

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE CIENCIAS AGRARIAS ESCUELA PROFESIONAL DE INGENIERÍA TOPOGRÁFICA Y AGRIMENSURA

"DETERMINACIÓN DE LA EROSIÓN HÍDRICA MEDIA ANUAL EN LA CUENCA DEL RIO ILLPA MEDIANTE EL MÉTODO USLE APLICANDO TELEDETECCIÓN Y SIG"

TESIS

PRESENTADA POR:

Bach. JORDAN ISRAEL CHILI LUQUE

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO TOPÓGRAFO Y AGRIMENSOR

PUNO – PERÚ

2024

Reporte de similitud

NOMBRE DEL TRABAJO "DETERMINACIÓN DE LA EROSIÓN HÍDRI CA MEDIA ANUAL EN LA CUENCA DEL RI O ILLPA MEDIANTE EL MÉTODO USLE A PLICANDO TELEDETECCIÓN Y SIG"	AUTOR JORDAN ISRAEL CHILI LUQUE
RECUENTO DE PALABRAS 53117 Words	RECUENTO DE CARACTERES 244693 Characters
RECUENTO DE PÁGINAS	TAMAÑO DEL ARCHIVO
241 Pages	11.0MB
FECHA DE ENTREGA	FECHA DEL INFORME
Jan 26, 2024 9:01 AM GMT-5	Jan 26, 2024 9:04 AM GMT-5

12% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base

- 11% Base de datos de Internet
- · Base de datos de Crossref
- 6% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

- · Material bibliográfico
- Material citado

2% Base de datos de publicaciones

- Material citado
- Coincidencia baja (menos de 10 palabras)

Base de datos de contenido publicado de Cross

M. Sc. Luis Alberto Mamani Huanca SUBDIRECTOR DE INVESTIGACIÓN EPITA - FCA

Resumen

DEDICATORIA

Dedico esta tesis a la memoria de mi abnegada abuelita Elsa Vicentina que siempre esta iluminándome desde el cielo.

> Con inmenso cariño y gratitud a mi abnegado abuelito Edgar y a mis padres Felix y Roxana por haber hecho realidad el anhelo más ansiado de mi vida, de ser profesional para contribuir a la sociedad.

A mi querido tío Marco y a mi prima Arlet quienes me alentaron en la culminación de mi carrera profesional.

Jordan Israel

AGRADECIMIENTOS

Mi agradecimiento profundo y sincero a la Escuela Profesional de Ingeniería Topográfica y Agrimensura, a la Facultad de Ciencias Agrarias y a la Universidad Nacional del Altiplano mi alma mater.

> A los docentes de la Escuela Profesional de Ingeniería Topográfica У Agrimensura quienes contribuyeron en mi Formación Profesional, al Ph. D. Elmer Elio Calizaya Llatasi por su amplia colaboración y apoyo en todo momento como director en la culminación del presente trabajo de investigación.

Por su colaboración a los siguientes jurados: al Dr. Jorge Luis Aroste Villa, al Ing. Saul Sardon Flores y al Ing. Victor Raul Banegas Layme por su apoyo incondicional.

Jordan Israel

ÍNDICE GENERAL

	Pág.		
DEDICATORIA			
AGR	ADECIMIENTOS		
ÍNDI	CE GENERAL		
ÍNDI	CE DE TABLAS		
ÍNDI	CE DE FIGURAS		
ÍNDI	CE DE ACRÓNIMOS		
RESU	JMEN		
ABST	TRACT		
	CAPÍTULO I		
	INTRODUCCIÓN		
1.1.	PLANTEAMIENTO DEL PROBLEMA18		
1.2.	FORMULACIÓN DEL PROBLEMA 19		
	1.2.1. Problema general		
	1.2.2. Problemas específicos		
1.3.	HIPÓTESIS DE LA INVESTIGACIÓN19		
	1.3.1. Hipótesis general		
	1.3.2. Hipótesis específicas		
1.4.	JUSTIFICACIÓN DE LA INVESTIGACIÓN		
1.5.	OBJETIVOS DE LA INVESTIGACIÓN 23		
	1.5.1. Objetivo general		
	1.5.2. Objetivos específicos		

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1.	ANTE	CEDENTES DE LA INVESTIGACIÓN	24
	2.1.1.	Antecedentes internacionales	24
	2.1.2.	Antecedentes nacionales	24
	2.1.3.	Antecedentes locales	31
2.2.	MAR	CO TEÓRICO	33
	2.2.1.	Erosión hídrica	33
	2.2.2.	Tipología de la erosión hídrica	35
	2.2.3.	Procesos de la erosión hídrica	37
	2.2.4.	Factores que intervienen en la erosión hídrica	38
	2.2.5.	Métodos para evaluar la erosión hídrica del suelo	42
	2.2.6.	Pérdida tolerable del suelo (T)	44
	2.2.7.	Ecuación universal de pérdidas de suelos (USLE)	45
	2.2.8.	Modelamiento de la erosión hídrica del suelo	63
	2.2.9.	Teledetección y sistemas de información geográfica	65
	2.2.10	Índice de erosión de la lluvia	67
	2.2.11	Corrección atmosférica DOS1	67

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1.	ZONA DE ESTUDIO	68
	3.1.1. Ubicación política	
	3.1.2. Ubicación geográfica	
3.2.	MATERIALES Y EQUIPOS	
	3.2.1. Software	71

	3.2.2. Datos secundarios
	3.2.3. Información de precipitaciones
	3.2.4. Información de la pendiente
	3.2.5. Información de suelos
	3.2.6. Información de la cobertura vegetal
3.3.	METODOLOGÍA DE LA INVESTIGACIÓN72
	3.3.1. Enfoque de investigación77
	3.3.2. Nivel de investigación
	3.3.3. Diseño de la investigación
	3.3.4. Población
	3.3.5. Muestra
	3.3.6. Técnicas de análisis de datos
	3.3.7. Herramientas de análisis de datos
	3.3.8. Técnica estadística para prueba de hipótesis
3.4.	VARIABLE DE INVESTIGACIÓN
	3.4.1. Variable de estudio: erosión hídrica actual
	3.4.2. Operacionalización de la variable
3.5.	METODOLOGÍA PARA EL FACTOR DE EROSIVIDAD
3.6.	METODOLOGÍA PARA EL FACTOR TOPOGRÁFICO90
3.7.	METODOLOGÍA PARA EL FACTOR DE ERODABILIDAD 103
3.8.	METODOLOGÍA PARA EL FACTOR DE COBERTURA VEGETAL . 109
3.9.	METODOLOGÍA PARA INTEGRACIÓN DE FACTORES 118
	CAPÍTULO IV
	RESULTADOS Y DISCUSIÓN

4.1.	RESULTADOS PARA EL FACTOR DE EROSIVIDAD	119

4.2.	RESU	ILTADOS PARA EL FACTOR TOPOGRÁFICO 126
4.3.	RESU	ULTADOS PARA EL FACTOR DE ERODABILIDAD 134
4.4.	RESU	ULTADOS PARA EL FACTOR DE COBERTURA VEGETAL 142
4.5.	INTE	GRACIÓN DE FACTORES 157
4.6.	PRUE	EBA DE HIPÓTESIS 165
	4.6.1.	Prueba de normalidad para las muestras165
	4.6.2.	Prueba de hipótesis para objetivo específico 1167
	4.6.3.	Prueba de hipótesis para objetivo específico 2168
	4.6.4.	Prueba de hipótesis para objetivo específico 3170
	4.6.5.	Prueba de hipótesis para objetivo específico 4172
4.7.	DISC	USIÓN 173
	4.7.1	Discusión objetivo específico 1177
	4.7.2.	Discusión objetivo específico 2 179
	4.7.3.	Discusión objetivo específico 3 182
	4.7.4.	Discusión objetivo específico 4184
V. CC	ONCLU	SIONES 187
VI. R	ECOM	ENDACIONES 189
VII. F	REFER	ENCIAS BIBLIOGRÁFICAS 191
ANEX	xos	

ÁREA: Sistemas de Información Geográfica

TEMA: Ciencias Naturales

FECHA DE SUSTENTACIÓN: 31 de enero 2024.

ÍNDICE DE TABLAS

Pág.

Tabla 1 Clasificación de los niveles de la erosión hídrica 44
Tabla 2 Clasificación de los valores del índice modificado de Fournier
Tabla 3 Clasificación de los valores del factor de erosividad
Tabla 4 Clasificación de los valores del factor topográfico
Tabla 5 Clasificación de los valores del factor de erodabilidad
Tabla 6 Clasificación de los valores del factor de cobertura vegetal
Tabla 7 Ecuaciones empleadas para calcular las pérdidas de suelo
Tabla 8 Estaciones meteorológicas empleadas en la investigación
Tabla 9 Modelos digitales de elevación usados en la investigación
Tabla 10 Información de suelos obtenidos de SoilGrids 75
Tabla 11 Información de suelos obtenidos de la FAO
Tabla 12 Fuentes y características de las dimensiones 77
Tabla 13 Operacionalización de la variable 83
Tabla 14 Análisis de consistencia de las estaciones meteorológicas
Tabla 15 Interpretación del coeficiente de determinación 85
Tabla 16 Precipitaciones medias mensuales, media anual y total anual
Tabla 17 Valores mensuales y anuales del IMF y el factor R
Tabla 18 Estructura de datos de entrada para interpolación del factor R
Tabla 19 Imágenes Landsat 8 para época húmeda utilizadas en la investigación 109
Tabla 20 Imágenes Landsat 8 para época seca utilizadas en la investigación
Tabla 21 Distribución de superficie según los rangos del IMF 120
Tabla 22 Distribución de superficie según los rangos del factor R 122
Tabla 23 Estadística descriptiva para el factor de erosividad 124

Tabla 24 Distribución de superficie según los rangos del factor LS 128
Tabla 25 Estadística descriptiva para el factor topográfico 131
Tabla 26 Distribución de superficie del factor K en la cuenca del río Illpa
Tabla 27 Porcentaje de arena, limo, arcilla y carbono orgánico según SoilGrids 136
Tabla 28 Porcentaje de limo, arena, arcilla y carbono orgánico según la FAO
Tabla 29 Promedio de valores para limo, arena, arcilla y carbono orgánico
Tabla 30 Asignación del valor del factor K 138
Tabla 31 Distribución de superficie según los rangos del factor K 138
Tabla 32 Estadística descriptiva para el factor de erodabilidad
Tabla 33 Promedio multianual del NDVI en época seca 145
Tabla 34 Promedio multianual del NDVI en época húmeda
Tabla 35 Clasificación del NDVI y porcentaje de área ocupada 146
Tabla 36 Tipos de cubierta vegetal (clasificación no supervisada)
Tabla 37 Cubiertas vegetales (clasificación supervisada) 154
Tabla 38 Valores del factor C 154
Tabla 39 Estadística descriptiva para el factor de cobertura vegetal
Tabla 40 Clasificación del grado de erosión hídrica actual
Tabla 41 Estadística descriptiva para el mapa de erosión hídrica actual
Tabla 42 Prueba de normalidad para todas las muestras
Tabla 43 Prueba de Wilcoxon para una muestra para la hipótesis específica 1
Tabla 44 Prueba de Wilcoxon para una muestra para la hipótesis específica 2
Tabla 45 Prueba de Wilcoxon para una muestra para la hipótesis específica 3
Tabla 46 Prueba de Wilcoxon para una muestra para la hipótesis específica 4

ÍNDICE DE FIGURAS

Pág.

Figura 1 Pérdida del suelo por erosión hídrica	36
Figura 2 Proceso de erosión hídrica	38
Figura 3 Capas de información en un sistema de información geográfica (SIG)	65
Figura 4 Representación de un modelo real a un modelo ráster digital	66
Figura 5 Representación de un modelo real a un modelo vectorial digital	67
Figura 6 Ubicación del área de estudio	70
Figura 7 Distribución de las estaciones meteorológicas	73
Figura 8 Modelos digitales de elevación usados en la investigación	74
Figura 9 Imágenes satelitales Landsat 8 empleadas en la investigación	76
Figura 10 Flujograma del marco de la investigación	77
Figura 11 Diagrama de la metodología para hallar el factor de erosividad	84
Figura 12 Análisis de consistencia para la estación Puno	86
Figura 13 Análisis de consistencia para la estación Ichuña	87
Figura 14 Análisis de consistencia para la estación Cabanillas	88
Figura 15 Análisis de consistencia para la estación Laraqueri	89
Figura 16 Análisis de consistencia para la estación Juliaca	90
Figura 16 Análisis de consistencia para la estación JuliacaFigura 17 Regresión lineal entre el promedio de precipitación anual y el factor R	90 95
Figura 16 Análisis de consistencia para la estación JuliacaFigura 17 Regresión lineal entre el promedio de precipitación anual y el factor RFigura 18 Flujograma para obtener el mapa de erosividad de la lluvia	90 95 96
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 	90 95 96 . 100
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico 	90 95 96 . 100 . 103
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad 	90 95 96 . 100 . 103 . 107
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 	90 95 96 . 100 . 103 . 107 . 108
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4 	90 95 96 . 100 . 103 . 107 . 108 . 112
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4 Figura 24 Flujograma para la obtención del mapa de cobertura vegetal 	90 95 96 . 100 . 103 . 107 . 108 . 112 . 117
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4 Figura 24 Flujograma para la obtención del mapa de erosión hídrica 	90 95 96 . 100 . 103 . 107 . 108 . 112 . 117 . 118
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4 Figura 24 Flujograma para la obtención del mapa de cobertura vegetal Figura 25 Flujograma para la obtención del mapa de erosión hídrica Figura 26 Modelo espacial mediante model builder para obtener el factor R 	90 95 96 . 100 . 103 . 107 . 108 . 112 . 117 . 118 . 121
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4	90 95 96 . 100 . 103 . 107 . 108 . 112 . 117 . 118 . 121 . 122
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4 Figura 24 Flujograma para la obtención del mapa de cobertura vegetal Figura 25 Flujograma para la obtención del mapa de erosión hídrica Figura 26 Modelo espacial mediante model builder para obtener el factor R Figura 27 Distribución en porcentajes según los rangos de IMF Figura 28 Distribución espacial de la erosividad de las lluvias o factor R 	90 95 96 . 100 . 103 . 107 . 108 . 112 . 117 . 118 . 121 . 122 . 123
 Figura 16 Análisis de consistencia para la estación Juliaca Figura 17 Regresión lineal entre el promedio de precipitación anual y el factor R Figura 18 Flujograma para obtener el mapa de erosividad de la lluvia Figura 19 Diagrama de la metodología para hallar el objetivo específico 2 Figura 20 Flujograma para obtener el mapa de relieve topográfico Figura 21 Flujograma para obtener el mapa de erodabilidad Figura 22 Diagrama de la metodología para hallar el objetivo específico 3 Figura 23 Diagrama de la metodología para hallar el objetivo específico 4 Figura 24 Flujograma para la obtención del mapa de cobertura vegetal Figura 25 Flujograma para la obtención del mapa de erosión hídrica Figura 26 Modelo espacial mediante model builder para obtener el factor R Figura 28 Distribución en porcentajes según los rangos de IMF Figura 29 Histograma y diagrama de densidad de la muestra 1 	90 95 96 . 100 . 103 . 107 . 108 . 112 . 117 . 118 . 121 . 122 . 123 . 125

Figura	31	Distribución en porcentajes según los rangos del factor LS12	28
Figura	32	Modelo espacial mediante model builder para obtener el factor LS12	29
Figura	33	Mapa de la distribución espacial del factor topográfico o factor LS13	30
Figura	34	Histograma y diagrama de densidad de la muestra 213	32
Figura	35	Diagrama de caja y bigotes de la muestra 213	33
Figura	36	Modelo espacial en model builder para hallar el factor K 13	37
Figura	37	Mapa del factor de erodabilidad o factor K13	39
Figura	38	Distribución en porcentajes según los rangos del factor K 14	10
Figura	39	Histograma y diagrama de densidad de la muestra 314	1
Figura	40	Diagrama de caja y bigotes de la muestra 314	12
Figura	41	Obtención de las imágenes Landsat 814	13
Figura	42	Corrección atmosférica de las imágenes Landsat 814	4
Figura	43	Mapa del factor de cobertura vegetal o factor C 14	18
Figura	44	Modelo espacial para hallar factor C a partir del NDVI14	19
Figura	45	Gráfico de barras de la clasificación del NDVI15	50
Figura	46	Modelo espacial para hallar la clasificación no supervisada15	51
Figura	47	Gráfico circular de la clasificación no supervisada15	52
Figura	48	Modelo espacial para hallar la clasificación supervisada15	53
Figura	49	Gráfico circular de la clasificación supervisada15	53
Figura	50	Histograma y diagrama de densidad de la muestra 415	56
Figura	51	Diagrama de caja y bigotes de la muestra 415	57
Figura	52	Niveles de erosión hídrica actual de la cuenca del río Illpa	59
Figura	53	Mapa de la erosión hídrica actual en la cuenca del rio Illpa16	50
Figura	54	Clasificación de la erosión hídrica actual en la cuenca del rio Illpa16	51
Figura	55	Histograma y diagrama de densidad de la muestra 516	53
Figura	56	Diagrama de caja y bigotes de la muestra 516	54

ÍNDICE DE ANEXOS

ANEXO 1 Matriz de consistencia	201
ANEXO 2 Imágenes de la salida a campo	202
ANEXO 3 Datos de precipitación mensual y anual para el período 1970 – 2012	207
ANEXO 4 Precipitación promedio anual de las estaciones a través de los años	212
ANEXO 5 Metadatos de los modelos digital de elevación empleados	214
ANEXO 6 Información de suelos usados en la investigación	215
ANEXO 7 Imágenes satelitales Landsat 8 usadas en la investigación	217
ANEXO 8 Muestra aleatoria para prueba de hipótesis	219
ANEXO 9 Mapas secundarios para hallar el factor R	226
ANEXO 10 Mapas secundarios para hallar el factor LS	229
ANEXO 11 Mapas secundarios para hallar el factor K	233
ANEXO 12 Mapas secundarios para hallar el factor C	235
ANEXO 13 Declaración jurada de autenticidad de tesis	240
ANEXO 14 Autorización para el depósito de tesis en el Repositorio Institucional	241

ACRÓNIMOS

C:	Cobertura vegetal
DEM:	Digital Elevation Model (Modelo Digital de Elevación)
FAO:	Food and Agriculture Organization (Organización de las
	Naciones Unidas para la Alimentación y la Agricultura)
IDW:	Inverse Distance Weighting (Distancia Inversa Ponderada)
IMF:	Índice Modificado de Fournier
K:	Erodabilidad del suelo
LANDSAT:	Land Remote Sensing Satelite (Satélite terrestre de teledetección)
LS:	Longitud y gradiente de la pendiente
NDVI:	Normalized Difference Vegetation Index (Índice de Vegetación
	de Diferencia Normalizada)
R:	Erosividad de la lluvia
SENAMHI:	Servicio Nacional de Meteorología e Hidrología
SIG:	Sistema de Información Geográfica
SOILGRIDS:	Un sistema de mapeo digital de suelos basado en la recopilación
	global de datos de perfiles de suelos y capas ambientales
SRTM:	Shuttle Radar Topography Mission (Misión Topográfíca Shuttle
	Radar)
USGS:	United States Geological Survey (Servicio Geológico de Estados
	Unidos)
USLE:	Universal Soil Loss Equation (Ecuación Universal de Pérdida de
	Suelo)

RESUMEN

El presente estudio se ha llevado a cabo con el objetivo de determinar la pérdida de suelo mediante la evaluación de la erosión hídrica media anual en la cuenca del río Illpa, que abarca una superficie de 1,270.34 km². Se empleo la metodología de la Ecuación Universal de Pérdidas de Suelo (USLE) aplicando teledetección y SIG. La investigación adopta un enfoque cuantitativo, de nivel descriptivo y diseño no experimental. Para el análisis de datos se aplicaron técnicas estadísticas, descriptivas e inferenciales y geoestadística, para la prueba de normalidad de las muestras se aplicó la prueba de Kolmogórov-Smirnov, para la prueba de hipótesis se aplicó la técnica estadística de Wilcoxon para una muestra. Se implementó el modelo USLE para determinar los factores de erosividad (R), topografía (LS), erodabilidad (K) y cobertura vegetal (C). Los resultados revelan los valores estimados para cada factor, con una erosión hídrica actual media anual de 58.93 tn/ha*año en la cuenca del río Illpa. En conclusión, mediante el método USLE, se logró identificar la erosión hídrica actual, destacando la importancia de cada factor tanto en la distribución geoespacial de la cuenca como en los resultados de las pruebas estadísticas.

Palabras Clave: Cobertura vegetal, Erodabilidad, Erosión hídrica, Erosividad y Landsat.

ABSTRACT

The present study has been carried out with the objective of determining soil loss by evaluating the average annual water erosion in the Illpa River basin, which covers an area of 1,270.34 km². The methodology of the Universal Soil Loss Equation (USLE) was used, applying remote sensing and GIS. The research adopts a quantitative approach, descriptive level and non-experimental design. For data analysis, statistical, descriptive and inferential and geostatistical techniques were applied, the Kolmogorov-Smirnov test was applied to test the normality of the samples, and the Wilcoxon statistical technique was applied for a sample for the hypothesis test. The USLE model was implemented to determine the factors of erosivity (R), topography (LS), erodibility (K) and vegetation cover (C). The results reveal the estimated values for each factor, with a current average annual water erosion of 58.93 tn/ha*year in the Illpa River basin. In conclusion, using the USLE method, it was possible to identify current water erosion, highlighting the importance of each factor both in the geospatial distribution of the basin and in the results of the statistical tests.

Keywords: Vegetation cover, Erodibility, Water erosion, Erosivity and Landsat.

CAPÍTULO I

INTRODUCCIÓN

La presente investigación se estructura en varios capítulos que abordan aspectos cruciales relacionados con la erosión hídrica en la cuenca del río Illpa. A continuación, se detalla el contenido de cada capítulo:

Capítulo I, expone el planteamiento y formulación del problema, junto con las hipótesis de investigación. Se justifica la relevancia de la investigación y se establecen los objetivos, tanto generales como específicos.

Capítulo II, se abordan los antecedentes de la investigación a nivel internacional, nacional y local. Además, se presenta el marco teórico que incluye conceptos sobre erosión de suelo, tipos de erosión, erosión hídrica, factores que intervienen y métodos de evaluación.

Capítulo III, detalla el área de estudio, los materiales y equipos utilizados, y la metodología de investigación. Se explica el enfoque, tipo y diseño de la investigación, así como las variables de caracterización. Además, se presenta la población y muestra, las técnicas y herramientas de análisis de datos, y la metodología específica para cada objetivo.

Capítulo IV, se muestran y discuten los resultados obtenidos para cada objetivo específico y general. Se contrastan los resultados y se realiza una discusión detallada. Este capítulo incluye pruebas de hipótesis y la comparación entre la erosión hídrica potencial y actual en la cuenca del río Illpa.

En los capítulos finales se presentan las conclusiones derivadas de los resultados y se ofrecen recomendaciones para futuras investigaciones. También se proporciona una lista de referencias bibliográficas y se incluyen anexos relevantes.

1.1. PLANTEAMIENTO DEL PROBLEMA

A nivel global, la degradación del suelo y la erosión hídrica son preocupaciones ambientales fundamentales. Según la Evaluación Global de la Degradación del Suelo Inducida por el Hombre (GLASOD) entre 1987 y 1990, aproximadamente el 15% de la superficie terrestre, equivalente a 1.964 millones de hectáreas, experimentó algún tipo de degradación del suelo. De este total, el 55,6% corresponde a la erosión hídrica, afectando alrededor de 1,093.7 millones de hectáreas a nivel mundial (FAO, 2016).

En el ámbito nacional, la erosión hídrica se presenta como una amenaza crítica, afecta una extensión de 127'945,790 hectáreas, de esta área un 6.4% presenta un nivel severo de erosión hídrica. En los últimos 20 años, más del 15% del territorio peruano ha experimentado pérdida de suelo por erosión hídrica, impactando cerca del 11% de la población, especialmente en Apurímac, Piura, Lambayeque, Moquegua y Tacna. Se proyecta que, si la tendencia actual persiste, para el año 2100 aproximadamente el 64% del territorio peruano podría verse afectado por la erosión hídrica (Castillo & Rojas, 2019).

La región de Puno, presenta desafíos únicos relacionados con la erosión hídrica, aunque las precipitaciones irregulares han aumentado el riesgo potencial de erosión hídrica, se ha observado una falta de estudios específicos en esta área. Las cuencas del río Ramis, Ilave, Coata, Huancané y Suches son especialmente propensas, con un posible 44%, 23%, 14%, 11%, y 8% de área afectada respectivamente. Esta carencia de

información destaca la necesidad de un análisis detallado para comprender y abordar los efectos locales de la erosión hídrica (Bautista, 2023).

En la cuenca del río Illpa, no se han realizado investigaciones particulares para cuantificar la erosión del suelo. Esta falta de estudios podría tener implicaciones importantes a medida que avanza el tiempo. Por lo tanto, es crucial proponer sistemas de gestión para la preservación del suelo y examinar cómo la vegetación puede desempeñar un papel en este proceso.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. Problema general

- ¿Cuál es la erosión hídrica media anual en la cuenca del río Illpa?

1.2.2. Problemas específicos

- ¿Cuál es la mediana del factor de erosividad en la cuenca del río Illpa?
- ¿Cuál es la mediana del factor topográfico en la cuenca del rio Illpa?
- ¿Cuál la mediana del factor de erodabilidad en la cuenca del rio Illpa?
- ¿Cuál la mediana del factor de cobertura vegetal en la cuenca del rio Illpa?

1.3. HIPÓTESIS DE LA INVESTIGACIÓN

1.3.1. Hipótesis general

 La erosión hídrica media anual en la cuenca del río Illpa es de 50 toneladas dividido entre hectárea por año.

1.3.2. Hipótesis específicas

- La mediana del factor de erosividad en la cuenca del río Illpa es igual a 50 megajulios por milímetro dividido por hectárea por hora por año.
- La mediana del factor topográfico en la cuenca del rio Illpa es igual a 3 (adimensional).
- La mediana del factor de erodabilidad en la cuenca del rio Illpa es igual a
 0.1 toneladas por hectárea por hora dividido por hectárea por megajulio por milímetro.
- La mediana del factor de cobertura vegetal en la cuenca del rio Illpa es igual a 0.5 (adimensional).

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

En la cuenca del río Illpa la erosión hídrica del suelo se manifiesta de manera significativa debido a las intensas precipitaciones pluviales, irregularidades notorias en el clima y un aumento en las tasas de evaporación. Este fenómeno ha llevado al deterioro de la cobertura vegetal, especialmente en la cabecera de la cuenca, donde la topografía empinada y condiciones desfavorables de retención del suelo son prominentes. La presencia de rocas ígneas, metamórficas y sedimentos contribuye a complicar aún más la formación del suelo.

Se investiga la erosión hídrica en la cuenca del río Illpa para comprender y anticipar la degradación del suelo. La importancia radica en prever y medir este fenómeno, ya que la erosión hídrica intensiva puede resultar en la formación de surcos, representando un proceso difícil de evitar. La evaluación anticipada de la erosión de

acuíferos permite la implementación de medidas preventivas, incluso cuando los signos de degradación no son evidentes

El objetivo fundamental de esta investigación es cuantificar la erosión hídrica en la cuenca del río Illpa. La determinación precisa de la pérdida de suelo a través de modelos y estimaciones de campo busca mejorar la toma de decisiones para diversas infraestructuras, como represas, y contribuir a la conservación de los suelos agrícolas. Este enfoque es esencial para mejorar el rendimiento y durabilidad de las estructuras hidráulicas, así como para abordar la falta de información sobre las tasas de erosión en la región, facilitando la toma de decisiones sobre sostenibilidad y mitigación del cambio climático.

La investigación de la erosión hídrica en la cuenca del río Illpa responde a una necesidad teórica crucial en el ámbito de la ecología y la conservación ambiental. La cuenca del río Illpa, al carecer de estudios específicos sobre erosión hídrica, se convierte en un caso único y relevante para avanzar en la comprensión de los procesos erosivos en ecosistemas particulares. La teoría existente sobre erosión hídrica proporciona un marco general, pero la aplicación y validación de estos conceptos en un contexto local específico como el de Illpa son esenciales para fortalecer y expandir nuestro conocimiento teórico sobre los efectos de este fenómeno en áreas geográficas específicas.

Desde el punto de vista metodológico, la investigación se presenta como una oportunidad para implementar y perfeccionar técnicas de medición y evaluación de la erosión hídrica. La cuenca del río Illpa, al ser un entorno poco explorado en este aspecto, permite la aplicación de metodologías innovadoras y la adaptación de enfoques existentes a un contexto geográfico único. La recolección de datos específicos de la cuenca

contribuirá no solo a la comprensión teórica, sino también al desarrollo de herramientas y estrategias prácticas para abordar la erosión hídrica en áreas similares.

Desde una perspectiva profesional, esta investigación ofrece una oportunidad única para especialistas en conservación ambiental, hidrología y disciplinas relacionadas. La generación de conocimiento específico sobre la erosión hídrica en la cuenca del río Illpa permitirá la formulación de estrategias de manejo ambiental más efectivas y personalizadas. Los resultados de esta investigación pueden guiar la toma de decisiones para profesionales dedicados a la preservación de recursos hídricos y la sostenibilidad ambiental en la región, contribuyendo así al desarrollo de políticas y prácticas más informadas y eficaces.

1.5. OBJETIVOS DE LA INVESTIGACIÓN

1.5.1. Objetivo general

- Determinar la erosión hídrica media anual en la cuenca del río Illpa.

1.5.2. Objetivos específicos

- Determinar la mediana del factor de erosividad en la cuenca del río Illpa.
- Determinar la mediana del factor topográfico en la cuenca del rio Illpa.
- Determinar la mediana del factor de erodabilidad en la cuenca del rio Illpa.
- Determinar la mediana del factor de cobertura vegetal en la cuenca del rio Illpa.

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

2.1.1. Antecedentes internacionales

La investigación realizada por Escobar-Valdebenito (2019) propuso estimar las pérdidas por erosión en una región semiárida de Chile mediante la aplicación del modelo USLE (Ecuación Universal de Pérdida de Suelo). El enfoque se centró específicamente en la comuna de Punitaqui, ubicada en la IV Región de Coquimbo. Los resultados obtenidos revelaron una tasa promedio de erosión actual de 22.40 toneladas por hectárea por año y una erosión potencial promedio de 26.11 toneladas por hectárea por año. La conclusión principal extraída por el autor subraya la capacidad del modelo para identificar las áreas más afectadas por el fenómeno erosivo en la comuna. Además, se destaca la habilidad del modelo para caracterizar las disminuciones del suelo en la zona desde una perspectiva de protección del recurso. Esta investigación contribuye a la comprensión de la erosión hídrica en entornos semiáridos y resalta la utilidad del modelo USLE en la evaluación de este fenómeno en la región de Coquimbo.

De igual manera, Guío (2019) se planteó evaluar la tasa de erosión hídrica de superficies y cartografiar estas pérdidas en las cuencas del embalse de La Copa. Para lograr este objetivo, aplicó la metodología de la Ecuación Universal de Pérdida de Suelo Revisada (RUSLE). Además, realizó el mapeo de los elementos de la RUSLE y empleó el Índice de Fournier modificado para analizar la agresividad climática de la zona. Los datos hallados indicaron que el 76.11% del

área total de la cuenca del embalse La Copa, situada en el departamento de Boyacá, estaba comprometida, con pérdidas de suelo superiores a 100 toneladas por hectárea por año. Guío concluyó que estas pérdidas de suelo se atribuyen principalmente a la escasa cobertura vegetal, prácticas de manejo insuficientes y condición topográfica propias de los lugares Andinas. Además, señaló que la erosionabilidad del suelo es más elevada de lo esperado naturalmente, especialmente en las áreas circundantes al embalse, lo que contribuye a las pérdidas de suelo registradas en la región.

Mientras que, Zaragoza (2021) exploró la relación temporal entre los cambios en la cobertura terrestre y la erosión hídrica en Acoculco, Puebla, durante un período de 30 años en dos microcuencas. El objetivo principal fue examinar las transformaciones en la cobertura terrestre y las pérdidas de suelo debidas a la erosión hídrica en una zona sujeta a exploración geotérmica. El análisis identificó áreas susceptibles a procesos erosivos en dos microcuencas contrastantes: una con vegetación forestal y otra con cultivos agrícolas. Los resultados indicaron que, entre 2000 y 2018, la microcuenca C1 experimentó una recuperación del 7% en el área cubierta por bosques, contribuyendo a la reducción de la tasa anual de pérdida de suelo por erosión hídrica. A pesar de esta mejora, las pérdidas seguían siendo superiores a las registradas en 1986 y 1996. En la microcuenca C2, la cobertura agrícola mostró un comportamiento análogo a la tasa anual de pérdida de suelo, con esfuerzos de reforestación que no lograron reducir las tasas en 2018 a niveles inferiores a 1986 y 1996. El autor concluyó que, si bien una mayor cobertura vegetal se asoció con una reducción en la degradación del suelo, factores topográficos, como la distancia largo e inclinación de la pendiente del terreno,

emergieron como determinantes clave en el proceso erosivo hídrico, destacando las diferencias entre las dos microcuencas.

2.1.2. Antecedentes nacionales

En la investigación realizada por Flores (2019) tuvo como propósito identificar los niveles de erosión potencial del suelo en la zona agrícola de la cuenca Chancos. Para lograr este objetivo, implementó el método de la Ecuación Universal de Pérdida de Suelo (USLE), desarrollada por Wischmeier y Smith (1978), que implica el estudio multiplicativo de los factores de erosividad, erodabilidad y el factor topográfico. La determinación de la erosividad de la precipitación se llevó a cabo mediante la interpolación Spline, mientras que el factor K, que considera la erodabilidad de la superficie en términos de textura, materia orgánica, diversidad de estructuras y permeable, fue analizado en laboratorio en 22 muestras de suelo distribuidas en todo el lugar del proyecto. Se analizó el factor topográfico LS se analizó a partir de un modelo digitalizado de elevación (DEM). Todos estos procesos y análisis se llevaron a cabo con el respaldo de Sistemas de Información Geográfica (SIG). Los resultados revelaron que el 57.90% del suelo total del lugar de proyecto muestra un grado moderado de erosión hídrica potencial, con disminuciones de superficie de 10 a 50 toneladas por hectárea por año, mientras que el 31.58% indica niveles altos de desgaste potencial, con disminuciones de suelo de 50 a 200 toneladas por hectárea por año, clasificándose según los estándares propuestos por la FAO (1980).

En la investigación realizada por Atauje (2018), se propuso calcular la erosión hídrica en la cuenca Huatatas, Ayacucho, mediante la aplicación de la Ecuación Universal de Pérdida de Suelos (USLE), haciendo uso de Sistemas de

Información Geográfica (SIG). Utilizando la clasificación de la FAO, los resultados señalaron que una considerable porción del lugar de indagación experimenta un nivel de erosión hídrica que varía desde lo natural hasta ligero, con pérdidas de 15 a 125 toneladas por hectárea por año, abarcando un total de 12,038 hectáreas. La máxima cantidad registrada de desgaste fue de 125 tn/ha*año en toda la cuenca. La conclusión del autor fue que la cuenca estudiada no presenta un nivel elevado de erosión, y las zonas con mayores incidencias erosivas son aquellas caracterizadas por pendientes más pronunciadas en el territorio.

La investigación llevada a cabo por Laqui (2019), tuvo como propósito calcular la tasa potencial media de erosión hídrica y el volumen promedio del transporte de sedimentos en una proyección a 50 años hasta el eje de la futura represa Callazas. Los resultados obtenidos indicaron una tasa de erosión hídrica promedio de 108.9 toneladas por hectárea por año utilizando la metodología USLE a nivel conceptual y 64.3 toneladas por hectárea por año mediante el empleo de herramientas de Sistemas de Información Geográfica (SIG). El autor clasificó este nivel de erosión como ligero/moderado.

La investigación realizada por Taco (2021), tuvo como objetivo estimar el grado de erosión hídrica en la cuenca quebrada Chamacha mediante la aplicación de la Ecuación Universal de Pérdida de Suelos Revisada (RUSLE). A través de un análisis geoespacial utilizando herramientas de Sistemas de Información Geográfica (SIG), el autor identificó las áreas potenciales de desgaste hídrico según los parámetros establecidos por la FAO. Los resultados revelaron que los lugares con mayor Erosión Hídrica Potencial (en el rango de 50 a 200 toneladas por hectárea por año) abarcaban una extensión de 267.96 hectáreas, representando el 3.02% del área total de estudio. La conclusión del autor destacó que las zonas

con un mayor Potencial de Desgaste Hídrico se encontraban principalmente en la parte alta de la cuenca, donde las alteraciones eran más pronunciadas, especialmente en áreas con pendientes significativas y una menor cobertura vegetal.

En el estudio llevado a cabo por Joyo (2018), se propuso identificar la erosión hídrica en los suelos de Pampa Cangallo utilizando el método USLE y aplicando Sistemas de Información Geográfica (SIG). Los resultados obtenidos indicaron que el desgaste hídrico potencial varió en un rango de 0.1367 a 7,830.09 toneladas por hectárea por año, mientras que el desgaste hídrico actual en el área de estudio presentó una variación de 0 a 1,088.09 toneladas por hectárea por año. Joyo concluyó que estos hallazgos ofrecen una visión espacial detallada de la erosión hídrica en toda la cuenca del río Macro. Esta evaluación se presenta como una herramienta crucial para la toma de decisiones, facilitando la implementación de medidas de control, así como la planificación y conservación de los suelos en el centro poblado de Pampa Cangallo, afectado por niveles elevados de erosión.

Por otra parte, Agama (2022) en su investigacion se propuso calcular tanto la erosión hídrica real o actual como la erosión hídrica potencial de suelo en la microcuenca San Alberto mediante la aplicación de la Ecuación Universal de Erosión del Suelo (USLE) y técnicas de modelamiento geoespacial, usando del (SIG) y teledetección. Además, investigó la interacción entre los factores clave que contribuyen a la erosión, tales como la erosividad de la lluvia, la erodabilidad de la superficie o suelo (K), la topografía (LS) y la cobertura vegetal. Los resultados obtenidos revelaron que la erosión potencial varió en un rango de 0.03204 a 3,109.79 toneladas por hectárea por año, mientras que la erosión real

osciló entre 0.3204 y 176.3826 toneladas por hectárea por año para la microcuenca San Alberto.

Del mismo modo, Alvarez (2019) se planteó examinar las etapas de erosión hídrica en dicha subcuenca durante los años mencionados. Para lograr este objetivo, aplicó técnicas como el análisis y la síntesis de la metodología de la Ecuación Universal de Pérdida de Suelos (USLE) y empleó herramientas de análisis espacial mediante Sistemas de Información Geográfica (SIG). Los datos adquiridos revelaron que el valor promedio más elevada de erosión hídrica se registró en 2013, alcanzando las 406.98 toneladas por hectárea por año en un área de 18.1 hectáreas (0.013 % de la superficie total), mientras que la mínima fue de 0.46 toneladas por hectárea por año. En el año 2017, el desgaste hídrico promedio más elevado fue de 554.36 toneladas por hectárea por año en un área de 25 hectáreas (0.018 % de la superficie total), y la mínima fue de 0.39 toneladas por hectárea por año. El autor concluyó que la variación extrema observada entre 2013 y 2017 se debió principalmente a dos factores significativos: la cobertura vegetal y la precipitación pluvial.

En la investigación llevada a cabo por Castillo & Rojas (2019), tuvo como propósito principal examinar la cantidad anual de degradación de la superficie, considerando el desgaste hídrico como consecuencia de las alteraciones pluviales asociadas al fenómeno del niño costero en la Subcuenca Huancay. Para lograr este objetivo, aplicaron el método RUSLE y se valieron del (SIG). En el desarrollo del estudio, recopilaron información satelital (Landsat) y datos de alteraciones pluviales provenientes de siete estaciones meteorológicas del SENAMHI. Los resultados señalaron que la tasa de disminución de desgaste en la Subcuenca Huancay, Chicama, se distribuyó en un 13.8% en magnitud incipiente, el 5.0% en

magnitud ligero, el 23.5% en magnitud fuerte y el 57.7% en magnitud de desgaste severa. Además, se llegó a la conclusión de que los SIG constituyen una técnica práctica para determinar la variabilidad espacial del degaste de la superficie.

Del mismo modo, Escobar-Soldevilla (2019) abordó la problemática de la erosión hídrica con el objetivo de conservar la superficie del suelo en la subcuenca del río Ichu, ubicada en Huancavelica. Para alcanzar este propósito, la tesis se enfocó en la estimación de la pérdida anual de suelo en la mencionada subcuenca, utilizando el método R.U.S.L.E (Ecuación Universal de Pérdida de Suelo Revisada), teledetección y herramientas de Sistemas de Información Geográfica (SIG). El estudio se apoyó en programas como QGIS 3.2 y Python para el analizar y geoprocesamiento de los factores R, K, LS, C y P, obteniendo el factor C a través de la información satelital Sentinel 2B. Escobar propuso opciones de prácticas de protección, introduciendo un nuevo factor P, y planteó cuatro escenarios de modelamiento. Los resultados evidenciaron una pérdida de suelo anual promedio de 22.7 a 23.7 tn/ha*año. Los dos primeros modelos se basaron en los factores de cobertura del análisis de mesozonificación ecológica y económica del departamento de Huancavelica de 2013 y la capa actual de 2018, respectivamente, en los ambientes 1 y 2. Además, se propusieron prácticas de conservación que mostraron una disminución en la carencia de suelo, cuantificándose en 21.7 y 22.1 tn/ha*año para los ambientes 3 y 4, respectivamente, en comparación con los escenarios 1 y 2. Escobar concluyó que los mapas de erosión espacial generados con el método RUSLE para los diferentes ambientes serán valiosos insumos para la formulación de estrategias en la planificación y gestión de la tierra en las áreas de estipuladas.

Por otro lado, Caycho (2020) se propuso identificar las áreas propensas a inundaciones y procesos erosivos, además de evaluar la erosión hídrica en la cuenca del río Huarmey mediante el uso de modelamiento geoespacial y el (SIG). La tesis generó cuatro mapas: el primero, basado en un estudio previo de Wahid et al. (2016), abordó inundaciones extraordinarias, utilizando estratos de pendientes, capacidad de infiltración, factor forma y cobertura para identificar áreas susceptibles a inundaciones ante precipitaciones excepcionales. Mediante superposición ponderada, se determinó que las zonas urbanas, el valle y los almacenamientos de aluviales presentan una alta vulnerabilidad a inundaciones. El segundo mapa, un ejemplo de inundaciones, se desarrolló utilizando el mismo método y considerando el factor de precipitaciones para una identificación más precisa de las áreas propensas a inundaciones. El tercer mapa, un ejemplo de vulnerabilidad física, señaló que las áreas con mayor vulnerabilidad se ubican en la parte andina de la cuenca, donde las pendientes y precipitaciones son incrementadas. Finalmente, se cuantificó la pérdida de suelo debida a la erosión mediante la Ecuación Universal de Pérdida de Suelo (USLE), utilizando variables de precipitaciones, suelos, pendientes y cobertura. Con este último modelo, Caycho demostró que las zonas con mayor pérdida de suelo correspondieron a áreas con vulnerabilidad alta, entre 50 y 200 tn/ha*año, y muy alta, superiores a 200 tn/ha*año.

2.1.3. Antecedentes locales

En la investigación de Paco (2022) se propuso evaluar los impactos de un conjunto de estrategias para el control de la erosión hídrica en la mencionada microcuenca del río temporal Escalerani, ubicada en Puno. Utilizando la Ecuación (USLE), la tesis reveló que el desgaste potencial en la microcuenca alcanzó los

257.60 tn/ha*año, mientras que la erosión hídrica actual fue de 92.59 tn/ha*año. En sus conclusiones, el autor destacó que los hallazgos obtenidos en este estudio serán de utilidad para los cultivadores de la microcuenca, proporcionando orientación para la programación y la gestión sostenible de los recursos naturales en la región.

Así mismo, Bautista (2023) se propuso estimar la erosión hídrica y su impacto en la capa vegetal de la mencionada cuenca del río Zapatilla. Para llevar a cabo este análisis, se emplearon diversas metodologías, entre las cuales se destaca el modelamiento USLE, que posibilitó la evaluación de la intensidad de la lluvia, la erodabilidad del suelo, la longitud de la ladera, la pendiente y el factor de cobertura vegetal de la superficie. Además, se utilizaron el método de pedestales para medir la altura de la última labranza y el método de capa de armadura para contar la cantidad de piedras en la superficie en un área de 50x50 cm, permitiendo así una comparación detallada. Los resultados obtenidos revelaron que, según el método USLE, la erosión hídrica varió entre 1.19 y 125.345 tn/ha*año, mientras que la erosión estimada en campo mediante el método de pedestales osciló entre 2 y 9 mm de altura del pedestal, y entre 2 y 12 mm de altura utilizando el método de la capa de armadura. En sus conclusiones, el autor destacó la utilidad de los tres métodos para estimar la degradación del suelo causada por el desgaste hídrica, concluyendo que la cuenca hidrográfica presenta un riesgo bajo a moderado de este fenómeno.

Por otro lado, Condori (2018) se propuso estimar la pérdida de suelo ocasionada por la erosión hídrica en la comunidad de San Francisco de Chañajari, Moho, Puno. Para llevar a cabo este análisis, aplicó la Ecuación (USLE), una herramienta ampliamente empleada a nivel global por los responsables del manejo

de cuencas para evaluar la erosión. El estudio estableció una matriz que incluyó diversas variables e indicadores, así como una conceptualización y el flujo del procedimiento mediante el uso de Sistemas de Información Geográfica (SIG). Los resultados obtenidos revelaron que la degradación anual estimada de suelo en la microcuenca fue del 9.34% de su suelo, con un riesgo de desgaste hídrico crítica de 49.75 tn/ha*año, y del 10.47% de su suelo, con un riesgo de desgaste hídrico muy alta de 55.77 tn/ha*año. Como conclusión, el autor propuso actividades de conservación del suelo, que incluyen prácticas mecánico-estructurales en la edificación de terrazas de formación lenta o bargones, zanjas de infiltración y andenes, así como prácticas culturales y agronómicas como surcos en contorno y control de cárcavas. Además, se sugieren operaciones de capacitación con el objetivo de reducir la degradación de superficie o suelo en la microcuenca.

2.2. MARCO TEÓRICO

2.2.1. Erosión hídrica

Jaya (2023) describe que existe un tipo adicional de erosión que a la vez ocurre de una manera muy acelerada, a esta lo define como "Erosión Antrópica". Esta acción es por intervención de las actividades humanas que generan desgaste y deterioran el suelo por medio de la agricultura, deforestación, ampliaciones en ciudades, minería y otras causas.

Se manifiesta como la remoción del suelo bajo la influencia del agua y el viento, fenómeno intrínsecamente vinculado al uso intensivo y al manejo inapropiado del suelo. Sus repercusiones se traducen en la disminución del soporte de retención hídrica de la superficie (Bautista, 2023). Desde una perspectiva operativa, la erosión hídrica implica la fragmentación, transporte y deposición de

partículas del suelo, siendo influenciada por variables como la energía cinética de las gotas de lluvia, el flujo del agua en movimiento y la fuerza de la gravedad (Agama, 2022). La erosión hídrica se origina a partir de la lluvia, ya que el flujo de agua superficial generado por esta condición meteorológica conduce partículas de suelo que han sido desprendidas debido a que son impactadas por las pequeñas bolitas de lluvia o el escurrimiento en la superficie (Alvarez, 2019). La erosión del suelo ocasionada por el agua, conocida como erosión hídrica, implica la que el suelo se separe, transporte y se deposite en forma de partículas gracias al flujo de agua, especialmente en laderas y pendientes. Posterior a los episodios de intensas lluvias y la formación de escorrentía, esta erosión suele manifestarse en forma de flujo acumulado (Escobar-Valdebenito, 2019). La intensidad de la lluvia puede manifestarse de diversas maneras, siendo la erosión uno de sus resultados, que se inicia con las precipitaciones y puede llegar a crear barrancos. Las variaciones en la concentración del agua se presentan en diferentes formas, que incluyen la salpicadura generada por las precipitaciones, la erosión en láminas, el desgaste en surcos, el desgaste en cárcavas, el desgaste en cursos de agua y las que son causadas por el agua subterránea (Jiménez, 2021).

La erosión hídrica constituye un fenómeno diverso que progresivamente agota los nutrientes contenidos en el suelo, incluyendo la capa superficial enriquecida con materia orgánica. Además, altera de manera significativa las alturas de acumulación de la materia orgánica, reduciéndolas de manera considerable. En términos sencillos, el proceso erosivo desencadenado por las precipitaciones crea un entorno poco propicio para el desarrollo de la vegetación (Arias, 2023). Este modelo de erosión se produce a raíz de las lluvias, manifestándose cuando las gotas de precipitación impactan la superficie terrestre

desprovista de cobertura y, asimismo, debido al proceso hidráulico que arrastra y transporta partículas del suelo desde las pendientes y taludes (Atauje, 2018). La génesis de esta erosión está vinculada a la interacción entre las condiciones climáticas y meteorológicas, a quienes proyectan el sustrato para el procedimiento erosivo, siendo las precipitaciones el principal agente erosivo. Diversos factores, como la presencia de vegetación, el tipo y las propiedades del terreno, la topografía, la geología y las utilizaciones de la tierra, inciden en la susceptibilidad del suelo a ser afectado por este fenómeno (Nakaya, 2018).

2.2.2. Tipología de la erosión hídrica

Según Bada (2023), el desgate hídrico se determina mediante criterios que evalúan la continuidad del flujo de agua, su velocidad y la presencia de materiales que obstruyan su curso. Asimismo, sostiene que las repercusiones de la pérdida de terreno por desgaste hídrica incluyen la reducción de la productividad de la superficie, la pérdida y degradación de tierras, la disminución del nivel freático, la formación de depósitos estériles, la sedimentación en embalses y la acumulación de sedimentos en zanjas de drenaje y canales de riego, entre otras consecuencias.

En la figura 1 se ilustra un ejemplo de erosión en forma de surco, donde se puede observar claramente la causa subyacente de este fenómeno.

A partir del análisis realizado, se han identificado diversos tipos de erosión hídrica, entre los cuales se incluye el desgaste por salpicadura. Según Cisneros et al. (2012), este fenómeno ocurre una vez las gotas de las precipitaciones afectan la superficie del terreno, generando pequeños cráteres que liberan partículas, las

cuales se desplazan a distancias significativas. En este contexto, se destaca que las

arenas finas tienden a estar más directamente relacionadas con este proceso.

Figura 1

Pérdida del suelo por erosión hídrica

Nota: la figura muestra los efectos de la erosión hídrica. Fuente: Hernández (2017)

Erosión laminar. Jaya (2023) nos refiere que consiste en excluir las partículas más finas y livianas de las más gruesas y pesadas a causa de la turbulencia del agua, afectando la superficie uniforme del terreno y haciendo escaso de los nutrientes esenciales como los limos y materias orgánicas.

Erosión por surcos. Flores (2019) afirma que es una de las formas en las que se puede apreciar fácilmente las causas que origina el escurrimiento superficial, esta concentración sucede en lugares irregulares, desniveles, o suelos mal trabajados.

Erosión en cárcavas. Jiménez (2021) manifiesta que se presentan en situaciones posteriores a las erosiones laminares y erosión por surcos, su característica principal es el incremento del volumen y la velocidad de escurrimiento que son ocasionadas por una mala aplicación de medidas protectoras.

Erosión por movimientos en masa. Ccama (2012) expone que esta situación se presenta en condiciones donde se transportan masas considerables en una distancia mínima, accionado por la misma gravedad, cantidad de agua o el mismo peso de la masa.

2.2.3. Procesos de la erosión hídrica

Jiménez (2021) revela que la erosión hídrica contempla un proceso de perdida en la producción agrícola y se producen en etapas comenzando de la etapa de desprendimiento, transporte y sedimentación.

Etapa de desprendimiento. Ocasionado por la caída de pequeñas bolas de lluvia dependiendo de su intensidad, estas al caer rompen pequeñas partículas de suelo que luego pueden moverse a las partes más bajas, a esta fase se le conoce como erosión por las salpicaduras a causa de las gotas.

En la figura 2 se visualiza el desarrollo del fenómeno de erosión hídrica en tres fases distintas: erosión, transporte y sedimentación.

Figura 2

Nota: la figura muestra el proceso de erosión hídrica. Fuente: Iglesias (2018)

Etapa de transporte. Es el proceso en el cual las partículas desprendidas son llevadas sobre la superficie por una lámina de agua, estas pueden ocurrir de dos maneras: a velocidad lenta y a mayor velocidad (turbulencia), aquí se evidencian las erosiones laminares, en surcos y cárcavas.

Etapa de sedimentación. Sucede cuando el material que se desprendió y que luego fue transportado queda depositado en un lugar por la falta de energía que impulse su movimiento, creando una acumulación de partículas de suelo y roca.

2.2.4. Factores que intervienen en la erosión hídrica

Los factores que controlan el proceso de pérdida de suelo abarcan la capacidad del terreno para ser erosionado, la fuerza erosiva de los agentes que provocan la erosión, las propiedades de la cobertura vegetal y diversos aspectos de índole socioeconómica (Arias et al., 2023).

Erosividad

Laws (como se citó en Conesa & Álvarez, 2004) conceptualiza como la capacidad potencial de las precipitaciones para provocar desgaste. Una aproximación más precisa para medir el poder erosivo de la precipitación implica considerar un índice basado en su energía cinética. En este caso, la fuerza erosiva de la precipitación está relacionada con su intensidad, duración y la masa, diámetro y velocidad de las gotas de lluvia. Kirby y Morgan (como se citó en Vega & Febles, 2005) plantean que las gotas de lluvia compactan la superficie del suelo, y las salpicaduras y el flujo del agua desprenden partículas del suelo, pudiendo dar lugar a la formación de costras superficiales que reducen la tasa de infiltración. Donde la cantidad de precipitación es mayor a la capacidad de infiltración de la superficie, se originan procesos de escorrentía.

Pendiente

Conforme a García et al. (2003), en una superficie plana, las gotas de lluvia dispersan las partículas del suelo de manera aleatoria. No obstante, en áreas con pendientes pronunciadas, se evidencia que una mayor cantidad de partículas del suelo son dispersadas en la dirección descendente de la pendiente, lo cual aumenta la proporción de erosión en relación con la inclinación del terreno. A medida que la pendiente y su longitud se incrementan, también lo hace la rapidez y el volumen del agua de escorrentía, intensificando así su capacidad erosiva.

Erodabilidad del suelo

Laws (como se citó en Conesa & Álvarez, 2004) plantea que la erodabilidad del suelo hace referencia a su nivel de susceptibilidad o vulnerabilidad al desgaste. Un suelo con una alta erodabilidad experimentará un

mayor desgaste cuando esté expuesto a condiciones de lluvia similares en comparación con un suelo que posea una erodabilidad baja. Diversos factores influyen en la erodabilidad, y entre ellos, las características físicas del suelo, como su tipo y las prácticas de manejo a las que ha sido sometido, desempeñan un papel crucial. En términos de estrategias de control, es esencial tener en cuenta las propiedades que mejoran la capacidad de infiltración del suelo, ya que esto contribuye a reducir la escorrentía, así como aquellas que refuerzan su resistencia a la dispersión y el transporte para minimizar dichos procesos.

La erodabilidad está vinculada a diversos aspectos, como la estructura de la superficie, la estabilidad de los agregados, la resistencia al corte, la capacidad de infiltración, el contenido de sustancias orgánicas y aglutinantes químicos en el suelo. La estructura de la superficie, que afecta la resistencia al transporte de su peso y su rugosidad, juega un papel fundamental en la erodabilidad. La resistencia al corte del suelo mide su cohesión y capacidad para resistir las fuerzas cortantes generadas por la gravedad, los líquidos en movimiento y las cargas mecánicas. La permeabilidad del suelo está asociada al tamaño, la estabilidad y la forma de los poros en su perfil (Pérez et al., 2019).

En términos generales, los suelos propensos a la erosión suelen presentar un bajo contenido de arcilla. Las arenas, en particular, generalmente no son clasificadas como suelos propensos al desgaste, y en el caso de suelos con una proporción de arena limosa susceptible, se trata de partículas finas. Los suelos con más del 30-35% de contenido de suelo cohesivo tienden a ser cohesivos y forman agregados estables, mostrando resistencia al impacto de las gotas de precipitación y a la erosión por dispersión. Los suelos cohesivos, presentes en suelos con

terrones y superficies rugosas que retienen agua, exhiben resistencia al desgaste laminar y por arroyuelos (FAO, 2016).

Cobertura Vegetal

Almorox (como se citó en Ibañez et al., 2012) plantea que la función principal de la vegetación reside en interceptar las gotas de precipitación, impidiendo que su energía cinética se desvanezca directamente en la superficie. La buena cobertura vegetal para atenuar el desgaste está asociada a la altura y continuidad de la cubierta aérea de las plantas, la densidad de la capa en la superficie del suelo y la abundancia de raíces. Además de su papel en la interceptación de la lluvia, la capa vegetal disipa la energía del agua de escorrentía y del viento, generando rugosidad en la superficie y, por ende, reduciendo la velocidad del flujo.

La cobertura vegetal desempeña una función esencial en la mitigación del desgaste cuando abarca una parte sustancial de la superficie terrestre. Los bosques sobresalen como altamente eficaces en la supervisión del desgaste, aunque un pastizal densamente poblado puede ofrecer una eficacia similar. Para lograr una protección adecuada, se necesita al menos un 70% de cobertura en la superficie, aunque un nivel de cobertura del 40% puede proporcionar una protección razonable (Vega & Febles, 2005).

Factores antrópicos y socioeconómicos

La FAO (2016) destaca que la principal razón detrás de la degradación de la superficie y la degradación radica en la intervención indiscriminada de los seres humanos en el equilibrio ecológico natural de los ecosistemas. Esto implica el uso indebido y la gestión inapropiada de los suelos y los recursos hídricos. En las

capacidades naturales, los ecosistemas tienden hacia un equilibrio con la erosión, basado en factores como su geología, topografía, suelo, clima, condiciones hidrológicas, microclima y las comunidades de plantas y animales presentes. Sin embargo, la acción humana, en su esfuerzo por obtener alimentos, introduce cambios disruptivos en estos ecosistemas. Aunque los agricultores utilizan la tierra como recurso para el cultivo de plantas, esta dependencia está condicionada a mantener la cantidad y calidad de la tierra como un medio propicio para el crecimiento de las raíces.

2.2.5. Métodos para evaluar la erosión hídrica del suelo

Wischmeier y Smith (como se citó en González, 1991) plantean que el examen de desgaste de la superficie de la tierra puede llevarse a cabo considerando tanto la erosión actual como la erosión potencial, según los objetivos de la investigación.

Erosión Actual

La pérdida actual refleja la cantidad de suelo que se ha erosionado en un área específica durante el presente, considerando las actividades y presiones a las que se expone el terreno. Este enfoque implica la interacción de elementos como la capacidad erosiva de las precipitaciones, la susceptibilidad a la erosión del suelo, la topografía y la vegetación que cubre el suelo. Las estimaciones de la erosión fluvial se llevan a cabo mediante la aplicación de la fórmula algebraica de la ecuación universal de pérdida de suelo, multiplicando los factores pertinentes y obteniendo el resultado en términos de toneladas por hectárea por año (Bueno et al., 2016).

Erosión Potencial

En contraste, el desgaste con potencial representa una predicción de la erosión bajo condiciones hipotéticas de uso y gestión del suelo, excluyendo el componente de cobertura y el uso del terreno. Estos dos elementos se omiten en la Ecuación Universal de Pérdida de Suelo, ya que funcionan como factores que reducen la erosión (USDA, 1995). La erosión hídrica potencial se calcula únicamente utilizando los factores R, K y LS (erosividad de la lluvia, erodabilidad del suelo, longitud y pendiente) de la Ecuación Universal de Pérdida de Suelo. Se interpreta el desgaste potencial como la pérdida máxima de suelo que podría ocurrir en ausencia de cobertura vegetal y prácticas de conservación del suelo. Para realizar este cálculo, se multiplican exclusivamente los factores de erosividad de la precipitación, erodabilidad del terreno y topografía, ya que los demás factores se excluyen al mitigar el desgaste (Renard, 1994).

Niveles de erosión del suelo

Los grados de desgaste potencial pueden ser comunicados en términos cualitativos o cuantitativos (toneladas por hectárea por año). La FAO (1980) define categorías de erosión de pérdida de suelo (tn/ha*año) en cuatro niveles, según se presenta en la tabla 1.

Tabla 1

Pérdida de suelo (tn/ha*año)	Grado de erosión
< 5	Erosión Baja
5 – 25	Erosión Moderada
25 - 50	Erosión Media
50 - 100	Erosión Alta
100 - 200	Erosión muy Alta
> 200	Erosión Crítica

Clasificación de los niveles de la erosión hídrica

Nota: datos obtenidos de FAO (1980)

2.2.6. Pérdida tolerable del suelo (T)

Boellstorff y Benito (como se citó en Benito et al., 2022) plantean que la pérdida sustentable de la superficie se precisa como la tasa máxima anual de pérdida de material que permite mantener de manera continua y económicamente viable un nivel elevado de productividad agrícola La consideración de esta tasa sostenible de pérdida de suelo es crucial al planificar estrategias de conservación del terreno, ya que la comparación entre los valores estimados de pérdida de suelo y los valores de la tasa tolerable indica si los valores de desgaste están dentro o superan los límites aceptables para un tipo de suelo o región específicos. Esto guía la implementación de medidas de control del desgaste hacia las áreas más degradadas. En principio, la definición de la cantidad máxima permitida de erosión, que garantiza tanto la sostenibilidad del cultivo como una alta productividad, se refiere a la tasa permitida "T". Combinada con la tasa anual de formación del suelo presenta desafíos prácticos, ya que su progresión es tan lenta que resulta difícil determinarla con precisión (FAO, 1980). Según

Zachar (1982), la velocidad media de la estructuración del suelo se sitúa entre 0.1 mm/año.

Boellstorff y Benito (como se citó en Benito et al., 2022) afirman que, en la mayoría de las situaciones, los datos de la tasa tolerable (T) varían entre 1 y 13 tn/ha*año, con Schertz (1983) delimitando este intervalo entre 5 y 10 tn/ha*año para terrenos con una altura superior a 1 m. Wischmeier y Smith (1978) establecen que la tasa de desgaste tolerable en terrenos de regiones tropicales se sitúa alrededor de 4 tn/ha*año, permitiendo una productividad elevada en los cultivos para garantizar la sostenibilidad económica a largo plazo. Por otro lado, valores estándar coincidentes entre varios autores son los propuestos por Hill et al. (2015) de 7 tn/ha*año y los de la FAO (1980) de 11.2 tn/ha*año.

2.2.7. Ecuación universal de pérdidas de suelos (USLE)

El modelo empírico USLE fue desarrollado con el objetivo de prever la erosión a largo plazo del suelo causada por la escorrentía superficial en zonas con pendientes cultivadas y praderas, bajo diversos sistemas de manejo. Asimismo, se concibió para evaluar la efectividad de las prácticas de gestión del suelo, así como de las coberturas y precauciones de conservación, tanto en contextos agrícolas como en áreas afectadas por otras actividades que modifican la disposición original del terreno (Wischmeier y Smith, 1978).

Según Laqui (2019) la formula universal de pérdidas de suelos puede ser empleado para las siguientes situaciones:

• Para pronosticar las pérdidas de un suelo a largo plazo en condiciones específicas de campo y un sistema de manejo específico.

- Para orientar a las localidades interesadas a emplear prácticas de conservación.
- Para determinar en un sistema de cultivo seleccionado el largo máximo tolerable de la pendiente.
- Para determinar las tasas de erosión de los suelos que son removidos, lo que encamina a elegir alguna practica de conservación que ayude a mantener un nivel tolerable de pérdida del suelo.

Solano (2016) refiere que se puede definir que la ecuación universal data de a fines del año 1950 donde fue empleado en planes de conservación de áreas cultivadas, para 1970 es cuando empezó a aplicarse en distintos campos de la ingeniería y desarrollándose como un método que ayuda a predecir las pérdidas del suelo responsables de la erosión ya sea laminar o por surcos.

Ecuación 1

Ecuación universal para el análisis de las pérdidas del suelo

$$A = R * LS * K * C * P$$

Donde:

- A : Es la media de la perdida de suelo anual (tn/ha/año).
- R : El factor de erosividad (MJ*mm/ha*h*año).
- LS : Es el factor topográfico (adimensional).
- K : Es el factor de erodabilidad (tn*ha*h/ha*MJ*mm).
- C : Es el factor de cobertura vegetal.
- P : Es el factor de prácticas de conservación.

En infinidad con las limitaciones de la USLE (Ecuación Universal de Pérdida de Suelos), Wischmeier y Smith (1965) identifican las siguientes restricciones:

- No proporciona una estimación precisa del desgaste para un evento particular.
- No calcula la deposición de sedimentos.
- No evalúa el acumulado de sedimentos en la escorrentía.

Factor de erosividad de la lluvia

Colín et al (2013) describen la erosividad como la capacidad potencial de generar erosión, y esta se evalúa mediante el índice de erosividad. Dada la limitada disponibilidad de información sobre este factor, se han desarrollado modelos empíricos alternativos para estimar el valor del factor R, el cual depende de varios parámetros relacionados con la lluvia.

La erosividad representa la capacidad potencial de las precipitaciones para provocar el desgaste del suelo y está directamente vinculada a características físicas como la intensidad, duración, velocidad y tamaño de las gotas de lluvia. Su cálculo implica multiplicar la energía cinética (E) de una lluvia por su precepto intensidad en un periodo de treinta min. (I). El factor R se determina promediando los totales anuales de E*I a lo largo de un periodo que abarque veinte años por lo menos.

Mendía, Irurtia y Arnouldus (como se citó en Portuguez, 2015) plantean que la metodología de Wischmeier y Smith se apoya en el análisis de registros pluviográficos a lo largo de un período no menor de 20 años. No obstante, la falta de este conocimiento en muchas estaciones meteorológicas ha restringido la

aplicabilidad de este método, generando la necesidad de explorar alternativas para determinar el factor R. En 1992, el Departamento de Agricultura de los Estados Unidos (USDA) reconoció la viabilidad de aproximaciones a este valor, y existen diversas fórmulas disponibles para su cálculo.

En el presente estudio, se utiliza el modelo propuesto por Arnouldus (1978), el cual se fundamenta en investigaciones de Fournier. Este enfoque práctico emplea una fórmula derivada mediante regresión lineal, estableciendo una correlación entre los datos reservados de R y las precipitaciones medias anuales.

Ecuación 2

Cálculo del factor R

$$R = a * \left(\sum_{i=1}^{12} \frac{Pi^2}{\overline{P}}\right) + b$$

Donde:

- R : Es el indicador de erosividad de las lluvias.
- a y b : Constantes equivalentes a las condiciones del clima de la zona de estudio.
- P : Es la precipitación promedia del año.
- pi : Es la precipitación promedia del mes.

En áreas donde las precipitaciones anuales superen los 200 mm, se aplicarán las constantes del clima de Estados Unidos, con valores de a = 4.17 y b = -152. En áreas donde las precipitaciones anuales sean inferiores a 200 mm, se

utilizarán las constantes del clima de Estados Unidos, con valores de a = 0.66 y b = -3 tal como lo describe Ramírez (2010).

Según Ramírez (2010), este índice lo utilizó la FAO en la creación del mapa global de degeneración del suelo. Sus beneficios clave incluyen la utilización de datos de meteorología sencillos y una sólida relación con los valores que se midieron del factor R. Esta fórmula matemática fue evaluada en diversas regiones del mundo, y en términos generales, se observó una correlación significativa, alcanzando un alto nivel de asociación, que en promedio fue del 0,89.

Índice modificado de Fournier (IMF)

Este concepto constituye una adaptación introducida por Arnoldus (1980) al índice de agresividad de la lluvia propuesto por Fournier. En esta corrección, se toma en cuenta se toma cuenta todos los meses incluyendo el mes más húmedo. La fórmula correspondiente es la siguiente:

Ecuación 3

Índice modificado de Fournier

$$IMF = \sum_{i=1}^{12} \frac{Pi^2}{P_t}$$

Donde:

IMF : Índice Modificado de Fournier.

i : Mes.

- Pt : Precipitación media anual (mm).
- Pi : Precipitación media mensual (mm).

Gabriels (1986) y Bergsma (1980) llevaron a cabo un análisis de la propuesta de Arnoldus en diversas áreas europeas, incluyendo los Países Bajos y Bélgica. Sus conclusiones destacaron una correlación significativa entre los resultados obtenidos y el índice EI30 de la Ecuación Universal de Pérdida de Suelos (USLE), respaldando así la validez del Índice Modificado de Fournier (IMF) como una alternativa en el cálculo al EI30.

Desde otra perspectiva, CORINE (1992) ha categorizado los datos de erosividad de la precipitación en cinco clases, como se especifica en la tabla 2. Este programa, impulsado por la Comunidad Europea en 1992, fue diseñado con el propósito de evaluar tanto el riesgo de erosión como la calidad del suelo. Además, según Bircher et al. (2019), se realiza una clasificación del factor R de acuerdo con lo presentado en la tabla 3.

Tabla 2

Clase	IMF (adimensional)	Rango
1	< 60	Muy baja
2	60 - 90	Baja
3	90 - 120	Moderado
4	120 - 160	Alto
5	> 160	Muy alto

Clasificación de los valores del índice modificado de Fournier

Nota: datos tomados de CORINE (1992)

Tabla 3

Clase	R (MJ*mm/ha*h*año)	Rango
1	0 - 50	Ligero
2	50 - 500	Moderado
3	500 - 1000	Alto
4	> 1000	Muy alto

Clasificación de los valores del factor de erosividad

Nota: datos tomados de Bircher et al. (2019)

Factor topográfico

Montes et al. (2011) definen que cualquier impacto de la topografía del territorio en el desgaste de la superficie está definida por dos únicas variantes, estas son: la variante de la distancia representado por la sigla (L) y el grado de la pendiente representado por la sigla (S); la primera define el espacio que existe desde el origen del escurrimiento hasta el final donde la pendiente decrece o hasta donde la escorrentía encuentra un conducto de salida muy bien definido, la segunda refleja la influencia que ejerce el ángulo de elevación en la misma erosión del suelo, y esta puede ser determinada empleando mapas topográficos que cuenten con representaciones de las curvas de nivel.

La topografía del terreno importa en el proceso de erosión del suelo porque afecta el escurrimiento, longitud, pendiente y el perfil de los taludes son los actores determinantes que inciden significativamente en los fenómenos de erosión de taludes. El ángulo de la pendiente juega un papel crucial al definir la energía cinética alcanzada por la lámina de agua en su recorrido superficial, determinando así su capacidad erosiva. A mayores ángulos de pendiente, la escorrentía se genera con superior a la rapidez, incrementando la velocidad del flujo y, por ende, su capacidad de transporte de sedimentos. Contrariamente, en pendientes más suaves, el agua fluye a menor velocidad, brindándole mayores oportunidades de

infiltración debajo del suelo. La distancia de la ladera también desempeña un papel crítico, ya que una mayor longitud ayuda la atención, vol. y velocidad del flujo superficial, mejorando la capacidad de desagregación y transporte de la escorrentía tal como lo describe Moore y Wilson (1992).

El factor combinado LS de la Ecuación USLE tiene como objetivo representar la influencia de la topografía en la pérdida de suelo en una ladera a lo largo y con pendiente específicas, en comparación con la erosión que se observaría en una parcela estándar de 22.13 metros (72.6 pies) de longitud y 9% de pendiente, manteniendo constantes los demás factores climáticos, edáficos, de uso del suelo y conservación del suelo. La variable L se refiere a la longitud de la ladera, que se define como la distancia horizontal desde el punto de origen de la escorrentía hasta el punto en el que la pendiente de la ladera disminuye lo suficiente como para permitir la sedimentación, o hasta el punto donde la escorrentía se canaliza en un curso fluvial. Por otro lado, S representa la inclinación de la ladera, reflejando la influencia del ángulo de la pendiente en el proceso erosivo (Renard et al., 1997).

Para realizar el análisis automatizado del factor L de la USLE en laderas con topografía compleja e integración con Sistemas de Información Geográfica (SIG), Desmet y Govers (1996) proponen las siguientes ecuaciones:

Ecuación 4

Subfactor F

$$F = \frac{\sin \frac{\beta}{0,0896}}{3(\sin \beta)^{0,8} + 0.56}$$

Donde:

 β : Ángulo de la pendiente que debe ser transformado de grados a radianes.

Ecuación 5

Subfactor M

$$m = \frac{F}{(1+F)}$$

Donde:

m = Exponente de la longitud de la pendiente.

Ecuación 6

Factor de la longitud de la pendiente (L)

$$L_{(i,j)} = \frac{\left(A_{(i,j)} + D^2\right)^{m+1} - A_{(i,j)}^{m+1}}{x^m * D^{m+2} * (22.13)^m}$$

Donde:

L : Factor de la longitud de la pendiente.

A (i, j) : Acumulación del flujo a nivel de pixel (celda).

- D : Es el tamaño del pixel.
- x : Es el factor de corrección de forma.
- 22.13 : Longitud estándar de la pendiente.
- m : Exponente del largo de la pendiente.

Donde A(i, j) denota el área unitaria de contribución a la entrada de un píxel (celda) o la acumulación del flujo a nivel de píxel, D representa la dimensión del píxel, y X es el factor de corrección de forma. McCool et al. (1989) presentan las siguientes ecuaciones para calcular el factor S.

Ecuación 7

Factor gradiente de la pendiente (S)

$$S_{(i,j)} = \begin{cases} 10,8 * \sin \beta_{(i,j)} + 0,03 & \tan \beta_{(i,j)} > 0,09 \\ 16,8 * \sin \beta_{(i,j)} - 0,5 & \tan \beta_{(i,j)} \ge 0,09 \end{cases}$$

Donde:

S : Factor de inclinación de la pendiente.

 β : Ángulo de la pendiente que deberá ser transformado de grados a radianes.

Clasificación de los valores del factor LS según Lu et al. (2020) en la tabla 4.

Tabla 4

Clasificación de los valores del factor topográfico

Clase	LS (adimensional)	Rango
1	< 1.5	Muy Bajo
2	1.5 - 3	Bajo
3	3 - 5	Moderado
4	5 – 7	Alto
5	> 7	Muy Alto

Nota: datos obtenidos de Lu et al. (2020)

Factor de erodabilidad

Kirby y Morgan (como se citó en Vega & Febles, 2005) plantean que el factor K de la Ecuación Universal de Pérdida de Suelos (USLE), también conocido como la erosividad del suelo, es una característica polifacética que

indica la facilidad con la que el suelo se deteriora debido a las gotas de precipitaciones, la escorrentía superficial o ambas. Este parámetro K refleja la susceptibilidad del suelo a la erosión hídrica y se expresa como toneladas por hectárea por hora por megajulio por milímetro (Tn ha h ha-1 MJ-1 mm-1). Está vinculado a las características físicas y químicas del terreno, como la textura, la estructura, la porosidad, la conductividad hidráulica, el porcentaje de materia orgánica, entre otras.

Pérez et al. (2019) precisan que la erodabilidad es un proceso cambiante que su valor puede variar según la interacción que tenga con los factores físicos, factores químicos o factores mineralógicos de cada suelo.

Para calcular el valor que representa la vulnerabilidad del suelo al desgaste hídrico (K), se requiere disponer de datos específicos. La ecuación propuesta por Williams et al. (1990) se emplea para estimar el valor de K.

Ecuación 8

Factor K

$$K = f_{csand} * f_{cl-si} * f_{orgc} * f_{hisand}$$

Donde:

- fcsand : Es un factor que incrementa el indicador K para suelos con poca arena y reduce en suelos con altos contenidos de arenas gruesas.
- fcl-si : Es el factor que reduce el coeficiente de erodabilidad de los suelos cuando este presenta altos porcentajes de arcillas-limos.
- forgc : Disminuye el valor K en especímenes de suelos con alto porcentaje de carbono orgánico.

fhisand : Reduce el valor K para especímenes de suelos con contenidos de arena

con porcentajes altos.

Ecuación 9

Sub factor fcsand

$$f_{csand} = \left(0, 2 + 0, 3 * exp * \left[-0, 256 * m_s * \left(1 - \frac{m_{silt}}{100}\right)\right]\right)$$

Ecuación 10

Sub factor fcl-si

$$f_{cl-si} = \left(\frac{m_{silt}}{m_c + m_{silt}}\right)^{0,3}$$

Ecuación 11

Sub factor forgc

$$f_{orgc} = \left(1 - \frac{0.25 * orgC}{orgC + exp * [3.72 - 2.95 * orgC]}\right)$$

Ecuación 12

Sub factor fhisand

$$f_{hisand} = \left(1 - \frac{0.7 * \left(1 - \frac{m_s}{100}\right)}{\left(1 - \frac{m_s}{100}\right) + exp * \left[-5.51 + 22.9 * \left(1 - \frac{m_s}{100}\right)\right]}\right)$$

Donde:

ms : La fracción del volumen de arena (0.05-2.00 mm diámetro) (%).

mc : La fracción del volumen de arcilla (>0.002 mm diámetro) (%).

- orgC : Volumen de Carbono Orgánico (SOC) (%).
- msilt : La fracción del volumen de limo (0.002-0.05 mm diámetro) (%).

Esta fórmula se puede simplificar de la siguiente manera:

Ecuación 13

Factor K simplificado

$$K = \left[0,2 + 0,3 * e^{-0.0256 * SAN\left(1 - \frac{SIL}{100}\right)}\right] * \left(\frac{SIL}{CLA + SIL}\right)^{0,3}$$
$$* \left(1 - \frac{0,25 * C}{C + e^{(3,72 - 2,95 * C)}}\right) * \left(1 - \frac{0,7 * SN1}{SN1 + e^{(-5,51 + 22,9 * SN1)}}\right)$$

Donde:

SAN : Porcentaje de arena.

SIL : Porcentaje de limo.

- CLA : Porcentaje de arcilla.
- C : Porcentaje de carbono orgánico.
- SN1 : Se calcula a partir de la siguiente relación.

Ecuación 14

Porcentaje de arena

$$SN1 = 1 - \frac{SAN}{100}$$

Renard et al. (1997) constituyen rangos para la erodabilidad del terreno, representada por el coeficiente K, donde valores que exceden las 0.4 tn*ha*h/ha*MJ*mm (toneladas por hectárea por hora dividido entre hectárea por mega julio por milímetro) en el factor K indican la propensión del suelo a la erosión, según se especifica en la tabla 5.

Tabla 5

Clase	K (tn*ha*h/ha*MJ*mm)	Rango
1	0.05 - 0.2	Bajo
2	0.2 - 0.4	Moderado
3	> 0.4	Alto

Clasificación de los valores del factor de erodabilidad

Nota: datos obtenidos de Renard et al. (1997)

La erosión y su coeficiente de erodabilidad (K) es la sensibilidad del suelo a los procesos de erosión, conocer el valor K de un área es importante para planificar actividades de conservación de la tierra considerando sus usos potenciales. Especialmente en áreas donde la actividad es dominante, es importante para la estimación y el mapeo. El orden y las propiedades del suelo que gobiernan la erosión y sus cambios (Valdivia et al., 2022).

Factor de cobertura vegetal

El factor C se refiere a la protección que la cobertura vegetal proporciona al suelo al interceptar las gotas de precipitación pluvial y detener su energía de impacto y de escorrentía disminuyendo la cantidad de erosión (Bautista, 2023).

El factor C es el segundo factor más importante para controlar los riesgos de erosiones en los suelos (Kniiff, et al., 2000), y es un reflejo la influencia de las prácticas para cultivar y manejar el suelo. El factor C oscila entre 1 y 0. Los valores cercanos o iguales a 1 indican que no existe cubierta presente y superficialmente es tratada como tierra estéril, en tanto que los valores cerca de cero indican efectos de cobertura bastante fuertes y suelos bien protegidos. Los sensores remotos y la tecnología pueden proporcionar mucha información sobre la superficie terrestre a través del NDVI, que se enlaza positivamente con la cuantía de biomasa verde y da una indicación de las diferencias en la cobertura de

vegetación verde (Knijff et al., 2000). Muchos investigadores calcularon el factor C con diferentes ecuaciones (Karaburun, 2010; Knijff et al., 2000; Durigon, Carvalho, Antunes et al., 2014), pero la ecuación sugerida por Durigon et al. (2014) se utiliza en este estudio.

Ecuación 15

Factor C

$$C = \frac{(-NDVI+1)}{2}$$

Donde :

C : Factor C.

NDVI : Índice de Vegetación de Diferencia Normalizada.

Hoy en día, el manejo de sistemas de información geográfica resulta ventajosa para calcular este factor, empleando el Índice Normalizado de Diferencia de Vegetación (NDVI). Este enfoque deduce el empleo de valores de teledetección basados en la transmisión, absorción y reflectancia de la energía por la vegetación, mostrando una correlación significativa con la cantidad de biomasa de hojas verdes en el terreno. Así, la generación de índices de vegetación desde los valores de brillo se apoya en la absorción diferencial, transmisión y reflectancia de la energía por la vegetación en las bandas del espectro electromagnético correspondientes al rojo e infrarrojo cercano. Se han desarrollado diversos índices basados en este comportamiento diferencial para analizar la dinámica de la cobertura vegetal (Escobar-Soldevilla, 2019).

La corrección atmosférica es un procedimiento diseñado para eliminar el impacto de la dispersión de energía electromagnética en las partículas de agua presentes en la atmósfera, buscando eliminar los valores que estas partículas añaden a los datos de una imagen. Uno de los métodos más utilizados es el 'Método de Substracción de Píxeles Oscuros', también conocido como el 'Método de Chávez' o 'DOS1' por sus siglas en inglés 'Dark Object Subtraction' que traducido al español significa 'sustracción de objetos oscuros' (Bautista, 2023).

El Índice Normalizado de Diferencia de Vegetación (NDVI) es una técnica comúnmente empleada en teledetección y se utiliza con frecuencia para elevar la discriminación e identificación entre varios tipos de coberturas vegetales que tienen un comporte refractivo notablemente diferente en varias bandas. Esta metodología se basa en la caracterización y diferencia espectral entre diversas coberturas de vegetación y suelos (Jaya, 2023).

A partir del Índice Normalizado de Diferencia de Vegetación (NDVI), se realiza la correspondiente categorización para identificar los diversos tipos de cobertura vegetal. La clasificación implica etiquetar un conjunto de píxeles en una imagen que comparten un mismo dominio espectral (clase o categoría), permitiendo así su distinción de otros conjuntos. La clasificación no supervisada se presenta como una operación de segmentación de la imagen, fundamentada en algoritmos de agrupamiento o clustering, cuyo propósito es reunir elementos en función de alguna similitud entre ellos. En contraste, la clasificación supervisada se basa en áreas de entrenamiento, partiendo de un conjunto predefinido de clases con un píxel representativo para cada una de ellas (Valero et al., 2018).

Ecuación 16

Algoritmo NVDI

$$NDVI_{L8} = \frac{Band_5 - Band_4}{Band_5 + Band_4}$$

Donde:

- NDVI : Índice de Vegetación de Diferencia Normalizada.
- Banda 5 : Infrarrojo cercano (NIR).

Banda 4 : Rojo visible (Red).

Este índice es una herramienta valiosa que simplifica considerablemente la distinción entre áreas con suelo expuesto y áreas con cobertura vegetal, al mismo tiempo que proporciona detalles sobre la salud y vigor de la vegetación en una región específica. Actualmente, el NDVI es empleado para determinar de forma precisa el coeficiente en la gestión de cultivos (Escobar-Valdebenito, 2019).

La tabla 6 muestra la clasificación de los valores del factor C propuesta por (Taco, 2021).

Tabla 6

Clasificación de los valores del factor de cobertura vegetal

Clase	C (adimensional)	Rango
1	> 0.300	Muy Bajo
2	0.150 - 0.300	Bajo
3	0.050 - 0.150	Moderado
4	0.025 - 0.050	Alto
5	0.001 - 0.025	Muy alto

Nota: datos obtenidos de Taco (2021)

Factor de prácticas de conservación

Flores (2019) detalla que el factor P representa los métodos de gestión de la conservación que se utilizan a menudo en los entornos agrícolas, como el cultivo en terrazas, las curvas de nivel, etc. Este aspecto de la ecuación no se ha tenido en cuenta debido a la falta de un mapa nacional que indique la ubicación de dichos métodos de gestión.

La tabla 7 muestra las diferentes ecuaciones matemáticas empleadas para hallar los factores de pérdidas del suelo.

Tabla 7

Ecuaciones empleadas para calcular las pérdidas de suelo

Factores	Modelo de ecuación	Unidad	Métodos
Pérdida de suelo (USLE)	$A = R^*LS^*K^*C$	tn/ha*año	Wischmeier y Smith (1978)
	$IMF = \sum_{t=1}^{12} \frac{Pt^2}{P_t}$	(adimensi onal)	Arnoldus (1977)
Factor R	$R = a * \left(\sum_{i=1}^{12} \frac{Pi^2}{\bar{P}}\right) + b$	MJ*mm/h a*h*año	Arnoldus (1998)
	$L_{(i,j)} = \frac{\left(A_{(i,j)} + D^2\right)^{m+1} - A_{(i,j)}^{m+1}}{x^m * D^{m+2} * (22,13)^m}$	m.	Desmet y Govers (1996)
Factor L	$m = \frac{F}{(1+F)}$	(adimensi onal)	Desmet y Govers (1996)
	$F = \frac{\sin \frac{\beta}{0,0896}}{3(\sin \beta)^{0,8} + 0,56}$	(adimensi onal)	McCool et al. (1989)
Factor S	$S_{(i,j)} = \begin{cases} 10.8 * \sin \beta_{(i,j)} + 0.03 & \tan \beta_{(i,j)} > 0.09 \\ 16.8 * \sin \beta_{(i,j)} - 0.5 & \tan \beta_{(i,j)} \ge 0.09 \end{cases}$	%	McCool et al. (1989)
Factor K	$K = f_{csand} * f_{cl-si} * f_{orgc} * f_{hisand}$	tn*ha*h/h a*MJ*m m	Neitsch et al. (2000) y

Nota: la tabla presenta las ecuaciones empleadas para calcular la pérdida de suelo

2.2.8. Modelamiento de la erosión hídrica del suelo

La conceptualización y modelización del desgaste y transporte de la superficie, como la conocemos en la actualidad, se originó en los Estados Unidos de América con la formulación de la Ecuación Universal de Pérdida de Suelo (Universal Soil Loss Equation, USLE) por parte de Wischmeier y Smith en 1958. La incorporación de modelos predictivos en aplicaciones basadas en Sistemas de Información Geográfica (SIG) y la inclusión de Modelos Digitales de Elevaciones

(MDE) representan una transformación significativa en el análisis del riesgo de desgaste, modificando la escala espacial y temporal de contemplación de los modelos (Machín & Navas, 1995).

Según Vega & Febles (2005), la utilización de modelos de desgaste en combinación con sistemas de información geográfica facilita la investigación de las diferenciaciones temporales en los modelos erosivos. Además, permite analizar y preservar vigente la extensa cantidad de información necesaria, normalizar y relacionar metodologías, generar exhibiciones gráficas y ser necesaria como la partida de objetivación de estudios hidrológicos y de planificación. Esto se traduce en logros tales como:

- La creación de bases de datos que contienen la información precisa para la aplicación de modelos de erosión.
- La consecución de los parámetros involucrados en cada modelo.
- El análisis de la erosión hídrica y la cuantificación de los valores obtenidos.
- El cálculo de las áreas simulados, clasificadas conforme al grado de desgaste.

Figura 3

Capas de información en un sistema de información geográfica (SIG)

Nota: la figura muestra las capas de información en un sistema de información geográfica. Fuente: Lopez et al. (1998)

2.2.9. Teledetección y sistemas de información geográfica

Condori (2018) explica que la teledetección es todo aquel proceso que ayuda a obtener la información adecuada sin la necesidad de tener contacto directo con el lugar de estudio, conocida por sus siglas SIG, es una herramienta que está conformado por algunos procesos de captura, manejo, modelado, manipulación y representación de los datos georreferenciados con la única finalidad de realizar una adecuada gestión y planificación. Las capas temáticas se convierten en datasets. Este es el principio organizativo clave en una base de datos SIG. La figura 3 muestra las capas de información en un SIG. Existen dos modelos de análisis de la información geográfica, modelo ráster y modelo vectorial, mismas que se detallan a continuación:

Modelo ráster. Según Capdevila & Mínguez (2016), el enfoque del modelo ráster implica el uso de superficies predeterminadas organizadas en forma

de matriz, donde cada característica se identifica mediante un único "píxel". La representación gráfica se fragmenta en celdas de manera similar a los azulejos de un mosaico, y cada celda simboliza una porción diferente del conjunto. La representación se simplifica a sus formas geométricas más elementales, destacando cuadrados y rectángulos (ver figura 4).

Figura 4

Representación de un modelo real a un modelo ráster digital

Nota: la figura muestra la representación de un modelo real a un modelo ráster. Fuente: Esri (2019)

Modelo vectorial. Capdevila & Mínguez (2016) declara que el modelo vectorial se basa en una definición cartesiana de los elementos según las coordenadas de un sistema de proyección geográfica. De lo simple a lo complicado, así es como se construyen los modelos. El modelo de datos está centrado en los objetos, lo que significa que los elementos del mundo real se caracterizan por sus propiedades espaciales únicas. Por ello, utilizaremos puntos, líneas y polígonos como bloques de construcción fundamentales de este modelo. En la mayoría de las situaciones, los modelos de información ráster se añaden al software existente sólo como un complemento, creando una partición funcional entre los dos modelos de datos (figura 5).

Figura 5

Representación de un modelo real a un modelo vectorial digital

Nota: la figura muestra la representación de un modelo real a un modelo vectorial. Fuente: Ellis (2001)

2.2.10. Índice de erosión de la lluvia

Caycho (2020) indica que el índice de erosión por precipitación, también conocido como factor de erosión fluvial, se calcula dividiendo la intensidad máxima de un evento de lluvia por su energía cinética. Este elemento viene determinado por la precipitación total anual y la forma en que se producen las precipitaciones, mostrándose más efectos erosivos cuando cae más agua en un periodo de tiempo más corto.

2.2.11. Corrección atmosférica DOS1

Este método de corrección atmosférica se clasifica como absoluto y parte de la premisa de que, si hay áreas en una imagen con bajos datos de reflectancia, se asume que esa reflectancia específica se debe al efecto de dispersión atmosférica. Estos valores se emplean para ajustar la totalidad de la escena (Criollo, 2018).

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. ZONA DE ESTUDIO

3.1.1. Ubicación política

La ubicación política de la zona de estudio corresponde a la cuenca que incluye el río Illpa, situada en la región de Puno, Perú. Esta área abarca las provincias de Puno y San Román, e incluye los distritos de Atuncolla, Cabana, Cabanillas, Caracoto, Juliaca, Mañazo, Paucarcolla, Puno, San Antonio, Tiquillaca y Vilque.

3.1.2. Ubicación geográfica

Desde una perspectiva geográfica, el área de estudio se encuentra ubicado en la zona montañosa o sierra del Perú, en el Datum WGS 84 - Zona 19L. La altitud promedio es de 4,071.230 metros sobre el nivel del mar.

La zona de investigación se encuentra entre:

Coordenadas geográficas:

Latitud:

- Mín: 15°59'54.1" S
- Máx: 15°33'1.0" S

Longitud:

- Mín: 70°27'35.5" W
- Máx: 70°1'8.5" W

Coordenadas UTM WGS84 en la zona 19S:

Norte:

- Mín: 8'229,989.1800 m.
- Máx: 8'279,861.9300 m.

Este:

- Mín: 343,792.0700 m.
- Máx: 390,726.0300 m.

Desde una perspectiva hidrográfica, el área de estudio se concentra en la cuenca del Lago Titicaca, integrada en el sistema hídrico TDPS, conformada por las cuencas hidrográficas del Lago Titicaca, río Desaguadero, lago Popo y Salar de Coipasa. En su límite por el este, colinda con el Lago Titicaca, al noroeste limita con la cuenca Coata, mientras que al sur lo hace con las cuencas Ilave y Tambo.

Desde una perspectiva topográfica, la zona más elevada de la cuenca se ubica en Mañazo, y su desembocadura llega al Lago Titicaca. La pendiente media de la cuenca del río Illpa es del 15.32%, indicando una topografía accidentada. El río principal, con una distancia de 92.11 km y una inclinación media del 1.02%, presenta un terreno más suave. La estructura de la cuenca Illpa se asemeja a una hoya hidrográfica de fondo plano, con pendientes de los ríos secundarios que varían entre 0.001% y 15%. La altitud máxima registrada en la cuenca del río Illpa alcanza los 4,939.000 m.s.n.m., mientras que la altitud mínima se sitúa en 3,815.000 m.s.n.m. Las coordenadas del centroide de la cuenca Illpa son

8'253,739.2700 m. al norte (Y) y 365,536.8700 m. al este (X). La figura 6 muestra

la ubicación del área de estudio.

Figura 6

Ubicación del área de estudio

Nota: la figura muestra la ubicación geográfica de la cuenca del río Illpa

3.2. MATERIALES Y EQUIPOS

3.2.1. Software

- QGIS v.3.28.2
- R v.4.3.2

3.2.2. Datos secundarios

- Registros históricos de precipitación del SENAMHI (ver anexo 3)
- DEM (Modelos de elevación digital) de la USGS (ver anexo 5)
- Información digital de suelos de SOILGRIDS y la FAO (ver anexo 6)
- Uso de imágenes satelitales (Landsat 8) de la USGS (ver anexo 7)

3.2.3. Información de precipitaciones

Los datos de las precipitaciones empleados fueron proporcionados por el SENAMHI, un total de 5 estaciones se encuentran próximas a nuestra área delimitada de estudio, las mismas se detallan en la tabla 8.

La distribución geográfica de las estaciones en la región de estudio se exhibe en la figura 7. Además, se ilustra el análisis de la precipitación media anual en la cuenca del río Illpa empleando la técnica de interpolación IDW para delimitar las zonas de influencia de cada estación en toda la cuenca. Este enfoque revela una media anual de precipitación de 672.47 mm según el método de isoyetas.

3.2.4. Información de la pendiente

La recopilación de datos sobre la inclinación se realizará empezando dos (02) Modelos Digital de Elevación (DEM) SRTM empleando una resolución espacial de 30 m, las mismas que se detallan a continuación (ver figura 8). Estos DEM se adquirirán a través de la plataforma gratuita "EarthExplorer" del Servicio Geológico de los Estados Unidos (USGS).

Tabla 8

Estaciones meteorológicas empleadas en la investigación

DATOS DE ESTACIONES METEOROLÓGICAS					
N°	1	2	3	4	5
Estación	Puno	Ichuña	Cabanillas	Laraqueri	Juliaca
Tipo	Automática – meteorológica	Convencional - meteorológica	Convencional - meteorológica	Automática - meteorológica	Automática - meteorológica
Región	Puno	Moquegua	Puno	Puno	Puno
Provincia	Puno	General Sanchez Cerro	San Román	Puno	San Román
Distrito	Puno	Ichuña	Cabanillas	Pichacani	Juliaca
Coordenadas					
UTM Este	391,617.70	335,043.16	355,657.06	385,967.22	376,633.44
(m)					
Coordenadas					
UTM Norte	8'250,022.6540	8'214,840.8860	8'270,526.4660	8'213,657.7860	8'289,358.5820
(m)					
Altitud	2 812 00	2 778 00	2 885 00	2 000 00	2 826 00
(m.s.n.m)	3,012.00	3,778.00	3,003.00	3,900.00	3,820.00
Propietario	Senamhi	Senamhi	Senamhi	Senamhi	Senamhi

Nota: la tabla muestra las estaciones meteorológicas utilizadas. Fuente: SENAMHI

Tabla 9

Modelos digitales de elevación usados en la investigación

METADATOS	DEM 1	DEM 2
ID de entidad	SRTM1S16W071V3	SRTM1S17W071V3
Fecha de publicación	23/09/2014 00:00	11/02/2000 00:00
Resolución	1-ARCO	1-ARCO
Coordenadas	-16, -71	-17, -71

Nota: la tabla muestra los modelos digitales de elevación utilizados para calcular el factor topográfico. Fuente: Elaboración propia a partir de datos de la USGS

Distribución de las estaciones meteorológicas

Nota: la figura muestra la distribución de las estaciones meteorológicas

Modelos digitales de elevación usados en la investigación

Nota: la figura muestra los modelos digitales de elevación utilizados para hallar el factor topográfico, la imagen de arriba corresponde al DEM SRTM1S16W071V3, mientras que la imagen debajo corresponde al DEM SRTM1S17W071V3. Fuente: USGS

Para calcular el factor LS a partir de modelos digitales de elevación se harán las respectivas correcciones, se recortará el área de estudio, se hará el mosaico de imágenes, etc. La tabla 9 muestra los metadatos principales de los DEM's empleados en la investigación, los metadatos completos se aprecian en el anexo 5.

3.2.5. Información de suelos

La información de suelos que será empleada para la presente tesis será recopilada de la plataforma "SoilGrids y el mapa digitalizado de suelos a nivel mundial de la FAO. Ambas fuentes de información están respaldadas por artículos científicos que validan dicha información para fines de investigación. Los datos obtenidos de la plataforma "SoilGrids" fueron recopilados con una profundidad de 30 cm., se obtuvo la siguiente información según la tabla 10.

Tabla 10

Valor	Profundidad	Arena	Limo	Arcilla	Carbono
	(cm)	(%)	(%)	(%)	Orgánico (%)
Medio	0 - 30	41.87	33.18	21.83	4.59

Información de suelos obtenidos de SoilGrids

Nota: la tabla muestra los datos promedios de arena, limo, arcilla y carbono orgánico del área de estudio. Fuente: SoilGrids

En el anexo 6 se aprecia las capas ráster extraídas de SoilGrids, la imagen superior izquierda representa la capa de limo, la imagen superior derecha representa la capa de carbono orgánico, la imagen inferior izquierda representa la capa de arcilla y la imagen inferior derecha representa la capa de arena, todas las unidades de los datos se representan en porcentajes (%).

Los datos obtenidos del mapa digitalizado de suelos del mundo de la FAO están en función al tipo de suelo, se recopiló la siguiente información según la tabla 11.

Tabla 11

Información de suelos obtenidos de la FAO

Símbolo	Tipo de Suelo	Arena (%)	Limo (%)	Arcilla (%)	Carbono Orgánico (%)
Ι	Litosoles	58.9	16.2	24.9	0.97
Th	Andosoles Húmicos	41	41.3	17.7	7.03

Nota: la tabla muestra el porcentaje de arena, limo, arcilla y carbono orgánico en función al tipo de suelo. Fuente: FAO (2002)

3.2.6. Información de la cobertura vegetal

La recopilación de datos sobre la vegetación se llevará a cabo mediante imágenes Landsat 8 con una resolución espacial de 30 metros (ver figura 9). Esta información será obtenida de la plataforma gratuita del Servicio Geológico de los Estados Unidos (USGS).

Se harán las respectivas correcciones, se recortará el área de estudio, se hará el mosaico de imágenes, etc. Todo el procedimiento se detalla en las secciones siguientes. El anexo 7 muestra las imágenes satelitales Landsat 8 usadas en la investigación.

Figura 9

Imágenes satelitales Landsat 8 empleadas en la investigación

Nota: la figura muestra el mosaico de imágenes Landsat 8 utilizadas en la investigación, la imagen de la izquierda 002/071 y la imagen de la derecha 003/071. Fuente: USGS

En la figura 10 se observa el diagrama de flujo del marco de investigación. Mientras que la tabla 12 muestra la descripción de las características de las dimensiones.

Flujograma del marco de la investigación

Nota: la figura muestra el flujograma del marco de la investigación

Tabla 12

Fuentes y características de las dimensiones

Dimensiones	Base de datos	Característica	Fuente
Factor R	Clima, precipitación mensual y anual	Bases de datos precipitación	SENAMHI
			Servicio Geológico de
Factor LS	Modelo digital de	30 metros de	los Estados Unidos
	elevación SRTM	resolución	(USGS)
	Fraccionamiento en % de limos arenas	Mapa del suelo del mundo digitalizado	FAO (2002)
Factor K	arcillas y % de carbono orgánico	(DSMW) versión 3.6 y escala 1:5'000,000	Base de Datos de la plataforma "SoilGrids"
Factor C	NDVI (imágenes Landsat 8)	30 m de resolución espacial para las bandas 1 a 7 y 9	Servicio Geológico de los Estados Unidos (USGS)
	1	<i>.</i>	

Nota: la tabla muestra las fuentes y características de las dimensiones de investigación

3.3. METODOLOGÍA DE LA INVESTIGACIÓN

3.3.1. Enfoque de investigación

Según Esteban (2018) el enfoque metodológico adoptado en este estudio es de razón cuantitativo.

3.3.2. Nivel de investigación

Según Esteban (2018) este estudio se caracteriza por adoptar un enfoque descriptivo.

3.3.3. Diseño de la investigación

Según Esteban (2018) señala que este estudio adopta una investigación de diseño no experimental.

M 1	→01
M2	→ O2
M3	→03
M4	→ 04

Donde:

M1, M2, M3, M4	: Muestras de la investigación.
01, 02, 03, 04	: Observación recogida de cada muestra.

3.3.4. Población

La población de estudio en esta investigación aborda la superficie de la cuenca del río Illpa, que se extiende con un área total de 1,262.27 km². En la evaluación de la erosión hídrica en esta región, se emplea la tecnología de Sistemas de Información Geográfica (SIG), permitiendo la generación de mapas ráster detallados. Cada pixel en estos mapas representa un valor numérico y una resolución de 30x30 metros, proporcionando una resolución espacial precisa. Con un total de 1'402,522.22 pixeles en toda la cuenca Illpa, esta población 'pixelar' constituye la base para la posterior extracción de las muestras representativas, un

proceso que se realizará según metodologías y fórmulas respaldadas por la literatura científica.

3.3.5. Muestra

La elección de la muestra se realizará en función del muestreo probabilístico, del tipo muestreo aleatorio simple, para el cálculo del tamaño de la muestra para una variable cuantitativa y una población finita se toma en cuenta la varianza, el nivel de confianza y la precisión de la estimación como elementos fundamentales (Sucasaire, 2022).

Ecuación 17

Expresión matemática para hallar el tamaño de muestra

$$n = \frac{NZ^2\sigma^2}{(N-1)e^2 + Z^2\sigma^2}$$

Donde:

- n : Tamaño de muestra buscada.
- N : Tamaño de la población o Universo.
- σ : Desviación estándar poblacional.
- e : Límite aceptable de error muestral.
- Z : Valor relacionado al nivel de confianza (NC).

Para la presente investigación se utilizará un nivel de confianza del 95% y un error de 5%, puesto que se desconoce la desviación estándar se empleará el valor 0.5.

 $\sigma = 0.5$ e = 5% = 0.05

Z = 1.96

El tamaño de muestra se obtuvo en base a la expresión matemática propuesta por Sucasaire, tal como se aprecia en la ecuación 17, simplificando la expresión matemática se obtuvo la ecuación 18, donde el tamaño de muestra se resume en 384 observaciones.

Ecuación 18

Fórmula para el tamaño de la muestra simplificado

$$n = \frac{1'402,522.22 * 1.96^2 * 0.5^2}{(1'402,522.22 - 1) * 0.05^2 + 1.96^2 * 0.5^2}$$

n = 384.06

 $n \approx 384$

3.3.6. Técnicas de análisis de datos

En este estudio, se utilizaron técnicas de análisis de datos basadas en un enfoque cuantitativo. Dadas las características del diseño de investigación, que es no experimental y de naturaleza descriptivo, la estadística descriptiva se empleó como el método principal de análisis de datos. Este enfoque facilitó la caracterización cuantitativa de cada uno de los factores relacionados con la erosión hídrica. La estadística descriptiva posibilitó la presentación cuantitativa de variables mediante la recopilación, almacenamiento, ordenamiento y visualización de datos en tablas o gráficos, utilizando medidas como rangos,

promedios y variaciones porcentuales. Se implementó la estadística inferencial para evaluar la correlación entre el factor R y las precipitaciones. La geoestadística fue empleada para interpolar este factor y realizar una distribución espacial en toda la cuenca de estudio.

3.3.7. Herramientas de análisis de datos

Se utilizará la estadística descriptiva como técnica de análisis de datos, empleando herramientas como tablas, gráficos y figuras para examinar tanto la precipitación actual como la potencial, así como para expresar los resultados de cada componente del modelo USLE. Estos instrumentos facilitarán el tratamiento de los datos, posibilitando una presentación clara, concisa y comprensible de los resultados. A través de QGIS, se crearán capas para cada factor y se representará la interacción entre ellos, dando como valor la "pérdida de suelo por erosión hídrica". Este resultado se expresará en mapas temáticos con asignación de rangos numéricos para una mejor visualización y comprensión.

3.3.8. Técnica estadística para prueba de hipótesis

Las técnicas estadísticas empleadas para la prueba de hipótesis se basaron en la estadística descriptiva y mediante estadística descriptiva se aplicó la prueba de Wilcoxon para una sola muestra. Los datos de las observaciones fueron procesados mediante software R.

Para determinar el estadístico de prueba, se procedió a la creación arbitraria de 384 puntos de muestreo, a partir de estas 384 observaciones, se extrajeron los valores ráster de erosión real o actual, factor R, factor LS, factor K y factor C (ver anexo 8).

3.4. VARIABLE DE INVESTIGACIÓN

3.4.1. Variable de estudio: erosión hídrica actual

Definición conceptual de la variable 1

Simboliza la pérdida de suelo presente en una ubicación específica, considerando las actividades humanas y otros elementos naturales que afectan el suelo en el momento actual. Por consiguiente, se denomina a esta expresión global de todos los factores de la Ecuación Universal de Pérdida de Suelo (USLE) como erosión actual (Flores, 2019).

Definición operacional de la variable 1

La valoración de la erosión hídrica actual en la unidad hidrográfica correspondiente a la cuenca del río Illpa se efectuó a través de la implementación de la Ecuación Universal de Pérdida de Suelos (USLE). Este procedimiento implica tener en cuenta la interacción entre el índice de erosividad de las precipitaciones, la erodabilidad de la superficie, el factor topográfico y el factor de cobertura vegetal.

3.4.2. Operacionalización de la variable

La tabla 13 muestra la operacionalización de la variable: erosión hídrica real o actual.

Tabla 13

Variable	Dimensiones	Indicadores	Unidad de medida
	Factor de erosividad	Precipitación	mm
Erosión hídrica actual	Factor topográfico	Longitud y gradiente de la pendiente	m y %
	Factor de erodabilidad	Tipo de suelo	clasificación
	Factor de cobertura vegetal	Tipo de cobertura vegetal	clasificación

Operacionalización de la variable

Nota: la tabla muestra la operacionalización de variables de la investigación

3.5. METODOLOGÍA PARA EL FACTOR DE EROSIVIDAD

Obtención del registro de datos pluviométricos (mm)

Se recopilaron y emplearon datos relativos a la precipitación mensual y anual promedio procedentes de cinco estaciones meteorológicas ubicadas tanto dentro como en las cercanías del área correspondiente a la cuenca del río Illpa. Esta recopilación abarcó un extenso período que se extendió desde 1970 hasta 2012, totalizando 42 años, tal como se detalla de manera exhaustiva en el anexo 3.

A partir de los valores mensuales de precipitación, se llevaron a cabo cálculos para obtener los promedios mensuales y anuales. Los gráficos correspondientes a la precipitación promedio anual de las estaciones a través de los años se presenta detalladamente en el anexo 4.

Análisis de correlación entre estaciones

A continuación, se muestra en análisis de consistencia de las 5 estaciones meteorológicas usadas en esta investigación, respecto a la estación patrón o promedio.

La figura 11 se visualiza el esquema de la metodología para hallar el factor R o el objetivo específico 1, la cual esta divida en dos fases. La tabla 14 muestra el análisis de consistencia de las estaciones meteorológicas usadas en la investigación a partir de datos registrados por el SENAMHI.

Figura 11

Diagrama de la metodología para hallar el factor de erosividad

Nota: la figura muestra el diagrama de la metodología para hallar el objetivo específico 1 o factor de erosividad. Fuente: elaboración propia

Tabla 14

PRECIPITACION MENSUAL (mm)												
	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC
EST. BASE	152.7	133.3	106.6	42.3	6.5	3	2.2	8.4	17.5	33.2	47.8	94.2
PPT ACUM.	152.7	285.9	392.5	434.8	441.3	444.3	446.5	454.9	472.5	505.6	553.5	647.6
EST. PUNO	168.3	150.9	138.1	53.1	8.4	4.1	2.2	11	25.8	46.1	49.4	95.7
PPT ACUM.	168.3	319.2	457.3	510.4	518.8	522.9	525.1	536.1	561.9	608	657.4	753.1
EST. ICHUÑA	146.2	124.9	83.5	32.5	4	2.7	2.6	5.6	9.6	15.6	31.7	83.7
PPT ACUM.	146.2	271.2	354.6	387.1	391	393.8	396.4	402	411.5	427.1	458.8	542.5
EST. CABANILLAS	152.4	138.2	114.2	45.8	5.2	2.6	1.6	8	18.1	37.7	55.5	103.7
PPT ACUM.	152.4	290.6	404.8	450.6	455.8	458.4	460.1	468	486.1	523.8	579.2	682.9
EST. LARAQUERI	183.1	164.4	126.1	47	8.1	4.7	4	11.2	19	33.7	55.8	111.3
PPT ACUM.	183.1	347.4	473.5	520.5	528.6	533.3	537.3	548.5	567.5	601.2	657	768.3
EST. JULIACA	113.4	87.9	71.3	33	6.8	0.8	0.6	6.1	15.3	32.8	46.8	76.4
PPT ACUM.	113.4	201.3	272.6	305.5	312.4	313.2	313.8	319.9	335.2	368	414.8	491.2

Análisis de consistencia de las estaciones meteorológicas

Nota: la tabla muestra el análisis de consistencia de las estaciones meteorológicas. Fuente: Elaboración propia a partir de datos del SENAMHI

La tabla 15 muestra la interpretación del coeficiente de determinación para entender los gráficos de análisis de consistencia. Cuanto más cercano a 1 sea R², mejor es el ajuste de los modelos a los datos. La ecuación del gráfico tiene la forma mx + b, donde: *m* es la pendiente de la línea y *b* es la intersección con el eje.

Tabla 15

Interpretación del coeficiente de determinación

R ²	Interpretación
Cercano a 0	Baja capacidad explicativa de la recta
Próximo a 1	Alta capacidad explicativa de la recta
Nota: datos obten	idos de Peña (2002)

Análisis de consistencia para la estación Puno

Nota: la figura muestra el análisis de consistencia para la estación Puno. Fuente: elaboración propia a partir de datos del SENAMHI

Interpretación:

La figura 12 muestra el análisis de consistencia de un gráfico de dispersión para la estación Puno, donde el coeficiente de determinación = $R^2 = 0.9978$, que se interpreta como el 99.78% de la variabilidad de *y* puede atribuirse a una relación lineal con *x*. La pendiente positiva (1.2119) sugiere que a medida que los datos de la estación base aumenta, los datos de la estación Puno también. La intersección con el eje *y* (16.839) indica el valor de *y* cuando *x* es igual a cero.

Análisis de consistencia para la estación Ichuña

Nota: la figura muestra el análisis de consistencia para la estación Ichuña. Fuente: elaboración propia a partir de datos del SENAMHI

Interpretación:

La figura 13 muestra el análisis de consistencia de un gráfico de dispersión para la estación Puno, donde el coeficiente de determinación = $R^2 = 0.9925$, que se interpreta como el 99.25% de la variabilidad en y puede explicarse por la variable x. La pendiente positiva (0.7794) sugiere que a medida que los datos de la estación base aumenta, los datos de la estación Ichuña también. La intersección con el eje y (42.031) indica el valor de y cuando x es igual a cero.

Análisis de consistencia para la estación Cabanillas

Nota: la figura muestra el análisis de consistencia para la estación Cabanillas. Fuente: elaboración propia a partir de datos del SENAMHI

Interpretación:

La figura 14 muestra el análisis de consistencia de un gráfico de dispersión para la estación Cabanillas, donde el coeficiente de determinación = $R^2 = 0.9995$, que se interpreta como el 99.95% de la variabilidad de y puede atribuirse a una relación lineal con x. La pendiente positiva (1.0687) sugiere que a medida que los datos de la estación base aumenta, los datos de la estación Cabanillas también. La intersección con el eje y (14.907) indica el valor de y cuando x es igual a cero.

Nota: la figura muestra el análisis de consistencia para la estación Laraqueri. Fuente: elaboración propia a partir de datos del SENAMHI

Interpretación:

La figura 15 muestra el análisis de consistencia de un gráfico de dispersión para la estación Laraqueri, donde el coeficiente de determinación = $R^2 = 0.9996$, que se interpreta como el 99.96% de la variabilidad en *y* puede explicarse por la variable *x*. La pendiente positiva (1.1781) sugiere que a medida que los datos de la estación base aumenta, los datos de la estación Laraqueri también. La intersección con el eje *y* (8.5143) indica el valor de *y* cuando *x* es igual a cero.

Análisis de consistencia para la estación Juliaca

Interpretación:

La figura 16 muestra el análisis de consistencia de un gráfico de dispersión para la estación Juliaca, donde el coeficiente de determinación = $R^2 = 0.9899$, que se interpreta como el 98.99% de la variabilidad de *y* puede atribuirse a una relación lineal con *x*. La pendiente positiva (0.762) sugiere que a medida que los datos de la estación base aumenta, los datos de la estación Juliaca también. La intersección con el eje *y* (18.8) indica el valor de *y* cuando *x* es igual a cero.

Cálculo de la precipitación anual

Se ordenó la base de datos según la siguiente tabla y se obtuvo la precipitación anual de la cuenca del río Illpa.

La tabla 16 muestra las precipitaciones medias mensuales usadas en la investigación (SENAMHI).

Aplicación de la ecuación del IMF y la ecuación del factor R

Se emplearon como datos de entrada los registros de precipitación media mensual y anual, y se procedió a calcular dichos valores mediante las fórmulas del Índice Modificado de Fournier y la ecuación propuesta por Arnoldus (1978) para cada una de las estaciones meteorológicas. Los valores resultantes del IMF y el cálculo del factor R se pueden ver en la tabla 17.

Tabla 16

CALCULO DE LA PRECIPITACION MENSUAL Y ANUAL									
N°	1	2	3	4	5				
Estación	Puno	Ichuña	Cabanillas	Laraqueri	Juliaca				
PPT Enero (mm)	168.3	146.2	152.4	183.1	113.4				
PPT Febrero (mm)	150.9	124.9	138.2	164.4	87.9				
PPT Marzo (mm)	138.1	83.5	114.2	126.1	71.3				
PPT Abril (mm)	53.1	32.5	45.8	47	33				
PPT Mayo (mm)	8.4	4	5.2	8.1	6.8				
PPT Junio (mm)	4.1	2.7	2.6	4.7	0.8				
PPT Julio (mm)	2.2	2.6	1.6	4	0.6				
PPT Agosto (mm)	11	5.6	8	11.2	6.1				
PPT Setiembre (mm)	25.8	9.6	18.1	19	15.3				
PPT Octubre (mm)	46.1	15.6	37.7	33.7	32.8				
PPT Noviembre (mm)	49.4	31.7	55.5	55.8	46.8				
PPT Diciembre (mm)	95.7	83.7	103.7	111.3	76.4				
Promedio Anual (mm)	62.8	45.2	56.9	64	40.9				
PPT Total Anual (mm)	753.1	542.5	682.9	768.3	491.2				

Precipitaciones medias mensuales, media anual y total anual

Nota: la tabla muestra la precipitación media anual de las estaciones meteorológicas. Fuente: Elaboración propia a partir de datos del SENAMHI

Interpolación por el método IDW

Se procedió a realizar el modelado espacial de la precipitación cada mes y en años mediante la interpolación de valores puntuales provenientes de estaciones pluviométricas. La técnica de interpolación empleada en el actual proceso fue el IDW (Peso Inverso de la Distancia). El propósito de esta interpolación reside en la evaluación y análisis de la repartición espacial del factor R en la totalidad del área de análisis.

Primero. El primer paso es insertar los datos de coordenadas y valores del IMF y R en una hoja de cálculo.

Tabla 17

CÁLCULO DEL IMF Y EL FACTOR R								
N°	1	2	3	4	5			
Estación	Puno	Ichuña	Cabanillas	Laraqueri	Juliaca			
IMF Enero (adim)	37.61	39.4	34.01	43.64	26.18			
IMF Febrero (adim)	30.24	28.76	27.97	35.18	15.73			
IMF Marzo (adim)	25.32	12.85	19.1	20.7	10.35			
IMF Abril (adim)	3.74	1.95	3.07	2.88	2.22			
IMF Mayo (adim)	0.09	0.03	0.04	0.09	0.09			
IMF Junio (adim)	0.02	0.01	0.01	0.03	0			
IMF Julio (adim)	0	0	0	0	0			
IMF Agosto (adim)	0.16	0.06	0.09	0.16	0.08			
IMF Setiembre (adim)	0.88	0.17	0.48	0.47	0.48			
IMF Octubre (adim)	2.82	0.45	2.08	1.48	2.19			
IMF Noviembre (adim)	3.24	1.85	4.51	4.05	4.46			
IMF Diciembre (adim)	12.16	12.91	15.75	16.12	11.88			
IMF Total Anual (adim)	116.3	98.5	107.1	124.8	73.7			
Factor R (MJ*mm/ha*h*año)	332.99	258.55	294.66	368.45	155.15			

Valores mensuales y anuales del IMF y el factor R

Nota: la tabla muestra los valores mensuales y anuales del IMF y el factor R

Segundo. Desde la herramienta "Catalog" buscamos la ubicación de nuestra tabla, damos clic derecho en el archivo y a continuación: *Create Feature*

Class > From XY Table, una vez aparezca el cuadro de dialogo, hacemos coincidir los datos con nuestra tabla de la siguiente manera:

X Field > Este (X)

Y Field > Norte (Y)

Z Field > Altura (Z)

La tabla 18 muestra la estructura de datos de entrada para realizar la interpolación por el método IDW.

Tercero. En la siguiente etapa, procedemos a asignar un sistema de coordenadas; en este caso, hemos seleccionado "WGS 1984 UTM Zona 19". Posteriormente, definimos una dirección de salida para nuestro shapefile, al que hemos denominado "Estaciones.shp".

Cuarto. Iniciamos con la interpolación IDW siguiendo este proceso: *ArcToolbox > Spatial Analyst Tools > Interpolation > IDW* y en el cuadro de diálogo ingresamos los siguientes datos:

Entidades de puntos de entrada > Estaciones.shp

Campo de valor Z > IMF

Ráster de salida > IMF_Illpa.tif

Tamaño de celda de salida > 30

Quinto. Después de completar la interpolación de todos los puntos, procedemos a realizar un recorte conforme a nuestra área de estudio. Este proceso se lleva a cabo mediante la ruta: *ArcToolbox > Extraction > Extract by Mask*.

Tabla 18

ESTACIÓN	FSTE (m)	NODTE (m)	ALTURA	IMF	R
ESTACION	LSIL (III)	NOKIE (III)	(m.s.n.m.)	(adim)	(MJ*mm/ha*h*año)
Laraqueri	385,967.2180	8'213,657.7900	3,900.000	125	368.5
Juliaca	376,633.4430	8'289,358.5800	3,826.000	73.7	155.2
Ichuña	335,043.1600	8'214,840.8900	3,778.000	98.5	258.6
Cabanillas	355,657.0600	8'270,526.4700	3,885.000	107	294.7
Puno	391,617.7020	8'250,022.6500	3,812.000	116	333

Estructura de datos de entrada para interpolación del factor k						
Estructura ap datos ap phirada para interpolación api tactor k		1 1	1 1	• • •	1 . /	11C
	<i>F STRUCTURA</i>	ap antos	ao ontraaa	nara inter	nolacion	αρι ταςτον κ
$\Delta S H H C H H H H H H C H H H H H H H H H$		uc uuios			poincion	u c i j u c i 0 i n

Nota: la tabla muestra la estructura de datos de entrada para la interpolación del factor R

Obtención del mapa de la distribución espacial del factor R

Siguiendo la metodología previamente descrita, llevamos a cabo la interpolación de los datos del Índice Modificado de Fournier (IMF). Replicamos este proceso utilizando los datos correspondientes al factor R, lo que nos proporcionó el mapa ráster del factor de erosividad. Se confirmó la estrecha relación entre el factor R y la precipitación anual, como se visualiza en la figura 17, dicha figura presenta la regresión lineal entre el promedio de precipitación anual y el factor R. Esta ecuación ha sido evaluada en diversos lugares del mundo, demostrando, en términos generales, una correlación significativa con un alto grado de asociación, que en promedio alcanzó el 0,89 (Ramírez, 2010).

Para acelerar el procedimiento se utilizó la herramienta model builder para llevar a cabo el algoritmo. Este algoritmo permitió generar la capa temática que representa la erosividad de las precipitaciones, el cual se detalla en el capítulo de resultados. La figura 18 muestra el flujograma para obtener el mapa de erosión de la lluvia en el área de estudio. El anexo 9 muestra todo el procedimiento llevado a cabo y los mapas generados para hallar el factor R en la cuenca hidrográfica del río Illpa.

Nota: la figura muestra la regresión lineal entre el promedio de precipitación anual y el factor R

La figura 17 muestra el análisis de consistencia entre la precipitación anual y el factor de erosividad, donde el coeficiente de determinación = $R^2 = 0.8857$, que se interpreta como el 88.57% de la variabilidad de y puede atribuirse a una relación lineal con x. La pendiente positiva (0.6171) sugiere que a medida que los datos de la estación base aumenta, los datos de la estación Juliaca también. La intersección con el eje y (117.74) indica el valor de y cuando x es igual a cero.

Flujograma para obtener el mapa de erosividad de la lluvia

Nota: la figura muestra el flujograma para obtener el mapa de erosividad de la lluvia

3.6. METODOLOGÍA PARA EL FACTOR TOPOGRÁFICO

Los elementos topográficos abarcan la distancia de la pendiente (L) y la inclinación (S), y la combinación de estos dos subfactores da lugar al factor conocido como LS. Para calcular este factor, se utilizó dos (02) modelos digitales de elevación (DEM) proveniente de la Misión Topográfica de Radar (SRTM).

La modelación espacial se ejecutó mediante la funcionalidad del constructor de modelos. Se diseñó un algoritmo que posibilitó la generación de la capa de datos asociada con la longitud y la pendiente de la topografía. Este procedimiento se llevó a cabo siguiendo la metodología propuesta por Renard (1997).

El factor L

Para calcular la longitud de las laderas, se recurre al mapa ráster de acumulación de flujo. Este mapa identifica las zonas donde se acumula el agua al fluir desde las celdas más elevadas. La creación de este mapa implica llevar a cabo una serie de pasos secuenciales:

Relleno de sumideros

El término "depresión" hace referencia a una o varias celdas que no cuentan con una dirección de flujo asignada. Para asegurar una representación precisa de las cuencas y los cursos de agua, resulta crucial llevar a cabo el proceso de corrección de depresiones. Este procedimiento se puede llevar a cabo utilizando la herramienta correspondiente en ArcToolbox: *Spatial Analyst Tools > Hidrology > Fill*. La única acción necesaria es seleccionar el ráster que se desea corregir (el 'Modelo Digital de Elevación' o DEM, por sus siglas en inglés), y asignar un nombre único al nuevo ráster que se generará ('Modelo Digital de Elevación corregido').

Una vez completado este proceso, obtendremos un nuevo ráster que puede parecer igual que el Modelo Digital de Elevación (DEM) original que habíamos generado. Sin embargo, aunque no sea evidente a simple vista, este nuevo ráster será el DEM corregido en el que los sumideros habrán sido rellenados, si es que existían.

Mapa de dirección de flujo

La etapa siguiente implica el generar un Mapa de Dirección del Flujo. Se parte del DEM que incluye información de altitud para cada celda. A partir de este

DEM, se determina la trayectoria que el flujo de agua seguirá y a este de le asignará un valor específico en base a esa dirección.

Para obtener el mapa que muestra las direcciones del flujo en nuestra cuenca, seguimos estos pasos: *ArcToolbox > Spatial Analyst Tools > Hydrology > Flow Direction*. En este proceso, seleccionamos el Modelo Digital de Elevación (DEM) donde deseamos crear el mapa de direcciones de flujo ('Input surface ráster'). En este caso, es importante especificar que se trata del DEM corregido conocido como "Fill", y como es habitual, se le asigna un nombre a la capa resultante ('Output flow direction ráster'). Tras unos segundos obtenemos el mapa de direcciones de flujo en el que cada una de las celdas presenta uno de los 8 valores posibles.

Mapa de acumulación de flujo

El mapa de aglomeración de flujo proporciona información sobre las celdas donde el agua es acumulado al descender desde las celdas que se encuentran a mayor altura. En consecuencia, las celdas con valores altos de acumulación de flujo indicarán áreas donde se concentra el flujo de agua, mientras que las celdas con valores de aglomeración de flujo iguales a 0 representarán las elevaciones topográficas locales. Se procede a realizar el análisis: *ArcToolbox > Spatial Analyst Tools > Hydrology > Flow Accumulation*.

Seleccionamos el mapa de trayectorias que será utilizado para calcular ('Input flow direction ráster') y nombramos a la capa resultante ('Output accumulation ráster'). Mantenemos la configuración predeterminada de "Float" como tipo de dato de salida ('Output data type'). Como resultado, generamos un mapa en el cual las áreas con un acopio de flujo igual a cero se representan en

negro, indicando la ausencia de acumulación de flujo, mientras que las áreas con acumulación se muestran en blanco. La figura 19 muestra el diagrama del método desarrollado para hallar el objetivo específico 2, la cual esta divida en dos fases.

Mapa de pendientes

Para comenzar, procedemos a calcular la pendiente en grados y luego la convertimos a radianes. Utilizamos una herramienta diseñada específicamente para calcular pendientes, para la cual necesitamos tener acceso al Modelo Digital de Elevación (DEM) que será utilizado en el cálculo. En nuestro caso, disponemos del DEM correspondiente al área de estudio, lo incorporamos al proyecto y seleccionamos el instrumento 'Slope' en la siguiente ubicación: *ArcToolbox* > *Spatial Analyst Tools mayor Surface* > *Slope*.

Elegimos el DEM que vamos a utilizar y proporcionamos un nombre para la nueva capa resultante. La herramienta nos ofrece la opción de calcular la pendiente en grados ('Degree') o en porcentaje de inclinación ('Percent Rise'), y en este caso, optamos por los grados.

Diagrama de la metodología para hallar el objetivo específico 2

Nota: la figura muestra el diagrama de la metodología para hallar el objetivo específico 2 o factor topográfico. Fuente: elaboración propia

Mapa del Sub Factor F

Aplicamos la siguiente ecuación matemática propuesta por Renard (1997) a partir del mapa de pendientes (d) con el siguiente procedimiento "Ráster Calculator": *ArcToolbox > Spatial Analyst Tools > Map Algebra > Ráster Calculator*.

Mapa del Sub Factor M

Aplicamos la siguiente ecuación matemática propuesta por Renard (1997) a partir del Sub Factor F (e) con el siguiente procedimiento "Ráster Calculator": *ArcToolbox > Spatial Analyst Tools > Map Algebra > Ráster Calculator*.

En este paso se debe tomar en cuenta lo siguiente para la conversión de grados sexagesimales a radianes: 1 grado sexagesimal = 0,01745 radianes.

Mapa del factor L

Aplicamos la siguiente ecuación matemática propuesta por Renard (1997) a partir del subfactor F (e) y el subfactor M (f) con el siguiente procedimiento *"Ráster Calculator": ArcToolbox > Spatial Analyst Tools > Map Algebra > Ráster Calculator.*

Para aplicar nuestra fórmula, "A (i, j)" tomará el valor del mapa de acumulación de flujo (c), "D" tomará el valor de 30, ya que nuestro DEM tiene una resolución de 30m y "x" tomara el valor de 1.

101

El factor S

Aplicamos la siguiente ecuación matemática propuesta por Renard (1997) a partir del mapa de pendientes (d) con el siguiente procedimiento "*Ráster Calculator*": ArcToolbox > Spatial Analyst Tools > Map Algebra > Ráster *Calculator*.

El ángulo β se define como el promedio de los ángulos en todas las subgrillas en la dirección de la pendiente más pronunciada. En este paso se debe tomar en cuenta lo siguiente para la conversión de grados sexagesimales a radianes: 1 grado sexagesimal = 0,01745 radianes.

Al utilizar esta ecuación "Ráster Calculator", es importante recordar que los ángulos deben convertirse a radianes (donde 1 grado sexagesimal equivale a 0.01745 radianes). Esto es necesario para poder multiplicarlo correctamente por los otros compuestos de las ecuaciones.

El factor LS

Finalmente multiplicamos los factores "L" y "S" mediante el Ráster Calculator, y obtenemos el factor topográfico. Todos los mapas generados en el procedimiento para hallar el Factor "LS".

La figura 20 muestra el flujograma para obtener del mapa de relieve topográfico del área de evaluación.

El anexo 10 muestra todo el procedimiento llevado a cabo y los mapas generados para hallar el factor LS en la cuenca hidrográfica del río Illpa.

Flujograma para obtener el mapa de relieve topográfico

Nota: la figura muestra el flujograma para obtener el mapa de relieve topográfico

3.7. METODOLOGÍA PARA EL FACTOR DE ERODABILIDAD

El factor de erosionabilidad del suelo (K) se estimó utilizando la función indicada por Neitsch et al. (2000) y Williams (1995). El diagrama de la metodología desarrollada es posible apreciar en la figura 21. Todo el procedimiento para hallar este factor se detalla en los siguientes pasos:

Recopilación de información de suelos

Para obtener las cantidades de arenas, limos, arcillas y carbono orgánico, se recopiló información del sitio web de SoilGrids que es un sistema para el mapeo digital global de suelos que utiliza métodos de aprendizaje automático de última generación para mapear la distribución espacial de las características del suelo en todo el mundo.

Se necesitará conocer las coordenadas geográficas en decimales de los límites de nuestra área de estudio, en nuestro caso será de la siguiente manera:

Latitud:

- Mínima : -16.0085° S
- Máxima : -15.5533° S

Longitud:

- Mínima : -70.4614° W
- Máxima : -70.0173° W

Se recomienda usar una zona de influencia con la herramienta *buffer* 100 a 250m. Una vez ubicada nuestra área de interés en un rectángulo con las coordenadas insertadas, descargamos las siguientes capas:

Capa : Carbono orgánico, contenido de arcilla, arena y limo

Profundidad : 0 a 30 cm

Valor : Media

Cada capa ráster tiene 250 m de resolución espacial lo cual no es óptimo trabajar directamente con estas capas y multiplicarlas con nuestros demás factores,

excepto que todas las demás capas tengan la misma resolución, para nuestra investigación solo emplearemos lo datos medios porcentuales de cada capa.

Para obtener los tipos de suelo que existen en nuestra área de estudio se usó el mapa digital de la FAO, al obtener este archivo en formato 'geotiff' nuestro ordenador podemos abrirlo y tenemos toda la información de los tipos de suelos de todo el mundo.

Georreferenciación del mapa

En el caso de un ráster como es el caso de la información obtenida de SoilGrids se transformará las coordenadas geográficas a UTM con el siguiente procedimiento: ArctoolBox > Data Management Tools > Projections and Transformations > Ráster > Project Ráster. En el caso de un vector como es el caso de la información obtenida de la FAO se transformará las coordenadas geográficas a UTM con el siguiente procedimiento: ArctoolBox > Data Management Tools > Projections and Transformations > Project.

Recorte del área de interés

En el caso de un ráster como es el caso de la información obtenida de 'SoilGrids' debemos hacer el recorte del área de interés partiendo de las estepas en formato ráster y la capa de la cuenca del río Illpa en formato shapefile, seguiremos el siguiente procedimiento: *ArctoolBox > Spatial Analyst Tools > Extraction > Extract by mask*.

En el caso de un vector como es el caso de la información obtenida de la FAO debemos hacer el recorte del área de interés partiendo de la capa del mapa digitalizada de superficies del todo planeta en formato vectorial o shapefile y la

capa de la cuenca del río Illpa en formato shapefile, seguiremos el siguiente procedimiento: *Geoprocessing > Clip*.

Aplicación de la fórmula de Neitsch et al. (2000) y Williams (1995)

Se examinaron las ecuaciones presentadas en el marco teórico y se cotejaron los valores hallados del mapa digital de superficies del FAO con la difusión proveniente de la plataforma 'SoilGrids'. Se calcularon los promedios para el contenido de carbono orgánico, porcentaje de arena, porcentaje de arcilla y porcentaje de limo. Con respecto a la asignación de valores de K según el tipo de suelo, se llevó a cabo el cálculo del factor K para cada tipo de suelo presente en el área de estudio mediante la ecuación propuesta por Williams (1995). Se asignaron valores específicos del factor K a cada tipo de suelo identificado en el lugar de investigación.

Conversión de formato vector a formato ráster

Con la herramienta *ArcToolbox* > *Conversion Tools* > *To Ráster* > *Polygon to Ráster* se modificó el vector con una resolución espacial de 30 metros en el formato ráster.

Flujograma para obtener el mapa de erodabilidad

Nota: la figura muestra el flujograma para obtener el mapa de erodabilidad

Obtención del factor K

Finalmente obtenemos el mapa del factor K en formato ráster, clasificamos y calculamos el área de cada tipo de superficie en la cuenca del río Illpa. En la figura 22 se visualiza el esquema de la metodología para hallar el objetivo específico 3, la cual está dividida en dos fases. El anexo 11 muestra todo el procedimiento llevado a cabo y los mapas generados para hallar el factor K en la cuenca hidrográfica del río Illpa.

Diagrama de la metodología para hallar el objetivo específico 3

Nota: la figura muestra el diagrama de la metodología para hallar el objetivo específico 3 o factor de erodabilidad. Fuente: elaboración propia

3.8. METODOLOGÍA PARA EL FACTOR DE COBERTURA VEGETAL

En relación con los valores asociados al factor C, Bada (2023) destaca que la combinación de imágenes satelitales con teledetección provee detalles precisos y confiable. Por esta razón, para la estimación de este factor, se utilizarán programas SIG y teledetección para representar espacialmente la capa vegetal en el área de estudio.

Tabla 19

1 /	T 1 / 0	,	1/ 1		1	• • • • •
Imaganag	I and cat X	nara anoca	humoda	utilizadae	on la	invoctioación
mugenes	санама о	<i>DUIU</i> EDOCU	питеци	unnin auus	ении	Investigación
		r				

Época Húmeda (primavera y verano)						
Fecha de Adquisición	Path	Row	Fecha de Adquisición	Path	Row	
12/12/2015	2	71	26/11/2015	3	71	
12/11/2016	2	71	3/11/2016	3	71	
30/10/2017	2	71	5/10/2017	3	71	
4/12/2018	2	71	11/12/2018	3	71	
25/10/2021	2	71	16/10/2021	3	71	

Nota: la tabla muestra las imágenes Landsat 8 para época húmeda utilizadas en la investigación. Fuente: elaboración propia a partir de datos de la USGS

El factor C, vinculado a la cobertura vegetal, refleja la protección brindada al suelo por la vegetación, ya que esta intercepta las gotas de lluvia, reduciendo la intensidad del impacto y, por ende, disminuyendo el potencial erosivo. La metodología diseñada para determinar este factor se presenta en la figura 23. La realización del mapa de la capa vegetal en la cuenca del río Illpa se llevó a cabo a través del análisis de imágenes satelitales capturadas por el sensor Landsat 8 en la región, con una resolución espacial de treinta metros. Se recopilaron un total de 20 imágenes, distribuidas equitativamente entre épocas seca y húmeda, según se detalla en las tablas 19 y 20.

La tabla 19 muestra las imágenes Landsat recopiladas en época húmeda, mientras que la tabla 20 muestra las imágenes Landsat recopiladas en época seca.

Tabla 20

Época Seca (otoño e invierno)							
Fecha de Adquisición	Path	Row	Fecha de Adquisición	Path	Row		
26/07/2017	2	71	2/08/2017	3	71		
26/05/2018	2	71	2/06/2018	3	71		
1/08/2019	2	71	8/08/2019	3	71		
3/08/2020	2	71	10/08/2020	3	71		
22/08/2021	2	71	13/08/2021	3	71		

Imágenes Landsat 8 para época seca utilizadas en la investigación

Nota: la tabla muestra las imágenes Landsat 8 para época seca utilizadas en la investigación. Fuente: elaboración propia a partir de datos de la USGS

Para obtener el factor C existen 2 formas: el enfoque de teledetección aplicando sensores remotos y el enfoque tradicional aplicando literatura del factor C. Para el presente estudio se optó por el enfoque de teledetección aplicando la fórmula de (Durigon et al., 2014), ya que el enfoque tradicional generaliza demasiado la cubierta vegetal y muchos autores disciernen valores diferentes para el factor C. El método tradicional (que utiliza un factor C constante encontrado en la literatura) no es capaz de capturar la variación espacial y temporal a lo largo de un año como ha sido posible utilizando los enfoques NDVI (Almagro et al., 2019).

Se obtuvo el índice de vegetación normalizado (NDVI) utilizando las bandas 4 y 5 de Landsat 8, con el sensor OLI. Las relaciones propuestas por Bastiaanssen (1998), se utilizan para determinar el NDVI, el Leaf Area Index (LAI) y la porción de la superficie terrestre cubierta por vegetación, para realizar los cálculos, se utilizó el siguiente procedimiento.

Obtención de las imágenes Landsat 8

Se utilizó las imágenes satelitales de Landsat 8 del sensor OLI, obtenidas de la plataforma libre, el explorador de tierra "EarthExplorer", las imágenes

obtenidas contienen 11 bandas espectrales, como se presenta a continuación un ejemplo "LC08_L1TD_002007.tif".

En el anexo 7 se muestra las bandas corregidas de las imágenes Landsat 8.

Corrección atmosférica

Las imágenes Landsat 8 fueron corregidas atmosféricamente con Qgis 3.28, utilizando el complemento "Semi_automatic clasification Plugin", cuyo resultado fueron las imágenes en reflectancias corregidas. Las imágenes Landsat 8 recopiladas son todas de categoría T1, lo cual significa presentan corrección radiométrica y geométrica, se utilizó el plugin "SCP" del software Qgis 3.28.2 para realizar las correcciones atmosféricas de todas las imágenes ráster.

Elaboración del mosaico de imágenes

Para unir dos (02) imágenes ráster y convertirlo en una sola capa seguimos el siguiente procedimiento *ArctoolBox > Data Management Tools > Ráster > Ráster Dataset > Mosaic to New Ráster.*

Cálculo del NDVI para época seca y época húmeda

Para obtener el NDVI, se utilizó imágenes de reflectancia de superficie Landsat 8 OLI y se realizó un análisis temporal del 2015 a 2021. Para cada año, se obtuvieron cuatro imágenes para representar los períodos lluviosos y secos del Explorador de la Tierra.

Diagrama de la metodología para hallar el objetivo específico 4

Nota: la figura muestra el diagrama para hallar el objetivo específico 4 o factor de cobertura vegetal. Fuente: elaboración propia

Se utilizaron imágenes orto-rectificadas de reflectancia de superficie Landsat 8 OLI, que presentan una alta precisión posicional (Irons, Dwyer y Barsi, 2012; Roy et al., 2014; Storey, Choate y Lee, 2014). Se calculó el NDVI utilizando

estas imágenes atmosféricas corregidas, siguiendo las recomendaciones sugeridas por Song, Woodcock, Seto, Lenney y Macomber (2001) y Agapiou, Hadjimitsis, Papoutsa, Alexakis y Papadavid (2011), quienes concluyeron que los efectos atmosféricos no corregidos pueden afectar hasta al 50% los resultados de los cálculos del NDVI (Almagro et al., 2019).

Mediante la ecuación para hallar el NDVI, se genera una imagen en formato ráster con datos que varían en un rango de -1 a +1. Los valores que se encuentran entre -1 y próximos a cero indican la ausencia de actividad fotosintética en el suelo, es decir, la falta de vegetación. Los valores entre 0 y 0.5 representan un nivel medio de actividad fotosintética en el suelo, mientras que los valores cercanos a 1 reflejan una elevada actividad fotosintética (cultivos agrícolas).

Las imágenes corregidas se utilizaron para el cálculo del índice de vegetación de desemejanza normalizada. Obtenemos el NDVI para época seca y para época húmeda por separado para hacer un análisis y comparar ambos resultados. Se calculó el NDVI que siendo la diferencia de la banda 5 y banda 4 sobre la sumatoria de banda 5 y banda 4. Para generar el NDVI se generó un algoritmo en model builder.

Cálculo del NDVI promedio histórico

Se realiza el promedio del NDVI en época húmeda y el NDVI en época seca, para el cálculo se usó el siguiente procedimiento *ArctoolBox > Spatial Analyst Tools > Map Algebra > Ráster Calculator* obteniéndose como resultado el mapa *NDVI.tif.*

Georreferenciación de las imágenes

Se transformará las coordenadas a UTM 19 Sur con el siguiente procedimiento: ArctoolBox > Data Management Tools > Projections and Transformations > Ráster > Project Ráster.

Recorte del área de interés

Se hace el recorte del área de interés partiendo de la capa en formato ráster y la capa de la cuenca del río Illpa en formato shapefile, seguiremos el siguiente procedimiento: *ArctoolBox > Spatial Analyst Tools > Extraction > Extract by mask.*

Aplicación de la fórmula de Durigon (2014)

Con la ecuación vista en el marco teórico empleamos la fórmula siguiendo el siguiente procedimiento A*rctoolBox > Spatial Analyst Tools > Map Algebra > Ráster Calculator* donde reemplazamos en la ecuación el valor del NDVI con la capa obtenida en el paso anterior.

Clasificación no supervisada

Hallar los valores del factor C es importante porque nos permite identificar los diferentes cambios en la cobertura vegetal en la imagen. Para lograr esto, se realizan una preclasificación de las imágenes, que consistió en llevar a cabo una clasificación sin supervisión y una evaluación visual para la identificación de áreas con características espectrales similares en las imágenes. Esto se hizo con el propósito de dar facilidad a la identificación de los terrenos de entrenamiento. La organización sin supervisión se llevó a cabo, a través el instrumento *ArcToolbox > Spatial Analyst Tools > Multivariate > Iso Cluster Unsupervised Classification*

donde el algoritmo emplea la metodología de espacio de espectro mínimo para que se formen las clases, y donde se realizaron diferentes intentos para determinar la cantidad óptima de clases (clusters).

Interpretación de la imagen

Los resultados obtenidos proporcionan una visión fundamental de la distribución espacial de la cobertura vegetal en la zona de estudio. La clasificación no supervisada se realiza sin establecer prioridades para las clases, basándose en probabilidades. El resultado consiste en una imagen ráster reclasificada y, opcionalmente, la generación de un archivo con su firma correspondiente.

Trabajo en campo (áreas de entrenamiento)

Los resultados de la preselección nos proporcionaron un informe preliminar que sería útil para el reconocimiento del terreno en el campo. En consecuencia, la siguiente etapa consistió en llevar a cabo visitas de campo para la caracterización de las diversas coberturas vegetales. Durante estas visitas, se tomaron imágenes a un área representativo para una mejor identificación, y esta información fue georreferenciada usando el sistema de posicionamiento global satelital (GPS). Esto permitió obtener la ubicación aproximada en la imagen con una precisión de alrededor de ± 10 metros.

Después de llevar a cabo el reconocimiento inicial del área estudiada, se inició con la mejora de la preselección de la cubierta vegetal por medio del empleo de una clasificación que se supervisa usando el clasificador más probable. En este proceso, se identificaron áreas de entrenamiento en la imagen, que consistieron en píxeles correspondientes a patrones que representan las clases previamente localizadas, reconocidos o corregidos en el campo. El sistema computarizado

115

calculó las estadísticas de cada una de las bandas de la imagen en estas áreas de entrenamiento, lo que permitió lograr una clasificación mejorada.

Clasificación supervisada por el método Corine Land Cover

En conclusión, se implementó un filtro de paso bajo de 3x3 en esta aplicación con el objetivo de disminuir al mínimo el resultado de "sal y pimienta" durante la organización, como también, eliminar píxeles alejados que podrían haber sido afectados por píxeles en diferente naturaleza. Se tomo por este filtro debido a su capacidad para preservar al máximo la estructura de las diversas coberturas presentes en la imagen. Una vez obtenido el ráster con las distintas categorías de cobertura, se procedió a asignar una organización de Corine Land Cover para ordenar de manera sistemática el uso actual del suelo en la cuenca del río Illpa.

Obtención del factor C

Los valores del factor C están en el rango de 0 a 1, representando los datos más cercanos a 0 las zonas con capa vegetal densa, es decir zonas con excelente protección natural a la erosión hídrica, en tanto que los datos próximos a 1 representan las zonas con menor cobertura vegetal, suelos desnudos o con escasa vegetación, suelos con mayor tendencia a ser erosionados. En la figura 24 se muestra el flujograma para la obtención del mapa de cobertura vegetal del área de estudio.

Flujograma para la obtención del mapa de cobertura vegetal

Nota: la figura muestra el flujograma para la obtención del mapa de cobertura vegetal

3.9. METODOLOGÍA PARA INTEGRACIÓN DE FACTORES

Para determinar la erosión hídrica en la cuenca del río Illpa, se implementó el modelo USLE. La obtención de este cálculo requirió la disponibilidad de datos distribuidos espacialmente para todas las variables pertinentes, como el índice de erosividad de precipitación (R), las características de longitud y pendiente de las pendientes (LS), la erodabilidad del suelo (K) y la cobertura vegetal del suelo (C). Estos datos, previamente cuantificados y organizados en un modelo de imágenes ráster, se fusionaron mediante una multiplicación píxel a píxel.

La figura 25 proporciona una síntesis visual del modelo empleado para producir el mapa de erosión hídrica actual en la cuenca del río Illpa. Esta representación gráfica ilustra el enfoque espacial aplicado en la evaluación de la erosión hídrica.

Figura 25

Flujograma para la obtención del mapa de erosión hídrica

Nota: la figura muestra el flujograma para la obtención del mapa de erosión hídrica. Fuente: elaboración propia

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS PARA EL FACTOR DE EROSIVIDAD

Utilizando la colaboración de archivos que contienen registros mensuales y anuales de precipitación para el período de 1970 a 2012, suministrados (SENAMHI, 2021), se procedió a calcular el promedio multianual de las estaciones meteorológicas. Estos datos, validados mediante un análisis de consistencia, se emplearon para conocer los datos del factor R en toda la cuenca del río Illpa.

Según la información procesada y los mapas obtenidos, se afirma que el periodo de lluvias más intensas se extiende desde diciembre hasta marzo, alcanzando su punto máximo en enero, seguido de febrero. Durante enero, las precipitaciones varían entre 128.94 mm y 167.18 mm (SENAMHI, 2021), mientras que en febrero oscilan entre 107.01 mm y 148.73 mm (SENAMHI, 2021). Se observa una disminución en la cantidad de lluvia durante los meses de diciembre y marzo.

La temporada de sequía, correspondiente al invierno, abarca desde mayo hasta agosto, siendo julio el mes con las precipitaciones más bajas, seguido de junio. Durante este período, las lluvias registran valores que oscilan entre 1.07 mm y 10.39 mm (SENAMHI, 2021). Las precipitaciones más elevadas se observan en áreas cercanas al Lago Titicaca, en la parte oriental y en las zonas más bajas de la cuenca. Este patrón se atribuye a la alta radiación solar y al viento constante, factores que contribuyen a una evaporación significativa del lago y la formación de masas nubosas en las áreas circundantes.

En el anexo 9 se muestra la distribución espacial del Índice Modificado de Fournier (IMF), así como también se ilustra la clasificación del IMF. Además, la figura 28 proporciona la distribución espacial de la erosividad de las lluvias en la cuenca del río Illpa. Se observa que el índice de erosividad, también conocido como factor R, presenta variaciones en un rango de 210.304 a 324.85 Mj*mm/ha*h*año en toda la cuenca del río Illpa. La clasificación del factor R se muestra en el anexo 9.

Los valores más elevados de erosividad se ubican en la parte baja y oriental de la cuenca, en contraste con los datos más bajos que se registran en la zona norte. De acuerdo con el mapa de distribuciones espaciales de la erosividad de la lluvia en la cuenca del río Illpa, se observa una disminución de la erosividad de sur a norte. La figura 26 presenta el modelo espacial generado mediante model builder para obtener el factor R, la tabla 21 proporciona los valores del IMF según la distribución espacial.

Tabla 21

Distribución de superficie según los rangos del IMF

Rango	IMF (adimensional)	Valor IMF (mín - máx)	Área (km²)	Área (%)
Baja	60 - 90	86.88 - 90	8.46	0.67
Moderado	90 - 120	90-114.35	1,253.81	99.33
	TOTAL		1,262.27	100.00

Nota: la tabla muestra la distribución de superficie según los rangos del IMF

Nota: la figura muestra el model builder para obtener el factor R

La figura 27 se observa la repartición de superficie según los rangos del IMF, mientras que la tabla 22 muestra la distribución de superficie según los rangos del factor R.

Figura 27

Distribución en porcentajes según los rangos de IMF

Nota: la figura muestra la distribución en porcentajes según los rangos del IMF

Tabla 22

Distribución de superficie según los rangos del factor R

Rango	R (MJ*mm/ha*h*año)	Valor factor R (mín – máx)	Área (km²)	Área (%)
Moderado	50 - 500	210.30 - 324.85	1,262.27	100.00
	TOTAL		1,262.27	100.00

Nota: la tabla muestra la distribución de superficie según los rangos del factor R

La tabla 23 muestra la estadística descriptiva para el factor de erosividad en la cuenca del río Illpa en base a la muestra 1.

Distribución espacial de la erosividad de las lluvias o factor R

Nota: la figura muestra la distribución espacial de la erosividad de las lluvias

La media de los datos es de aproximadamente 289.024, esto sugiere que, en promedio, los valores están alrededor de este punto. La mediana es de aproximadamente 289.292, este valor indica que el 50% de los datos se encuentran por encima de este punto y el 50% por debajo. La moda es de aproximadamente 286.828, es el valor que ocurre con mayor frecuencia en los datos (ver figura 30).

La curtosis es de aproximadamente 2.377, indica la forma de la distribución de los datos. Un valor positivo sugiere una distribución más "puntiaguda" en comparación con una distribución normal. El coeficiente de asimetría es de aproximadamente -1.183. Un valor negativo indica que la cola izquierda es más larga o gruesa, y la mayor concentración de valores está en el lado derecho (ver figura 29).

Tabla 23

ESTADÍSTICA DESCRIPTIVA	VALOR	UNIDAD
Media	289.024	MJ*mm/ha*h*año
Error típico	0.967	MJ*mm/ha*h*año
Mediana	289.292	MJ*mm/ha*h*año
Moda	286.828	MJ*mm/ha*h*año
Desviación estándar	18.943	MJ*mm/ha*h*año
Varianza de la muestra	358.826	MJ*mm/ha*h*año
Curtosis	2.377	Adimensional
Coeficiente de asimetría	-1.183	Adimensional
Rango	101.535	MJ*mm/ha*h*año
Mínimo	221.186	MJ*mm/ha*h*año
Máximo	322.721	MJ*mm/ha*h*año
Suma	11,0985.055	MJ*mm/ha*h*año
Cuenta	384	Adimensional
Mayor (1)	322.721	MJ*mm/ha*h*año
Menor (1)	221.186	MJ*mm/ha*h*año
Nivel de confianza (95.0%)	1.901	Adimensional

Estadística descriptiva para el factor de erosividad

Nota: la tabla muestra la estadística descriptiva para el factor R, a partir de la muestra 1. Fuente: elaboración propia

Histograma y diagrama de densidad de la muestra 1

Nota: la figura muestra el histograma y diagrama de densidad de la muestra 1. Fuente: datos obtenidos del software R

Diagrama de caja y bigotes de la muestra 1

Diagrama de Caja y Bigotes

Nota: la figura muestra el diagrama de caja y bigotes de la muestra 1. Fuente: datos obtenidos del software R

4.2. RESULTADOS PARA EL FACTOR TOPOGRÁFICO

La topografía del terreno, en particular la inclinación, constituye uno de los elementos determinantes en el fenómeno de desgaste hídrico de la superficie. En el anexo 10 se detallan las distribuciones de las pendientes presentes en la cuenca del río Illpa, abarcando un nivel de 0 a 59.39 grados sexagesimales y revelando áreas con pendientes notables.

El cálculo del factor LS se realizó mediante las ecuaciones propuestas por Renard (1997). Para llevar a cabo este cálculo, se utilizó el Modelo Digital de Elevación (DEM) de la Misión Topográfica Shuttle Radar (SRTM) con una resolución de 30 metros.

En el anexo 10 se presentan también los datos de las longitudes de las pendientes (Factor L) en la cuenca del río Illpa, con datos que fluctúan entre 1 y 72.37 m., se aprecian tambien los valores de las gradientes de las pendientes (Factor S), los cuales oscilan entre 0.03 y 13.96 %. Con respecto a la figura 33, los datos de LS, calculados mediante el método de Renard, muestran una variación que va desde 0.03 hasta 524.55 (adimensional). Se observa que los valores más bajos se encuentran en áreas con pendientes más suaves, mientras que los valores más elevados se localizan en zonas de mayor inclinación. Esto se debe a que estas últimas áreas presentan una longitud y una pendiente mayores, implicando que una gota de lluvia recorre un trayecto más extenso antes de estar en el punto donde se acumula el flujo junto con la superficie erosionada. La clasificación del factor LS se aprecia en el anexo 10, mientras que la figura 32 muestra el model builder empleando para analizar el factor LS.

La tabla 24 presenta la distribución de la superficie según los rangos del factor LS en la cuenca del río Illpa, mientras que la figura 31 muestra la distribución en porcentajes según los rangos del factor LS en dicha cuenca.

Tabla 24

Rango	LS (adimensional)	Valor factor LS (Mín – Máx)	Área (km²)	Área (%)
Muy Bajo	< 1.5	0.03 - 1.5	620.43	49.15
Bajo	1.5 - 3	1.5 - 3	172.12	13.64
Moderado	3 - 5	3 – 5	220.23	17.45
Alto	5 - 7	5 - 7	149.22	11.82
Muy Alto	> 7	7 - 524.552	100.27	7.94
	TOTAL		1,262.27	100.00

Distribución de superficie según los rangos del factor LS

Nota: la figura muestra la distribución de superficie según los rangos del factor LS

Figura 31

Distribución en porcentajes según los rangos del factor LS

Nota: la figura muestra la distribución en porcentajes según los rangos del factor LS

Nota: la figura muestra el Modelo espacial mediante model builder para obtener el factor LS

Mapa de la distribución espacial del factor topográfico o factor LS

Nota: la figura muestra la distribución espacial del factor topográfico o factor LS

La media de los datos es de aproximadamente 2.644, esto sugiere que, en promedio, los valores están alrededor de este punto. La mediana es de aproximadamente 1.656, este valor indica que el 50% de los datos se encuentran por encima de este punto y el 50% por debajo. La moda es 0.030, es el valor que ocurre con mayor frecuencia en los datos (ver figura 35).

La curtosis es de aproximadamente 0.867, indica la forma de la distribución de los datos. Un valor positivo sugiere una distribución más "puntiaguda" en comparación con una distribución normal. El coeficiente de asimetría es de aproximadamente 1.064. Un valor positivo indica que la cola derecha es más larga o gruesa, y la mayor concentración de valores está en el lado izquierdo (ver figura 34).

Tabla 25

ESTADÍSTICA DESCRIPTIVA	VALOR	UNIDAD
Media	2.644	Adimensional
Error típico	0.135	Adimensional
Mediana	1.656	Adimensional
Moda	0.030	Adimensional
Desviación estándar	2.650	Adimensional
Varianza de la muestra	7.020	Adimensional
Curtosis	0.867	Adimensional
Coeficiente de asimetría	1.064	Adimensional
Rango	13.447	Adimensional
Mínimo	0.030	Adimensional
Máximo	13.477	Adimensional
Suma	1,015.457	Adimensional
Cuenta	384	Adimensional
Mayor (1)	13.477	Adimensional
Menor (1)	0.030	Adimensional
Nivel de confianza (95.0%)	0.266	Adimensional

Estadística descriptiva para el factor topográfico

Nota: la tabla muestra la estadística descriptiva para el factor LS, a partir de la muestra 2. Fuente: elaboración propia

La tabla 25 muestra la estadística descriptiva para el factor topográfico en la cuenca del río Illpa en base a la muestra 2.

Histograma y diagrama de densidad de la muestra 2

Nota: la figura muestra el histograma y diagrama de densidad de la muestra 2. Fuente: datos obtenidos del software R

Diagrama de Caja y Bigotes

Nota: la figura muestra el diagrama de caja y bigotes de la muestra 2. Fuente: datos obtenidos del software R

4.3. RESULTADOS PARA EL FACTOR DE ERODABILIDAD

El factor K indica la capacidad de un suelo para erosionarse debido a sus propiedades específicas, se expresa en tn*ha*h/ha*MJ*mm. En términos simples, este factor refleja la erodabilidad del suelo. Los valores de K en la cuenca del rio Illpa varían entre 0 y 0.23, clasificándose según Renard et al. (1997) como menores para los Litosoles y moderados para los Andosoles Húmicos. Esta clasificación indica una alta resistencia de estos suelos al desgaste. Según estos personajes, una superficie es mayor susceptible al degaste de acuerdo al factor K es mayor a 0.4 tn*ha*h/ha*MJ*mm, moderadamente susceptible cuando el valor de K oscila entre 0.20 y 0.4 tn*ha*h/ha*MJ*mm, y poco susceptible cuando oscila entre 0.05 y 0.2 tn*ha*h/ha*MJ*mm.

En la cuenca del río Illpa, se identificaron dos tipos de suelo, Litosoles y Andosoles Húmicos, además de cuerpos de agua como la laguna Umayo. El valor de 0.19 representan a los Litosoles con un 56.83% del área de estudio, mientras que el valor de 0.23 representa a los Andosoles Húmicos con un 41.23%, mientras que los cuerpos de agua (laguna Umayo) toman un valor de 0 y ocupan 1.94% de la cuenca. En la figura 36 se presenta el modelo espacial mediante model builder del procedimiento realizado para hallar el mapa del factor K, mientras que en el anexo 11 se aprecia la clasificación del factor K.

La distribución de la superficie según los datos del factor K en la cuenca hidrográfica del río Illpa se detalla en la tabla 26, mientras que el anexo 11 presenta el mapa de los tipos de suelo presentes en la zona de estudio. El mapa del factor de erodabilidad o factor K se puede apreciar en la figura 37.

Tabla 26

N°	Tipo de suelo	Símbolo	Factor K	Área (km²)	Área (%)
1	Litosoles	Ι	0.19	717.41	56.83
2	Andosoles Húmicos	Th	0.23	520.41	41.23
3	Cuerpos de agua	WR	0	24.45	1.94
	TOTAL			1,262.27	100.00

Distribución de superficie del factor K en la cuenca del río Illpa

Nota: la tabla muestra la distribución de superficie del factor K

Donde:

I: Lithosols o litosoles se definen como un tipo de suelo que se encuentra en laderas abruptas y rocas expuestas, caracterizados por su delgada capa de suelo, que tiene un espesor inferior a 10 cm y generalmente alberga una vegetación de baja altura.

Th: Andosoles Húmicos (estos suelos, de origen volcánico, se caracterizan por ser de color oscuro y altamente porosos. Se forman a partir de cenizas y otros materiales volcánicos, y se distinguen por su alto contenido de materia orgánica, que alcanza aproximadamente el 20%, así como por su destacada capacidad de retención de agua).

Recopilación de información de la plataforma 'SoilGrids':

Se obtuvo las capas de limos, arenas, arcillas y carbono orgánico y las procesamos en QGIS, se realiza un ajuste de coordenadas a UTM 19S y recorte del área de estudio. Se realizó la conversión de las capas ráster a porcentaje mediante model builder, para posteriormente obtener su valor promedio.

La tabla 27 presenta el porcentaje de arcilla, carbono, arena y limo en la cuenca del río Illpa, según los datos proporcionados por SoilGrids.

Tabla 27

Estadísticas	Arena (%)	Limo (%)	Arcilla (%)	Carbono Orgánico (%)
Mínimo	0	0	0	0
Máximo	54.24	49.03	31.22	6
Promedio	41.87	33.18	21.83	4.59
Desviación Estándar	8.56	6.66	4.7	0.94

Porcentaje de arena, limo, arcilla y carbono orgánico según SoilGrids

Nota: la tabla muestra el porcentaje de arena, limo, arcilla y carbono orgánico

Recopilación de información del mapa digital de suelos del mundo

(FAO):

Se obtuvo los siguientes tipos de suelos y el porcentaje de arcilla, carbono orgánico, arena y limo establecido por unidad de suelo según la FAO, ver la tabla 28.

Tabla 28

Porcentaje de limo, arena, arcilla y carbono orgánico según la FAO

Símbolo de unidad de suelo	Arena (%)	Limo (%)	Arcilla (%)	Carbono Organico (%)
Ι	58.9	16.2	24.9	0.97
TH	41	41.3	17.7	7.03

Nota: la tabla muestra el porcentaje de limo, arena, arcilla y carbono orgánico

La tabla 29 resume el promedio de los resultados obtenidos de "SoilGrids" y los de la FAO en relación con el porcentaje de limos, arenas, arcillas y carbono orgánico para cada tipo de suelo identificado en el área de estudio.

La tabla 32 muestra la estadística descriptiva para el factor de erodabilidad,

a partir de la muestra 3.

Nota: la figura muestra el modelo espacial en model builder para hallar el factor K

Tabla 29

Símbolo	Tipo de Suelo	Arena (%)	Limo (%)	Arcilla (%)	Carbono Orgánico (%)
Ι	Litosoles	50.39	24.69	23.37	2.78
Th	Andosoles Húmicos	41.44	37.24	19.77	5.81

Promedio de valores para limo, arena, arcilla y carbono orgánico

Nota: la tabla muestra el promedio de valores para limo, arena, arcilla y carbono orgánico

Se aplicó la fórmula de Neitsch et al. (2000) y Williams (1995) para obtener el valor del factor K, tal como se muestra en la tabla 30. La tabla 31 muestra la distribución de superficie según los rangos del factor K en la cuenca del río Illpa, mientras que la figura 38 muestra la distribución en porcentajes según los rangos del factor K en la cuenca del río Illpa.

Tabla 30

Asignación del valor del factor K

Símbolo	Tipo de Suelo	f(csand)	f(cl-si)	f(orgc)	f(hisand)	Factor K
Ι	Litosoles	0.31	0.82	0.75	1.00	0.19
Th	Andosoles Húmicos	0.35	0.88	0.75	1.00	0.23
M (1. (.1.)	1	1 .1. 1.1.0	I II			

Nota: la tabla muestra la asignación del valor del factor K

Tabla 31

Distribución de superficie según los rangos del factor K

Rango	K (tn*ha*h/ha*MJ*mm)	Valor factor K	Área (km ²)	Área (%)
Bajo	0.05 - 0.2	0.19	717.41	56.83
Moderado	0.2 - 0.4	0.23	520.41	41.23
Laguna Umayo	0	0	24.45	1.94
	TOTAL		520.41 24.45 1,262.27	100
Nota: la tabla n	nuastra la distribución da suporficia s	agún los rangos dal fa	ator K	

Nota: la tabla muestra la distribución de superficie segun los rangos del factor K

Nota: la figura muestra la distribución espacial del factor K en la cuenca del río Illpa

Distribución en porcentajes según los rangos del factor K

Nota: la figura muestra la clasificación del factor K en la cuenca del río Illpa

La media de los datos es de aproximadamente 0.204, esto sugiere que, en promedio, los valores están alrededor de este punto. La mediana es de aproximadamente 0.190, este valor indica que el 50% de los datos se encuentran por encima de este punto y el 50% por debajo. La moda es de aproximadamente 0.190 es el valor que ocurre con mayor frecuencia en los datos (ver figura 40).

La curtosis es de aproximadamente 23.557, este valor extremadamente alto indica que la distribución tiene colas pesadas en comparación con una distribución normal. Puede haber valores atípicos extremadamente altos en los datos. El coeficiente de asimetría es de aproximadamente -3.692, un valor negativo indica que la cola izquierda es más larga o gruesa, y la mayor concentración de valores está en el lado derecho (ver figura 39). La tabla 32 muestra la estadística descriptiva para el factor de erodabilidad.

Tabla 32

ESTADÍSTICA DESCRIPTIVA	VALOR	UNIDAD
Media	0.204	tn*ha*h/ha*MJ*mm
Error típico	0.002	tn*ha*h/ha*MJ*mm
Mediana	0.190	tn*ha*h/ha*MJ*mm
Moda	0.190	tn*ha*h/ha*MJ*mm
Desviación estándar	0.030	tn*ha*h/ha*MJ*mm
Varianza de la muestra	0.001	tn*ha*h/ha*MJ*mm
Curtosis	23.557	Adimensional
Coeficiente de asimetría	-3.692	Adimensional
Rango	0.23	tn*ha*h/ha*MJ*mm
Mínimo	0	tn*ha*h/ha*MJ*mm
Máximo	0.23	tn*ha*h/ha*MJ*mm
Suma	78.170	tn*ha*h/ha*MJ*mm
Cuenta	384	Adimensional
Mayor (1)	0.23	tn*ha*h/ha*MJ*mm
Menor (1)	0	tn*ha*h/ha*MJ*mm
Nivel de confianza (95.0%)	0.003	Adimensional

Estadística descriptiva para el factor de erodabilidad

Nota: la tabla muestra la estadística descriptiva para el factor K, a partir de la muestra 3. Fuente: elaboración propia

Figura 39

Histograma y diagrama de densidad de la muestra 3

Nota: la figura muestra el histograma y diagrama de densidad de la muestra 3. Fuente: datos obtenidos del software R

Diagrama de caja y bigotes de la muestra 3

Diagrama de Caja y Bigotes

Nota: la figura muestra el diagrama de caja y bigotes de la muestra 3. Fuente: datos obtenidos del software R

4.4. RESULTADOS PARA EL FACTOR DE COBERTURA VEGETAL

Imágenes Landsat 8

Para la presente investigación, se emplearon un total de 20 imágenes provenientes del satélite Landsat 8, distribuidas equitativamente entre 10 capturas realizadas durante la temporada húmeda y 10 durante la temporada seca. Estas imágenes fueron adquiridas a través del Servicio Geológico de Estados Unidos (USGS), una entidad gubernamental dedicada a la investigación científica. El

acceso a las imágenes se llevó a cabo utilizando la plataforma gratuita USGS Earth

Explorer, cuya interfaz y procedimiento se detallan en la figura 41.

Figura 41

Obtención de las imágenes Landsat 8

Nota: las imágenes Landsat 8 fueron obtenidas de Earth Explorer - USGS

Corrección atmosférica DOS1

Se realizo la corrección atmosférica de las imágenes con el software Qgis v.3.28.2, a partir de la herramienta SCP (Semi-Automatic Classification Plugin), una vez dentro de este software para poder realizar la corrección atmosférica de Landsat se accedió a la sección Preprocesamiento de SCP y se comenzó a incorporar las bandas de trabajo desde la pestaña específica de Landsat. Se indicó la ruta donde se encuentran las bandas y la ruta donde se encuentra el archivo de metadatos de Landsat. Dentro de las funciones de procesado se eligió la opción Aplicar corrección atmosférica DOS1. La figura 42 muestra el proceso para la corrección atmosférica por el método DOS1. Se procesaron las 20 imágenes

Landsat y se obtuvo la corrección atmosférica de todas las bandas, de las cuales

solo se usaron las bandas 4 y 5 para hallar el NDVI.

Figura 42

Corrección atmosférica de las imágenes Landsat 8

💣 Juego de bandas	Conversión a reflectancia TOA y Temperatura	de Brillo									
Basic tools	Directorio conteniendo bandas Landsat: Di/TESIS/Prueba Nº 06 Curso Onlin					a Facebook/S. FACTOR C/IMAGENES LANDSAT 8/VIDEO YOUTUBE					
Download products	Andrew Aller										
+ Preprocesamiento	Select MTL file										
ASTER	 Temperatura de brillo en Celsius 										
GOES	Aplicar la corrección atmosférica DOS1								Use value as NoData 0		
Landsat	T Benfrer and beneric finder 7 and										
MOUIS	 Realizar panasarpening (condiac 7 d 8) 										
Sentinel 3	Crear Juego de Bandas y utilizar sus herrar	nientas 🗸 Add bands in	a new Band set								
Sentinel 2	Metadatos		and the second se								
Recortar militinles rásters	Sabélite LANDSAT_8 Date (YYYY-M#+DD) 2019-08-01				Eleveción del Sol	44.50689786	Distancia	Tierra-Sol 1.0150472			
Scloud masking	Banda	PADIANCE MURT	PADIANCE ADD	REFECTANCE MUST		DD RADIANCE MANINE	A CELECTANCE MANAGE	KI CONSTANT	K2 CONSTANT		
Mosaic band sets	1 1008 1178 002071 20190801 2019	1 21865-02	-60.92129	200006-05	-0.100000	727.605.12	1 210700	KI_CONSIMIT	NZ_CONSTRAT		
Neighbor pixels	2 1000 1170 002071 20100001 2010	3 34305 04	0.10000	200002-03	-0.100000	22.00100	1.210700	774 0053	12210700		
Reproject raster bands	2 1005_0117_002071_20190801_2019	3.34205.04	0.10000			22.00100		//4.0033	1321.0762		
👫 Separar bandas räster	3 0.08_0119_002071_20190801_2019	3.34202-04	0.10000	A DEBOT OF	0.000000	22.00180	1 340303	400.0003	1201.1942		
Stack raster bands	4 EC06_E11P_0020/1_20190801_2019	1.24/96-02	-62.39438	20000E-05	-0.100000	/55.40881	1.210/00				
Vectorial a räster	5 LC08_L11P_0020/1_20190801_2019	1.14998-02	-57,49589	2.0000E-05	-0.100000	696.10278	1.210/00				
Band processing	6 LC08_L1TP_0020/1_20190801_2019	9.6968E-03	-48.48377	2.0000E-05	-0.100000	586.99304	1.210700				
Postprocesamiento	7 LC08_L1TP_002071_20190801_2019	5.9339E-03	-29.66965	2.0000E-05	-0.100000	359.21048	1.210700				
Calculadora de Bandas	8 LC08_L1TP_002071_20190801_2019	1.4757E-03	-7.37857	2.0000E-05	-0.100000	89.33238	1.210700				
En Lotes	9 LC08_L1TP_002071_20190801_2019	4.9739E-04	-2.48697	2.0000E-05	-0.100000	30.10979	1.210700				
Configuracion	10 LC08_L1TP_002071_20190801_2019	1.0974E-02	-54.87029	2.0000E-05	-0.100000	664.31458	1.210700				
Manual del Usuario	11 LC08_L1TP_002071_20190801_2019	2.3191E-03	-11.59557	2.0000E-05	-0.100000	140.38760	1.210700			10	
Support the SCP											
	4 Ejecular							_	BATCH O RUN	>	

Nota: la corrección atmosférica se realizó en el software libre QGIS v.3.28.2

Mosaico de imágenes

Se realizó el mosaico de las escenas 002/071 y 003/071 que abarca la cuenca del río Illpa, una vez realizado el mosaico de imágenes se realiza el recorte del área de interés para hallar el NDVI anual.

Con la finalidad de aumentar la capacidad de distinguir entre las diferentes categorías de usos de la tierra y consolidar un conjunto extenso de variables en un grupo más compacto, se empleó el NDVI, el cual se calculó anualmente desde el año 2015 hasta el año 2021, en época húmeda (desde el 22 de setiembre hasta el 20 de marzo) y en época seca (desde el 21 de marzo hasta el 21 de setiembre). La tabla 33 muestra el NDVI promedio multianual para la época seca.

Tabla 33

NDVI Época Seca				
Año	Mín.	Max.	Promedio anual	
2017	-0.322	0.675	0.176	
2018	-0.722	0.820	0.049	
2019	-0.433	0.703	0.135	
2020	-0.452	0.706	0.127	
2021	-0.457	0.746	0.145	
Promedio multianual	-0.477	0.730	0.126	

Promedio multianual del NDVI en época seca

Nota: la tabla muestra el cálculo del NDVI en época húmeda entre los años 2017 y el 2021. Fuente: elaboración propia a partir de imágenes Landsat 8

Posteriormente se realizó un promedio de todas las imágenes ráster (anexo 12). Los valores promedio anuales del NDVI varían entre -0.26 y 0.67, (adimensional) lo que indica que la densidad de vegetación es heterogénea en el lugar de estudio. Se observa que hay áreas con una cobertura vegetal significativa, mientras que otras muestran una cobertura escasa o suelo desnudo. Los datos que están cerca de 0.67 (adimensional) se localizan en las zonas más bajas de la cuenca, en las proximidades de los lechos de los ríos. Por otro lado, las áreas en las laderas y cumbres de montañas de mediana y alta elevación tienen valores de NDVI inferiores a 0. La tabla 34 muestra el NDVI promedio multianual para la época húmeda.

Tabla 34

Promedio multianual del NDVI en época húmeda

NDVI Época Húmeda				
Año	Mín.	Max.	Promedio anual	
2015	-0.46	0.881	0.211	
2016	-0.49	0.851	0.181	
2017	-0.322	0.675	0.176	
2018	-0.492	0.878	0.193	
2021	-0.462	0.82	0.179	
Promedio multianual	-0.445	0.821	0.188	

Nota: la tabla muestra el cálculo del NDVI en época húmeda entre los años 2015-2018 y el 2021. Fuente: elaboración propia a partir de imágenes Landsat 8

Se realizó la clasificación del NDVI en 5 clases: nubes y agua, suelo sin vegetación, vegetación ligera y vegetación alta (López et al., 2015). Para el NDVI en época seca se obtuvo un 1.63% de porcentaje de nubes y agua mientras que para la época húmeda se obtuvo un 1.53%; en la época seca se presentó 0.19% de suelo sin vegetación mientras que en la época húmeda se obtuvo un 0.13%; respecto a la vegetación ligera o escasa, se presentó un porcentaje de 10.7% en la época seca, mientras la época húmeda la supero con un porcentaje de 13.54%; la vegetación mediana o abierta en la época seca fue de 84.7%, mientras la época húmeda fue de 79.06%; y finalmente la vegetación alta o densa tuvo una diferencia visual y significativa, representando para la época seca un porcentaje de 2.79%, mientras que para la época húmeda el porcentaje casi se duplica, alcanzando el 5.73%.

La clasificación del NDVI promedio anual en época seca y húmeda se observa en el anexo 12. En la tabla 35 se puede apreciar la clasificación del NDVI y el porcentaje de área que ocupa respecto a la cuenca del río Illpa.

Tabla 35

Clasificación del NDVI								
	Clasific	cación	Ι	Porcen	itaje de suj	perficie	ocupada	
Clase	Valores del NDVI	Cobertura Vegetal	NDVI É Seca	poca	NDVI É Húme	poca da	NDVI F Anua	P rom al
		C	km²	%	km²	%	km²	%
1	< 0.01	Nubes y agua	20.56	1.63	19.36	1.53	19.64	1.56
2	0.01 - 0.1	Suelo sin vegetación	2.36	0.19	1.68	0.13	1.98	0.16
3	0.1 - 0.2	Vegetación ligera	134.92	10.7	170.97	13.54	150.06	11.89
4	0.2 - 0.4	Vegetación mediana	1,069.22	84.7	997.98	79.06	1,037.57	82.2
5	> 0.4	Vegetación alta	35.2	2.79	72.28	5.73	53.02	4.2
TOTAL			1,262.27	100	1,262.27	100	1,262.27	100

Clasificación del NDVI y porcentaje de área ocupada

Nota: la figura muestra la clasificación del NDVI y porcentaje de área ocupada

Se observa en la figura 43 el mapa de capa vegetal o factor C, obtenida a partir del NDVI promedio anual, los datos del factor C varían entre 0 y 0.50, donde los valores más bajos representan las zonas con mayor cubierta vegetal (coincidiendo con la vegetación alta de la clasificación del NDVI) y los valores más altos las zonas con ausencia de cobertura vegetal (presentes en las zonas más altas o con mayor pendiente).

Los valores de C van desde 0 a 0.49. El valor de 0 pertenece a la laguna Umayo, los valores cercanos a 0 se refieren a áreas con una cobertura densa, como herbazales y zonas de cultivos, lo que indica una buena protección contra la erosión. Por otro lado, los valores que se mostraron de las áreas son bajos índices de protección (valores de C próximos a 1), pertenece a las regiones más elevadas de la cuenca. Esto se da debido a la falta de vegetación y a la presencia de un mayor porcentaje de suelo desnudo en estas áreas.

Para hallar el valor del factor C se hizo un ligero ajuste, mediante la herramienta raster calculator con la siguiente condicional: $Con(``%Factor_C.tif%'', > 0.5,0,"%Factor_C.tif%'')$. Esto para asignarle a los cuerpos de agua un valor de 0.

La figura 44 muestra el model builder para hallar el factor C a partir del NDVI, mientras que la figura 45 muestra el gráfico de barras de la clasificación del NDVI en la cuenca del río Illpa.

Mapa del factor de cobertura vegetal o factor C

Nota: la figura muestra el mapa del factor de cobertura vegetal o factor C

Modelo espacial para hallar factor C a partir del NDVI

Nota: la figura muestra el modelo espacial para hallar el factor C a partir del NDVI

Gráfico de barras de la clasificación del NDVI

Nota: la figura muestra la clasificación del NDVI

Clasificación no supervisada

Los procesos para clasificar de manera no supervisada se realizaron, mediante las herramientas: *ArcToolbox > Spatial Analyst Tools > Multivariate > Iso Cluster Unsupervised Classification*. A partir de esta categorización, se generaron cinco clases. En el anexo 12, se presentan los resultados de la clasificación no supervisada.

La ejecución de la clasificación conlleva ciertos errores, principalmente en la identificación de pajonales y bofedales. Así mismo, no se logró establecer todas las clases en su totalidad. A pesar de estas limitaciones, esta clasificación desempeñó un papel fundamental, junto con la interpretación visual, para avanzar hacia la clasificación supervisada.

La tabla 36 muestra los tipos de cubiertas vegetales y el porcentaje de área que ocupan en la cuenca del río Illpa de la clasificación no supervisada. En la figura 46 se aprecia el model builder para hallar la clasificación no supervisada,

mientras que la figura 47 muestra el gráfico circular de la clasificación no

supervisada.

Tabla 36

Tipos de cubierta vegetal (clasificación no supervisada)

Clasificación No Supervisada				
N°	Clase de cobertura vegetal	Área (km²)	Área (%)	
1	Cultivos agrícolas	98.36	7.79	
2	Pastizales y herbazales	253.21	20.06	
3	Pajonal andino	578.54	45.83	
4	Suelos con escasa y sin vegetación	311.92	24.71	
5	Cuerpos de agua	20.24	1.60	
	TOTAL	1.262.27	100.00	

Nota: la tabla muestra el tipo de cubierta vegetal (clasificación no supervisada). Fuente: elaboración propia a partir de datos extraídos de QGIS

Figura 46

Modelo espacial para hallar la clasificación no supervisada

Nota: la figura muestra el modelo espacial de la clasificación no supervisada

Gráfico circular de la clasificación no supervisada

Nota: la figura muestra el grafico circular de la clasificación no supervisada

Clasificación supervisada

Como resultado de la clasificación supervisada, se generó el mapa de cobertura vegetal, el cual se presenta en el anexo 12. Se observa que la mayor parte de la imagen está representada por la categoría de herbazal denso, con un porcentaje del 36.34% para ichu y del 32.92% para crespillo, respectivamente, seguida por áreas de cultivos transitorios con un 14.13%, la tierra desnuda está presente con un porcentaje de 13%.

Las áreas que cubre el tejido urbano continuo se presentan con un 0.18%, hay presencia de chilligua con un porcentaje de ocupación de 0.30%, mientras que las áreas que pertenecen al herbazal chiji, representan un 1.45%, por otro lado, las lagunas y lagos se encuentran con un 1.68%. Las áreas con tierras desnudas serán las más susceptibles a los agentes causantes de erosión. La figura 48 muestra el

modelo espacial para hallar la clasificación supervisada, mientras que la figura 49

muestra el gráfico circular de la clasificación no supervisada.

Figura 48

Modelo espacial para hallar la clasificación supervisada

Nota: la figura muestra el modelo espacial para hallar la clasificación supervisada

Figura 49

Gráfico circular de la clasificación supervisada

Nota: la figura muestra el grafico circular de la clasificación supervisada

Tabla 37

	Clasificación Supervisada (Metodología Corine Land Cover para Perú)				
N°	Código	Clase	Área (km²)	Área (%)	
1	1.1.1.	Tejido urbano continuo	2.21	0.18	
2	2.1.	Cultivos transitorios	178.31	14.13	
3	3.3.1.1.3.	Herbazal denso (crespillo)	415.58	32.92	
4	3.3.1.1.4.	Herbazal denso (ichu)	458.73	36.34	
5	4.1.1.5.	Herbazal denso (chilligua)	3.72	0.30	
6	4.1.1.6.	Herbazal denso (chiji)	18.33	1.45	
7	3.4.3.	Tierras desnudas (áreas erosionadas naturales y degradadas)	164.12	13.00	
8	5.1.2	Ciénagas naturales permanentes, lagunas, lagos	21.26	1.68	
		TOTAL	1,262.27	100.00	

Cubiertas vegetales (clasificación supervisada)

Nota: la tabla muestra las cubiertas vegetales (clasificación supervisada). Fuente: elaboración propia a partir de resultados de mapas

La tabla 37 muestra las variedades de capa vegetal según la clasificación supervisada en la cuenca del río Illpa, mientras que la tabla 38 muestra los valores del factor C en base a la clasificación supervisada.

Tabla 38

Valores del factor C

	Cálculo de los valores del fa	ctor C		
Nº	Clasificación por la metodología Corine Land	Valores	C (Adime	nsional)
IN ²	Cover para Perú	Mínimo	Máximo	Factor C
1	Tejido urbano continuo	0.375	0.500	0.438
2	Cultivos transitorios	0.163	0.346	0.255
3	Herbazal denso (crespillo)	0.346	0.375	0.361
4	Herbazal denso (ichu)	0.375	0.400	0.388
5	Herbazal denso (chiji)	0.163	0.500	0.332
6	Herbazal denso (chilligua)	0.163	0.375	0.269
7	Tierras desnudas (áreas erosionadas naturales y	0.400	0.500	0.450
/	degradadas)	0.400	0.300	0.430
8	Ciénagas naturales permanentes, lagunas, lagos	0.000	0.000	0.000

Nota: la tabla muestra los valores del factor C. Fuente: elaboración propia a partir de resultados de mapas

El mapa de la clasificación supervisada se realizó con visitas a campo que se presentan en el panel fotográfico anexo 2, donde se logró identificar mejor los distintos tipos de cobertura presente en el área de estudio.

La tabla 39 muestra la estadística descriptiva para el factor de cobertura vegetal a partir de la muestra 4.

La media de los datos es de aproximadamente 0.366, esto sugiere que, en promedio, los valores están alrededor de este punto. La mediana es de aproximadamente 0.375, este valor indica que el 50% de los datos se encuentran por encima de este punto y el 50% por debajo. La moda es de aproximadamente 0, es el valor que ocurre con mayor frecuencia en los datos (ver figura 51).

Tabla 39

ESTADÍSTICA DESCRIPTIVA	VALOR	UNIDAD
Media	0.366	Adimensional
Error típico	0.003	Adimensional
Mediana	0.375	Adimensional
Moda	0.000	Adimensional
Desviación estándar	0.053	Adimensional
Varianza de la muestra	0.003	Adimensional
Curtosis	28.036	Adimensional
Coeficiente de asimetría	-4.485	Adimensional
Rango	0.451	Adimensional
Mínimo	0.000	Adimensional
Máximo	0.451	Adimensional
Suma	140.610	Adimensional
Cuenta	384	Adimensional
Mayor (1)	0.451	Adimensional
Menor (1)	0.000	Adimensional
Nivel de confianza (95.0%)	0.005	Adimensional

Estadística descriptiva para el factor de cobertura vegetal

Nota: la tabla muestra la estadística descriptiva para el factor C, a partir de la muestra 4. Fuente: elaboración propia

La curtosis es de aproximadamente 28.036, este valor extremadamente alto indica que la distribución tiene colas pesadas en comparación con una distribución normal. Puede haber valores atípicos extremadamente altos en los datos. El coeficiente de asimetría es de aproximadamente -4.485, un valor negativo indica que la cola izquierda

es más larga o gruesa, y la mayor concentración de valores está en el lado derecho (ver figura 50). La tabla 39 muestra la estadística descriptiva para el factor de cobertura vegetal.

Figura 50

Histograma y diagrama de densidad de la muestra 4

Nota: la figura muestra el histograma y diagrama de densidad de la muestra 4. Fuente: datos obtenidos del software R

Diagrama de caja y bigotes de la muestra 4

Diagrama de Caja y Bigotes

Nota: la figura muestra el diagramade caja y bigotes para la muestra 4. Fuente: datos obtenidos del software R

4.5. INTEGRACIÓN DE FACTORES

La figura 53 se observa los resultados de la erosión hídrica actual de la cuenca del río Illpa en términos espaciales, mientras que en la figura 54 se observa la clasificación de la erosión actual según los parámetros de la FAO. Los valores porcentuales y las áreas correspondientes se detallan en la tabla 40. Los porcentajes de los niveles de desgaste hídrica actual se presentan en la figura 52.

Tabla 40

Grado de erosión	Pérdida (tn/ha*año)	Área (km ²)	Área (%)
Erosión Baja	< 5	226.43	17.94
Erosión Moderada	5 - 25	344.96	27.33
Erosión Media	25 - 50	137.46	10.89
Erosión Alta	50 - 100	255.96	20.28
Erosión muy Alta	100 - 200	264.2	20.93
Erosión Crítica	> 200	33.26	2.63
TOTAL		1,262.27	100

Clasificación del grado de erosión hídrica actual

Nota: la tabla muestra la clasificación de la erosión hídrica en la cuenca Illpa según la FAO

La erosión actual se obtuvo al multiplicar los factores R, K, LS, P y C. Los resultados indican que en la cuenca del río Illpa, la mayor parte del territorio se clasifica como erosión moderada y baja, representando el 27.33% y el 17.94% del área total, lo que corresponde a 344.96 km² y 226.43 km², respectivamente. Estas categorías predominan principalmente en las zonas más bajas de la cuenca. En contraste, la erosión crítica abarca el porcentaje mínimo de superficie, con un 2.64%, equivalente a 33.26 km², distribuyéndose particularmente en las partes altas de las cuencas. Se puede apreciar en la parte media de la cuenca se puede apreciar erosión media, alta y muy alta con un porcentaje de territorio de 10.89%, 20.28% y 20.93%; que representan un área de 137.46 km², 255.96 km² y 264.20 km².Los valores encontrados definen que la pérdida de superficie es más pronunciada en lugares con pendientes más empinados y una menor cubierta de vegetación. En contraste, las áreas con pérdida de suelo nula o mínima se encuentran en terrenos con pendientes muy suaves y/o una vegetación abundante y saludable.

Niveles de erosión hídrica actual de la cuenca del río Illpa

Nota: la figura muestra los niveles de erosión hídrica actual de la cuenca del río Illpa

En lo que respecta a los valores máximos y mínimos de disminución de suelo identificados en la cuenca del río Illpa, en la situación actual, el valor más alto alcanza aproximadamente 11,536.30 toneladas por hectárea por año y se localiza en una pequeña área de la cuenca. Por otro lado, el valor más bajo registrado para la pérdida de suelo es de 0 toneladas por hectárea por año, y se presenta en áreas con pendientes nulas y superficie cubierta por masas de agua, como es el caso del tipo de la Laguna Umayo en nuestra área de estudio.

Mapa de la erosión hídrica actual en la cuenca del rio Illpa

Nota: la figura muestra la distribución espacial de la erosión hídrica actual

Clasificación de la erosión hídrica actual en la cuenca del rio Illpa

Nota: la figura muestra la clasificación de la erosión hídrica actual en la cuenca Illpa

La tabla 41 muestra la estadística descriptiva del mapa de erosión hídrica actual de la cuenca del río Illpa a partir de la muestra 5.

La media de los datos es de aproximadamente 58.928, esto sugiere que, en promedio, los valores están alrededor de este punto. La mediana es de aproximadamente 37.343, este valor indica que el 50% de los datos se encuentran por encima de este punto y el 50% por debajo. La moda es de 0.000, es el valor que ocurre con mayor frecuencia en los datos (ver figura 56).

Tabla 41

Estadística descriptiva para el mapa de erosión hídrica actual

Media	58.928	tn/ha*año
Error típico	3.051	tn/ha*año
Mediana	37.343	tn/ha*año
Moda	0	tn/ha*año
Desviación estándar	59.781	tn/ha*año
Varianza de la muestra	3,573.788	tn/ha*año
Curtosis	0.848	Adimensional
Coeficiente de asimetría	1.08	Adimensional
Rango	317.524	tn/ha*año
Mínimo	0	tn/ha*año
Máximo	317.524	tn/ha*año
Suma	22,628.197	tn/ha*año
Cuenta	384	Adimensional
Mayor (1)	317.524	tn/ha*año
Menor (1)	0	tn/ha*año
Nivel de confianza (95.0%)	5.998	Adimensional

ESTADÍSTICA DESCRIPTIVA VALOR UNIDAD

Nota: la tabla muestra la estadística descriptiva para el mapa de la erosión hídrica actual, a partir de la muestra 5. Fuente: elaboración propia

La curtosis es de aproximadamente 0.848, este valor indica la forma de la distribución de los datos. En este caso, la distribución es más "puntiaguda" en comparación con una distribución normal. El coeficiente de asimetría es de

aproximadamente 1.080, un valor positivo indica que la cola derecha es más larga o

gruesa, y la mayor concentración de valores está en el lado izquierdo (ver figura 55).

Figura 55

Histograma y diagrama de densidad de la muestra 5

Nota: la figura muestra el histograma y diagrama de densidad de la muestra 5. Fuente: datos obtenidos del software R

Diagrama de caja y bigotes de la muestra 5

Diagrama de Caja y Bigotes

Nota: la figura muestra el diagrama de caja y bigotes de la muestra 5. Fuente: datos obtenidos del software R

4.6. PRUEBA DE HIPÓTESIS

Se realizó un muestreo aleatorio simple, del cual se obtuvo cinco (05) muestras, los primeros cuatro (04) para realizar la prueba de hipótesis de cada objetivo específico y la quinta (05) muestra para analizar el resultado final que es el mapa de erosión hídrica actual en la cuenca del río Illpa, se calculó el tamaño de muestra mediante la fórmula de Sucasaire (2022), para una variable cuantitativa y una población finita, por lo cual en el presente estudio se obtuvo 5 muestras con 384 observaciones por cada muestra.

La elección del test de normalidad se da en base al número de observaciones, cuando el tamaño de la muestra es mayor a 50 observaciones es equivalente al test de Kolmogórov-Smirnov (C. Flores & K. Flores, 2021).

4.6.1. Prueba de normalidad para las muestras

Supuesto de Normalidad

Paso 1: Formulación de la hipótesis de Normalidad

Ho: Los datos siguen una distribución normal.

Ha: Los datos no siguen una distribución normal.

Paso 2: Nivel de significancia

 $NC = 0.95 \circ 95\%$

 α = 0.05 o 5% (margen de error)

Paso 3: Test de Normalidad

Si n > 50 se aplica Kolmogórov–Smirnov

Se obtuvo la normalidad de las variables, mediante Kolmogórov-Smirnov, debido a que el tamaño de muestra es superior a 50 (n > 50).

Paso 4: Criterio de decisión

Si p-valor ≥ 0.05 se acepta la Ho y se rechaza la Ha

Si p-valor < 0.05 se rechaza la Ho

Paso 5: Resultados y conclusión

La tabla 42 se obtuvo de datos extraídos del software R y mediante la prueba de normalidad se demuestra si los datos de las muestras tienen distribución normal o sesgada.

Tabla 42

Prueba de normalidad para todas las muestras

PRUEBA DE NORMALIDAD DE KOLMOGÓROV-SMIRNOV			
Muestra	Estadístico	gl	Sig.
Factor R	0.170	384	0.000
Factor LS	0.173	384	0.000
Factor K	0.315	384	0.000
Factor C	0.148	384	0.000

Nota: datos obtenidos del software R

La tabla 42 muestra que el p-valor para las 4 muestras es de 0.000.

Paso 6: Decisión estadística

Como p-valor = $0.000 < \alpha = 0.05$, se rechaza la Ho y se acepta la H1.

El factor R no tiene una distribución normal, presenta una distribución no

simétrica.

El factor LS no tiene una distribución normal, presenta una distribución no simétrica.

El factor K no tiene una distribución normal, presenta una distribución no simétrica.

El factor C no tiene una distribución normal, presenta una distribución no simétrica.

Conclusión estadística:

Los datos de las 4 muestras no tienen una distribución normal y dada la naturaleza de la investigación para realizar las pruebas de hipótesis específicas se determina usar una técnica estadística no paramétrica, y la prueba estadística que mejor se adecua a la investigación es la prueba de Wilcoxon para una muestra.

4.6.2. Prueba de hipótesis para objetivo específico 1

Paso 1: Formulación de la hipótesis

Ho = La mediana del factor de erosividad en la cuenca del río Illpa es igual a 50 megajulios por milímetro dividido por hectárea por hora por año.

Ha = La mediana del factor de erosividad en la cuenca del río Illpa es diferente de50 megajulios por milímetro dividido por hectárea por hora por año.

Paso 2: Nivel de significancia

 $NC = 0.95 \circ 95\%$

 α = 0.05 o 5% (margen de error)

Paso 3: Criterio de decisión

Si p-valor ≥ 0.05 se acepta la Ho y se rechaza la Ha

Si p-valor < 0.05 se rechaza la Ho

Paso 4: Resultados y conclusión

La tabla 43 se obtuvo de datos extraídos del software R y mediante la prueba de Wilcoxon para una muestra se demuestra el valor del p-valor o significancia.

Tabla 43

Prueba de Wilcoxon para una muestra para la hipótesis específica 1

Prueba de Wilcoxon para una muestra		
Hipótesis nula	Mediana de $R = 50$	
Nivel de significancia	0.05	
Estadístico de prueba (V)	73,920	
p-valor	0.0000000000000022	
Decisión	Se rechaza la hipótesis nula	
lota: la tabla muestra el resumen de l	a prueba de Wilcoxon para una muestra para la hipót	

Nota: la tabla muestra el resumen de la prueba de Wilcoxon para una muestra para específica 1. Fuente: Datos obtenidos de software R

Paso 5: Decisión estadística

Como p-valor = $2.2e-16 < \alpha = 0.05$, se rechaza la Ho y se acepta la Ha.

Interpretación:

En vista que el p-valor obtenido (p-valor = $2.2e-16 < \alpha = 0.05$), se rechaza

la hipótesis nula (Ho) a un nivel de significancia del 5%. Hay evidencia estadística

para afirmar que la mediana del factor de erosividad en la cuenca del río Illpa no

es igual a 50 megajulios por milímetro dividido por hectárea por hora por año.

4.6.3. Prueba de hipótesis para objetivo específico 2

Paso 1: Formulación de la hipótesis

Ho = La mediana del factor topográfico en la cuenca hidrográfica del rio Illpa es

igual a 3 (adimensional).

Ha = La mediana del factor topográfico en la cuenca hidrográfica del rio Illpa es diferente de 3 (adimensional).

Paso 2: Nivel de significancia

NC	=	0.95 o 95%
α	=	0.05 o 5% (margen de error)

Paso 3: Criterio de decisión

Si p-valor ≥ 0.05 se acepta la Ho y se rechaza la Ha

Si p-valor < 0.05 se rechaza la Ho

Paso 4: Resultados y conclusión

La tabla 44 se obtuvo de datos extraídos del software R y mediante la prueba de Wilcoxon para una muestra se demuestra el valor del p-valor o significancia.

Tabla 44

Prueba de Wilcoxon para una muestra para la hipótesis específica 2

Prueba de Wilcoxon para una muestra		
Hipótesis nula	Mediana de $LS = 3$	
Nivel de significancia	0.05	
Estadístico de prueba (V)	27,964	
p-valor	0.00003576	
Decisión	Se rechaza la hipótesis nula	

Nota: la tabla muestra el resumen de la prueba de Wilcoxon para una muestra para la hipótesis específica 2. Fuente: Datos obtenidos de software R

Paso 5: Decisión estadística

Como p-valor = $3.576e-05 < \alpha = 0.05$, se rechaza la Ho y se acepta la Ha.

Interpretación:

En vista que el p-valor obtenido (p-valor = $3.576e-05 < \alpha = 0.05$), se rechaza la hipótesis nula (Ho) a un nivel de significancia del 5%. Hay evidencia estadística para afirmar que la mediana del factor topográfico en la cuenca del río Illpa no es igual a 3 (adimensional).

4.6.4. Prueba de hipótesis para objetivo específico 3

Paso 1: Formulación de la hipótesis

Ho = La mediana del factor de erodabilidad en la cuenca del rio Illpa es igual a 0.1 toneladas por hectárea por hora dividido por hectárea por megajulio por milímetro.

Ha = La mediana del factor de erodabilidad en la cuenca del rio Illpa es diferente de 0.1 toneladas por hectárea por hora dividido por hectárea por megajulio por milímetro.

Paso 2: Nivel de significancia

 $NC = 0.95 \circ 95\%$

 α = 0.05 o 5% (margen de error)

Paso 3: Criterio de decisión

Si p-valor ≥ 0.05 se acepta la Ho y se rechaza la Ha

Si p-valor < 0.05 se rechaza la Ho

Paso 4: Resultados y conclusión

La tabla 45 se obtuvo de datos extraídos del software R y mediante la prueba de Wilcoxon para una muestra se demuestra el valor del p-valor o significancia.

Tabla 45

Prueba de Wilcoxon para una muestra para la hipótesis específica 3

Prueba de Wilcoxon para una muestra		
Hipótesis nula	Mediana de $K = 0.1$	
vel de significancia	0.05	
dístico de prueba (V)	72,780	
p-valor	0.00000000000000022	
Decisión	Se rechaza la hipótesis nula	
Decisión	Se rechaza la hipótesis	

Nota: la tabla muestra el resumen de la prueba de Wilcoxon para una muestra para la hipótesis específica 3. Fuente: Datos obtenidos de software R

Paso 5: Decisión estadística

Como p-valor = $2.2e-16 < \alpha = 0.05$, se rechaza la Ho y se acepta la Ha.

Interpretación:

En vista que el p-valor obtenido (p-valor = $2.2e-16 < \alpha = 0.05$), se rechaza la hipótesis nula (Ho) a un nivel de significancia del 5%. Hay evidencia estadística para afirmar que la mediana del factor de erodabilidad en la cuenca del río Illpa no es igual a 0.1 toneladas por hectárea por hora dividido por hectárea por megajulio por milímetro.

4.6.5. Prueba de hipótesis para objetivo específico 4

Paso 1: Formulación de la hipótesis

Ho = La mediana del factor de cobertura vegetal en la cuenca del rio Illpa es igual

a 0.5 (adimensional).

Ha = La mediana del factor de cobertura vegetal en la cuenca del rio Illpa es diferente de 0.5 (adimensional).

Paso 2: Nivel de significancia

 $NC = 0.95 \circ 95\%$

 α = 0.05 o 5% (margen de error)

Paso 3: Criterio de decisión

Si p-valor ≥ 0.05 se acepta la Ho y se rechaza la Ha

Si p-valor < 0.05 se rechaza la Ho

Paso 4: Resultados y conclusión

La tabla 46 se obtuvo de datos extraídos del software R y mediante la prueba de Wilcoxon para una muestra se demuestra el valor del p-valor o significancia.

Tabla 46

Prueba de Wilcoxon para una muestra		
Hipótesis nula	Mediana de $C = 0.5$	
Nivel de significancia	0.05	
Estadístico de prueba (V)	17	
p-valor	0.00000000000000022	
Decisión	Se rechaza la hipótesis nula	

Prueba de Wilcoxon para una muestra para la hipótesis específica 4

Nota: la tabla muestra el resumen de la prueba de Wilcoxon para una muestra para la hipótesis específica 4. Fuente: Datos obtenidos de software R

Paso 5: Decisión estadística

Como p-valor = $2.2e-16 < \alpha = 0.05$, se rechaza la Ho y se acepta la Ha.

Interpretación:

En vista que el p-valor obtenido (p-valor = $2.2e-16 < \alpha = 0.05$), se rechaza la hipótesis nula (Ho) a un nivel de significancia del 5%. Hay evidencia estadística para afirmar que la mediana del factor de erodabilidad en la cuenca del río Illpa no es igual a 0.5 (adimensional).

4.7. DISCUSIÓN

En relación con la Erosión o degaste Hídrica Actual o Real estimada en la cuenca del río Illpa, se identificó una variabilidad significativa en la pérdida de suelo. Para un área de 33.26 km² clasificada como erosión crítica (2.64% de la superficie total), se registró una pérdida de suelo que osciló entre 200 y 11,536.30 toneladas por hectárea por año. En el caso de la erosión muy alta, abarcando un área de 264.20 km² (20.93% de la superficie total), la pérdida de suelo se situó entre 100 y 200 toneladas por hectárea por año. La erosión alta, que cubre un área de 255.96 km² (20.28% de la superficie total), mostró pérdidas de suelo en el rango de 50 a 100 toneladas por hectárea por año. En

cuanto a la erosión media, que comprende un área de 137.46 km² (10.89% de la superficie total), la pérdida de suelo varió entre 25 y 50 toneladas por hectárea por año.

El valor promedio de desgaste hídrica para toda la cuenca del río Illpa se situó en 58.21 toneladas por hectárea por año. Estos resultados, aunque en algunos casos son similares, inferiores o superiores a investigaciones previas, resaltan la heterogeneidad de las condiciones erosivas en la cuenca. Por ejemplo, comparando con estudios anteriores, se observan diferencias notables; Paco (2022) para la microcuenca del río temporal Escalerani (Puno) estimó una erosión entre 0.005 y 5.65 toneladas por hectárea por año. Escobar-Valdebenito (2019) para la comuna de Punitaqui – Chile estimó la pérdida de suelo actual promedio en alrededor de 22.40 toneladas por hectárea por año. Joyo (2018) en el centro poblado de Pampa Cangallo (Ayacucho) obtuvo un rango de 0.002 a 82.615 toneladas por hectárea por año. Atauje (2018) para la cuenca Huatatas (Ayacucho) determinó la erosión hídrica entre datos de 0 a 125 tn por ha por año. Bautista (2023) para la cuenca del río Zapatilla obtuvo rangos de erosión hídrica entre 1.19 y 125.345 toneladas por hectárea por año. Agama (2022) estimó una erosión real de 0.3204 a 176.3826 toneladas por hectárea por año para la microcuenca San Alberto (Oxapampa). Condori (2018) para la comunidad de San Francisco de Chañajari – Moho (Puno) obtuvo un rango de 49.75 a 201.58 toneladas por hectárea por año. Alvarez (2019) para la subcuenca del río ichu comparó la erosión o desgaste hídrica entre los años 2013 y 2017, obteniendo rangos de 0.46 a 406.98 y 0.39 a 554.36 toneladas por hectárea por año para cada año, respectivamente, concluyendo que hubo una variación extrema entre 2013 y 2017 debido a dos factores fundamentales: la cobertura vegetal y la precipitación pluvial. Castillo & Rojas (2019) para la subcuenca Huancay – Chicama (Libertad y Cajamarca) concluyeron que la tasa de pérdida de suelo para el año 2017 fue del 13.8% en un grado bajo, el 5.0% en grado medio, el 23.5% en un grado alto y el 57.7% en un grado de erosión severo,

reportando un valor máximo de 39,748 toneladas por hectárea por año. En cuanto al valor promedio de erosión, Guío (2019) para la cuenca del Embalse de La Copa – Colombia indicó que la pérdida de suelo en ese sector es superior a 100 toneladas por hectárea por año. Flores (2019) en la cuenca Chancos – Huaraz (Ancash) reportó que las pérdidas medias y máximas de suelos potenciales en el área agrícola son de 38.11 y 198.72 toneladas por hectárea por año, respectivamente, y la disminución total de suelos es de 191,377.37 toneladas por hectárea por año, refiriéndose a la disminución de suelos en toda el área de estudio. Laqui (2019) para la subcuenca del río Callazas (Tacna) estimó la erosión hídrica a nivel conceptual medio y con herramientas GIS, concluyendo que no existe una relación directa entre ellas. Con la metodología conceptual media, se obtuvo un promedio histórico en 50 años (1954-2003) de 108.9 toneladas por hectárea por año, mientras que con la herramienta GIS se obtuvo un valor medio de 64.3 toneladas por hectárea por año. La disparidad en las pérdidas máximas se debe a la consideración de ecuaciones diferentes para cada factor, así como a variaciones en los valores de los factores según el relieve del terreno, clima, altitud y uso del suelo.

Zaragoza (2021), para el poblado de Acoculco – México, examinó el efecto multitemporal del cambio en la cobertura del terreno en relación con el proceso de erosión hídrica durante un lapso de 30 años en dos microcuencas de la región de Acoculco, Puebla. Para la microcuenca C1, se estimaron tasas de erosión de 7.5 tn/ha*año en 1986, 7.8 tn/ha*año en 1996, 11 tn/ha*año en 2000 y 9.8 tn/ha*año en 2018. En cuanto a la microcuenca C2, se calcularon tasas de erosión de 5.5 tn/ha*año en 1986, 6.2 tn/ha*año en 1996, 8.3 tn/ha*año en 2000 y 7.6 tn/ha*año en 2018. Se concluyó que, en ambos casos, el año con la mayor pérdida de suelo registrada fue 2018.

En referencia a la Erosión hídrica potencial en la cuenca del río Illpa, se obtuvieron valores que oscilan entre 0 tn/ha*año y 30,245.70 tn/ha*año, con una tasa promedio para

toda la cuenca de 151.95 tn/ha*año. Se identificaron diferentes categorías de erosión, donde para tasas menores a 5 tn/ha*año se estimó un área de 98.47 km², representando el 7.80% de la superficie total (erosión baja). Para tasas de 5 a 25 tn/ha*año, se calculó un área de 262.89 km², equivalente al 20.83% de la superficie total (erosión moderada). Para tasas de 25 a 50 tn/ha*año, se determinó un área de 149.31 km², abarcando el 11.83% de la superficie total (erosión media). Para tasas de 50 a 100 tn/ha*año, se estimó un área de 128.07 km², representando el 10.15% de la superficie total (desgaste alto). Para tasas de 100 a 200 tn/ha*año, se calculó un área de 203.45 km², que abarca el 16.12% de la superficie total (erosión muy alta). Para tasas de erosión superiores a 200 tn/ha*año, se estimó un área de 420.07 km², constituyendo el 33.28% del área total de la cuenca. Estos resultados presentan variaciones con respecto a lo informado en estudios anteriores. Por ejemplo, en la investigación realizada por Paco (2022) en la microcuenca del río temporal Escalerani en Puno, se registraron tasas de erosión potencial que fluctúan entre 0.38 tn/ha*año y 11.43 tn/ha*año, sumando una estimación total de erosión potencial de 257.60 tn/año. Agama (2022) estimó una erosión potencial de 0.03204 tn/ha*año a 109.79 tn/ha*año para la microcuenca San Alberto (Oxapampa). Joyo (2018) en las zonas agrícolas del centro poblado de Pampa Cangallo (Ayacucho) calculó una erosión hídrica potencial para la cuenca del río Macro en un rango de 0.1367 tn/ha*año a 7,830.0987 tn/ha*año.

Por otra parte, Escobar-Soldevilla (2019) tuvo como propósito mitigar la erosión causada por factores hídricos en la subcuenca del río Ichu en Huancavelica, Escobar propuso la formulación de cuatro escenarios distintos para una mejor diferenciación entre la erosión hídrica potencial y actual. Los resultados obtenidos se presentan de la siguiente manera: En el ESCENARIO 1 (conforme a las clases de severidad establecidas en el estudio de Mesozonificación Ecológica y Económica de 2013 y sin la implementación de

prácticas de conservación), se observó un índice de erosión máximo de 1,329.4 tn/ha*año y un promedio de 22.7 tn/ha*año. Respecto al ESCENARIO 2 (basado en ilustraciones satelitales Sentinel 2B-2018 y sin la aplicación de prácticas de conservación), se registró una tasa de erosión máxima de 1,838.2 tn/ha*año y un índice de erosión promedio de 23.1 tn/ha*año. En el ESCENARIO 3 (utilizando el análisis de la Mesozonificación Ecológica de 2013 y aplicando prácticas de conservación), se anotó un índice de erosión máximo de 1,255.5 tn/ha*año y un índice de erosión medio de 21.7 tn/ha*año. Finalmente, en el ESCENARIO 4 (basado en ilustraciones satelitales Sentinel 2B de 2018 y con la implementación de prácticas de conservación), se adquirió una tasa de erosión máxima de 1,348.9 tn/ha*año y un índice de erosión medio de 22.1 tn/ha*año. Cabe destacar que, Escobar-Valdebenito (2019) para la comuna de Punitaqui – Chile, estimó la pérdida de suelo actual promedio en ese sector en aproximadamente 26.11 tn/ha*año. Se evidencia que cada área de estudio presentó características y condiciones singulares, que varían en función de la topografía, el clima, las prácticas de conservación de suelos, entre otros factores. En consecuencia, bajo cada escenario y metodología aplicada, se obtienen resultados totalmente distintos, subrayando así la singularidad de cada investigación y la necesidad de respetar los resultados y criterios de cada autor en la evaluación de la erosión hídrica.

4.7.1. Discusión objetivo específico 1

En cuanto al Factor R o factor de erosividad en la cuenca del río Illpa, se calcularon valores que fluctúan entre 210.30 y 324.85 Mj*mm/ha*h, mientras que el Índice Modificado de Fournier (IMF) presenta un rango de 86.88 a 114.35 (adimensional). Por otro lado, Paco (2022), en la microcuenca del río temporal Escalerani – Puno, identificó tres zonas con valores para evaluar el Factor R: la primera zona, ubicada desde el área de la ciudad de Puno, presenta valores de

100.75 a 101.20 MJ*mm/ha*h*año, a una altitud de 3,910.000 m.s.n.m.m.; la segunda zona, con valores de 100.37 a 100.74 MJ*mm/ha*h*año, se encuentra a una altitud promedio de 4,100.000 m.s.n.m.m.; y la tercera área, con valores de 99.96 a 100.36 MJ*mm/ha*h*año, está situada a 4,190.000 m.s.n.m.m. Taco (2021), en la cuenca Chamaca – Lima, obtuvo valores que varían desde 11.24 MJ*mm/ha*h*año en la cota de 1,495.000 a 2,000.000 m.s.n.m.m., hasta 101.44 MJ*mm/ha*h*año en la cota de 4,500.000 a 4,800.000 m.s.n.m.m., señalando un aumento del valor del factor R conforme se eleva la altitud de la cuenca. Por su parte, Escobar-Valdebenito (2019), en la comuna de Punitaqui - Chile, informa valores oscilantes entre 87.1693 y 119.086 MJ*mm/ha*h*año; Joyo (2018), en las lugares de agricultura del centro poblado de Pampa Cangallo - Ayacucho, determinó el factor R mediante la técnica IMF, con valores de 108.63 a 120.95 MJ*mm/ha*h*año; Flores (2019), para la cuenca Chancos – Huaraz (Ancash), calculó valores basados en el factor IMF que varían entre 71 y 141 MJ*mm/ha*h*año; Condori (2018), en la comunidad de San Francisco de Chañajari – Moho (Puno), determinó valores entre 121.82 y 151.25 MJ*mm/ha*h*año, mientras que la precipitación media anual registrada por las estaciones meteorológicas de la zona fluctúa entre 813.59 y 952.30 mm.

En otro contexto, para valores semejantes, Alvarez (2019), al estudiar la subcuenca del río Ichu, cuantificó la erosividad de las lluvias para los años 2013 y 2017, obteniendo rangos de 56 a 201 MJ*mm/ha*h*año para el año 2013 y de 42 a 288 MJ*mm/ha*h*año para el año 2017, respectivamente. En el caso de Zaragoza (2021), enfocado en el poblado de Acoculco – México, presenta resultados sobre la agresividad de la lluvia en la zona de estudio, con valores que abarcan desde 179 hasta 327 MJ*mm/ha*h*año durante los cinco años analizados.

En un contexto diferente, para valores superiores, Agama (2022), al investigar la microcuenca San Alberto – Oxapampa, obtuvo intervalos que fluctúan entre 227.85 y 489.48 MJ*mm/ha*h*año. Caycho (2020), al examinar la cuenca del río Huarmey (Ancash), estimó valores que van desde 0 hasta 501.22 MJ*mm/ha*h*año. Bautista (2023), centrado en la cuenca del río Zapatilla (Puno), informa de registros que se sitúan entre 417.106 y 533.522 MJ*mm/ha*h*año. Atauje (2018), al estudiar la cuenca Huatatas – Ayacucho, destaca un valor máximo de 563 MJ*mm/ha*h*año, considerando este dato aceptable debido a las precipitaciones elevadas propias de la región serrana. Castillo y Rojas (2019), investigando la subcuenca Huancay – Chicama, obtuvo resultados que varían entre 6.2 y 598.5 MJ*mm/ha*h*año. Guío (2019), enfocándose en la cuenca del Embalse de La Copa – Colombia, reporta valores que oscilan entre 2,550 y 3,675 MJ*mm/ha*h*año. Por último, Laqui (2019), al analizar la cuenca del río Callazas (Tacna), informa de valores que van desde 250.3 hasta 4,157.5 MJ*mm/ha*h*año.

4.7.2. Discusión objetivo específico 2

En relación con los extremos del factor LS, que representa el componente topográfico, en la cuenca del río Illpa, se observa un rango significativo, con un valor máximo de aproximadamente 524.552 (adimensional) en áreas de pendiente pronunciada, y un valor mínimo de 0.03 (adimensional) en zonas llanas o con menor inclinación. Los componentes independientes del factor L (longitud de la pendiente) varían entre 1 y 72.37 (m), mientras que los relacionados con el factor S (gradiente de la pendiente) oscilan entre 0.03 y 13.96 (%). La pendiente de la cuenca se expresa en grados sexagesimales y va desde 0 hasta 59.38, con equivalencias en radianes que varían de 0 a 1.03. Por otro lado, para valores

inferiores, Condori (2018), en su estudio sobre el degaste hídrica en la comunidad de San Francisco de Chañajari – Moho (Puno), informa que el factor LS en esa región varía entre 0.17 y 25.71 (adimensional), utilizando un Modelo Digital de Elevación (DEM) con una resolución espacial de 12.5 m.

En otro contexto, Caycho (2020), al realizar un estudio en la cuenca del río Huarmey, calcula el factor LS y encuentra un rango de valores que va desde 0.03 hasta 28.5 (adimensional). Las áreas con pendientes más pronunciadas registran valores en el rango de 25.2 a 28.5 (adimensional), abarcando aproximadamente el 12.36% de la superficie total. Por otro lado, el rango más bajo, variando entre 1.50 y 5.60 (adimensional), cubre una superficie menor del 11.66% del área total. Taco (2021), al examinar la cuenca Chamacha (Lima), reporta valores que oscilan entre 1.50 y 28.50 (adimensional) para el factor LS. Guío (2019), enfocado en la cuenca del Embalse de La Copa – Colombia, informa de valores que fluctúan entre 0.5873 y 32.4010 (adimensional). Escobar-Valdebenito (2019), al investigar la comuna de Punitaqui – Chile, presenta valores que varían entre 0 y 38.5078 (adimensional). Laqui (2019), al analizar la subcuenca del río Callazas (Tacna), reporta valores de 0.02 a 47.07 (adimensional). Atauje (2018), al estudiar la cuenca Huatatas (Ayacucho), estima el factor LS en un rango de 0.03 a 85 (adimensional). Flores (2019), al examinar la cuenca Chancos – Huaraz (Ancash), estima el factor LS con un dato mínimo de 0.03, y una media de 4.06 y un máximo de 104.46 (adimensional). Agama (2022), al investigar la microcuenca San Alberto (Oxapampa), presenta valores que oscilan entre 0.030 y 255.66 (adimensional). Zaragoza (2021), al abordar el poblado de Acoculco - México, reporta resultados para el factor LS que se encuentran en un intervalo de 0 a 300 (adimensional).

180

Por otro lado, en el ámbito de valores similares, Escobar-Soldevilla (2019), al explorar la subcuenca del río Ichu en Huancavelica, registró valores del factor LS que se ubicaron en un rango de 0 a 500 (adimensional). Alvarez (2019), también enfocado en la subcuenca del río Ichu (Huancavelica) y realizando su estudio en los años 2013 y 2017, estimó el factor LS en un intervalo que va desde 0.03 hasta 550.7 (adimensional). Asimismo, Castillo & Rojas (2019), al investigar la subcuenca Huancay – Chicama en el año 2017, informa que los valores adimensionales del factor LS oscilaron entre 0.03 y 642.83 (adimensional).

Finalmente, al considerar valores superiores, se destaca el caso de Joyo (2018), quien, al determinar la erosión hídrica en las zonas agrícolas del centro poblado de Pampa Cangallo – Ayacucho, aplicó la ecuación de Renard y obtuvo valores del factor LS que varían desde 0.03 hasta 1,380.742 (adimensional).

En relación con los factores L y S, diversos autores han obtenido resultados distintos. Bautista (2023), al abordar la cuenca del río Zapatilla, reporta un valor de 0.096 m a 139.447 m para el factor L, y un valor de 0.03% a 16.29% para el factor S. Por otro lado, (Paco Arpita, 2022), al investigar la microcuenca del río temporal Escalerani – Puno, determinó que el factor de longitud (L) presenta valores entre 463.57 m hasta 1,453.38 m, mientras que el factor de gradiente de pendiente (S) varía entre 2% y 50%, desde ligeramente inclinada hasta fuertemente empinada.

En lo que respecta a la metodología aplicada en nuestra investigación, y que también ha sido empleada por varios autores consultados, se puede concluir que el enfoque propuesto por Renard et al. (1997) sostiene que los valores más elevados del factor LS se encuentran en áreas caracterizadas por una mayor

longitud y pendiente. Esta observación se debe al hecho de que, a medida que aumenta la longitud, las gotas de lluvia recorren distancias más extensas hasta alcanzar el lugar donde se acumula el flujo junto con el suelo erosionado. Del mismo modo, se evidencia que la disminución de los suelos se incrementa de manera más pronunciada en terrenos con pendientes extremadamente pronunciadas en comparación con el aumento en la distancia de la pendiente.

4.7.3. Discusión objetivo específico 3

En cuanto al factor K o factor de erosionabilidad en la cuenca del río Illpa, se hallaron datos que fluctúan entre 0 y 0.23 tn*ha*h/ha*MJ*mm. El valor de 0.19 corresponde a los Litosoles, abarcando un 56.83% del área de estudio, mientras que el valor de 0.23 representa a los Andosoles Húmicos, ocupando un 41.23% de la superficie. Por otro lado, los cuerpos de agua, como la Laguna Umayo, presentan un valor de 0 y abarcan el 1.94% de la superficie de la cuenca. Los valores del factor K varían en comparación con los informados en los antecedentes consultados, siendo en ocasiones superiores, inferiores o similares.

Para ilustrar valores inferiores, en la subcuenca del río Ichu – Huancavelica, (Escobar-Soldevilla, 2019) aplicando la ecuación de Sharpley & Williams (1990) informa valores que oscilan entre 0.016 y 0.018 tn*ha*h/ha*MJ*mm. Asimismo, en la cuenca Huatatas – Ayacucho, Atauje (2018) presenta valores de K que van desde 0.014 a 0.021 tn*ha*h/ha*MJ*mm. En la cuenca del río Zapatilla (Puno), Bautista (2023) reporta que los valores del factor K están comprendidos entre 0.026 y 0.032 tn*ha*h/ha*MJ*mm. Joyo (2018), al investigar las zonas agrícolas de Pampa Cangallo – Ayacucho, revela que el factor K oscila entre 0.03 y 0.0418 tn*ha*h/ha*MJ*mm. Además, en la

microcuenca San Alberto – Oxapampa (Pasco), Agama (2022) reporta valores entre 0.04035 y 0.04711 tn*ha*h/ha*MJ*mm. Zaragoza (2021), al estudiar el poblado de Acoculco – México, presenta resultados para la erodabilidad del suelo que van desde 0.0073 hasta 0.062 tn*ha*h/ha*MJ*mm. Laqui (2019), al explorar la subcuenca del río Callazas (Tacna), informa valores de K entre 0 y 0.075 tn*ha*h/ha*MJ*mm. Flores (2019), en la cuenca del río Chancos – Huaraz (Ancash), reporta valores para K entre 0.023 y 0.096 tn*ha*h/ha*MJ*mm.

En el contexto de valores similares, Caycho (2020) para la cuenca del río Huarmey (Ancash) informa valores entre 0.06 y 0.17 tn*ha*h/ha*MJ*mm, mientras que Taco (2021) para la cuenca Chamacha – Lima presenta valores que varían desde 0.05 tn*ha*h/ha*MJ*mm 0.34 tn*ha*h/ha*MJ*mm. Escobar-Valdebenito (2019), al investigar la comuna de Punitaqui – Chile, reporta valores que oscilan entre 0.1 y 0.34 tn*ha*h/ha*MJ*mm. En la cuenca del Embalse de La Copa – Colombia, Guío (2019) informa valores que oscilan entre 0 tn*ha*h/ha*MJ*mm y 0.436 tn*ha*h/ha*MJ*mm.

En conclusión, al revisar diversas fuentes bibliográficas, se observan valores superiores para el factor K. Por ejemplo, Castillo & Rojas (2019), al explorar la subcuenca Huancay – Chicama, registra que los valores del factor K varían en el rango de 0.21 a 0.50 tn*ha*h/ha*MJ*mm. Paco (2022), al analizar la microcuenca del río temporal Escalerani – Puno, determina que el factor K ponderado se sitúa en el intervalo de 0.04 a 0.63 tn*ha*h/ha*MJ*mm, con el coeficiente K variando entre 0.05 y 0.08 tn*ha*h/ha*MJ*mm. Condori (2018), al investigar la comunidad de San Francisco de Chañajari Moho – Puno, informa que el factor de erodabilidad (K) fluctúa entre 0.458 y 1.276 tn*ha*h/ha*MJ*mm. Al

inferir que las disparidades en los valores del factor K se deben a las distintas características de suelos presentes en cada zona.

4.7.4. Discusión objetivo específico 4

En relación al factor C o factor de cobertura vegetal en la cuenca del río Illpa, se registraron valores comprendidos entre 0 y 0.49 (adimensional). Estos valores de C se clasifican según distintas categorías, tales como tejido urbano continuo (0.438), cultivos transitorios (0.255), crespillo (0.361), ichu (0.388), chiji (0.332), chilligua (0.269), tierras desnudas (0.45), y lagunas (0). Aunque los valores del factor C fluctúan en un rango de 0 a 1 (adimensional), esta variabilidad concuerda con la información disponible en la literatura. No obstante, es importante destacar que el factor de cobertura vegetal presenta notables variaciones según la región de estudio, ya sea en la costa, sierra o selva.

Como referencia para valores inferiores a los obtenidos en nuestra área de estudio, Agama (2022) para la microcuenca San Alberto - Oxapampa, revela que los valores del factor C varían desde 0.001 en bosque alto hasta 0.25 para cultivos en general. Atauje (2018), al analizar la cuenca Huatatas - Ayacucho, presenta valores de 0.25 para agricultura costera y andina, 0.20 para área urbana, 0.15 para bofedales, y 0.008 para matorral arbustivo. Escobar-Valdebenito (2019) en la comuna de Punitaqui – Chile, informa valores que oscilan entre 1 y 0.26234 (adimensional). Joyo (2018) para las zonas agrícolas del centro poblado de Pampa Cangallo – Ayacucho, establece el factor C en el rango de 0.0001 a 0.4 (adimensional) para toda la cuenca del río Macro. Laqui (2019) para la cuenca del río Callazas - Tacna, obtiene valores desde 0 hasta 0.45 (adimensional), mientras que Taco (2021) para la cuenca Chamacha – Lima, determina el factor C desde un

mínimo de 0.003 (adimensional) para coberturas densas hasta 0.45 (adimensional) para coberturas sin vegetación.

En contraste, para valores similares, se considera la información de autores como Zaragoza (2021) para el poblado de Acoculco – México, quien, mediante la aplicación de la ecuación de Durigon et al. (2014) a imágenes Landsat, reporta que los valores del factor C van de 0 a 0.5 (adimensional), indicando vegetación abundante para valores cercanos a 0 y ausencia o poca vegetación para valores cercanos a 1 (adimensional).

En último término, en cuanto a valores que alcanzan el máximo de 1, se puede referenciar a Escobar-Soldevilla (2019) para la subcuenca del río Ichu – Huancavelica y a Caycho (2020) para la cuenca del río Huarmey (Ancash), quienes concuerdan en sus resultados al obtener valores en el amplio espectro de 0 a 1 (adimensional) para el factor C. Por otro lado Condori (2018) en su estudio para la comunidad de San Francisco de Chañajari – Moho (Puno) informa valores específicos, como 0.001 para bosques, 0.01 para pajonal de ichu, 0.15 para terrenos cultivados y el máximo de 1 para áreas con escasa vegetación. Por otro lado, Alvarez (2019) en la subcuenca del río Ichu, presenta datos empezando 0.014 para áreas forestales, 0.038 para pajonales, 0.050 para bofedales, 0.076 para matorrales y el valor de 1.00 para áreas urbanas, lagunas y zonas sin cobertura vegetal. Guío (2019) en la cuenca del Embalse de La Copa – Colombia, detalla valores oscilantes entre 0 y 1, donde los cuerpos de agua artificiales corresponden a 0, plantación forestal a 0.0055, arbustal abierto a 0.01, mosaico de pastos con espacios naturales a 0.13, mosaico de pastos, cultivos y espacios naturales a 0.435, y el valor para tierras desnudas, degradadas y tejido urbano es de 1. Mientras que, Bautista (2023), en su investigación sobre la erosión hídrica en la cuenca del río

Zapatilla, determina que el Factor C varía de 0.50 a 1 (adimensional), mostrando diferencias significativas respecto al estudio realizado en Illpa, donde los valores fluctuaron entre 0.16 y 0.063 (adimensional), indicando una mayor presencia de cubierta vegetal en la cuenca del río Zapatilla debido a la extensión de zonas de cultivo, valles y humedales.

Al revisar la literatura existente, se evidencia que existen dos enfoques principales para determinar el valor del factor C: la consulta de trabajos previos de otros investigadores y el cálculo a través del Índice de Vegetación de Diferencia Normalizada (NDVI). En la mayoría de las investigaciones revisadas, se prefirió la primera metodología. Sin embargo, calcular el factor C mediante el NDVI también es una aproximación válida, ya que se genera información nueva a partir de imágenes satelitales y se asigna la descripción de la cobertura vegetal mediante la clasificación supervisada, tal como se llevó a cabo en el estudio de la cuenca del río Illpa.

V. CONCLUSIONES

- La erosión hídrica actual en esta cuenca varía entre 0 y 11,536.30 tn/ha*año, con una media de 58.93 tn/ha*año, clasificándose como un nivel de erosión alta según la FAO, superando las pautas de erosión recomendadas por Hill et al. (2015) de 7 tn/ha*año y la FAO de 11.2 tn/ha*año. El valor máximo se registra en la zona más reducida de la cuenca, mientras que el valor mínimo se presenta en áreas sin pendiente y superficies cubiertas de agua, como en el caso de la laguna Umayo.
- En la cuenca del río Illpa, el factor R varía entre 210.304 y 324.85 Mj*mm/ha*h*año, con una media de 289.02 Mj*mm/ha*h*año, una mediana de 289.29 Mj*mm/ha*h*año y el índice modificado de Fournier fluctúa entre 86.884 y 114.352 (adimensional). Se emplearon registros de precipitaciones mensuales y anuales comprendidos entre 1970 y 2012 del SENAMHI. Al referirse al mapa de las distribuciones espaciales de la erosividad de las lluvias en la cuenca del río Illpa, se evidencia una disminución de sur a norte.
- El factor LS en esta cuenca varía entre 0.03 y 524.552 (adimensional), con una media de 2.64 (adimensional) y una mediana de 1.66 (adimensional). Los factores L y S abarcan rangos de 1 a 72.37 m. y 0.03 a 13.96%, respectivamente. Los valores más bajos del factor LS, como 0.03 (adimensional), corresponden a áreas con menor pendiente, mientras que las zonas más empinadas alcanzan valores superiores, llegando hasta 524.55 (adimensional).
- En la cuenca del río Illpa, el factor K oscila entre 0 y 0.23 tn*ha*h/ha*MJ*mm., con una media de 0.20 tn*ha*h/ha*MJ*mm y una mediana de 0.19 tn*ha*h/ha*MJ*mm. Los Litosoles muestran un factor K de 0.19 (adimensional), abarcando el 56.93% del área de estudio, mientras que los Andosoles húmicos tienen un factor K de 0.23 187

tn*ha*h/ha*MJ*mm, ocupando el 41.23% del área. Los cuerpos de agua, representados por la laguna Umayo, obtienen un valor de 0 en el factor K, cubriendo el 1.94% de la cuenca.

 El factor C en la cuenca del río Illpa abarca valores de 0 a 0.49 (adimensional), con una media de 0.37 (adimensional) y una mediana de 0.38 (adimensional). Los valores más bajos representan áreas con gran cobertura vegetal, mientras que los datos más altos indican suelos desnudos o con escasa cobertura vegetal. Estos resultados coinciden con la clasificación del NDVI.

VI. RECOMENDACIONES

- Se recomienda aplicar la metodología LIDAR, ya que es más real, el sistema LIDAR es un sistema de medición y detección de objetos mediate láser con el cual se puede visualizar escaneos de terreno a detalle, visualizar y analizar por reflectancia, alturas, el tipo de vegetación, condiciones de terreno, vegetación baja y maleza, modelos digitales de elevación, etc.
- Se aconseja la instalación de estaciones meteorológicas adicionales en proximidad al área de estudio, con el propósito de obtener resultados más precisos. Para aumentar la exactitud de los cálculos, se sugiere emplear registros de precipitación a nivel diario, mensual y anual. Asimismo, se recomienda recopilar datos pluviométricos durante un período mínimo de 30 años, ya que una mayor recopilación de datos aumenta la probabilidad de obtener resultados más cercanos a la realidad. Este enfoque contribuirá significativamente a lograr una mayor precisión en la determinación del factor R.
- Se recomienda usar modelos digitales de elevación de menor resolución espacial (12.5 metros o menor) y comparar resultados de los valores para el Factor LS, a menor resolución, más precisión, además se recomienda la búsqueda de nuevas instituciones que tengan datos actuales de modelos de elevación digital, esta información es vital para calcular el factor LS.
- Se aconseja llevar a cabo muestreos de suelo en un entorno de laboratorio y comparar los resultados de campo con la información proporcionada por la plataforma "SoilGrids" y los datos del mapa digital de superficies del mundo de la FAO. Los resultados obtenidos en el laboratorio proporcionarán datos concretos para el factor

K.

-

Se sugiere emplear imágenes capturadas por el mismo satélite, manteniendo uniformidad en las resoluciones, priorizando aquellas con mayor precisión y con un índice mínimo de nubosidad. Este enfoque garantizará que los datos obtenidos sean fiables durante el proceso de análisis. se recomienda recopilar datos en época seca y en época húmeda, ya que la unidad de la erosión hídrica se considera en tn/ha*año y un año íntegro cuenta con temporadas de lluvias y de sequía, por lo cual promediar ambos resultados mejorará la precisión del cálculo de este factor, se recomienda usar imágenes satelitales de al menos 5 años atrás y promediarlos para tener mejor confiabilidad, esto nos permite poder analizar de manera más clara los valores del factor C.

VII. REFERENCIAS BIBLIOGRÁFICAS

- Agama Melendez, M. F. (2022). Estimación de los factores que influyen en la perdida de los suelos mediante la USLE en la microcuenca San Alberto del distrito de Oxapampa [Tesis de pregrado, Universidad Nacional Daniel Alcides Carrión]. http://repositorio.undac.edu.pe/handle/undac/2457
- Almagro, A., Thomé, T. C., Colman, C. B., Pereira, R. B., Marcato Junior, J., Rodrigues, D. B. B., & Oliveira, P. T. S. (2019). Improving cover and management factor (C-factor) estimation using remote sensing approaches for tropical regions. *International Soil and Water Conservation Research*, 7(4), 325–334. https://doi.org/10.1016/j.iswcr.2019.08.005
- Alvarez Ticllasuca, A. (2019). Análisis temporal del nivel de la erosión hídrica de la subcuenca del río Ichu 2013 y 2017 [Tesis de maestría, Universidad Nacional de Huancavelica]. <u>http://repositorio.unh.edu.pe/handle/UNH/2603</u>
- Arias-Muñoz, P., Saz, M. A., & Escolano, S. (2023). Estimación de la erosión del suelo mediante el modelo RUSLE. Caso de estudio: cuenca media alta del río Mira en los Andes de Ecuador. *Investigaciones Geográficas*, 79, 207–230. https://doi.org/10.14198/INGEO.22390
- Atauje Camasca, E. (2018). Estimación de la erosión hídrica para la conservación de suelos en la cuenca Huatatas, Ayacucho 2017 [Tesis de pregrado, Universidad Nacional de San Cristóbal de Huamanga].
 http://repositorio.unsch.edu.pe/handle/UNSCH/3534
- Bada Aldave, A. A. (2023). Evaluación de la erosión hídrica, mediante parcelas con clavos de erosión, en función de la pendiente, la cobertura vegetal y precipitación, en Lluñibamba, Jesús, Cajamarca [Tesis de doctorado, Universidad Nacional de Cajamarca]. <u>http://hdl.handle.net/20.500.14074/5823</u>

- Bautista Ticona, G. (2023). Análisis de la estimación de la erosión hídrica y el efecto en la cobertura vegetal de la cuenca del río Zapatilla [Tesis de pregrado, Universidad Nacional del Altiplano].
 https://repositorio.unap.edu.pe/handle/20.500.14082/19529
- Benito, G., Beneyto, C., Aranda, J. Á., Machado, M. J., Francés, F., & Sánchez-Moya,
 Y. (2022). Inundaciones y cambio climático: certezas e incertidumbres en el camino a la adaptación. *Cuadernos de Geografía*, 107, 191. https://doi.org/10.7203/cguv.107.21424
- Bueno-Hurtado, P., Velásquez-Valle, M. A., López-Santos, A., Sánchez-Cohen, I., & González-Barrios, J. L. (2016). Implementación de un modelo para estimar la erosión hídrica con parámetros distribuidos aplicados a cuencas. *Revista Chapingo Serie Zonas Áridas*, 15(1), 47–54. https://doi.org/10.5154/r.rchsza.2015.08.012
- Capdevila Montes, E., & Mínguez García, M. del C. (2016). Introducción a los Sistemas de Información Geográfica. Manual de Tecnologías de La Información Geográfica Aplicadas a La Arqueología, 21–78. https://dialnet.unirioja.es/servlet/articulo?codigo=5543766
- Castillo Lázaro, D. A., & Rojas Ibáñez, A. A. (2019). Erosión hídrica del suelo como efecto de la precipitación pluvial del fenómeno del niño costero en la Subcuenca Huancay, Chicama 2017 [Tesis de pregrado, Universidad César Vallejo]. https://hdl.handle.net/20.500.12692/41021
- Caycho Torres, L. R. (2020). Modelación geoespacial con SIG en la identificación de las zonas vulnerables y cuantificación de la erosión hídrica, cuenca del río Huarmey [Tesis de pregrado, Universidad Nacional Agraria La Molina]. <u>https://hdl.handle.net/20.500.12996/4669</u>

- Ccama Ticona, U. (2012). Estimación de la pérdida de suelo por erosión hídrica en la cuenca del río Ilave utilizando técnicas de teledetección y SIG [Tesis de pregrado, Universidad Nacional del Altiplano]. http://repositorio.unap.edu.pe/handle/UNAP/5424
- Colín-García, G., Ibáñez-Castillo, L. A., Reyes-Sánchez, J., & Arteaga-Ramírez, R.
 (2013). Diagnóstico de la erosión hídrica de la cuenca del río Pichucalco. *Ingeniería Agrícola y Biosistemas*, 5(1), 23–31.
 <u>https://doi.org/10.5154/r.inagbi.2013.04.002</u>
- Condori Apaza, V. (2018). Pérdida del suelo por erosión hídrica en la comunidad de San Francisco de Chañajari Moho - Puno [Tesis de doctorado, Universidad Nacional del Altiplano]. http://repositorio.unap.edu.pe/handle/20.500.14082/12000
- Conesa García, C., & Álvarez Rogel, Y. (2004). Energía y erosividad pluvial del otoño en la región de Murcia. Correlación con el índice de agresividad pluvial anual de Fournier. *El Agua y El Clima*, 177–188. https://dialnet.unirioja.es/servlet/articulo?codigo=8916162
- Criollo Tenesaca, C. P. (2018). Valoración de la concentración de dióxido de nitrógeno atmosférico (NO2) en el área urbana de la ciudad de Cuenca a través de imágenes satelitales [Tesis de pregrado, Universidad Politécnica Salesiana Sede Cuenca]. http://dspace.ups.edu.ec/handle/123456789/16247
- Durigon, V. L., Carvalho, D. F., Antunes, M. A. H., Oliveira, P. T. S., & Fernandes, M. M. (2014). NDVI time series for monitoring RUSLE cover management factor in a tropical watershed. *International Journal of Remote Sensing*, 35(2), 441–453. <u>https://doi.org/10.1080/01431161.2013.871081</u>

- Escobar-Soldevilla, M. Y. (2019). Mitigación de la erosión hídrica para la conservación del suelo en la subcuenca del río Ichu, Huancavelica [Tesis de maestría, Universidad Nacional Agraria La Molina]. https://hdl.handle.net/20.500.12996/4156
- Escobar-Valdebenito, D. I. (2019). Estimación de la erosión hídrica en zona semiárida del norte chileno mediante la ecuación universal de pérdida de suelo (USLE): el caso de Punitaqui (IV región de Coquimbo) [Tesis de pregrado, Universidad de Chile]. <u>https://repositorio.uchile.cl/handle/2250/173350</u>
- Esteban Nieto, N. (2018). *Tipos de investigación*. <u>http://repositorio.usdg.edu.pe/handle/USDG/34</u>
- FAO. (2016). Estado mundial del recurso suelo: resumen técnico. Organización de las Naciones Unidas para la Agricultura y la Alimentación. https://www.fao.org/documents/card/en/c/i5126s
- Flores Coleto, R. D. (2019). *Modelamiento cartográfico de los niveles de erosión potencial del suelo en la zona agrícola de la cuenca Chancos* [Tesis de pregrado, Universidad Nacional Santiago Antúnez de Mayolo]. http://repositorio.unasam.edu.pe/handle/UNASAM/3342
- Flores Tapia, C. E., & Flores Cevallos, K. L. (2021). Pruebas para comprobar la normalidad de datos en procesos productivos: Anderson-Darling, Ryan-Joiner, Shapiro-Wilk y Kolmogórov-Smirnov. *Societas*, 23(2), 83–106. https://revistas.up.ac.pa/index.php/societas

García Olmos, C. F., Riaño Melo, O., Ochoa Cruz, E. R., & Achury Arias, A. M. (2003). Modelo predictivo para cuantificar la erosión hídrica con base en experimentación en Sabrinski Municipio de Mosquera. *Colombia Forestal*, 8(16), 65–76.

https://doi.org/https://doi.org/10.14483/udistrital.jour.colomb.for.2003.1.a05

- González de Tánago, M. (1991). La ecuación universal de pérdidas de suelo: pasado, presente y futuro. *Ecología*, 5, 13–50. <u>https://bibliotecadigital.ciren.cl/handle/20.500.13082/147576</u>
- Guío Martínez, V. H. (2019). Determinación y mapificación de pérdidas de suelo en la cuenca del embalse de la Copa [Tesis de maestría, Universidad Pedagógica y Tecnológica de Colombia]. <u>http://repositorio.uptc.edu.co/handle/001/3480</u>
- Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la investigación (6a. ed.). McGraw-Hill, 2014. <u>https://www.bibvirtual.ucb.edu.bo/opac/Record/100020484</u>
- Hill, M., Clérici, C., Mancassola, V., & Sánchez, G. (2015). Estimación de pérdidas de suelo por erosión hídrica en tres diferentes sistemas de manejo hortícola del sur de Uruguay. *Agrociencia Uruguay*, 19(1), 94–101. http://www.scielo.edu.uy/scielo.php?pid=S2301-

<u>15482015000100011&script=sci_abstract</u>

- Ibañez Asensio, S., Moreno Ramón, H., & Gisbert Blanquer, J. M. (2012). La ecuación Universal de Pérdidas de Suelo (USLE). Universidad Politécnica de Valencia. http://hdl.handle.net/10251/16849
- Jaya Santillán, J. (2023). Altos niveles de erosión hídrica en una microcuenca tropical calculado mediante el modelo USLE. FIGEMPA: Investigación y Desarrollo, 15(1). <u>https://doi.org/10.29166/revfig.v15i1.4269</u>

- Jiménez Colala, D. (2021). Estudio de la erosión y pérdida de suelos empleando un simulador de lluvias en la ciudad de Chongoyape - Chiclayo [Tesis de pregrado, Universidad Señor de Sipán]. https://repositorio.uss.edu.pe/handle/20.500.12802/8304
- Joyo Rodríguez, A. W. (2018). Determinación de la erosión hídrica de suelos; en las zonas agrícolas del centro poblado de Pampa Cangallo - Ayacucho [Tesis de pregrado, Universidad Nacional de San Cristóbal de Huamanga]. http://repositorio.unsch.edu.pe/handle/UNSCH/2785
- Laqui Calizaya, F. R. (2019). Estimación de la erosión y transporte potencial de sedimentos hasta el eje de la futura represa Callazas en sub-cuenca del río Callazas en la región Tacna-Perú [Tesis de pregrado, Universidad Peruana de Ciencias Aplicadas]. <u>http://hdl.handle.net/10757/626410</u>
- López-Pérez, A., Martínez-Menes, M. R., & Fernández-Reynoso, D. S. (2015).
 Priorización de áreas de intervención mediante análisis morfométrico e índice de vegetación. *Tecnología y Ciencias Del Agua*, 6(1).
 <u>https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-</u>24222015000100007
- Machín Gayarre, J., & Navas Izquierdo, A. (1995). Evaluación de la capacidad de uso y conservación de los montes de Peñaflor (Zaragoza). (*EEAD*) Artículos, 21, 173–182. <u>http://hdl.handle.net/10261/4241</u>
- Montes-León, M. A. L., Uribe-Alcántara, E. M., & García-Celis, E. (2011). Mapa nacional de erosión potencial. *Tecnología y Ciencias Del Agua*, 2(1), 5–17. <u>https://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-</u> 24222011000100001

- Nakaya Barzola, D. E. (2018). Estimación de la pérdida de suelo media anual mediante el modelo R.U.S.L.E., en la cuenca del río Tingo - Cajamarca [Tesis de pregrado, Universidad Nacional Agraria La Molina]. <u>https://hdl.handle.net/20.500.12996/3591</u>
- Paco Arpita, F. Y. (2022). Influencia de medidas de conservación de suelos en la erosión hídrica en la microcuenca del río temporal Escalerani Puno [Tesis de pregrado, Universidad Nacional del Altiplano].
 http://repositorio.unap.edu.pe/handle/20.500.14082/17754
- Pérez-Salinas, J. E., Rodríguez, F. R., López-Santos, A., Torres-González, J. A., Antonio de Jesús, M. J., Díaz-Romo, A., & Valdivia-Martínez, O. (2019). Erodabilidad y riesgo de erosión de suelos negros del centro de México: estudio de un Phaozem. *Terra Latinoamericana*, *37*(4), 391–400. <u>https://doi.org/10.28940/terra.v37i4.531</u>
- Portuguez, D. M. (2015). Estimación de la pérdida de suelos por erosión hídrica en la cuenca del río Siguas utilizando geoinformática. *Anales Científicos*, 76(2), 324–329. https://doi.org/10.21704/ac.v76i2.797
- Ramírez, L. (2010). Estimación de la pérdida de suelos por erosión hídrica en la cuenca del río Juramento-Salta [Tesina de pregrado, Universidad Nacional de Salta]. <u>https://es.scribd.com/document/359889605/Script-tmp-estima-Perdida-Suelo-Erosionh-Cca-Juramento-Salta</u>

Renard, K. G., Foster, G. R., Weesseis, G. A., MacCool, D. K., & Yoder, D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation Rusle (USDA). <u>https://bibliotecadigital.ciren.cl/handle/20.500.13082/25085</u>

Sharpley, A. N., & Williams, J. R. (1990). EPIC-Erosión/Productivity Impact Calculator (USDA).

https://agrilife.org/epicapex/files/2015/05/EpicModelDocumentation.pdf

- Solano Peralta, R. (2016). *Estimación de la pérdida de suelos por erosión hídrica en la subcuenca del Río Shullcas 2000 2013, Huancayo* [Tesis de pregrado, Universidad Nacional del Centro del Perú]. http://hdl.handle.net/20.500.12894/3486
- Sucasaire Pilco, J. (2022). Orientaciones para la selección y el cálculo del tamaño de la muestra en investigación (J. Sucasaire Pilco, Ed.; Primera edición). Biblioteca Nacional del Perú.

https://repositorio.concytec.gob.pe/handle/20.500.12390/3096

- Taco Agramonte, M. F. (2021). Uso del sistema de información geográfica para la cuantificación de la erosión hídrica potencial en la cuenca Chamacha Lima [Tesis de maestría, Universidad Nacional Agraria La Molina].
 https://hdl.handle.net/20.500.12996/4875
- Valdivia-Martínez, O., de Jesús Peña-Uribe, G., Rufino-Rodríguez, F., Torres-González, J. A., de Jesús Meraz-Jiménez, A., & López-Santos, A. (2022).
 Ajuste de la Ecuación Universal de Pérdida de Suelo en parcelas de escurrimiento ubicadas en una región del centro de México. *Terra Latinoamericana*, 40. <u>https://doi.org/10.28940/terra.v40i0.990</u>
- Valero-Medina, J. A., Dallos-Bustos, C. D., & Lizarazo, I. (2018). Un nuevo enfoque para la clasificación de imágenes multiespectrales basado en complejos cartesianos. *DYNA (Colombia)*, 85(204), 28–37. https://doi.org/10.15446/dyna.v85n204.66161

Vega-Carreño, M. B., & Febles-González, J. M. (2005). La investigación de suelos erosionados: métodos e índices de diagnóstico. *Minería y Geología*, 21(2), 1– 18. <u>https://www.redalyc.org/articulo.oa?id=223516049002</u>

Zaragoza Pulido, E. (2021). Análisis multitemporal de la cobertura del terreno y su asociación con las tasas de erosión hídrica en Acoculco, Puebla [Tesis de maestría, Centro de Investigación Científica y de Educación Superior de Ensenada, Baja California].

http://cicese.repositorioinstitucional.mx/jspui/handle/1007/3597

ANEXOS

PROBLEMA	OBJETIVOS	HIPOTESIS		DIMENSIO	INDICADO	METODOLOGIA
Problema general:	Objetivo general:	Hipótesis general:	VAKIABLE	NES	RES	Enfoque de investigación
¿Cuál es la erosión	Determinar la	T a anaidh hideine a T				Enfoque cuantitativo.
hídrica media anual	erosión hídrica	anual en la cuenca del río				Nivel descriptivo
en la cuenca del río	media anual en la	Illpa es de 50 tn*ha/año.				Diseño de la investigación
111pa/	cuenca del rio Ilipa.					Diseño no experimental.
Problemas	Objetivos	Hinátesis esnecífices				Población
específicos:	específicos:	IIIputesis especificas.				Lo constituvó las unidades
¿Cuál es la mediana	Determinar la	La mediana del factor de				hidrográficas que forman la
del factor de	mediana del factor	erosividad en la cuenca		Factor de	Precipitación	cuenca hidrográfica del río Illpa.
erosividad en la	de erosividad en la	del río Illpa es igual a 50		erosividad.	media anual.	
cuenca del río Illna?	cuenca del río Illna.	MJ*mm/ha*h*año.				Muestra
						Se constituyo en función al tipo
onoipon of so long.	Dotominou lo	I a madiana dal faatan		Footon do	Dendiente	de muestreo probabilístico, del
Cual es la Illeulalia del fester	modione del feotor	ta iliculalia uci lacioi		racioi de		tipo muestreo aleatorio simple,
				iongnud y		el tamaño de la muestra se
topograrico en la	topogranico en la	del rio Ilipa es igual a 3		gradiente de	Longitud.	calculó en función de una
cuenca del rio ilipar	cuenca del rio Ilipa.	(aumensional).	Variable I:	la pendienie.	1	variable cuantitativa y una
	Determinar la	T a marked of the second second	bídrion			población finita.
Cual la mediana je del feotor de	mediana del factor	La mediana del lactor de	actual	Footon do	Tino do	Método de análisis de datos
erodahilidad en la	de erodabilidad en	del rio Illna es imial a 0 1		erodabilidad	suelo suelo	Se empleó estadística
citenca del rio Illna?	la cuenca del rio	tn*ha*h/ha*MI*mm		ciona o manada.	onne.	descriptiva, estadística
cacinca act 110 milba.	Illpa.					inferencial y geoestadística
		-F				(interpolación).
Cual la mediana del fector de	Determinar ia mediana del factor	La mediana del lactor de		Factor de la	Tino de	Prueba de hipótesis
cohertirra vegetal en	de cohertura vegetal	cubertata vegetal cir la citenca del rio Illna es		cohertura	cohertura	Test de Wilcoxon para una
la ciienca del rio	en la cuenca del rio	imial a 0.5		vegeta	veneta	muestra.
Id Cuciled UCI IIO	UII la cuclica uci 110 Illna	lguar a 0.0 (adimensional)		vegetat.	vegetat.	Prueba de normalidad
mpa:	uipa.	auiiteitatuat.				Kolmogorov-Smirnov.

201

ANEXO 2 Imágenes de la salida a campo

Imagen 1. Tomando coordenadas con GPS del tipo de cobertura vegetal no identificada en la etapa de la clasificación no supervisada e interpretación visual de la imagen.

Imagen 2. *Presencia de escasa cobertura vegetal en zonas con pendiente en la parte media de la cuenca Illpa.*

Imagen 3. Muestras de afloramientos líticos dispersos en la parte alta de la cuenca

Ilpa.

Imagen 4. Vista panorámica de la Laguna Umayo, presencia de vegetación acuática sobre cuerpos de agua.

Imagen 5. Presencia de herbazal denso (Ichu) en la parte media de la cuenca Illpa.

Imagen 6. Presencia de herbazal denso (Ichu) en la parte alta de la cuenca Illpa.

Imagen 7. Presencia de cultivos agrícolas en la parte baja de la cuenca

Imagen 8. Muestra de herbazal denso (Crespillo) en la parte media de la cuenca Illpa.

Imagen 9. Vista panorámica de la parte media de la cuenca donde se aprecia la presencia de pajonal como factor protector del suelo y al fondo montañas donde se encuentra las zonas más erosionadas de la cuenca Illpa.

Imagen 10. Presencia de ríos en la parte media de la cuenca Illpa.

ANEXO 3 Datos de precipitación mensual y anual para el período 1970 – 2012

													P.	P.
~ ~	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC	Prom.	Total
ANO	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Anual	Anual
	()	()	()	()	()	()	()	()	()	()	()	()	(mm)	(mm)
1970	142.4	55.5	189.5	32	7.5	0	0	0.9	10.4	18	14.6	97.2	47.33	568
1971	101	268.2	28.4	25.2	0	2.9	0	9.1	1.2	19.5	93.5	103.6	54.38	652.6
1972	210.8	130.9	164	37.2	6.6	0	0	0	37.3	32.6	46.1	132.6	66.51	798.1
1973	238.2	131.7	159.1	97.6	13.3	0	1.8	6.1	32.5	16.4	29.8	70.8	66.44	797.3
1974	253	206.8	54.9	57.6	0.2	2.5	0.2	49.2	36.5	12.5	27.3	48.1	62.40	748.8
1975	157.2	177.6	158.6	37.5	43.7	0.7	0.1	6.5	48.7	53.3	24.7	235.2	78.65	943.8
1976	200.2	149.5	169.2	25.6	9.9	0.4	1.4	16.9	44.4	9.1	11.6	119.8	63.17	758
1977	49.1	206.1	209.8	5.8	8.8	0	2.3	0	48.1	53.9	49.7	108.8	61.87	742.4
1978	224.5	95.3	136.3	28.3	0.0	0	3.2	04	17.5	24.9	143.7	155	69.13	829.5
1979	131.2	35.2	143.1	44.1	1.4	0	0.9	1.8	85	45.5	31.7	83.9	43.94	527.3
1980	60.8	57.3	258.4	18.5	1.4	0.1	4.7	13.5	66.1	72.8	25.8	3/ 9	51.18	614.2
1981	133.0	207.3	111.3	68.9	1.5	0.1		37.8	21.1	25.6	23.0 79	120	65.72	788.6
1082	231.1	83.5	90.7	75	2.6	52	19	0	52.0	11/1 /	103	24.5	66.15	793.8
1083	20.7	70.4	57.6	55.5	14.2	2.2	1.7	1.8	16.1	267	20.8	104.2	36.19	/3/ 1
1905	20.7	330.1	223	14.4	14.2	4.3	3.7	+.0 25.7	40.4	157.5	29.0 73.8	96.2	107.99	1205.8
1964	130	337.6	122.3	44.4 00.7	24.0	4.2	0	23.7	40.1	327	123.5	90.2	80.38	1295.8
1905	145.1	251.1	221.2	105.9	24.9	27.5	5.2	0.2 9.4	40.1	12	0.2	121.6	76.00	022.0
1960	224.2	231.1	72.0	105.8	1.7	20	12.5	0.4	42	4.Z	9.2	25.4	52.56	923.9
1987	224.3	72.5	228.0	44.2	1.7	5.8	12.3	0	4.5	38.4	110.8	23.4	32.30	030.7
1988	215.2	120	127.1	100.0	23.3	0	0.5	147	20.3	14.2	40.2	99.1	70.70	646.4
1989	203.8	130	137.1	100.9	0	0.4	1./	14./	1/.6	14.2	21.4	42.9	57.06	684.7
1990	107.2	22.4	59.9	45	12.1	54.7	0	11.8	10.1	107.9	94.5	03.2 50.2	55.90	040.8 506.0
1991	124.1	6/./	185.8	46.2	6.8	33.6	0	3	14.7	20.4	44.2	50.3	49.73	596.8
1992	66	89.7	15.7	38.8	0	0	2.3	42.2	0	34.4	29.4	55.1	31.13	3/3.6
1993	1/5.6	100.7	107	52.5	6.6	1.1	0	37.9	18	69.1	79.2	111.5	63.27	759.2
1994	180	183.1	113.3	116.2	29.9	0.4	0	0	18.3	36.6	52.6	73.2	66.97	803.6
1995	122.7	102.8	124	2.1	4.1	0	0	3	21.9	15.3	51.4	80.2	43.96	527.5
1996	252.7	130.5	60.8	76.3	0	0	2.9	12.8	0.8	10.4	88.3	118	62.79	753.5
1997	239.6	213.2	98.6	88.6	1	0	0	21.9	108.3	30.1	62.9	44.9	75.76	909.1
1998	196.4	115.5	135.3	25.4	0	4.9	0	4.3	4.5	26.9	43.9	56	51.09	613.1
1999	193.1	244.8	202	86	7.5	0	0	1.9	16.1	150.3	32	68.4	83.51	1002.1
2000	167.1	210	105.1	40.3	0.4	2.3	4.2	17.9	14.6	95.8	13.9	69	61.72	740.6
2001	250.8	214.6	224.1	69.8	12.2	2.2	0	12.5	27.1	68.4	56.2	81	84.91	1018.9
2002	129.6	180	170.6	105.3	15.4	21.1	22.7	30.6	11.6	65.9	43.8	139.2	77.98	935.8
2003	174.5	114.4	114.4	46.1	36.7	4.8	0.2	9.6	42.9	25.4	8.6	131.8	59.12	709.4
2004	208.9	125.2	115.5	29.2	6.2	0	10.2	43	34.3	5.6	0	59.1	53.10	637.2
2005	103.3	157.9	134.6	45.7	0.4	0	0	0	11.8	39.5	80.5	99.4	56.09	673.1
2006	291.1	62.3	159.6	44.6	0.9	0	0	0.6	21.2	37.4	53.8	101.5	64.42	773
2007	84.8	171	236.7	49.7	10.6	0	3.3	1.6	61.3	77	44.2	74.1	67.86	814.3
2008	209.7	85.8	95.4	8.4	6.8	1.4	0.2	0.8	2.4	79.4	27.2	144.2	55.14	661.7
2009	154	136.1	148.3	83	0.4	0	2.5	0	16.4	56.4	88.9	62.5	62.38	748.5
2010	99.3	192.8	56.3	12.3	16.1	0	0	7.1	2.9	33.4	15	146.7	48.49	581.9
2011	122.7	202.9	116.5	46.8	4.8	0	6.4	0.2	45.8	25.7	48.5	151.3	64.30	771.6
2012	135.4	294.8	209.9	60.1	0	0.2	0	5.6	9.8	7.6	0	155.9	73.28	879.3
РРТ													PPT	
Prom	168.33	150.87	138.06	53.12	8.41	4.10	2.24	10.98	25.83	46.08	49.40	95.66	Prom	753.1
Mensual													Anual	

a) Estación Puno datos registrados de SENAMHI

AÑO	ENE (mm)	FEB (mm)	MAR (mm)	ABR (mm)	MAY (mm)	JUN (mm)	JUL (mm)	AGO (mm)	SET (mm)	OCT (mm)	NOV (mm)	DIC (mm)	P. Prom. Anual (mm)	P. Total Anual (mm)
1970	218.3	115.4	161.2	15.1	24.7	0.0	0.0	0.0	4.8	8.5	1.3	146.4	58.0	695.8
1971	123.7	235.3	83.8	26.5	1.5	0.0	0.0	0.0	0.0	2.5	24.3	85.0	48.6	582.6
1972	142.5	100.0	124.6	6.6	1.2	0.0	0.0	0.0	47.3	11.6	20.9	214.4	55.8	669.2
1973	207.0	120.3	89.7	53.5	2.0	0.0	0.0	6.2	31.2	0.0	2.2	33.2	45.4	545.4
1974	231.1	131.8	49.1	44.4	1.0	10.2	0.0	84.0	5.2	3.3	4.0	79.4	53.6	643.6
1975	160.0	145.4	84.7	5.6	7.9	2.2	0.0	0.0	3.6	10.6	9.7	173.3	50.3	603.1
1976	140.9	132.3	69.2	31.5	6.2	0.0	6.6	12.5	33.9	0.0	0.0	69.8	41.9	503.0
1977	97.9	198.7	101.7	6.6	0.0	0.0	0.0	0.0	7.3	42.4	110.1	66.5	52.6	631.2
1978	155.3	12.5	40.2	65.9	0.0	0.0	0.0	1.2	0.0	0.0	55.9	115.8	37.2	446.8
1979	148.9	47.5	85.8	23.4	0.0	0.0	0.0	6.7	0.0	20.2	54.7	95.2	40.2	482.4
1980	39.8	40.7	104.5	10.0	0.1	0.0	0.0	0.0	15.3	74.7	13.5	23.4	26.8	322.0
1981	120.3	288.7	42.8	52.9	0.0	0.0	0.0	12.3	22.8	13.8	16.7	109.3	56.6	679.6
1982	189.7	33.2	0.0	36.1	0.0	0.0	0.0	3.4	21.7	54.6	64.9	14.7	34.9	418.3
1983	29.7	33.2	42.0	20.6	3.5	0.0	0.0	0.5	5.7	9.1	0.0	101.7	20.5	246.1
1984	217.2	168.6	47.9	13.2	0.0	7.1	0.0	6.0	0.0	70.2	141.3	82.3	62.8	753.8
1985	69.7	198.4	74.8	56.8	17.4	7.6	2.2	2.1	19.4	4.3	67.8	62.8	48.6	583.3
1986	181.2	155.8	155.4	69.7	5.2	0.0	24.1	3.4	3.1	0.0	10.9	104.7	59.5	713.5
1987	260.3	65.9	29.6	0.0	0.0	2.5	25.3	0.0	0.0	4.4	28.5	8.3	35.4	424.8
1988	131.2	23.9	81.4	36.9	12.4	0.0	0.0	0.0	3.6	14.2	0.0	72.1	31.3	375.7
1989	124.8	60.2	65.1	24.9	6.7	8.4	4.6	0.0	6.7	3.5	11.5	18.4	27.9	334.8
1990	111.4	32.6	48.3	20.1	10.8	42.9	0.0	8.9	0.0	22.0	73.2	46.1	34.7	416.3
1991	72.5	74.7	116.4	16.1	1.3	23.6	0.0	0.0	3.3	10.5	10.2	29.1	29.8	357.7
1992	84.5	29.0	2.5	8.2	0.0	4.0	0.0	20.3	0.0	16.7	11.8	59.9	19.8	237.0
1993	215.8	37.0	137.0	28.6	0.0	7.1	0.0	15.4	2.1	32.0	77.7	74.3	52.3	627.0
1994	165.3	234.8	92.3	106.4	4.8	0.0	0.0	0.0	2.1	0.3	41.8	103.8	62.6	751.6
1995	85.2	67.5	111.2	16.6	0.0	0.0	0.0	0.2	0.2	1.9	25.7	81.6	32.5	390.2
1996	245.7	139.9	54.4	31.9	8.9	0.0	0.0	22.9	2.1	7.5	37.0	67.6	51.5	618.0
1997	145.9	200.7	27.8	33.7	8.5	0.0	0.0	0.0	41.9	14.1	47.3	54.9	47.9	575.0
1998	192.3	94.0	50.5	8.6	0.0	1.5	0.0	0.0	0.0	2.6	55.6	27.5	36.1	432.7
1999	62.0	214.3	183.1	54.4	1.3	0.0	0.0	4.7	0.5	45.0	1.0	68.0	52.9	634.4
2000	198.4	142.7	54.4	21.1	3.1	0.0	0.0	4.7	0.0	30.0	5.1	118.4	48.2	578.0
2001	233.6	195.3	116.0	38.9	4.1	0.0	0.5	6.7	2.6	23.4	29.3	83.1	61.1	733.6
2002	73.6	176.6	180.8	44.0	7.0	0.5	18.3	0.6	7.1	45.2	44.6	80.6	56.6	679.0
2003	76.2	120.7	110.2	27.1	3.2	0.0	0.0	4.1	0.0	14.6	1.7	62.3	35.0	420.2
2004	139.1	123.7	79.5	51.5	0.0	0.0	14.9	9.5	18.0	0.0	14.0	48.1	41.5	498.4
2005	114.1	168.7	58.7	27.1	0.0	0.0	0.0	0.0	17.7	4.7	27.4	77.0	41.3	495.5
2006	185.5	83.8	110.0	17.0	0.0	0.0	0.0	0.0	12.0	11.0	63.7	91.9	47.9	575.0
2007	144.3	57.4	146.4	28.7	0.0	0.0	0.0	0.0	1.0	9.9	29.6	95.0	42.7	512.4
2008	174.2	91.6	67.8	0.0	0.0	0.0	0.0	3.0	0.0	5.7	0.0	136.5	39.9	478.9
2009	73.2	161.6	48.6	36.9	1.2	0.0	13.6	0.0	26.5	7.6	60.9	86.4	43.0	516.5
2010	129.8	191.0	30.5	38.7	10.5	0.0	1.7	0.0	0.0	8.6	5.2	168.6	48.7	584.7
2011	155.8	205.7	17.4	62.3	1.2	0.0	0.0	0.0	38.0	0.0	33.2	112.8	57.2	686.5
2012	220.2	219.9	151.5	77.2	15.1	0.0	0.0	0.0	4.0	9.7	26.9	149.7	72.9	8/4.3
PPT Prom Mensual	146.2	124.9	83.5	32.5	4.0	2.7	2.6	5.6	9.6	15.6	31.7	83.7	PPT Prom Anual	542.5

b) Estacion Ichuña datos registrados de SENAMHI

AÑO	ENE (mm)	FEB (mm)	MAR (mm)	ABR (mm)	MAY (mm)	JUN (mm)	JUL (mm)	AGO (mm)	SET (mm)	OCT (mm)	NOV (mm)	DIC (mm)	P. Prom. Anual (mm)	P. Total Anual (mm)
1970	867	121.4	150.3	28.5	3.6	0	0	0	13.3	25.3	11.9	124.4	47.12	(iiiii) 565.4
1971	91.5	218.3	29.1	15.2	11	0	0	4	0	18.3	56.8	87	44.27	531.2
1972	224.8	85.9	181.9	36.3	6.2	0	0	0.6	32	32.2	33.8	92.9	60.55	726.6
1973	199.4	128.8	124.8	85	12.4	0	2.1	1.3	46.1	12.9	24	93.3	60.84	730.1
1974	240.5	232.3	76.5	53.6	0	0	0	53.2	27.6	20.5	48.1	87.4	69.98	839.7
1975	134.3	193.5	107.4	22.1	23.5	0	0	0	13.1	34.1	17	212.8	63.15	757.8
1976	184	136.6	130.3	18.4	2	1.9	1.3	3.9	41.8	4.3	9.7	65.1	49.94	599.3
1977	70.3	166.6	173.2	28.5	0	0	0	0	23.1	33.4	119.3	168.2	65.22	782.6
1978	257.8	148.5	117.8	37.3	0	0	0	0	5.9	14.2	72.5	160.8	67.90	814.8
1979	203.6	125	71.9	52	3.9	0	0.6	1.2	3.1	33.9	42.4	122.5	55.01	660.1
1980	60.8	84.7	168.4	8.1	4.9	0	1.8	32.7	38.6	51.7	57.8	46.3	46.32	555.8
1981	127.3	148.8	161.2	47.9	0	0	1	22.2	10	18.6	36.7	36.6	50.86	610.3
1982	103.7	116	112.2	37.5	7	1	2.5	7.5	50.2	55.5	35.5	23	45.97	551.6
1983	26	39	17.5	8.1	6	2.8	0	3	9	15	30.5	69	18.83	225.9
1984	226.8	237.1	126	33.5	21.4	0	3	9	7.5	41.5	89.4	71.5	72.23	866.7
1985	115.5	180.6	95.5	97.7	6	22	0	3	31.5	38	100	142.5	69.36	832.3
1986	131.2	234.1	168.7	90.3	1.3	0	11	1.5	26	6.5	31.4	139.1	70.09	841.1
1987	157.4	79.1	54.6	9.7	0	0.9	7.6	1.5	9	27.7	111.6	70.6	44.14	529.7
1988	273.6	93.2	158.5	67.2	17.4	0	0	0	21.9	56	0	142.8	69.22	830.6
1989	194.9	52.8	91.8	88.4	0	1.4	0	4.8	6	3.3	40	61.1	45.38	544.5
1990	172.5	23.4	49.2	13.5	2.4	34.3	0	9.8	1	112.8	130	101.9	54.23	650.8
1991	106.4	144.1	118.4	70.1	5.8	35.6	0	0	6.3	13.8	30.5	61.4	49.37	592.4
1992	106.8	75.1	28.5	8.5	0	2.7	2.2	31.1	0	47.5	27.2	64.9	32.88	394.5
1993	147.2	67.4	96.3	69.5	3	0	0	26.3	9.5	113.4	83	117.4	61.08	733
1994	133.8	105.2	162.1	110.2	0	0	0	0	6.5	14.3	51.2	98	56.78	681.3
1995	125.8	70.6	100.2	5	0	0	0	0.2	16.6	9.9	32.8	55.3	34.70	416.4
1996	206.3	102.8	57.3	37.7	1.9	0	2	17.6	10.3	14.3	57.8	165.6	56.13	673.6
1997	158.5	242.8	160	75.1	3.7	0	0	22.4	46.5	38	103.3	88.4	78.23	938.7
1998	152	168.1	110.3	16.9	0	0	0	6.3	0	47.7	61.6	42.7	50.47	605.6
1999	95.9	118.3	112.3	104.4	5.4	0	1.8	1.8	21.9	104	3	95.3	55.34	664.1
2000	134.6	221.9	133.3	31.7	0.6	0	0	6.9	15.8	118.3	13.5	110.4	65.58	787
2001	273.9	224.6	78.2	63.9	11.5	0.8	0.4	16.7	21.6	71.3	36.9	52.6	71.03	852.4
2002	93.7	166.9	160.5	125.7	28.7	6.2	16	22.9	8.8	116.3	78	105.3	77.42	929
2003	217.2	92.5	116.7	22.1	10.8	2.6	0	0.9	16.9	14	68.1	136.2	58.17	698
2004	193	100.1	81.6	34.2	8.5	0.5	7.7	18.4	12.8	2.9	30.7	58.2	45.72	548.6
2005	75.3	265.7	84	49.7	0	0	0	0.5	5.8	30.6	70.6	79.9	55.18	662.1
2006	230.2	107.3	133.1	49.9	0	0.7	0	2.8	44.2	38	60.2	69	61.28	735.4
2007	68.1	105.4	268.6	67.5	2.4	0	0.8	0	75.4	40.6	97.6	81.9	67.36	808.3
2008	266.6	74.5	65.1	6.3	0	0.2	0	0.6	1.8	34.9	70.1	153.5	56.13	673.6
2009	88.8	119.7	111.4	24.6	0	0	1.6	0.5	1.4	28.4	152.8	91.2	51.70	620.4
2010	150.8	125.3	66.7	28.4	9.6	0	0.5	0	2.4	21.2	35.8	183	51.98	623.7
2011	80	182.5	134	41.3	1.7	0	5.1	4.3	32.1	29.8	76.2	238.9	68.83	825.9
2012	165.2	216.1	165	49.8	0	0	0	2.9	3.2	16	46.5	190.5	71.27	855.2
PPT Prom Mensual	152.39	138.20	114.20	45.84	5.18	2.64	1.60	7.96	18.06	37.70	55.48	103.68	PPT Prom Anual	682.9

c) Estacion Cabanillas datos registrados de SENAMHI

AÑO	ENE (mm)	FEB (mm)	MAR (mm)	ABR (mm)	MAY (mm)	JUN (mm)	JUL (mm)	AGO (mm)	SET (mm)	OCT (mm)	NOV (mm)	DIC (mm)	P. Prom. Anual	P. Total Anual
1070	152.9	00.4	120.1	29.1	25.5	0	0	0	0	10	19.5	175 7	(IIIII) 54.17	(11111)
1970	132.0	90.4 252.8	52.2	24.0	23.3	13	0	3.1	0	10	16.J	1/3./	55 73	668.8
1971	230.2	197.8	1117	16.3	3.6	0	0	0	29.6	4.5	51	165.8	71 31	855.7
1972	107.8	126.2	120.7	16.7	19.7	0	5	12.2	29.0	49.7	26.7	78.0	50.05	709.6
1973	276.7	240.5	00.8	60.0	10.7	1 1	0	57.4	20	10.9	16.5	74.5	71.62	950.5
1974	152.1	249.3	90.8	22.5	21.7	2.1	0	91	20	61.9	10.5	24.5	×0.42	065
1975	250.6	142.6	219.2	40.8	19.4	0	27.6	20.8	64.4	14.6	43.1	75.5	80.42	903
1970	75.0	143.0	149.2	40.8	10.4 5.2	0	27.0	29.0	21.1	55.6	0	121	02.72 50.46	992.0 712.5
1977	209	152.0	146.5	/	5.5	0	18.6	1.5	15.2	9.1	00.3	121	59.40 69.14	917.7
1970	200	155.9	140.9	43.1	0	1.2	10.0	1.5	13.2	0.4	52.5	565	50.92	61/./
1979	79.4	72.0	226.2	11.2	0	0	9.5	1.7	40.2	29.1	20.1	71.1	54.02	577.2
1980	241.0	270.2	125.5	54	1.0	0	4	30.2	32.4	07.3	22.5	146.7	70.36	052.3
1002	241.9 172.1	880	02 1	26.0	0	0	0	13	<u> </u>	64.6	82.1	22.5	19.30	596.2
1902	1/2.1 997	00.7 87.2	94.1	20.9	0.5	1.6	0	4.5	41.7	14.0	15.9	23.3	30.06	360.2
1983	00./ 305.5	01.2	248.6	7.9	18.7	33.6	0	3.3	1/.1	14.0	157.4	105.1	104 51	1254.1
1904	125.2	1946	240.0	30.0	10.7	15.5	0	17.0	1.0	7.0	137.4	101.7	02.50	1234.1
1985	155.2	184.0	240.1	140.0	22.5	13.5	0	0.4	44	1.0	146.7	191.7	83.30	1010.1
1980	130.3	207.0	249.1	100.7	0.2	0.2	26.5	9.4	0 C	1.0	43.7	28.5	64.95 51.60	620.2
1987	282.1	//.1	170.0	20.2	0	2.5	30.5	0.5	8.0 5.0	23.5	3/	28.5	51.09	020.3
1988	199.5	43.1	170.9	156.9	9.0	2.3	0	5.4	3.9	44.0	15.2	99.5	54.74	129.5
1989	125.7	131.8	132.3	79.0	5.5	5.5	2.4	5.4	4.8	0	20.1	44.0	54.74	000.9
1990	135./	36.7	08.9	22.9	5.7	64.9	0	15.7	9.4	92.6	147.2	129.6	60.78 52.27	(29.3
1991	130.1	100	148.2	27.0	2.9	43.0	15.7	0.0	21.8	28.5	28.5	05.0	52.57	028.4 5 (9, 9
1992	120.7	100	50.0	48.4	0	3.9	15.7	31.9	10.2	01.9	48.9	80.8	47.40	079.2
1993	221.7	65.7	133	62.3	14.1	1.5	0	34.6	18.3	123.4	126.8	1/6.9	81.53	978.3
1994	206.8	197.2	147.1	111./	14.8	1.5	1.5	0	5.9	8./	74.3	140.1	/5.80	909.6
1995	140.5	203.3	152.4	12.1	0	0	0	0	11.1	3.4	59.3	1/1	62.76	/53.1
1996	277.3	127.4	94.4	52.6	20.2	0	0	52	12	4.7	96.3	97.5	69.53	834.4
1997	187.9	239.2	114.6	29.3	1	0	0	21.8	94.9	22.6	122	49.9	/3.60	883.2
1998	92.7	94.3	88.8	31	0	10	0	0	0	28.3	44	25.1	34.52	414.2
1999	132.7	1/0.7	240.7	73.9	19.5	0	0	11.9	6.7	92.5	1.1	/1.1	68.40	820.8
2000	250.3	236.7	120.3	12.5	3.5	1.4	25	10.1	0.5	00.7	/.1	139.5	/1.8/	862.4
2001	308.3	241.2	159.6	74.9	13.1	0	3.5	4./	12.1	24.5	44.5	0/.8	84.81	101/./
2002	02.8	214.9	109	/4.8	23.0	4.0	25.9	15	10.9	44.5	08.4	03.4	04.80	111.0
2003	1/4.0	122.3	122.3	30.7	12.6	1.0	0	5.6	19.1	0.1	24.3	126.5	53.62	409.5
2004	230.2	145.8	/1.8	42.5	0	1.8	11./	43.9	0.1	0	14.1	01.4	50.78	009.3
2005	115.1	280.3	/8.9	42.9	12.6	0	0	12.0	19.1	39 19 7	57.5	127.8	54.64	/40.6
2006	240.8	96.5	81.6	55.1	12.6	5.4	U	12.9	54	18.7	55.5	68.6	54.64	655.7
2007	109.3	96.8	161.4	55.5	4.9	0	0	0	45.8	57.8	71.4	101.8	58.73	704.7
2008	199.7	105	73.6	0	0	0	0	4.5	2.3	35.9	14.6	130.8	47.20	566.4
2009	89.1	171.4	109.9	67.2	0	0	5.1	0	11.1	15	86.3	102.5	54.80	657.6
2010	154.7	196	43.1	34.8	24.8	0	0	2.6	3.4	34.3	4.1	144.8	53.55	642.6
2011	150.3	244.4	120.7	48.7	3.4	0	5.3	0.2	9.6	35.7	47.3	193.2	71.57	858.8
2012	213	284.4	159.8	97.9	0.6	0	0.5	9.2	15.5	18.1	69.3	229.7	91.50	1098
РРТ													PPT	
Prom	183.1	164.37	126.1	46.95	8.1	4.70	4.0	11.25	19.0	33.68	55.8	111.27	Prom	756.92
Mensual													Anual	

d) Estacion Laraqueri datos registrados de SENAMHI

													P.	Р.
1.ÑO	ENE	FEB	MAR	ABR	MAY	JUN	JUL	AGO	SET	ОСТ	NOV	DIC	Prom.	Total
ANO	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	(mm)	Anual	Anual
													(mm)	(mm)
1970	190	98	115	56	3	0	0	0	23	12	42	115	201.85	654
1971	127	126	90	33	1	1	0	6	11	31	47	107	196.23	580
1972	220	98	110	12	2	0	0	1	29	34	82	74	202.62	662
1973	150	107	76	80	16	1	5	9	20	45	14	44	195.38	567
1974	151	79	76	19	1	8	0	45	11	41	40	69	193.38	540
1975	117	126	106	17	34	0	0	2	18	24	26	125	197.69	595
1976	145	84	48	12	23	1	0	4	67	0	6	33	184.54	423
1977	67	180	105	5	1	0	0	0	27	49	92	89	199.38	615
1978	208	128	78	42	0	0	0	0	4	12	83	160	207.15	715
1979	137	56	102	31	0	0	0	0	0	84	11	16	185.85	437
1980	164	61	174	15	2	0	0	21	31	72	49	40	200.69	629
1981	138	172	158	77	14	0	0	26	26	73	70	60	215.00	814
1982	209	61	101	106	0	0	0	4	46	63	119	18	208.38	727
1983	52	103	28	40	12	0	0	0	21	23	26	119	185.15	424
1984	285	190	106	77	20	0	4	0	1	0	117	90	221.08	890
1985	0	0	50	33	0	0	0	2	43	59	159	149	190.77	495
1986	0	0	0	0	3	0	3	0	0	0	0	132	163.38	138
1987	192	0	0	1	27	0	0	0	4	0	0	0	170.08	224
1988	195	0	0	0	40	2	0	0	0	0	1	0	171.23	238
1989	0	69	0	31	0	4	0	4	0	0	14	59	166.92	181
1990	96	35	0	25	7	6	0	7	0	0	0	88	173.38	264
1991	138	48	86.6	46	13	0	4	1	20	26	36.5	55.7	189.68	474.8
1992	62	80.8	12	30.5	0	0	6.5	39.6	0	58	47.2	70	184.51	406.6
1993	158	53.8	105.2	54.5	1.5	0	0	28	16	71	113	89	206.38	690
1994	122	98	105	60	26	0	0	0	14	14	87.3	113	202.56	639.3
1995	127	98	88	19	0	0	0	7	29	22	53.3	53	191.64	496.3
1996	145	65	51.4	26	7	0	1	2	6	25	55	98	190.57	481.4
1997	183.1	207	144	100.8	5	0	0	18.8	45.5	23	113.8	49.2	222.09	890.2
1998	91.8	94.8	76.6	22.1	0	0	0	0.6	3	32	68	10	184.38	398.9
1999	119.7	87.6	139.2	88.1	0	0.2	0	1	35	114	21	28	202.52	633.8
2000	50.3	130.3	157	17	14	10	0	9	13.4	68	1.8	99.2	197.69	570
2001	0	166	0	0	0	0	0	0	0	0	0	0	166.69	166
2002	0	0	0	0	0	0	0	5	24	99	59	103	176.31	290
2003	180	84	0	27	5	0	0	0	0	15	25	64	184.85	400
2004	155	93	39	0	0	0	1	16	26	7	36	77	188.77	450
2005	60	194	67	41	0	0	0	0	15	52	52	98	198.77	579
2006	115	30	57	2	0	0	0	0	0	0	24	65	176.85	293
2007	64	0	124	0	4	0	0	0	4	5	29	65	177.08	295
2008	0	75	24	9	1	2	0	0	0	69	41	23	173.23	244
2009	31	196	38	0	0	0	1	0	4	35	43	78	187.31	426
2010	50	51	25	4	11	1	0	0	0	26	13	74	174.23	255
2011	34	156	76	76	0	0	0	4	21	19	67	259	209.46	712
2012	146	0	126	83	0	0	0	0	0	7	30	128	194.77	520
РРТ													РРТ	
Prom	113.37	87.94	71.26	32.98	6.83	0.84	0.59	6.12	15.30	32.77	46.83	76.42	Prom	491.24
Mensual													Anual	

e) Estacion Juliaca datos registrados de SENAMHI

ANEXO 4 Precipitación promedio anual de las estaciones a través de los años

a) Estación Puno

Nota: datos obtenidos y registrados por el SENAMHI

b) Estación Ichuña

c) Estación Cabanillas

Nota: datos obtenidos y registrados por el SENAMHI

d) Estación Laraqueri

e) Estación Juliaca

Nota: datos obtenidos y registrados por el SENAMHI

METADATOS DE LOS MODELOS DIGITALES DE ELEVACIÓN											
Atributo del conjunto de datos	Valor de atributo (DEM 1)	Valor de atributo (DEM 2)									
ID de entidad	SRTM1S16W071V3	SRTM1S17W071V3									
Fecha de Adquisición	11/02/2000 00:00	11/02/2000 00:00									
Fecha de publicación	23/09/2014 00:00	23/09/2014 00:00									
Resolución	1-ARCO	1-ARCO									
Latitud de la esquina noroeste	15°00'00''S	16°00'00''S									
Esquina NO larga	71°00'00''O	71°00'00''O									
Latitud de la esquina NE	15°00'00''S	16°00'00''S									
Esquina NE larga	70°00'00''O	70°00'00''O									
Latitud de la esquina SE	16°00'00''S	17°00'00''S									
Esquina SE larga	70°00'00''O	70°00'00''O									
Latitud de la esquina suroeste	16°00'00''S	17°00'00''S									
Esquina SW larga	71°00'00''O	71°00'00''O									
NW Esquina Lat dec	-15	-16									
Esquina NO Dec. larga	-71	-71									
NE Esquina Lat dec	-15	-16									
Esquina NE Dec. larga	-70	-70									
SE Esquina Lat dec	-16	-17									
Esquina SE Dism. larga	-70	-70									
Esquina SW Lat dec	-16	-17									
Esquina SO Dism. larga	-71	-71									

ANEXO 5 Metadatos de los modelos digital de elevación empleados

Nota: metadatos de los modelos digitales de elevación empleados para hallar el factor topográfico. Fuente:

USGS

ANEXO 6 Información de suelos usados en la investigación

a) Información de suelos obtenidos de la plataforma 'SoilGrids'

Nota: la figura muestra los datos recopilados de la plataforma 'SoilGrids' para las capas ráster de limo, carbono orgánico, arcilla y arena respectivamente

b) Información de suelos obtenidos del mapa digitalizado de suelos (FAO)

Nota: la figura muestra los datos recopilados del mapa digitalizado de suelos (FAO)

ANEXO 7 Imágenes satelitales Landsat 8 usadas en la investigación

\mathbf{N}°	Escena	Path/Row	Fecha de Adquisición	Época
1	LC80030712015337LGN01	003/071	3/12/2015	Húmeda
2	LC80020712015346LGN01	002/071	12/12/2015	Húmeda
3	LC80030712016308LGN01	003/071	3/11/2016	Húmeda
4	LC80020712016317LGN01	002/071	12/11/2016	Húmeda
5	LC80020712017207LGN00	002/071	26/07/2017	Seca
6	LC80030712017214LGN00	003/071	2/08/2017	Seca
7	LC80030712017278LGN00	003/071	5/10/2017	Húmeda
8	LC80020712017303LGN00	002/071	30/10/2017	Húmeda
9	LC80020712018146LGN00	002/071	26/05/2018	Seca
10	LC80030712018153LGN00	003/071	2/06/2018	Seca
11	LC80020712018338LGN00	002/071	4/12/2018	Húmeda
12	LC80030712018345LGN00	003/071	11/12/2018	Húmeda
13	LC80020712019213LGN00	002/071	1/08/2019	Seca
14	LC80030712019220LGN00	003/071	8/08/2019	Seca
15	LC80020712020216LGN00	002/071	3/08/2020	Seca
16	LC80030712020223LGN00	003/071	10/08/2020	Seca
17	LC80030712021225LGN00	003/071	13/08/2021	Seca
18	LC80020712021234LGN00	002/071	22/08/2021	Seca
19	LC80030712021289LGN00	003/071	16/10/2021	Húmeda
20	LC80020712021298LGN00	002/071	25/10/2021	Húmeda

a) Imágenes satelitales Landsat 8 usadas en la investigación

Nota: la tabla muestra todas las imágenes Landsat 8 usadas en la investigación, se emplearon 10 imágenes en época húmeda y 10 imágenes en época seca para promediarlas, se emplearon dos (02) escenas las cuales son 002/071 y 003/071. Fuente: USGS

N°	Bandas de Imágenes Corregidas	Path/Row	NDVI	Época
1	RT_LC08_L1TP_002071_20151212_20170401_01_T1_B4	002/071		
2	RT_LC08_L1TP_002071_20151212_20170401_01_T1_B5	002/071	NDVI 2015	
3	RT_LC08_L1TP_003071_20151203_20170401_01_T1_B4	002/071	ND VI 2013	
4	RT_LC08_L1TP_003071_20151203_20170401_01_T1_B5	003/071		
5	RT_LC08_L1TP_002071_20161112_20170318_01_T1_B4	002/071		
6	RT_LC08_L1TP_002071_20161112_20170318_01_T1_B5	002/071	NDVI 2016	
7	RT_LC08_L1TP_003071_20161103_20170318_01_T1_B4	003/071	ND VI 2010	
8	RT_LC08_L1TP_003071_20161103_20170318_01_T1_B5	003/071		
9	RT_LC08_L1TP_002071_20171030_20171109_01_T1_B4	002/071		
10	RT_LC08_L1TP_002071_20171030_20171109_01_T1_B5	002/071	NDVI 2017	Época
11	RT_LC08_L1TP_003071_20171005_20171014_01_T1_B4	003/071	ND VI 2017	Húmeda
12	RT_LC08_L1TP_003071_20171005_20171014_01_T1_B5	003/071		
13	RT_LC08_L1TP_002071_20181204_20181211_01_T1_B4	002/071		
14	RT_LC08_L1TP_002071_20181204_20181211_01_T1_B5	002/071	NDVI 2018	
15	RT_LC08_L1TP_003071_20181211_20181226_01_T1_B4	003/071	110 11 2010	
16	RT_LC08_L1TP_003071_20181211_20181226_01_T1_B5	005/071		
17	RT_LC08_L1TP_002071_20211025_20211103_01_T1_B4	002/071		
18	RT_LC08_L1TP_002071_20211025_20211103_01_T1_B5	002/071	NDVI 2021	
19	RT_LC08_L1TP_003071_20211016_20211025_01_T1_B4	003/071	110 11 2021	
20	RT_LC08_L1TP_003071_20211016_20211025_01_T1_B5	005/071		
21	RT_LC08_L1TP_002071_20170726_20170810_01_T1_B4	002/071		
22	RT_LC08_L1TP_002071_20170726_20170810_01_T1_B5	002/071	NDVI 2017	
23	RT_LC08_L1TP_003071_20170802_20170812_01_T1_B4	003/071	112 11 2017	
24	RT_LC08_L1TP_003071_20170802_20170812_01_T1_B5	000/071		
25	RT_LC08_L1TP_002071_20180526_20180605_01_T1_B4	002/071		
26	RT_LC08_L1TP_002071_20180526_20180605_01_T1_B5		NDVI 2018	
27	RT_LC08_L1TP_003071_20180602_20180615_01_T1_B4	003/071		
28	RT_LC08_L1TP_003071_20180602_20180615_01_T1_B5			
29	RT_LC08_L1TP_002071_20190801_20190819_01_T1_B4	002/071		4
30	RT_LC08_L11P_0020/1_20190801_20190819_01_11_B5		NDVI 2019	Epoca
31	RT_LC08_L1TP_0030/1_20190808_20190820_01_T1_B4	003/071		Seca
32	<u>KI_LC08_L11P_003071_20190808_20190820_01_11_B5</u>			
33	<u>RT_LC08_L11P_0020/1_20200803_2020080/_01_11_B4</u>	002/071		
34	K1_LC08_L11P_0020/1_20200803_20200807_01_T1_B5		NDVI 2020	
33	K1_LC08_L11P_0030/1_20200810_20200821_01_T1_B4	003/071		
30	K1_LC08_L11P_0030/1_20200810_20200821_01_11_B5			
3/	K1_LC08_L11P_0020/1_20210822_20210827_01_T1_B4	002/071		
38	K1_LC08_L11P_0020/1_20210822_20210827_01_11_B5		NDVI 2021	
39	K1_LC08_L11P_0030/1_20210813_20210819_01_11_B4	003/071		
40	K1_LC08_L11P_0030/1_20210813_20210819_01_T1_B5			

b) Bandas de imágenes corregidas necesarias para hallar el NDVI

Nota: la tabla muestra las bandas de imágenes corregidas para hallar el NDVI

ANEXO 8 Muestra aleatoria para prueba de hipótesis

N°	° COORDENADAS UTM		COORDENADAS UTM		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m) Norte (m) MJ*mm/ha*h*año (ad		(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año			
1	360116.4909	8268543.9589	291.03	0.18	0.23	0.39	4.79		
2	368247.9093	8259230.5295	285.40	0.38	0.23	0.36	9.33		
3	364533.1836	8272279.3069	277.06	0.24	0.23	0.37	5.88		
4	372586.4813	8269447.8971	259.64	0.87	0.23	0.38	19.47		
5	361219.6778	8270284.6486	289.08	0.41	0.23	0.39	10.82		
6	344486.9297	8241462.9035	282.66	3.55	0.19	0.42	80.96		
7	359726.7836	8266049.4003	290.32	0.38	0.23	0.35	9.05		
8	363624.0153	8236154.9931	304.16	3.47	0.19	0.37	74.91		
9	378185.4538	8263856.3369	280.94	0.55	0.23	0.36	12.82		
10	353031.4741	8250718.4906	287.19	3.11	0.19	0.31	53.18		
11	374178.8372	8235721.0832	319.55	7.77	0.19	0.36	172.17		
12	354269.4001	8238074.6482	290.96	0.55	0.19	0.38	11.64		
13	359067.1388	8239354.2424	296.08	3.39	0.19	0.40	77.26		
14	363147.3935	8235041.1397	304.26	3.68	0.19	0.41	87.91		
15	346257.3855	8242853.5302	284.17	4.35	0.19	0.40	93.08		
16	359265.5445	8249687.2517	290.18	0.58	0.19	0.35	11.33		
17	357915.4154	8253119.9056	288.03	0.85	0.19	0.34	15.58		
18	373429.9282	8257356.7229	292.95	0.03	0.00	0.00	0.00		
19	378913.2136	8254923.1238	309.13	1.39	0.23	0.38	37.43		
20	369786.6856	8270571.6139	262.46	0.17	0.23	0.37	3.84		
21	368378.4333	8250187.4712	297.14	0.49	0.19	0.36	9.96		
22	363970.8771	8267962.2101	283.66	0.70	0.23	0.40	18.13		
23	345958.5349	8241079.6592	283.59	4.41	0.19	0.39	90.26		
24	382802.2900	8264338.2181	286.83	0.19	0.23	0.37	4.55		
25	371457.7139	8250295.3846	301.28	7.54	0.23	0.39	202.94		
26	353353.0497	8249787.7270	287.50	1.61	0.19	0.36	32.75		
27	368065.2731	8266200.2202	276.46	0.86	0.23	0.37	20.24		
28	361743.9039	8255901.3467	287.57	0.69	0.19	0.34	12.29		
29	384223.9455	8262821.1197	296.62	0.03	0.23	0.34	0.69		
30	353850.2980	8254110.5251	287.04	0.22	0.19	0.39	4.71		
31	364413.2358	8246403.4360	296.67	9.68	0.19	0.38	209.52		
32	365050.4044	8245215.3695	298.44	3.10	0.19	0.40	69.62		
33	373043.1990	8258936.7115	289.04	0.03	0.00	0.00	0.00		
34	345766.8794	8241285.4529	283.50	4.84	0.19	0.37	96.61		
35	361213.4423	8238871.9325	298.98	6.29	0.19	0.38	141.98		
36	360586.6554	8262440.6322	287.62	0.41	0.23	0.38	10.29		
37	359175.7894	8265358.8121	290.37	0.66	0.23	0.33	14.64		
38	349662.4915	8259533.1403	287.31	6.74	0.19	0.40	147.53		
39	368985.7679	826/130.6785	273.16	0.44	0.23	0.37	10.43		
40	375532.2092	825/460.3084	296.20	4.85	0.23	0.37	122.48		
41	3/0516.15/1	8255926 9521	284.96	0.03	0.23	0.30	0.58		
42	3/0330./363	8200950.9521	291.84	0.46	0.23	0.39	11.80		
45	303480.4779	02/0/51.8005	2/0.50	0.32	0.23	0.39	7.00		
44	304909.1203	0230043.2333	280.41	0.34	0.23	0.35	1.90		
43	204010.0278	0200/02.2921	203.93	6.20	0.23	0.30	0.09		
40	365821 2000	0200/00.001/	299.09	0.30	0.23	0.37	6.05		
4/	368835 5677	8260662 6005	290.31	0.33	0.19	0.30	2 27		
40	300033.3022	8240500 2200	205.32	0.10	0.23	0.30	2.27		
49 50	350010 2704	8256602 0722	286.54	1 20	0.23	0.30	11.4/ 81.27		
50	353816 /122	824/011 2100	200.34	4.30	0.19	0.33	1/6.07		
52	360118 7202	8256406 8279	207.00	0.07	0.19	0.39	2 80		
52	360377 6607	8247807 8400	207.33	5.04	0.19	0.20	103.06		
54	376440 5280	8274876 0880	272.02	1.58	0.19	0.37	31.03		
55	345105 7301	8241652 / 170	224.09	1.50 4.66	0.23	0.38	100 31		
56	357057 8760	8255676 0326	203.13	0.17	0.19	0.45	3/1		
57	376416 7802	8248585 7674	312.02	8.67	0.19	0.30	186.02		
58	348755 5785	8248875 8232	285 73	3.63	0.19	0.39	76.16		
50	510155.5105	02-100/0.0202	205.15	5.05	0.17	0.57	/0.10		

N°	COORDENADAS UTM		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m) Norte (m)		MJ*mm/ha*h*año	(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año
59	364523.8322	8269479.3032	281.21	0.18	0.23	0.38	4.51
60	357562.5711	8268842.7697	293.67	0.24	0.19	0.41	5.54
61	377593.4926	8242031.9015	318.10	0.03	0.19	0.32	0.62
62	366821.3814	8232836.1335	312.10	4.12	0.19	0.41	100.44
63	372284.7270	8271030.7045	253.78	0.72	0.23	0.37	15.57
64	355649.9992	8246278.1531	289.77	4.09	0.19	0.38	85.11
65	367229.0023	8242248.9271	303.80	9.60	0.19	0.39	217.98
66	349888.6647	8254887.1309	286.20	3.23	0.19	0.36	63.52
67	348615.8942	8240956.9446	285.59	4.54	0.19	0.40	97.33
68	348348.9348	8247867.7489	285.59	5.06	0.19	0.41	111.16
09	3/03/29.0/88	8203804.7019	278.95	0.85	0.23	0.38	20.79
70	30/044.9083	8279310.9285	228.83	0.38	0.23	0.35	7.12
72	368723 6139	8250133 1580	284.57	0.28	0.23	0.38	5.83
72	360244 7145	8242016 0477	295.84	4 84	0.19	0.37	108.08
74	349676 1338	8257169 8148	295.64	6.11	0.19	0.40	128.19
75	348049.7367	8237059.9324	284.14	2.75	0.19	0.40	59.19
76	373658.5748	8248562.5978	306.96	0.34	0.19	0.37	7.37
77	373256.9655	8242374.7908	311.86	1.23	0.19	0.35	25.53
78	363986.9627	8273184.7852	277.11	0.10	0.23	0.40	2.49
79	357201.1382	8237548.1469	294.58	0.77	0.19	0.28	12.04
80	374898.9635	8247646.4888	310.10	4.25	0.19	0.37	<u>92.7</u> 0
81	365758.9013	8268564.6806	278.70	0.26	0.23	0.38	6.34
82	367262.9659	8269418.9597	273.18	0.03	0.23	0.39	0.73
83	378949.1395	8242241.2724	319.75	3.05	0.19	0.36	66.02
84	370974.3223	8250825.8564	299.90	0.23	0.23	0.37	5.81
85	374479.7890	8244041.1187	312.33	5.81	0.19	0.38	129.67
86	379502.3749	8245731.2580	319.35	3.89	0.19	0.38	91.22
87	360857.4553	8243843.1168	295.25	4.17	0.19	0.39	81.38
88	368260.3241	8245552.3980	301.95	3.37	0.19	0.36	69.98
89	36/218.1/19	8274817.9051	256.78	0.03	0.23	0.36	0.64
90	348302.8/1/	8233821.3792	284.15	2.33	0.19	0.38	47.31
91	380280 6303	8238030.8392	302.88	3.15	0.25	0.30	34.38 75.20
03	372166 5789	8275037 4541	227.70	0.18	0.19	0.39	3 29
94	358140 0896	8256953.0115	227.70	0.10	0.19	0.35	6.91
95	373473 6785	8264804 1784	274 39	0.30	0.23	0.39	11.98
96	366079.4728	8244982.4111	299.83	7.18	0.19	0.40	164.54
97	355868.9582	8246570.7451	289.78	2.98	0.19	0.38	62.01
98	361457.4894	8259670.4367	286.63	0.03	0.23	0.32	0.63
99	362891.1122	8264867.7243	285.91	0.24	0.23	0.33	5.11
100	373167.4025	8272601.7417	244.14	0.18	0.23	0.35	3.53
101	359055.2093	8256363.3600	287.37	0.38	0.19	0.36	7.48
102	346093.6545	8238833.5378	283.00	3.55	0.19	0.42	78.79
103	368145.5472	8237255.7734	309.72	2.09	0.19	0.40	49.06
104	359712.1163	8267780.4398	291.26	0.70	0.23	0.35	16.83
105	372352.9215	8276360.3126	224.07	0.10	0.23	0.31	1.62
106	365809.9495	8254776.2909	289.60	1.14	0.23	0.38	28.54
107	5/4456.2222	82394/3.4019	315.94	3.71	0.19	0.36	81.08
108	304331.9932	8250042.2826	293.40	0.38	0.19	0.30	/.62
109	337003.13/3	0234337.1741 8230215.0005	201.91	1.39	0.19	0.39	29.32
111	343222.3404	8239213.0993	202.42	1.30	0.19	0.37	20.30
112	373818 3174	8252576 0881	302.21	1.29	0.17	0.38	34.40
112	370111 5522	8264513 7648	276.64	2.97	0.23	0.30	67 71
114	380125.4995	8257260.4451	306.72	2.91	0.23	0.39	79.18
115	363627.0026	8240438.2587	300.85	2.26	0.19	0.40	51.43
116	365873.9256	8267658.0280	279.34	0.10	0.23	0.38	2.34
117	345981.1949	8236870.1416	282.04	5.60	0.19	0.41	124.11
118	352294.5144	8241381.2752	288.61	3.19	0.19	0.38	69.64
119	377335.3024	8253667.1510	307.72	0.93	0.23	0.38	24.65

N°	COORDENADAS UTM		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m)	Norte (m)	MJ*mm/ha*h*año	(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año
120	364350.9576	8261141.3032	284.84	0.03	0.23	0.34	0.66
121	354859.4556	8259672.9746	288.23	0.03	0.19	0.29	0.48
122	378379.1461	8260782.7751	292.45	0.79	0.23	0.38	20.28
123	354347.0651	8262702.6554	290.00	1.57	0.19	0.37	31.86
124	373751.5840	8240929.3952	313.73	3.14	0.19	0.40	75.49
125	355374.8618	8244885.4665	290.15	8.47	0.19	0.43	200.16
126	369319.1229	8266058.3543	274.65	0.85	0.23	0.38	20.12
127	371811.4566	8241889.8557	310.27	6.03	0.19	0.40	144.57
128	380878.4951	8244745.8842	321.73	2.57	0.19	0.40	62.88
129	361932.2419	8246054.2533	294.63	5.09	0.19	0.39	110.23
130	303000.2513	8239840.1200	301.28	0.34	0.19	0.39	1.57
131	374055.8299	8238304.0001	210.02	0.40	0.19	0.41	101.02
132	368003 6406	8244700.3939	303.04	5.53	0.19	0.38	49.88
133	371500 3062	8245044 1823	307.12	0.59	0.19	0.37	10.87
134	379009 1094	8264132 9314	281.08	0.35	0.12	0.33	5.94
136	374592 4154	8273144 5104	237.93	0.23	0.23	0.37	2 39
137	361475.5197	8233636.4817	302.50	4.01	0.19	0.25	57.84
138	361644.6548	8235745.9674	301.51	2.04	0.19	0.36	42.55
139	361925.7424	8239054.2914	299.73	1.64	0.19	0.40	37.26
140	365148.9850	8258414.8967	286.14	5.76	0.23	0.36	136.78
141	368924.0009	8235483.3486	312.66	4.00	0.19	0.39	91.79
142	359480.3435	8258451.1327	287.22	0.18	0.19	0.36	3.27
143	354131.0664	8242914.3454	289.83	2.14	0.19	0.38	43.80
144	377334.6595	8243543.1292	316.91	4.56	0.19	0.38	106.08
145	369544.0919	8233659.4656	315.63	3.84	0.19	0.41	94.59
146	366152.8012	8246663.3835	298.29	13.31	0.19	0.38	281.92
147	363650.9941	8253680.8944	289.52	0.66	0.19	0.31	12.43
148	376035.3972	8239254.0436	318.08	7.03	0.19	0.37	160.84
149	350124.9293	8245592.0413	286.64	5.21	0.19	0.39	109.34
150	364140.1152	8258232.4135	286.35	0.03	0.23	0.38	0.76
151	358596.6994	8240457.9720	294.98	5.39	0.19	0.41	124.11
152	345915.9315	8238919.5904	282.88	1.71	0.19	0.37	35.89
153	3/0209.48/0	8260608.3126	283.74	0.03	0.23	0.31	0.61
154	369120.8516	8251519.0803	296.47	0.03	0.23	0.37	0.//
155	358311.1462	8246891.9007	291.22	3.34	0.19	0.39	/1.49
150	354802.8380	8202033.9103	289.99	0.71	0.19	0.28	10.96
157	376002 3448	8273566 5407	238.57	0.23	0.23	0.33	4.81 8.30
150	378002.1089	8263421 7002	233.00	4 23	0.23	0.30	102.10
160	373944 9233	8263790 2338	202.42	2 21	0.23	0.37	52.80
161	351919.8777	8248797.6632	287.10	0.10	0.19	0.33	1.72
162	380489.6296	8242626.3232	321.56	1.28	0.19	0.37	28.97
163	371498.8488	8271151.3389	255.36	4.93	0.23	0.37	107.48
164	349421.1692	8257096.7025	286.47	6.67	0.19	0.39	140.46
165	368813.6718	8267024.4136	273.74	0.33	0.23	0.40	8.16
166	345973.9931	8254006.6500	284.89	3.77	0.19	0.39	79.47
167	366908.5204	8254302.7339	290.81	3.95	0.23	0.39	103.13
168	363384.3837	8239775.6613	301.06	4.08	0.19	0.38	88.56
169	372357.4543	8273910.0150	239.26	0.33	0.23	0.33	5.92
170	370767.3123	8245926.1049	305.06	4.81	0.19	0.38	106.18
171	372571.9379	8232282.1256	322.06	3.04	0.19	0.40	74.59
172	382244.3253	8259550.7389	305.00	5.09	0.23	0.39	139.44
173	373633.2695	8257838.0750	292.25	0.03	0.00	0.00	0.00
174	346031.6496	8241331.1178	283.69	4.27	0.19	0.40	91.87
175	371431.6633	8237420.3406	314.05	2.62	0.19	0.37	57.24
176	3/9/34.7923	8266926.8185	269.48	0.41	0.23	0.37	9.47
177	362381.0253	8260163.1308	286.19	0.03	0.23	0.26	0.52
178	358478.9577	8245474.6595	292.14	4.76	0.19	0.35	91.78
1/9	3/3441.2/81	8241336./531	313.69	4.90	0.19	0.36	105.67
180	319024.8010	0204333.2030	281.13	0.51	0.23	0.38	12.54

N°	COORDENADAS UTM		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m) Norte (m)		MJ*mm/ha*h*año	(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año
181	368854.5930	8267468.8395	272.83	0.03	0.23	0.38	0.71
182	355652.0435	8239964.6472	292.06	1.67	0.19	0.37	34.69
183	378190.9869	8243728.8487	318.06	4.33	0.19	0.38	100.18
184	349044.5020	8246983.7161	285.96	5.44	0.19	0.39	115.23
185	365585.6101	8245988.7999	298.31	5.33	0.19	0.36	109.46
186	372539.0256	8254576.6464	296.81	0.57	0.23	0.38	14.92
187	344997.8871	8241718.4626	283.08	3.89	0.19	0.43	90.55
188	346920.5012	8238288.8253	283.49	7.03	0.19	0.41	155.26
189	365105.1380	8274844.0372	267.21	0.31	0.23	0.32	6.12
190	369022.7297	8247603.5981	300.88	2.76	0.19	0.36	56.00
191	3/2983.9/40	8252005.1894	301.45	0.97	0.23	0.30	24.30
192	359015.9520	8244175.5190	295.80	5.95 7.70	0.19	0.42	91.05
195	347596.0642	8259740 3557	286.64	1.79	0.19	0.41	29.45
195	373410 5211	8253636 3421	200.04	3 58	0.17	0.39	95.65
196	365559 1504	8259425 7838	285.31	0.03	0.23	0.26	0.50
197	366084.4685	8250333.6442	294.50	0.79	0.19	0.38	16.76
198	369080.1419	8245526.8983	303.09	2.57	0.19	0.42	62.21
199	353604.9093	8252268.5654	287.13	0.43	0.19	0.35	8.20
200	389222.6493	8264593.8231	296.90	0.59	0.23	0.37	14.99
201	358376.6074	8271233.8545	293.21	0.28	0.23	0.39	7.14
202	364661.3783	8244779.1376	298.39	10.17	0.19	0.39	223.31
203	348656.8003	8238554.2819	285.17	2.60	0.19	0.41	58.28
204	355051.6542	8238751.3541	291.72	4.29	0.19	0.40	95.71
205	369698.4408	8255405.0476	291.76	0.28	0.23	0.39	7.41
206	379777.2927	8261023.6859	294.41	0.03	0.23	0.36	0.74
207	372489.5514	8269134.9737	260.98	3.87	0.23	0.37	86.78
208	358197.4637	8261592.8149	288.57	0.16	0.19	0.29	2.51
209	366080.4943	8252185.9021	292.51	7.59	0.19	0.37	155.58
210	374554.1296	8272214.5718	243.29	0.43	0.23	0.36	8.75
211	365913.3685	8254275.6016	290.18	4.12	0.23	0.36	98.04
212	35/036.15/8	8262293.9598	289.40	2.17	0.19	0.35	41.85
213	359510.0100	8240384.0039	295.95	5.74 0.76	0.19	0.40	84.10 16.36
214	361073 8359	8214140.2839	202.00	0.70	0.23	0.33	219.50
215	378537 6415	8266954 0714	255.05	1.24	0.12	0.40	30.42
210	358998 6845	8259520 5781	200.10	0.24	0.23	0.40	3.94
218	375588.0217	8244472.8783	313.71	1.20	0.19	0.25	16.96
219	361968.4631	8263307.0760	286.69	0.12	0.23	0.32	2.66
220	366556.3882	8235613.3701	309.01	2.81	0.19	0.37	61.37
221	369342.0737	8269492.5696	266.90	0.03	0.23	0.34	0.63
222	349276.7887	8245943.6723	286.15	6.06	0.19	0.40	132.58
223	357066.8728	8267700.1360	293.33	4.64	0.19	0.43	110.66
224	344885.0515	8241884.0651	283.04	5.36	0.19	0.43	125.34
225	355831.2798	8257034.1784	287.41	0.17	0.19	0.34	3.04
226	345960.3219	8241708.5126	283.73	7.35	0.19	0.41	163.15
227	375019.4520	8261732.3203	284.24	0.03	0.00	0.00	0.00
228	371102.5771	8264149.9929	276.71	0.18	0.23	0.29	4.25
229	353488.0467	8244009.5734	289.07	3.87	0.19	0.42	89.74
230	5/5624./660	8242917.6791	314.82	0.99	0.19	0.38	22.68
231	303194.3007	82/3544.0096	2/1.1/	0.62	0.23	0.38	14./3
252	33/409.0838	8249401.9377	289.33	0.49	0.19	0.40	10.80
233	360530 0810	8246046 1220	203.00	3.58	0.19	0.37	77.50
234	350459 4858	8255079 4131	293.42	0.89	0.19	0.39	14 14
236	361167 4779	8244488 1845	295.09	9.84	0.19	0.39	215.64
237	366407.2603	8271291.3992	272.10	0.48	0.23	0.37	11.34
238	375569.6597	8244607.9913	313.58	1.48	0.19	0.36	31.33
239	359103.5334	8251120.8771	289.28	2.92	0.19	0.36	58.03
240	352187.9046	8255436.7109	286.79	3.14	0.19	0.39	66.12
241	361690.2698	8258132.6787	286.78	0.49	0.23	0.27	8.75

N°	COORDENADAS UTM		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m)	Norte (m)	MJ*mm/ha*h*año	(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año
242	379780.0507	8262741.5279	287.92	0.32	0.23	0.36	7.50
243	353971.7712	8247602.7037	288.35	4.95	0.19	0.33	89.67
244	369889.3136	8274190.6496	247.15	0.28	0.23	0.30	4.77
245	369956.1494	8262968.1831	279.61	3.21	0.23	0.38	77.60
246	379434.9032	8263745.3782	283.35	0.10	0.23	0.37	2.30
247	349338.2440	8244554.0093	286.24	10.19	0.19	0.39	215.61
248	362316.4236	8272196.0853	284.74	0.33	0.23	0.39	8.37
249	367463.4690	8233260.9821	312.76	5.69	0.19	0.40	136.07
250	303011.3503	8247325.3903	295.05	0.84	0.19	0.36	16.89
251	373000.9381	8242100 2651	200.97	6.05	0.00	0.00	144.20
252	372726 0578	8242190.2001	274.03	0.23	0.19	0.39	5 71
253	364154 7445	8204008.0813	214.93	11.29	0.23	0.38	244.11
255	358329.2237	8254491.8485	297.69	0.24	0.19	0.37	4.80
256	365788.0327	8258641.5740	285.91	0.39	0.23	0.32	8.08
257	368443.6384	8235353.7063	312.08	3.36	0.19	0.38	75.80
258	387542.2753	8264425.7038	295.13	0.12	0.23	0.36	3.06
259	364338.1594	8237879.2323	303.82	7.07	0.19	0.39	160.44
260	349609.8790	8255805.3228	286.26	3.01	0.19	0.37	60.57
261	359789.6186	8244900.6524	293.56	5.10	0.19	0.38	107.68
262	378407.8414	8270392.9436	250.38	1.38	0.23	0.37	29.48
263	350065.8488	8239356.4504	286.63	7.45	0.19	0.42	171.66
264	372332.5070	8237781.5631	314.86	4.27	0.19	0.38	95.40
265	350357.8986	8240055.2449	286.97	6.78	0.19	0.41	153.35
266	361168.7271	8260148.7614	286.76	0.03	0.23	0.31	0.61
267	364272.7255	8262787.7549	284.34	0.10	0.23	0.34	2.15
268	387666.5848	8264170.8007	296.61	0.24	0.23	0.32	5.17
269	373365.0069	8275655.9519	225.37	0.29	0.23	0.34	5.05
270	365803.8187	8240202.5707	303.83	8.15	0.19	0.40	189.27
2/1	381422.8637	8243156.8691	322.63	3.21	0.19	0.40	/8./6
272	375478.0850	8209030.7043	239.81	2.10	0.23	0.37	47.90 54.20
273	377862 1767	8261058 2642	221.19	2.00	0.23	0.37	54.29 66.58
274	370589 5643	8256052 6158	287.50	8.16	0.23	0.30	199.83
276	367011.5132	8246730.2474	299.24	0.12	0.19	0.43	3.02
277	347475.7939	8258567.8439	286.24	4.19	0.19	0.43	98.70
278	352935.9024	8256173.3769	287.03	0.23	0.19	0.35	4.54
279	375995.3800	8262234.2895	283.81	3.92	0.23	0.29	64.63
280	374353.3105	8262925.9725	280.16	0.93	0.23	0.39	23.02
281	354138.7699	8255488.3107	287.12	0.29	0.19	0.33	5.22
282	369293.3165	8276539.1131	236.99	0.23	0.23	0.40	4.88
283	371230.1062	8276780.4062	225.95	0.13	0.23	0.28	1.84
284	366969.3419	8258444.0907	286.17	0.34	0.23	0.34	7.60
285	368155.7031	8250904.9496	296.05	0.17	0.23	0.36	4.05
286	360262.0187	8261854.7045	287.62	0.25	0.23	0.30	4.87
287	365881.6401	8250001.9724	294.64	13.48	0.19	0.42	317.52
288	363588.6416	8236422.7155	303.91	2.69	0.19	0.36	56.42
289	3031/9.0843	8241993.9832	299.08	4.6/	0.19	0.39	103.07
290	338493.3/01	8243129.0523	293.48	0.3/	0.19	0.40	140.42
291	360122 /227	0230300.0712 8266551 6270	200.50	0.13	0.25	0.37	25 74
292	35850/ 15/1	8258864 2012	290.13	0.99	0.25	0.38	20.74
293	370170 6020	8277949 9051	207.49	0.03	0.19	0.32	0.58
295	362614 3544	8263345 2784	225.20	0.10	0.23	0.35	2.26
296	373496.3299	8272958.9080	241.39	0.17	0.23	0.39	3.64
297	373191.1345	8235329.9909	318.78	4.83	0.19	0.36	105.67
298	369280.5163	8272856.4546	255.87	0.24	0.23	0.37	5.14
299	376242.0174	8270717.9296	249.26	0.22	0.23	0.34	4.34
300	355254.2901	8252807.8667	287.47	0.65	0.19	0.38	13.44
301	368134.3346	8255629.4130	290.06	0.19	0.23	0.34	4.25
302	376578.2392	8273986.2226	229.80	1.55	0.23	0.37	29.99

N°	COORDENADAS UTM		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m)	Norte (m)	MJ*mm/ha*h*año	(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año
303	377898.6953	8264319.3480	278.81	1.66	0.23	0.38	40.75
304	346138.4439	8242334.5053	283.99	4.29	0.19	0.41	94.28
305	372622.5200	8236326.0415	316.86	5.05	0.19	0.34	102.08
306	350444.9741	8250065.6063	286.34	6.60	0.19	0.37	136.78
307	371912.2588	8273645.6770	242.24	0.46	0.23	0.36	9.34
308	368183.5839	8264817.9624	278.21	0.25	0.23	0.38	5.96
309	378364.8423	8257545.9695	301.90	0.76	0.23	0.37	19.79
211	370038.4088	8204080.1452	2/7.15	0.32	0.23	0.37	7.54
311	371027.2288	8237845.7902	209.15	0.05	0.23	0.34	0.07
312	365337 3589	8253601 7500	294.67	0.31	0.19	0.30	6.97
314	383454 6198	8261426 1405	300.76	2.83	0.23	0.34	73.05
315	356168 9099	8251412 3059	288.07	1.28	0.23	0.37	24.90
316	364846.1072	8236391,5093	305.78	5.62	0.19	0.40	130.73
317	364628.5146	8250219.2937	293.30	0.63	0.19	0.36	12.55
318	381897.3048	8264330.9107	285.12	0.23	0.23	0.37	5.04
319	367722.6854	8243341.8880	303.43	1.98	0.19	0.38	43.90
320	372759.1927	8270983.0782	253.01	4.53	0.23	0.37	96.82
321	368539.0883	8250464.8919	297.05	0.03	0.19	0.32	0.55
322	358409.5093	8265849.0078	291.30	6.30	0.19	0.40	137.96
323	346508.9119	8236417.6099	282.30	4.19	0.19	0.39	88.16
324	358543.5269	8250640.9555	289.30	4.92	0.19	0.37	99.17
325	376059.5618	8267845.9219	262.99	0.38	0.23	0.37	8.62
326	364699.6079	8275186.1890	267.82	0.24	0.23	0.37	5.39
327	358544.5240	8269592.9712	293.14	0.61	0.19	0.37	13.13
328	365163.4494	8237710.5660	305.09	6.83	0.19	0.41	161.36
329	352928.1450	8259866.3278	288.21	3.39	0.19	0.35	64.17
330	355607.0152	8252819.9970	287.56	0.61	0.19	0.38	12.61
331	387755.8987	8263601.7204	299.42	0.28	0.23	0.37	7.26
332	371115.6098	8239198.1754	311.85	7.09	0.19	0.39	161.76
333	390374.2010	8264080.2963	300.69	0.03	0.23	0.30	0.60
334	367733.5282	82/1266.2/18	267.29	3.39	0.23	0.38	/8.5/
335	352169.2679	8258496.8137	287.52	4.56	0.19	0.39	96.19
330	360881 4404	8232540 7113	246.03	5.01	0.23	0.33	126.02
337	350825 7503	8232340.7113	287.26	5.36	0.19	0.42	117.05
330	371/3/ 7193	8243339.3883	267.20	1.15	0.19	0.40	25.89
340	362134 8431	8235937 8934	302.10	1.15	0.19	0.37	45.22
341	352148,7889	8246573.2311	287.63	8.93	0.19	0.39	189.01
342	367315.3344	8231934.3542	313.92	4.81	0.19	0.40	107.31
343	351640.1867	8244234.6836	287.74	2.86	0.19	0.36	59.20
344	357326.1425	8239184.5824	294.15	3.72	0.19	0.35	73.50
345	379219.7117	8242862.5147	319.87	6.13	0.19	0.37	138.82
346	368880.7077	8270368.9199	265.91	0.38	0.23	0.37	8.78
347	350214.6313	8254306.1716	286.22	2.39	0.19	0.33	42.94
348	361065.4288	8244906.0797	294.70	3.74	0.19	0.41	85.52
349	380425.8950	8254885.0406	312.78	4.81	0.23	0.37	129.51
350	354130.6644	8240080.5627	290.49	4.87	0.19	0.42	112.04
351	372300.9114	8247935.3463	305.36	2.14	0.19	0.32	40.13
352	354649.7128	8251994.4974	287.47	2.11	0.19	0.38	44.34
353	364115.2384	8246907.9746	295.91	6.47	0.19	0.39	142.02
354	364780.9337	8240839.9082	301.92	5.33	0.19	0.41	123.30
355	30/015.9822	8255855.6717	310.34	4.66	0.19	0.40	109.09
350	352072.0324	8238903.6312	28/.00	5.74	0.19	0.39	18.14
351	374485 5122	0230013.804/	313.73	4.10	0.19	0.40	50.0/ 616
350	383504 0587	8259110 0605	310.33	2 33	0.19	0.35	64 22
360	362735 6016	8250627 8052	291 52	1 41	0.25	0.35	27.67
361	364890 9657	8263053 9939	283.64	0.03	0.23	0.37	0.72
362	360503.7136	8253613.0595	288.47	5.56	0.19	0.39	119.82
363	378836.0830	8265069.1025	276.91	0.32	0.23	0.38	7.69

N°	COORDENADAS UTM		COORDENADAS UTM Factor I		Factor R	Factor LS	Factor K	Factor C	Erosión Actual
	Este (m)	Norte (m)	MJ*mm/ha*h*año	(adim)	tn*ha*h/ha*MJ*mm	(adim)	tn/ha*año		
364	369092.0404	8241115.9982	307.28	5.59	0.19	0.39	128.62		
365	380373.5934	8253900.3293	314.40	0.61	0.23	0.38	16.76		
366	358199.8264	8248814.4045	290.08	0.99	0.19	0.38	20.82		
367	380599.9739	8244556.3876	321.36	4.17	0.19	0.39	98.56		
368	355144.1849	8262857.4032	290.10	0.96	0.19	0.31	16.23		
369	380114.3332	8259952.1385	298.77	1.65	0.23	0.37	39.35		
370	382838.4997	8263501.2012	290.73	0.12	0.23	0.36	3.00		
371	371825.6227	8235115.1350	317.19	6.00	0.19	0.45	162.95		
372	361260.9481	8250221.0749	290.93	3.14	0.19	0.37	64.64		
373	381645.0374	8266875.0570	272.43	0.61	0.23	0.37	13.99		
374	373488.9011	8238482.1373	315.66	7.24	0.19	0.35	153.42		
375	367072.5505	8242705.0684	303.17	6.97	0.19	0.40	160.16		
376	359081.1890	8247994.2872	291.06	5.67	0.19	0.40	124.00		
377	374253.7484	8272401.2149	242.70	0.12	0.23	0.34	2.46		
378	364906.9038	8273510.9858	272.42	0.44	0.23	0.34	9.22		
379	369212.9220	8234293.4468	314.39	5.40	0.19	0.42	135.17		
380	351643.8367	8239712.1764	288.14	6.75	0.19	0.40	149.91		
381	356964.1265	8241878.0731	292.68	3.49	0.19	0.41	80.03		
382	362781.0201	8235210.5827	303.58	1.00	0.19	0.37	21.07		
383	381509.4247	8243331.8100	322.72	4.20	0.19	0.40	103.76		
384	359663.3606	8244564.6934	293.67	5.32	0.19	0.41	119.92		

Nota: Datos obtenidos de QGIS

ANEXO 9 Mapas secundarios para hallar el factor R

a) Distribución espacial del índice modificado de Fournier (IMF)

Nota: la figura muestra la distribución espacial del índice modificado de Fournier

b) Clasificación del índice modificado de Fournier

Nota: la figura muestra la clasificación del índice modificado de Fournier

c) Clasificación de la erosividad de las lluvias o factor R

Nota: la figura muestra la clasificación de la erosividad de las lluvias o factor R

a) Mapa de pendientes (en grados sexagesimales) de la cuenca del río Illpa

Nota: la figura muestra la pendiente (en grados sexagesimales)

b) Mapa del factor de longitud de la pendiente (L) de la cuenca del río Illpa

Nota: la figura muestra el factor de longitud de la pendiente (L)

c) Mapa del factor de gradiente de la pendiente (S) de la cuenca del río Illpa

Nota: la figura muestra el factor de gradiente de la pendiente (S)

Nota: la figura muestra la clasificación del factor topográfico o factor LS

ANEXO 11 Mapas secundarios para hallar el factor K

a) Mapa de los tipos de suelos presentes en la cuenca del río Illpa

Nota: la figura muestra los tipos de suelos presentes en la cuenca del río Illpa

b) Mapa de la clasificación del factor de erodabilidad o factor K

Nota: la figura muestra la clasificación del factor de erodabilidad o factor K

ANEXO 12 Mapas secundarios para hallar el factor C

c) Mapa del índice de vegetación de la diferencia normalizada (NDVI)

Nota: la figura muestra el índice de vegetación de la diferencia normalizada (NDVI)

d) Clasificación del NDVI en la cuenca del río Illpa

Nota: la figura muestra la clasificación del NDVI en la cuenca del río Illpa

e) Mapa de la clasificación del factor de cobertura vegetal o factor C

Nota: la figura muestra la clasificación del factor de cobertura vegetal o factor C

f) Mapa de la clasificación no supervisada

Nota: la figura muestra el mapa de la clasificación no supervisada

g) Mapa de la clasificación supervisada

Nota: la figura muestra el mapa de la clasificación supervisada

ANEXO 13 Declaración jurada de autenticidad de tesis

Universidad Nacional del Altiplano Puno

Vicerrectorado de Investigación

Repositorio Institucional

DECLARACIÓN JURADA DE AUTENTICIDAD DE TESIS

Por el presente documento, Yo <u>Chili Luque</u> Jordan Isnael identificado con DNI <u>71431751</u> en mi condición de egresado de:

🛙 Escuela Profesional, 🗖 Programa de Segunda Especialidad, 🗖 Programa de Maestría o Doctorado

Ingeniería Tapográfica y Aquimensura

informo que he elaborado el/la Tesis o Trabajo de Investigación denominada: "Determinación de la enosión hídrica media anual en la cuenca del río IUpa mediante el método USLE aplicando teledetección y 516

Es un tema original.

Declaro que el presente trabajo de tesis es elaborado por mi persona y **no existe plagio/copia** de ninguna naturaleza, en especial de otro documento de investigación (tesis, revista, texto, congreso, o similar) presentado por persona natural o jurídica alguna ante instituciones académicas, profesionales, de investigación o similares, en el país o en el extranjero.

Dejo constancia que las citas de otros autores han sido debidamente identificadas en el trabajo de investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, ya sea de fuentes encontradas en medios escritos, digitales o Internet.

Asimismo, ratifico que soy plenamente consciente de todo el contenido de la tesis y asumo la responsabilidad de cualquier error u omisión en el documento, así como de las connotaciones éticas y legales involucradas.

En caso de incumplimiento de esta declaración, me someto a las disposiciones legales vigentes y a las sanciones correspondientes de igual forma me someto a las sanciones establecidas en las Directivas y otras normas internas, así como las que me alcancen del Código Civil y Normas Legales conexas por el incumplimiento del presente compromiso

Puno 24 de enero del 2024

Huella

240

ANEXO 14 Autorización para el depósito de tesis en el Repositorio Institucional

Universidad Nacional del Altiplano Puno

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL

Por el presente documento, Yo <u>Chili Luque</u> <u>Jordan</u> <u>Isnael</u> identificado con DNI<u>71431751</u> en mi condición de egresado de:

🖾 Escuela Profesional, 🗖 Programa de Segunda Especialidad, 🗖 Programa de Maestría o Doctorado

Ingenieria Topográfica y Agrimensura. informo que he elaborado el/la 🛛 Tesis o 🗆 Trabajo de Investigación denominada:	
"Determinación de la erosión hídnica media anual en la cuenca de	
rió Illpa mediante el método USLE aplicando teledetección y 516	-

para la obtención de DGrado, 🛛 Título Profesional o D Segunda Especialidad.

Por medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a favor mío; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia:

Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: <u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>

En señal de conformidad, suscribo el presente documento.

Puno	24	de	enero	del 2024

Huella

(obligatoria) FIRMA 241