000	99.6957	0.0279	0.3937	1.2889
927 6667	1 2943	0 1584	32 2700	15 6667	98 9356	0 0279	0 3975	1 2888
027 9222	1 2042	0.1612	32 3430	15 9222	08 2026	0.0270	0.4014	1 2997
927.0333	1.2.942	0.1012	32.3430	10.0000	90.2020	0.0279	0.4014	1.2007
928.0000	1.2942	0.1627	32.4560	16.0000	98.3581	0.0279	0.4052	1.2886
928.1667	1.2941	0.1670	32.6010	16.1667	96.8124	0.0279	0.4090	1.2885
928.3333	1.2940	0.1699	32.7540	16.3333	96.1527	0.0279	0.4128	1.2884
928.5000	1.2939	0.1727	32.8050	16.5000	95.5149	0.0279	0.4167	1.2883
928.6667	1.2938	0.1771	32.8890	16.6667	94.1266	0.0279	0.4205	1.2882
928 8333	1 2938	0 1785	33,0020	16 8333	94 3011	0 0279	0 4243	1 2881
020.0000	1 2027	0.1700	22 1510	17 0000	02 0507	0.0270	0.4290	1 2001
929.0000	1.293/	0.1043	33.1510	17.0000	92.2001	0.02/9	0.4260	1.2001
929.1667	1.2936	0.1857	33.2060	17.1667	92.4410	0.0279	0.4318	1.2880
929.3333	1.2935	0.1900	33.3190	17.3333	91.2172	0.0279	0.4356	1.2879
929.5000	1.2934	0.1943	33.4430	17.5000	90.0477	0.0279	0.4394	1.2878
929.6667	1.2934	0.1972	33.5190	17.6667	89.5783	0.0279	0.4431	1.2877
929 8333	1 2933	0 1987	33 6290	17 8333	89 7681	0 0279	0 4469	1 2876
030.0000	1 2022	0.2020	32 7040	18 0000	88 6702	0.0270	0.1400	1 2975
930.0000	1.2932	0.2030	00 00000	10.0000	00.0792	0.0279	0.4500	1.20/0
930.1667	1.2931	0.2087	33.8360	18.1667	87.0314	0.0279	U.4544	1.28/5
930.3333	1.2931	0.2087	33.9460	18.3333	87.8298	0.0279	0.4581	1.2874
930.5000	1.2930	0.2131	34.0040	18.5000	86.8318	0.0279	0.4619	1.2873
930.6667	1.2929	0.2159	34.1060	18.6667	86.4458	0.0279	0.4656	1.2872
930 8333	1 2929	0 2188	34 2260	18 8333	86 0701	0.0279	0 4693	1,2871
031 0000	1 2029	0.2217	34 3290	10,0000	85 7041	0.0270	0.4720	1 2870
931.0000	1.2920	0.2217	34.3200	19.0000	00.7041	0.0279	0.4707	1.2070
931.1667	1.2927	0.2260	34.4380	19.1667	84.8038	0.0279	0.4767	1.2869
931.3333	1.2926	0.2303	34.5070	19.3333	83.9374	0.0279	0.4804	1.2869
931.5000	1.2926	0.2303	34.6090	19.5000	84.6610	0.0279	0.4841	1.2868
931.6667	1.2925	0.2361	34.6930	19.6667	83.3020	0.0279	0.4877	1.2867

931.8333	1.2924	0.2404	34.7440	19.8333	82.4988	0.0279	0.4914	1.2866
932.0000	1.2923	0.2447	34.8790	20.0000	81.7240	0.0279	0.4951	1.2865
932,1667	1.2923	0.2447	34.9770	20,1667	82.4050	0.0279	0.4987	1.2864
932 3333	1 2922	0 2490	35 0750	20 3333	81 6453	0.0279	0 5024	1 2864
932 5000	1 2921	0.2519	35 1190	20 5000	81 3738	0.0279	0.5060	1 2863
932 6667	1 2920	0.2013	35 2540	20.6667	80 2021	0.0279	0.5097	1 2862
022.0007	1.2020	0.2606	25 2220	20.0007	70.0556	0.0270	0.5057	1.2002
022.0000	1 2019	0.2000	25 4000	20.0333	79.9550	0.0279	0.5155	1 2960
933.0000	1.2910	0.2034	35.4000	21.0000	79.7144	0.0279	0.5169	1.2000
933.1667	1.2918	0.2663	35.5020	21.1667	79.4784	0.0279	0.5205	1.2859
933.3333	1.2917	0.2692	35.5530	21.3333	79.2475	0.0279	0.5242	1.2859
933.5000	1.2916	0.2721	35.6810	21.5000	79.0215	0.0279	0.5278	1.2858
933.6667	1.2915	0.2778	35.7500	21.6667	77.9836	0.0279	0.5314	1.2857
933.8333	1.2914	0.2807	35.8520	21.8333	77.7775	0.0279	0.5350	1.2856
934.0000	1.2914	0.2836	35.9100	22.0000	77.5756	0.0279	0.5385	1.2855
934.1667	1.2913	0.2879	35.9760	22.1667	76.9908	0.0279	0.5421	1.2854
934.3333	1.2912	0.2908	36.0640	22.3333	76.8017	0.0279	0.5457	1.2854
934.5000	1.2911	0.2937	36.1400	22.5000	76.6162	0.0279	0.5492	1.2853
934.6667	1.2911	0.2966	36.2600	22.6667	76.4344	0.0279	0.5528	1.2852
934.8333	1.2910	0.2994	36.2930	22.8333	76.2561	0.0279	0.5564	1.2851
935.0000	1.2909	0.3037	36.3880	23.0000	75.7206	0.0279	0.5599	1.2850
935.1667	1.2909	0.3052	36.5080	23.1667	75.9095	0.0279	0.5634	1.2849
935.3333	1.2908	0.3095	36.5480	23.3333	75.3888	0.0279	0.5670	1.2849
935.5000	1.2907	0.3124	36.6250	23.5000	75.2275	0.0279	0.5705	1.2848
935,6667	1,2906	0.3167	36.6760	23.6667	74,7279	0.0279	0.5740	1,2847
935 8333	1 2906	0.3196	36 7450	23,8333	74 5762	0.0279	0.5775	1 2846
936.0000	1 2005	0.3130	36 8150	24.0000	74.0702	0.0273	0.5775	1.2040
026 1667	1.2303	0.3223	26 9010	24.0000	72.0526	0.0273	0.5010	1.2045
930.1007	1.2904	0.3200	30.0910	24.1007	73.9550	0.0279	0.5045	1.2043
930.3333	1.2903	0.3311	30.9570	24.3333	73.4924	0.0279	0.5000	1.2044
936.5000	1.2903	0.3325	37.0190	24.5000	/3.6/54	0.0279	0.5915	1.2843
936.6667	1.2902	0.3354	37.0590	24.6667	73.5399	0.0279	0.5950	1.2842
936.8333	1.2901	0.3397	37.1900	24.8333	/3.0957	0.0279	0.5985	1.2841
937.0000	1.2900	0.3441	37.2560	25.0000	72.6626	0.0279	0.6019	1.2841
937.1667	1.2899	0.3469	37.3330	25.1667	72.5399	0.0279	0.6054	1.2840
937.3333	1.2899	0.3498	37.4020	25.3333	72.4193	0.0279	0.6088	1.2839
937.5000	1.2898	0.3541	37.4530	25.5000	72.0068	0.0279	0.6123	1.2838
937.6667	1.2897	0.3570	37.5110	25.6667	71.8930	0.0279	0.6157	1.2837
937.8333	1.2896	0.3613	37.5810	25.8333	71.4949	0.0279	0.6192	1.2837
938.0000	1.2895	0.3642	37.6500	26.0000	71.3874	0.0279	0.6226	1.2836
938.1667	1.2895	0.3671	37.7260	26.1667	71.2815	0.0279	0.6260	1.2835
938.3333	1.2894	0.3685	37.7410	26.3333	71.4553	0.0279	0.6294	1.2834
938.5000	1.2894	0.3714	37.8360	26.5000	71.3501	0.0279	0.6328	1.2834
938.6667	1.2893	0.3743	37.9050	26.6667	71.2466	0.0279	0.6362	1.2833
938.8333	1.2892	0.3786	37.9640	26.8333	70.8741	0.0279	0.6396	1.2832
939.0000	1.2891	0.3815	38.0480	27.0000	70.7761	0.0279	0.6430	1.2831
939.1667	1.2891	0.3844	38.0840	27.1667	70.6795	0.0279	0.6464	1.2830
939.3333	1.2890	0.3872	38.1430	27.3333	70.5844	0.0279	0.6498	1.2830
939.5000	1.2889	0.3901	38.2270	27.5000	70.4907	0.0279	0.6532	1.2829
939,6667	1,2889	0.3930	38,2780	27,6667	70,3984	0.0279	0.6565	1,2828
939 8333	1 2888	0 3959	38 3720	27 8333	70 3074	0 0279	0 6599	1 2827
940 0000	1 2887	0 4002	38 3830	28 0000	69 9652	0.0279	0.6633	1 2827
940 1667	1 2886	0 4045	38 4850	28 1667	69.6302	0.0279	0.6666	1 2826
940 3333	1 2886	0.4060	38 5250	28 2222	60 7022	0.0270	0.6700	1 2825
940 5000	1 2885	0.4088	38 5870	28.5000	60 7100	0.0273	0.0700	1 2023
010 6667	1 2000	0.4000	38 6560	20.0000	60 2847	0.0273	0.0755	1 2024
040.000/	1.2004	0.4132	30.0000	20.000/ 00 0000	60 2050	0.02/9	0.0100	1.2023
940.0333	1.2003	0.4100	30.0000	20.0333	09.3052	0.02/9	0.0000	1.2023
941.0000	1.2883	0.4189	38.7410	29.0000	09.2267	0.0279	0.0033	1.2822
941.166/	1.2882	0.4232	38.8070	29.100/	00.9141	0.02/9	0.0000	1.2821
941.3333	1.2881	0.4247	38.8940	29.3333	69.0729	0.02/9	0.6899	1.2820
941.5000	1.2880	0.4290	38.9160	29.5000	68./661	0.0279	0.6932	1.2820
941.6667	1.2880	0.4319	39.0030	29.6667	68.6936	0.0279	0.6965	1.2819
941.8333	1.2879	0.4347	39.0440	29.8333	68.6220	0.0279	0.6998	1.2818
942.0000	1.2878	0.4376	39.1200	30.0000	68.5514	0.0279	0.7031	1.2817

				CP11				
ef:	1.0948		T (°C) :	55.00				
to (hr) :	1209.2333		σ'v(kPa) :	400.00				
	DATOS EXP	ERIMENTAL		DATOS MODELO				
t (min)	е	εν(%)= Δe/(1+eo)	∆Tº	t	t/Ev(%)	Cα (T)	£v(%)	е
1209.2333	1.0948	0.0000	22.7360	0.0000	#¡DIV/0!	0.0269	0.0000	1.0948
1209.4000	1.0950	-0.0080	22.7610	0.1667	-20.9619	0.0269	0.0045	1.0947
1209.5667	1.0950	-0.0080	22.7790	0.3333	-41.9239	0.0269	0.0089	1.0946
1209.7333	1.0950	-0.0080	22.7930	0.5000	-62.8858	0.0269	0.0134	1.0945
1209.9000	1.0950	-0.0080	22.7930	0.6667	-83.8477	0.0269	0.0178	1.0944
1210.0667	1.0950	-0.0080	22.7860	0.8333	-104.8097	0.0269	0.0223	1.0943
1210.2333	1.0950	-0.0080	22.7930	1.0000	-125.7716	0.0269	0.0267	1.0942
1210.4000	1.0950	-0.0095	22.7860	1.1667	-122.2779	0.0269	0.0311	1.0941
1210.5667	1.0950	-0.0095	22.7930	1.3333	-139.7462	0.0269	0.0355	1.0941
1210.7333	1.0950	-0.0111	22.7750	1.5000	-134.7553	0.0269	0.0399	1.0940
1210.9000	1.0950	-0.0111	22.7680	1.6667	-149.7281	0.0269	0.0443	1.0939
1211.0667	1.0950	-0.0080	22.8080	1.8333	-230.5813	0.0269	0.0487	1.0938
1211.2333	1.0950	-0.0080	22.8330	2.0000	-251.5432	0.0269	0.0531	1.0937
1211.4000	1.0950	-0.0095	22.8760	2.1667	-227.0876	0.0269	0.0574	1.0936
1211.5667	1.0950	-0.0080	22.8830	2.3333	-293.4671	0.0269	0.0618	1.0935
1211.7333	1.0950	-0.0080	22.8980	2.5000	-314.4290	0.0269	0.0661	1.0934
1211.9000	1.0950	-0.0095	22,9090	2.6667	-279.4924	0.0269	0.0705	1.0933
1212.0667	1.0950	-0.0111	22.9600	2.8333	-254.5378	0.0269	0.0748	1.0932
1212 2333	1 0950	-0.0080	23 0180	3 0000	-377 3148	0.0269	0 0791	1 0931
1212 4000	1 0950	-0 0095	23 0800	3 1667	-331 8973	0.0269	0.0834	1 0930
1212 5667	1 0950	-0.0080	23 1060	3 3333	-419 2387	0.0269	0.0877	1 0930
1212 7333	1 0950	-0.0080	23 1570	3 5000	-440 2006	0.0269	0.0920	1 0929
1212 9000	1 0949	-0.0064	23 2400	3 6667	-576 4532	0.0269	0.0963	1.0020
1213 0667	1 0950	-0.0080	23 2980	3 8333	-482 1245	0.0269	0.1006	1.0020
1213 2333	1.0000	-0.0064	23 3920	4 0000	-628 8580	0.0269	0.1000	1.0027
1213.4000	1.0040	-0.0064	23.4940	4.0000	-655.0604	0.0269	0.1040	1.0020
1213 5667	1.0343	-0.0004	23.4040	A 3333	-908 3504	0.0205	0.1031	1.0323
1213 7333	1.0040	-0.0040	23.6790	4.5000	-1/1/ 9305	0.0205	0.1176	1.0024
1213,9000	1.0040	-0.0032	23.7990	4.6667	-1467 3353	0.0205	0.1110	1.0323
1213.3000	1.0343	-0.0032	23.8890	4.8333	-1013 1601	0.0205	0.1210	1.0322
1214.0007	1.0040	-0.0048	23,9920	5,0000	-1048 0967	0.0269	0.1200	1.0022
1214.2000	1.0040	-0.0032	24 1290	5 1667	-1624 5498	0.0269	0.1344	1.0021
1214.5667	1.0040	-0.0032	24.1230	5 3333	-1676 9547	0.0269	0.1386	1.0020
1214.0007	1.0040	0.0002	24.2020	5 5000	#:DIV/01	0.0269	0.1000	1.0018
1214,7000	1.0040	0.0000	24.0040	5.6667	#:DIV/0!	0.0205	0.1420	1.0010
1215.0667	1.0040	-0.0016	24.5250	5 8333	-3668 3383	0.0269	0.1470	1.0017
1215 2333	1.0040	0.0000	24.6850	6.0000	#:DIV/01	0.0205	0.1512	1.0010
1215 4000	1.0040	0.0000	24.7870	6 1667	3877 9577	0.0269	0.1505	1.0010
1215 5667	1 09/18	0.0000	24.1010	6 3333	#;DI\//01	0.0203	0 1636	1 091/
1215.3007	1 / 00/12	0.0000	25 0150	6 5000	4087 5770	0.0203	0.1679	1 / 0012
1215 0000	1 00/17	0.0010	25.0150	6 6667	2006 1033	0.0203	0 1710	1 0012
1216.0667	1.0947	0.0052	25.1200	6.8333	1074 2001	0.0205	0.1710	1.0012
1216 2333	1 00/17	0.0004	25 4/10	7 0000	1100 5015	0.0203	0 1801	1 0010
1216 4000	1 / 00/17	0.0004	25.4410	7 1667	1126 7030	0.0203	0.1001	1 0000
1216 5667	1 00/6	0.0004	25.57.50	7 3222	922 3251	0.0203	0.1042	1.0303
1210.0007	1.0540	0.0000 	25.0590	7 5000	922.3201 Q12 2270	0.0209	0.1003	1.0505
1216 0000	1.0540	0.0000	25.1310	7 6667	688 7/02	0.0209	0.1524	1.0500
1210.5000	1.0540	0.0111	20.9240	י .000 <i>1</i> 7 גנגע ד	703 7000	0.0209	0.1900	1.0507
1017 0007	1.0540	0.0111	20.0000	1.0000 8.0000	719 6040	0.0209	0.2000	1.0500
1217.2000	1.0940	0.0111	20.2000	0.0000 8 1667	6/1 0500	0.0209	0.2041	1.0900
1217.4000	1.0940	0.0127	20.3270	0.1007	655 0604	0.0209	0.2007	1.0904
1017 7007	1.0945	0.0142	20.4400	0.3333	502.0004	0.0209	0.2120	1.0903
1217.1333	1.0940	0.0143	20.0420	0.0000	545 0402	0.0209	0.2100	1.0903
1217.9000	1.0945	0.0109	20.7010	1000.0	545.0103	0.0209	0.2200	1.0902
1210.000/	1.0944	0.01/5	20.0150	0.0333	204.9920	0.0269	0.2249	1.0901
1210.2333	1.0944	0.0191	20.9010	9.0000	4/1.0435	0.0209	0.2289	1.0900
1218.4000	1.0944	0.0191	21.0110	9.100/	480.3776	0.0269	0.2329	1.0899
1218.5667	1.0943	0.0223	27.2110	9.3333	419.2387	0.0269	0.2369	1.0898

1218.7333	1.0943	0.0223	27.3630	9.5000	426.7251	0.0269	0.2409	1.0898
1218.9000	1.0943	0.0254	27.4590	9.6667	379.9350	0.0269	0.2449	1.0897
1219 0667	1 09/3	0.0254	27 6000	0 8333	386 / 856	0 0269	0 2488	1 0896
1210.0007	1.0040	0.0204	27.0000	10,0000	240 2656	0.0200	0.2400	1.0000
1219.2355	1.0942	0.0200	27.7130	10.0000	349.3030	0.0209	0.2520	1.0095
1219.4000	1.0942	0.0302	27.8400	10.1667	336.4942	0.0269	0.2568	1.0894
1219.5667	1.0941	0.0318	27.9820	10.3333	324.9100	0.0269	0.2607	1.0893
1219.7333	1.0941	0.0350	28.1350	10.5000	300.1368	0.0269	0.2647	1.0893
1219.9000	1.0941	0.0350	28.2370	10.6667	304.9008	0.0269	0.2686	1.0892
1220.0667	1.0940	0.0366	28.3570	10.8333	296.2012	0.0269	0.2725	1.0891
1220.2333	1.0940	0.0382	28.5420	11.0000	288.2266	0.0269	0.2765	1.0890
1220,4000	1.0939	0.0413	28.6540	11.1667	270.0864	0.0269	0.2804	1.0889
1220 5667	1 0939	0.0413	28 7530	11 3333	274 1176	0.0269	0 2843	1 0888
1220.0007	1.0000	0.0410	20.7000	11,5000	259 2910	0.0200	0.2040	1.0000
1220.7333	1.0939	0.0445	20.0400	11.5000	250.2010	0.0209	0.2002	1.0000
1220.9000	1.0930	0.0461	29.0150	11.0007	202.9009	0.0269	0.2921	1.0007
1221.0667	1.0938	0.0493	29.1530	11.8333	240.0479	0.0269	0.2959	1.0886
1221.2333	1.0938	0.0493	29.2550	12.0000	243.4289	0.0269	0.2998	1.0885
1221.4000	1.0937	0.0525	29.3830	12.1667	231.8517	0.0269	0.3037	1.0884
1221.5667	1.0937	0.0541	29.5210	12.3333	228.1152	0.0269	0.3076	1.0884
1221.7333	1.0936	0.0572	29.6660	12.5000	218.3535	0.0269	0.3114	1.0883
1221.9000	1.0936	0.0588	29.7140	12.6667	215.2847	0.0269	0.3153	1.0882
1222.0667	1.0935	0.0604	29.8480	12.8333	212.3775	0.0269	0.3191	1.0881
1222.2333	1.0935	0.0636	30.0200	13.0000	204.3788	0.0269	0.3229	1.0880
1222,4000	1.0934	0.0668	30.0710	13.1667	197.1420	0.0269	0.3268	1,0880
1222 5667	1 0934	0.0668	30 2050	13 3333	199 6375	0.0269	0.3306	1 0879
1222.0001	1 0033	0.0700	30 3580	13 5000	102.0070	0.0260	0.3344	1.0070
1222.7555	1.0333	0.0700	20.3300	12 6667	192.9401	0.0203	0.3344	1.0070
1222.3000	1.0352	0.0747	20 5 4 9 0	12 0222	102.0004	0.0203	0.3302	1.0077
1223.0007	1.0952	0.0705	30.5460	13.0333	101.2334	0.0209	0.3420	1.0070
1223.2333	1.0931	0.0795	30.7150	14.0000	176.0802	0.0269	0.3458	1.0876
1223.4000	1.0931	0.0811	30.8530	14.1667	1/4.6828	0.0269	0.3496	1.0875
1223.5667	1.0931	0.0827	30.9370	14.3333	173.3391	0.0269	0.3533	1.0874
1223.7333	1.0930	0.0843	31.0460	14.5000	172.0461	0.0269	0.3571	1.0873
1223.9000	1.0930	0.0875	31.1800	14.6667	167.6955	0.0269	0.3608	1.0872
1224.0667	1.0929	0.0906	31.3010	14.8333	163.6502	0.0269	0.3646	1.0872
1224.2333	1.0928	0.0938	31.4030	15.0000	159.8792	0.0269	0.3683	1.0871
1224.4000	1.0928	0.0954	31.5410	15.1667	158.9613	0.0269	0.3721	1.0870
1224.5667	1.0927	0.0986	31.6250	15.3333	155.5240	0.0269	0.3758	1.0869
1224.7333	1.0927	0.1002	31.8030	15.5000	154.7190	0.0269	0.3795	1.0868
1224.9000	1.0926	0.1050	31.9050	15.6667	149.2744	0.0269	0.3833	1.0868
1225.0667	1.0925	0.1081	31.9750	15.8333	146.4253	0.0269	0.3870	1.0867
1225,2333	1.0925	0.1097	32.0840	16.0000	145.8221	0.0269	0.3907	1.0866
1225 4000	1 0924	0 1129	32 1790	16 1667	143 1907	0.0269	0.3944	1 0865
1225 5667	1.0021	0.1161	32 2050	16 3333	140 7034	0.0260	0.3081	1.0000
1225.5007	1.0024	0.1101	32,4150	16,5000	129 2/99	0.0205	0.0001	1.0003
1225.1000	1 0020	0.1795	32 5170	16 6667	136 1165	0.0203	0.4054	1 0862
1220.000	1.0322	0.1224	22.5170	16 0222	120 2000	0.0203	0.4004	1.0003
1220.0007	1.0921	0.1272	32.0190	17,0000	124.0005	0.0209	0.4091	1.0002
1220.2333	1.0921	0.1288	32.1290	17.0000	131.9825	0.0269	0.4127	1.0002
1226.4000	1.0920	0.1336	32.8420	17.1667	128.5166	0.0269	0.4164	1.0861
1226.5667	1.0919	0.1368	32.9510	17.3333	126.7466	0.0269	0.4200	1.0860
1226.7333	1.0918	0.1415	33.0270	17.5000	123.6519	0.0269	0.4237	1.0859
1226.9000	1.0918	0.1431	33.1300	17.6667	123.4425	0.0269	0.4273	1.0858
1227.0667	1.0917	0.1479	33.2750	17.8333	120.5875	0.0269	0.4309	1.0858
1227.2333	1.0916	0.1511	33.3840	18.0000	119.1520	0.0269	0.4346	1.0857
1227.4000	1.0915	0.1558	33.4860	18.1667	116.5740	0.0269	0.4382	1.0856
1227.5667	1.0915	0.1590	33.5700	18.3333	115.2906	0.0269	0.4418	1.0855
1227.7333	1.0914	0.1622	33.6580	18.5000	114.0576	0.0269	0.4454	1.0855
1227.9000	1.0913	0.1654	33.7780	18.6667	112.8719	0.0269	0.4490	1.0854
1228.0667	1.0913	0.1686	33.8800	18.8333	111.7311	0.0269	0.4525	1.0853
1228.2333	1.0912	0.1733	33.9750	19.0000	109.6174	0.0269	0.4561	1.0852
1228 4000	1 0911	0 1765	34 0480	19 1667	108 5866	0.0269	0 4597	1 0852
1228 5667	1 0010	0 1707	34 12/0	19 3333	107 5922	0.0265	0.4633	1 0851
1228.3007	1 0010	0.1820	34 2260	19.5000	106.6324	0.0200	8331.0	1.0001
1220.7333	1.0010	0.1029	21 2400	10 6667	104 0007	0.0203	0.4704	1.0030
1220.9000	1.0909	0.10/0	54.5400	19.0007	104.0097	0.0209	0.4704	1.0049

1229.0667	1.0908	0.1908	34.4340	19.8333	103.9363	0.0269	0.4739	1.0849
1229.2333	1.0907	0.1940	34.5430	20.0000	103.0915	0.0269	0.4775	1.0848
1229.4000	1.0907	0.1972	34.6200	20.1667	102.2739	0.0269	0.4810	1.0847
1229.5667	1.0905	0.2035	34.7470	20.3333	99.8967	0.0269	0.4845	1.0846
1229.7333	1.0905	0.2067	34,7880	20.5000	99.1661	0.0269	0.4880	1.0846
1229 9000	1 0904	0 2115	34 9080	20.6667	97 7173	0.0269	0 4916	1 0845
1220.0000	1.0004	0.2163	34 9920	20.8333	96 3324	0.0269	0.4951	1.0040
1230.0007	1.0000	0.2100	35.0070	20.0000	05.0024	0.0205	0.4086	1.0044
1230.2333	1.0902	0.2210	25 1620	21.0000	93.0073	0.0209	0.4900	1.0044
1230.4000	1.0901	0.2242	25.1030	21.1007	94.4030	0.0209	0.5021	1.0043
1230.3007	1.0900	0.2274	35.2050	21.3333	93.0150	0.0269	0.5055	1.0042
1230.7333	1.0899	0.2322	35.3160	21.5000	92.6058	0.0269	0.5090	1.0841
1230.9000	1.0898	0.2369	35.4440	21.6667	91.4447	0.0269	0.5125	1.0841
1231.0667	1.0897	0.2417	35.4690	21.8333	90.3294	0.0269	0.5160	1.0840
1231.2333	1.0896	0.2465	35.5890	22.0000	89.2573	0.0269	0.5194	1.0839
1231.4000	1.0896	0.2497	35.6840	22.1667	88.7878	0.0269	0.5229	1.0838
1231.5667	1.0895	0.2544	35.7500	22.3333	87.7781	0.0269	0.5263	1.0838
1231.7333	1.0894	0.2592	35.8370	22.5000	86.8056	0.0269	0.5298	1.0837
1231.9000	1.0893	0.2608	35.9390	22.6667	86.9153	0.0269	0.5332	1.0836
1232.0667	1.0893	0.2640	36.0230	22.8333	86.4995	0.0269	0.5366	1.0836
1232.2333	1.0892	0.2687	36.1000	23.0000	85.5842	0.0269	0.5401	1.0835
1232.4000	1.0891	0.2703	36.1620	23.1667	85.6973	0.0269	0.5435	1.0834
1232.5667	1.0890	0.2751	36.2530	23.3333	84.8171	0.0269	0.5469	1.0833
1232.7333	1.0890	0.2783	36.2970	23.5000	84.4466	0.0269	0.5503	1.0833
1232.9000	1.0889	0.2815	36.4060	23.6667	84.0846	0.0269	0.5537	1.0832
1233 0667	1 0888	0 2846	36 4940	23 8333	83 7306	0.0269	0 5571	1 0831
1233 2333	1 0888	0.2862	36 5700	24 0000	83 8477	0.0269	0.5605	1 0831
1233 4000	1 0887	0.2002	36 6470	24 1667	83 0459	0.0269	0.5639	1.0001
1233 5667	1.0007	0.2010	36 7400	24.1007	83 1642	0.0205	0.5672	1.0000
1000 7000	1.0007	0.2920	26 9000	24.5555	92 2005	0.0209	0.5072	1.0029
1233.7333	1.0000	0.2974	26 9940	24.5000	02.3905	0.0209	0.5700	1.0020
1233.9000	1.0885	0.3005	30.8840	24.0007	82.0732	0.0269	0.5740	1.0828
1234.0007	1.0885	0.3021	36.9530	24.8333	82.1928	0.0269	0.5773	1.0827
1234.2333	1.0884	0.3069	37.0300	25.0000	81.4583	0.0269	0.5807	1.0826
1234.4000	1.0883	0.3085	37.1060	25.1667	81.5787	0.0269	0.5840	1.0826
1234.5667	1.0882	0.3133	37.1570	25.3333	80.8684	0.0269	0.5874	1.0825
1234.7333	1.0882	0.3164	37.2520	25.5000	80.5823	0.0269	0.5907	1.0824
1234.9000	1.0881	0.3180	37.3030	25.6667	80.7034	0.0269	0.5940	1.0824
1235.0667	1.0881	0.3212	37.3870	25.8333	80.4233	0.0269	0.5973	1.0823
1235.2333	1.0880	0.3260	37.4820	26.0000	79.7576	0.0269	0.6006	1.0822
1235.4000	1.0879	0.3308	37.5330	26.1667	79.1111	0.0269	0.6040	1.0821
1235.5667	1.0879	0.3308	37.5910	26.3333	79.6150	0.0269	0.6073	1.0821
1235.7333	1.0878	0.3339	37.6570	26.5000	79.3559	0.0269	0.6106	1.0820
1235.9000	1.0877	0.3371	37.7370	26.6667	79.1016	0.0269	0.6138	1.0819
1236.0667	1.0877	0.3403	37.7880	26.8333	78.8521	0.0269	0.6171	1.0819
1236.2333	1.0876	0.3435	37.8290	27.0000	78.6072	0.0269	0.6204	1.0818
1236.4000	1.0875	0.3467	37.9670	27.1667	78.3669	0.0269	0.6237	1.0817
1236.5667	1.0875	0.3498	38.0070	27.3333	78.1308	0.0269	0.6269	1.0817
1236.7333	1.0874	0.3530	38.0400	27.5000	77.8991	0.0269	0.6302	1.0816
1236.9000	1.0873	0.3562	38.1460	27.6667	77.6714	0.0269	0.6335	1.0815
1237.0667	1.0873	0.3578	38.1970	27.8333	77.7921	0.0269	0.6367	1.0815
1237.2333	1.0872	0.3610	38.2810	28.0000	77.5684	0.0269	0.6400	1.0814
1237.4000	1.0872	0.3642	38.3250	28.1667	77.3486	0.0269	0.6432	1.0813
1237.5667	1.0871	0.3673	38.3760	28.3333	77.1327	0.0269	0.6464	1.0813
1237,7333	1.0870	0.3705	38.4700	28.5000	76.9204	0.0269	0.6497	1.0812
1237 9000	1.0870	0.3737	38,5040	28,6667	76,7118	0.0269	0.6529	1.0811
1238 0667	1.0869	0 3753	38 6060	28 8333	76 8308	0.0269	0 6561	1,0811
1238 2333	1 0868	0.3801	38 6820	29 0000	76 3049	0.0260	0 6503	1 0810
1238 /000	1 0868	0.3816	38 7330	20.0000	76 4027	0.0203	0.6625	1 0800
1230.4000	1 0867	0.3861	38 7000	20.1007	75 0115	0.0203	0.0025	1 0009
1028 7000	1 0866	0.0004	30.1920	20.000	75 7100	0.0203	0.0007	1.0009
1220.1333	1.0000	0.0000	20.0010	20.000	75 0070	0.0209	0.0009	1.0000
1230.9000	1.000	0.3912	30.9370	23.000/	10.0019	0.0209	0.0721	1.0007
1239.000/	1.0005	0.3944	30.9900	29.0333	1 0.0489	0.0209	0.0704	1.000/
1239.2333	1.0865	0.3975	39.0470	30.0000	15.4630	0.0269	0.6784	1.0806

1239.4000	1.0864	0.4007	39.1340	30.1667	75.2800	0.0269	0.6816	1.0805
1239.5667	1.0863	0.4055	39.2180	30.3333	74.8053	0.0269	0.6848	1.0805
1239.7333	1.0863	0.4071	39.2620	30.5000	74.9225	0.0269	0.6879	1.0804
1239.9000	1.0862	0.4103	39.2950	30.6667	74.7480	0.0269	0.6911	1.0803
1240.0667	1.0862	0.4119	39.3540	30.8333	74.8640	0.0269	0.6942	1.0803
1240.2333	1.0861	0.4150	39.4230	31.0000	74.6919	0.0269	0.6974	1.0802
1240.4000	1.0860	0.4182	39.5000	31.1667	74.5225	0.0269	0.7005	1.0801
1240.5667	1.0859	0.4230	39.6200	31.3333	74.0760	0.0269	0.7036	1.0801
1240.7333	1.0859	0.4246	39.6350	31.5000	74.1911	0.0269	0.7068	1.0800
1240.9000	1.0858	0.4278	39.6780	31.6667	74.0291	0.0269	0.7099	1.0799
1241.0667	1.0858	0.4309	39.8060	31.8333	73.8695	0.0269	0.7130	1.0799
1241.2333	1.0857	0.4341	39.7960	32.0000	73.7123	0.0269	0.7161	1.0798
1241.4000	1.0856	0.4389	39.9340	32.1667	73.2908	0.0269	0.7192	1.0797
1241.5667	1.0855	0.4421	39.9670	32.3333	73.1406	0.0269	0.7223	1.0797
1241.7355	1.0853	0.4455	40.0180	32,5000	73 1057	0.0209	0.7234	1.0790
1241.9000	1.0054	0.4400	40.0040	32,0007	72 7025	0.0209	0.7205	1.0795
1242.0007	1.0055	0.4510	40.1200	33,0000	72.7023	0.0205	0.7310	1.0794
1242 4000	1.0000	0.4564	40 2730	33 1667	72.6729	0.0269	0.7377	1.0793
1242 5667	1 0851	0 4612	40 3500	33 3333	72 2825	0.0269	0 7408	1 0793
1242.7333	1.0850	0.4691	40.4370	33.5000	71.4127	0.0269	0.7439	1.0792
1242.9000	1.0849	0.4707	40.4520	33.6667	71.5255	0.0269	0.7469	1.0792
1243.0667	1.0849	0.4723	40.5220	33.8333	71.6376	0.0269	0.7500	1.0791
1243.2333	1.0848	0.4786	40.6050	34.0000	71.0338	0.0269	0.7530	1.0790
1243.4000	1.0847	0.4802	40.6240	34.1667	71.1456	0.0269	0.7561	1.0790
1243.5667	1.0847	0.4834	40.7150	34.3333	71.0223	0.0269	0.7591	1.0789
1243.7333	1.0846	0.4866	40.7850	34.5000	70.9007	0.0269	0.7621	1.0788
1243.9000	1.0845	0.4898	40.8100	34.6667	70.7806	0.0269	0.7652	1.0788
1244.0667	1.0845	0.4930	40.9200	34.8333	70.6620	0.0269	0.7682	1.0787
1244.2333	1.0844	0.4945	40.9450	35.0000	70.7718	0.0269	0.7712	1.0786
1244.4000	1.0844	0.4977	41.0400	35.1667	70.6544	0.0269	0.7742	1.0786
1244.5667	1.0843	0.5009	41.1090	35.3333	70.5386	0.0269	0.7772	1.0785
1244.7333	1.0843	0.5025	41.1830	35.5000	70.6470	0.0269	0.7802	1.0785
1244.9000	1.0842	0.5057	41.2270	35.6667	70.5323	0.0269	0.7832	1.0784
1245.0667	1.0841	0.5089	41.3210	35.8333	70.4190	0.0269	0.7862	1.0783
1245.2333	1.0841	0.5120	41.3900	36.0000	70.3071	0.0269	0.7892	1.0783
1245.4000	1.0840	0.5168	41.4420	36.1667	69.9806	0.0269	0.7921	1.0782
1245.5667	1.0839	0.5184	41.5080	36.3333	70.0874	0.0269	0.7951	1.0781
1245.7333	1.0839	0.5216	41.5840	36.5000	69.9796	0.0269	0.7981	1.0781
1245.9000	1.0838	0.5248	41.6790	36,8333	69.8731	0.0269	0.8011	1.0780
1240.0007	1.0037	0.5279	41.7200	37 0000	69.7679	0.0209	0.8040	1.0700
1246.4000	1.0000	0.5359	41.8580	37 1667	69 3548	0.0205	0.0070	1.0778
1246 5667	1 0835	0.5375	41.9530	37 3333	69 4597	0.0269	0.8129	1 0778
1246.7333	1.0834	0.5423	41.9680	37,5000	69,1559	0.0269	0.8158	1.0777
1246.9000	1.0834	0.5454	42.0340	37.6667	69.0583	0.0269	0.8187	1.0776
1247.0667	1.0833	0.5470	42.1030	37.8333	69.1622	0.0269	0.8217	1.0776
1247.2333	1.0832	0.5518	42.2240	38.0000	68.8663	0.0269	0.8246	1.0775
1247.4000	1.0832	0.5534	42.3260	38.1667	68.9696	0.0269	0.8275	1.0775
1247.5667	1.0831	0.5566	42.3590	38.3333	68.8749	0.0269	0.8304	1.0774
1247.7333	1.0831	0.5597	42.3920	38.5000	68.7813	0.0269	0.8333	1.0773
1247.9000	1.0830	0.5629	42.4940	38.6667	68.6888	0.0269	0.8362	1.0773
1248.0667	1.0829	0.5661	42.5820	38.8333	68.5973	0.0269	0.8391	1.0772
1248.2333	1.0828	0.5709	42.7020	39.0000	68.3161	0.0269	0.8420	1.0772
1248.4000	1.0828	0.5709	42.7170	39.1667	68.6080	0.0269	0.8449	1.0771
1248.5667	1.0828	0.5741	42.8120	39.3333	68.5182	0.0269	0.8478	1.0770
1248.7333	1.0827	0.5788	42.8530	39.5000	68.2415	0.0269	0.8507	1.0770
1248.9000	1.0826	0.5820	42.9290	39.6667	68.1549	0.0269	0.8536	1.0769
1249.0667	1.0825	0.5852	43.0060	39.8333	68.0693	0.0269	0.8564	1.0769
1249.2333	1.0825	0.5884	43.0750	40.0000	67.9846	0.0269	0.8593	1.0768
1249.4000	1.0824	0.5915	43.2030	40.1667	67.9009	0.0269	0.8622	1.0767
1249.5667	1.0823	0.5963	43.2360	40.3333	67.6372	0.0269	0.8650	1.0767

ANEXO 2

CERTIFICADOS DE CALIBRACIÓN

ANEXO 3

CERTIFICADO DE USO DE EQUIPOS EN EL LABORATORIO DE

GEOTECNIA DE LA UNIVERSIDADE ESTADUAL DO NORTE

FLUMINENSE (UENF).