

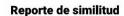
UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA CIVIL Y ARQUITECTURA ESCUELA PROFESIONAL DE INGENIERÍA CIVIL

COMPARACIÓN DEL MÓDULO RESILIENTE BASADO EN CURVAS DE DISEÑO RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISEÑO DE PAVIMENTOS FLEXIBLES DE LA CARRETERA CALACOTA-ILAVE, 2023

TESIS

PRESENTADA POR:

JOSE LUIS CONDORI MAMANI


JULIO CESAR CONDORI MAMANI

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO CIVIL

PUNO – PERÚ

2024

NOMBRE DEL TRABAJO

COMPARACIÓN DEL MÓDULO RESILIEN TE BASADO EN CURVAS DE DISEÑO RA MCODES Y ENSAYOS CBR CONVENCION AL PARA EL DISEÑO DE PAVIMENTOS F LEXIBLES DE LA CARRETERA CALACOT A-ILAVE, 2023 **AUTOR**

JOSE LUIS CONDORI MAMANI - JULIO C ESAR CONDORI MAMANI

RECUENTO DE PALABRAS

26969 Words

RECUENTO DE PÁGINAS

175 Pages

FECHA DE ENTREGA

Jun 18, 2024 5:30 PM GMT-5

RECUENTO DE CARACTERES

141347 Characters

TAMAÑO DEL ARCHIVO

6.8MB

FECHA DEL INFORME

Jun 18, 2024 5:32 PM GMT-5

10% de similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para cada base de datos.

- · 9% Base de datos de Internet
- · Base de datos de Crossref
- 1% Base de datos de publicaciones
- Base de datos de contenido publicado de Crossref
- 7% Base de datos de trabajos entregados

Excluir del Reporte de Similitud

amuel Huaquisto Caceres

OCENTE UNIVERSITARIO

- · Material bibliográfico
- · Material citado

- · Material citado
- · Coincidencia baja (menos de 10 palabras)

NOBO

Ing. Jaime Medina Leiva
DOCENTE UNIVERSITARIO
COD. UNA Nº 210545

SUBDIRECTOR DE INDESTRACE

Resumen

DEDICATORIA

Dedico este trabajo a mis padres, Ascencio Condori y Magdalena Mamani, por ser un soporte y motivación, que a través de su amor y moral contribuyeron a mi formación y crecimiento profesional y también a mi tío Luciano Mamani por haber compartido parte de mi infancia momentos de alegría.

Jose Luis Condori Mamani

DEDICATORIA

Dedico esta tesis con profunda gratitud a mis queridos padres, Ascencio Condori y Magdalena Mamani, por los esfuerzos que han realizado para que pueda completar esta fase de mi educación, asimismo a mis hermanos Víctor y Zenayda por su comprensión, consejos y motivación de siempre salir adelante.

Julio Cesar Condori Mamani

AGRADECIMIENTOS

Reconocemos con aprecio a la escuela profesional de Ingeniería Civil de la Universidad Nacional del Altiplano-Puno, por impartirnos conocimientos indispensables para nuestra preparación académica y profesional.

A vuestros ingenieros que han contribuido al desarrollo de este proyecto con sus conocimientos y orientación; de manera directa, al director de tesis y a los integrantes del jurado por su continuo respaldo en la consecución de este propósito.

Asimismo, agradecer a mis padres, quienes son parte de nuestro desarrollo y formación profesional, siendo el sostén económico y moral para la culminación de nuestro sueño académico.

Jose Luis Condori Mamani Julio Cesar Condori Mamani

ÍNDICE GENERAL

DEDI	ICATORIA	Pág.
_	ADECIMIENTOS	
	ICE GENERAL	
	ICE DE TABLAS	
ÍNDI	ICE DE FIGURAS	
ACR	ÓNIMOS	
RESU	UMEN	19
ABST	TRACT	20
	CAPÍTULO I	
	INTRODUCCIÓN	
1.1.	PLANTEAMIENTO DEL PROBLEMA	21
1.2.	FORMULACIÓN DEL PROBLEMA	22
	1.2.1. Problema general	22
	1.2.2. Problemas específicos	22
1.3.	HIPÓTESIS DE LA INVESTIGACIÓN	22
	1.3.1. Hipótesis general	22
	1.3.2. Hipótesis específicas	22
1.4.	JUSTIFICACIÓN DE LA INVESTIGACIÓN	23
1.5.	OBJETIVOS DE LA INVESTIGACIÓN	24
	1.5.1. Objetivo general	24
	1.5.2. Objetivos específicos	24
	CAPÍTULO II	

REVISIÓN DE LITERATURA

2.1.	ANTI	ECEDENTES DE LA INVESTIGACIÓN	. 25
	2.1.1.	Antecedentes internacionales	. 25
	2.1.1.	Antecedentes nacionales	. 28
	2.1.1.	Antecedentes locales	. 30
2.2.	MAR	CO TEÓRICO	. 31
	2.2.1.	Pavimento flexible	. 31
		2.2.1.1. Partes del pavimento flexible	. 31
	2.2.2.	Módulo resiliente	. 33
		2.2.2.1. Ecuación de correlación de módulo resiliente	. 33
	2.2.3.	Caracterización de la subrasante	. 34
		2.2.3.1. Registro de excavación	. 35
		2.2.3.2. Metodología de las diferencias acumuladas	. 36
	2.2.4.	Características físicas de la subrasante	. 39
		2.2.4.1. Contenido de humedad (MTC E 108)	. 39
		2.2.4.2. Análisis granulométrico de suelos por tamizado (MTC E 107) 40
		2.2.4.3. Límite líquido (MTC E 110)	. 41
		2.2.4.4. Límite plástico (L.P.) e índice de plasticidad (I.P.) (MTC E 1	11)
			. 43
		2.2.4.5. Gravedad específica de sólidos de suelo (Gs) (MTC E 113)	. 50
	2.2.5.	Características mecánicas de subrasante	. 51
		2.2.5.1. Compactación de suelos – Proctor modificado (MTC E 115).	. 52
		2.2.5.2. CBR de suelos - laboratorio (MTC E 132)	. 54
	2.2.6.	Estimación de la variación de humedad de la subrasante	. 57
		2.2.6.1. Precipitación máxima diaria	. 57
		2.2.6.2 profundidad de análisis	58

3.1.

3.2.

	2.2.6.3. Grado de saturación	. 59
2.2.7.	RAMCODES para subrasante	. 60
	2.2.7.1. Clasificación cuantitativa de subrasante	. 60
	2.2.7.2. Potencial de densificación de subrasante	. 62
	2.2.7.3. Relación entre humedad, densidad y resistencia de subrasante	64
2.2.8.	Diseño de pavimentos (AASHTO-93)	. 69
	2.2.8.1. Procedimiento de diseño AASHTO 93	. 69
	2.2.8.2. Parámetros de diseño AASHTO 93	. 70
2.2.9.	Diseño de pavimento empírico-mecanístico	. 79
	2.2.9.1. Formas de daño estructural del pavimento	. 79
	2.2.9.2. Análisis deformacional de la estructura del pavimento	. 80
	CAPÍTULO III	
	MATERIALES Y MÉTODOS	
	MATERIALES I METODOS	
MET	ODOLOGÍA DE LA INVESTIGACIÓN	. 81
3.1.1.	ODOLOGÍA DE LA INVESTIGACIÓN	. 81
3.1.1. 3.1.2.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación	. 81 . 81
3.1.1. 3.1.2. 3.1.3.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación	. 81 . 81 . 82
3.1.1. 3.1.2. 3.1.3. 3.1.4.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación Diseño de investigación	. 81 . 81 . 82
3.1.1. 3.1.2. 3.1.3. 3.1.4.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación Diseño de investigación Población	. 81 . 81 . 82 . 82
3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.5.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación Diseño de investigación Población Muestra	. 81 . 81 . 82 . 82
3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.5.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación Diseño de investigación Población Muestra 3.1.5.1. Metodología de las diferencias acumuladas	. 81 . 81 . 82 . 82 . 84
3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.5. 3.1.6.	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación Diseño de investigación Población Muestra 3.1.5.1. Metodología de las diferencias acumuladas Técnicas e instrumentos de recolección de datos	. 81 . 81 . 82 . 82 . 84 . 86
3.1.1. 3.1.2. 3.1.3. 3.1.4. 3.1.5. 3.1.6. 3.1.7. MAT	ODOLOGÍA DE LA INVESTIGACIÓN Tipo de investigación Nivel de investigación Diseño de investigación Población Muestra 3.1.5.1. Metodología de las diferencias acumuladas Técnicas e instrumentos de recolección de datos Operacionalización de variables	. 81 . 82 . 82 . 84 . 86 . 88

4.2.	RESU	ILTADOS DE MÓDULO RESILIENTE CONVENCIONAL	149
		RAMCODES	148
	4.1.3.	Resultados de módulo resiliente basado en curvas de diseño	
	4.1.2.	Resultados de la elaboración de experimentos factoriales	142
	4.1.1.	Resultados de la clasificación RAMCODES	141
4.1.	RESU	ULTADOS DE MÓDULO RESILIENTE RAMCODES	141
		RESULTADOS Y DISCUSIÓN	
		CAPÍTULO IV	
	3.2.8.	Parámetros de diseño mecanístico-empírico	139
	3.2.7.	Parámetros de diseño AASHTO 93	136
	3.2.6.	Módulo resiliente basado en curvas de diseño RAMCODES	135
	3.2.5.	Módulo resiliente con ensayos CBR convencional	135
			110
		3.2.4.3. Relación entre el contenido de agua, la densidad y la resisten	icia
		3.2.4.2. Potencial de densificación	109
		3.2.4.1. Clasificación cuantitativa de subrasante	109
	3.2.4.	RAMCODES para subrasante	109
	3.2.3.	Cálculo de la variación de saturación	105
		3.2.2.2. CBR de suelos - laboratorio (MTC E 132)	102
		3.2.2.1. Compactación de suelos – Proctor modificado (MTC E 115)	99
	3.2.2.	Caracterización mecánica de subrasante	
		3.2.1.5. Gravedad específica de sólidos de suelo (Gs) (MTC E 113)	
		3.2.1.4. Límite plástico e índice de plasticidad (MTC E 111)	
		3.2.1.3. Límite líquido (MTC E 110)	
		3.2.1.2. Análisis granulométrico de suelos por tamizado (MTC E 107	7) 91

	4.2.1.	Resultados de la caracterización física de la subrasante	149
	4.2.2.	Resultados de la caracterización mecánica de la subrasante	150
	4.2.3.	Resultados del módulo resiliente con ensayos CBR convencional	151
4.3.	CUMI	PLIMIENTO DE OBJETIVOS	152
4.4.	DISC	USIÓN	161
v. co	NCLU	SIONES	165
VI. R	ECOM	ENDACIONES	166
VII. R	REFER	ENCIA	167
ANEX	XOS		171

Área: Transportes

Tema: Pavimentos Flexibles

Línea de investigación: Transportes y gestión vial

FECHA DE SUSTENTACIÓN: 25 de junio del 2024

ÍNDICE DE TABLAS

]	Pág.
Tabla 1	Número de calicatas para exploración de suelos	34
Tabla 2	Número de ensayos MR y CBR	35
Tabla 3	Serie de tamices	40
Tabla 4	Muestra mínima para granulometría	41
Tabla 5	Clasificación de materiales Granulares	48
Tabla 6	Clasificación de materiales Limo-Arcillosos	49
Tabla 7	Cantidad de masa de suelo	50
Tabla 8	Corrección por temperatura	51
Tabla 9	Método a utilizar para el ensayo de proctor modificado	52
Tabla 10	Características de la muestra patrón	55
Tabla 11	Fp Relacionado con la clasificación descriptiva	61
Tabla 12	Datos estadísticos de correlación para Fp vs MDS	63
Tabla 13	Periodos estándar de diseño	70
Tabla 14	Factor de distribución por carril D _L	71
Tabla 15	Niveles sugeridos de confiabilidad, R	72
Tabla 16	Desviación estándar, Z _R	72
Tabla 17	Condiciones de drenaje	78
Tabla 18	Coeficientes de drenaje, mi	78
Tabla 19	Constantes obtenidas en pruebas experimentales	80
Tabla 20	Coordenadas UTM del inicio y final del tramo	83
Tabla 21	Identificación de puntos de análisis para pruebas de laboratorio	84
Tabla 22	Cantidad de puntos de análisis por tramo homogéneo	85
Tabla 23	Metodología de diferencias acumuladas del AASHTO 93	87

Tabla 24	Operacionalización de variables	89
Tabla 25	Resultados de contenido de humedad	90
Tabla 26	Resultados de Análisis Granulométrico (% que pasa)	91
Tabla 27	Resultados de Límite Líquido	93
Tabla 28	Resultados de límite plástico e índice de plasticidad	94
Tabla 29	Características de granulometría y plasticidad	95
Tabla 30	Resultados de la clasificación de suelo según SUCS y AASHTO	97
Tabla 31	Cantidad de masa de suelo para Gs	97
Tabla 32	Resultados del ensayo de gravedad específica (Gs)	98
Tabla 33	Elección del método para el ensayo de proctor modificado	99
Tabla 34	Resultados del ensayo de proctor modificado	100
Tabla 35	Resultados de CBR convencional	103
Tabla 36	Variación de saturación promedio mensual	108
Tabla 37	Saturación máxima promedio mensual	108
Tabla 38	Resultados de la clasificación cuantitativa RAMCODES	109
Tabla 39	Resultados de potencial densificación (DMS)	110
Tabla 40	Variación y ordenamiento de humedades del suelo RS3	111
Tabla 41	Variación y ordenamiento de humedades del suelo RS2	111
Tabla 42	Variación y ordenamiento de humedades del suelo RS1	112
Tabla 43	Resultados del experimento factorial CBR: RS3	115
Tabla 44	Resultados del experimento factorial CBR: RS2	115
Tabla 45	Resultados del experimento factorial CBR: RS1	116
Tabla 46	CBR 0.1": RAMCODES	134
Tabla 47	Módulo resiliente convencional	135
Tabla 48	Módulo resiliente RAMCODES	136

Tabla 49	Coeficientes de Poisson
Tabla 50	Espesores de capa del pavimento flexible
Tabla 51	Resumen de la clasificación cuantitativa RAMCODES
Tabla 52	Resumen de experimentos factoriales para suelo: RS3, RS2 y RS1 142
Tabla 53	Resumen de módulo resiliente RAMCODES correlacionado
Tabla 54	Resumen de las características físicas del suelo de subrasante
Tabla 55	Resumen de las características mecánicas del suelo de subrasante 150
Tabla 56	Resumen de módulo resiliente convencional correlacionado
Tabla 57	Altura del pavimento respecto a módulo resiliente RAMCODES
Tabla 58	Altura del pavimento respecto a módulo resiliente convencional
Tabla 59	Costo del diseño de pavimento flexible RAMCODES
Tabla 60	Costo del diseño de pavimento flexible convencional
Tabla 61	Espesores del pavimento con curvas de diseño RAMCODES 156
Tabla 62	Espesores del pavimento con ensayos CBR convencional
Tabla 63	Verificación mecanística de pavimento con curvas de diseño RAMCODES
Tabla 64	Verificación mecanística de pavimento con ensayos CBR convencional . 157
Tabla 65	Correlaciones no paramétricas de variables

ÍNDICE DE FIGURAS

			Pág.
Figura	1	Estructura típica de pavimentos asfálticos	32
Figura	2	Correlación entre las propiedades del suelo y módulo resiliente	33
Figura	3	Equipo para realizar el ensayo	42
Figura	4	Herramienta de corte estándar	42
Figura	5	Diagrama de flujo para clasificación de suelos de partículas gruesas	46
Figura	6	Carta de plasticidad	47
Figura	7	Molde para realizar el ensayo de proctor modificado: "A" y "B"	53
Figura	8	Molde para realizar el ensayo de proctor modificado: "C"	53
Figura	9	Equipos y materiales de CBR	55
Figura	10	Curva para el cálculo de índice de CBR	56
Figura	11	Serie de tiempo de precipitación anual	58
Figura	12	Determinación de la línea 70	59
Figura	13	Variación de la MDS del proctor modificado vs Fp	62
Figura	14	Variación del CAO del Proctor vs Fp	63
Figura	15	Contenido de agua de elaboración vs. densidad seca y CBR	64
Figura	16	Superficie de respuesta	65
Figura	17	Mapa de resistencias	65
Figura	18	Distribución referencial del rango de humedad y golpes por capa	66
Figura	19	Cuadrícula kriging con correlación aleatoria	67
Figura	20	Carta para estimar el coeficiente estructural de concreto asfáltico	74
Figura	21	Rangos de coeficiente estructural de la capa de base granular (a2)	75
Figura	22	Rangos de coeficiente estructural de base estabilizada con asfalto (a ₂)	76
Figura	23	Rangos de coeficiente de capa de subbase granular (a ₃)	77

Figura	24	Distribución de las cargas de tránsito	80
Figura	25	Ubicación del tramo, km: 4+750 al km: 9+750	83
Figura	26	Ubicación de los puntos de evaluación: C-1, C-2, C-3, C-4, C-5, C-6	85
Figura	27	Tramificación por sectores homogéneos	88
Figura	28	Muestreo para contenido de humedad: C-2, C-4, C-6	90
Figura	29	Muestreo para contenido de humedad: C-1, C-3, C-5	91
Figura	30	Lavado de muestra para análisis granulométrico	92
Figura	31	Ensayo de análisis granulométrico	92
Figura	32	Realización de límite líquido	93
Figura	33	Realización de límite plástico	94
Figura	34	Realización del ensayo de gravedad específica (Gs)	98
Figura	35	Realización del ensayo proctor modificado	. 101
Figura	36	Extracción de muestra compactada	. 101
Figura	37	Ensayo CBR: selección de moldes	. 103
Figura	38	Ensayo CBR: compactación	. 104
Figura	39	Ensayo de CBR: inmersión de muestras	. 104
Figura	40	Ensayo de CBR: penetración de la muestra	. 105
Figura	41	Serie histórica de precipitación diaria anual	. 106
Figura	42	Serie temporal de variación de saturación del suelo: ML	. 106
Figura	43	Serie temporal de variación de saturación del suelo: SM	. 107
Figura	44	Serie temporal de variación de saturación del suelo: SW-SM	. 107
Figura	45	Muestras preparadas variando humedades	. 112
Figura	46	Compactación de muestras con rango de humedades	. 113
Figura	47	Enrasamiento de la muestra compactada	. 113
Figura	48	Penetración de la muestra compactada	. 114

Figura	49	Extracción de muestra compactada y penetrada	. 114
Figura	50	Curvas de compactación del suelo: RS3	. 116
Figura	51	Curvas de compactación del suelo: RS2	. 117
Figura	52	Curvas de compactación del suelo: RS1	. 117
Figura	53	Curvas de resistencia CBR 0.1" del suelo: RS3	. 118
Figura	54	Curvas de resistencia CBR 0.1" del suelo: RS2	. 118
Figura	55	Curvas de resistencia CBR 0.1" del suelo: RS1	. 119
Figura	56	Datos del experimento factorial del suelo: RS3	. 120
Figura	57	Datos del experimento factorial del suelo: RS2	. 120
Figura	58	Datos del experimento factorial del suelo: RS1	. 121
Figura	59	Red matricial del suelo: RS3	. 122
Figura	60	Red matricial del suelo: RS2	. 123
Figura	61	Red matricial del suelo: RS1	. 124
Figura	62	Superficie de respuesta tridimensional del suelo: RS3	. 125
Figura	63	Mapa de resistencia del suelo: RS3	. 125
Figura	64	Superficie de respuesta tridimensional del suelo: RS2	. 126
Figura	65	Mapa de resistencia del suelo: RS2	. 126
Figura	66	Superficie de respuesta tridimensional del suelo: RS1	. 127
Figura	67	Mapa de resistencia del suelo: RS1	. 127
Figura	68	Mapas de resistencia vs curvas de saturación: RS3	. 129
Figura	69	Mapas de resistencia vs curvas de saturación: RS2	. 129
Figura	70	Mapas de resistencia vs curvas de saturación: RS1	. 130
Figura	71	Espectros de curvas de diseño: RS3	. 131
Figura	72	Espectros de curvas de diseño: RS2	. 131
Figura	73	Espectros de curvas de diseño: RS1	132

Figura	74	CBR 0.1" (RAMCODES): RS3
Figura	75	CBR 0.1" (RAMCODES): RS2
Figura	76	CBR 0.1" (RAMCODES): RS1
Figura	77	Resumen de las curvas de compactación con ensayos factoriales143
Figura	78	Resumen de las curvas de resistencia CBR con ensayos factoriales 144
Figura	79	Resumen de superficies de respuestas tridimensionales
Figura	80	Resumen de mapas de resistencias de los suelos
Figura	81	Resumen de espectros de curvas de diseño RAMCODES 147
Figura	82	Altura de la subbase en el diseño estructural del pavimento
Figura	83	Relación entre diseño de payimentos Convencional y RAMCODES 160

ACRÓNIMOS

CBR: California Bearing Ratio

RAMCODES: Metodología Racional para el Análisis de Densidad y Resistencia

de Geomateriales Compactados

ASTM: American Society for Testing and Materials

AASHTO: American Association Standards Highway Transportation

Officials

SUCS: Sistema Unificado de Clasificación de Suelos

LP: Límite plástico

LL: Límite líquido

IP: Índice de plasticidad

NP: No Plástico

MDS: Máxima Densidad Seca

CHO: Contenido de Humedad Óptima

MTC: Ministerio de Transportes y Comunicaciones

EE: Ejes equivalentes

ESAL: Valor total de ejes equivalentes

UTM: Universal Transverse Mercator

E: Módulo elástico

Fp: Factor característico

RESUMEN

En el contexto nacional, respecto al diseño de pavimentos flexibles, el cálculo del módulo resiliente del suelo subrasante, se obtiene con ensayos CBR. Este enfoque presupone que el suelo alcanzará la saturación completa en algún momento de su vida útil, condición ideal que no necesariamente se refleja en todas las regiones del país. De ahí surge la necesidad de revisar metodologías racionales que permitan obtener CBR efectivos, considerando la saturación real de la subrasante. Este estudio tiene por objetivo comparar el módulo resiliente basado en curvas de diseño RAMCODES y ensayos CBR convencional para el diseño de pavimentos flexibles de la carretera Calacota-Ilave, del tramo: km 4+750 al 9+750. El tipo de investigación es aplicada, de nivel correlacional y diseño no experimental. Se empleó la metodología de las diferencias acumuladas para establecer la cantidad de puntos de exploración, lo que permitió identificar 03 tramos homogéneos. El procedimiento consistió en calcular el módulo resiliente con ensayos CBR convencional y la metodología RAMCODES, este último incluye el uso de un modelo matemático para estimar el grado de saturación de la subrasante, y luego se generaron curvas de diseño con el programa OringPro2023b, a fin de comparar en el diseño estructural de pavimento flexible. Se concluye que el módulo resiliente con las curvas de diseño RAMCODES, optimiza el diseño de pavimentos flexibles, ya que el módulo resiliente se incrementa en un 10.64 % respecto al convencional, lo que representa una reducción del 13.79% de espesor y 12.24 % de costo de la capa de subbase.

Palabras clave: CBR, Diseño de pavimento, Módulo resiliente, RAMCODES, Saturación.

ABSTRACT

In the national context, regarding the design of flexible pavements, the calculation of the resilient modulus of the subgrade soil is obtained with CBR tests. This approach assumes that the soil will reach full saturation at some point in its useful life, an ideal condition that is not necessarily reflected in all regions of the country. Hence arises the need to review rational methodologies that allow obtaining effective CBR, considering the real saturation of the subgrade. This study aims to compare the resilient module based on RAMCODES design curves and conventional CBR tests for the design of flexible pavements of the Calacota-Ilave highway, from the section: km 4+750 to 9+750. The type of research is applied, correlational level and non-experimental design. The methodology of accumulated differences was used to establish the number of exploration points, which allowed 03 homogeneous sections to be identified. The procedure consisted of calculating the resilient modulus with conventional CBR tests and the RAMCODES methodology, the latter includes the use of a mathematical model to estimate the degree of saturation of the subgrade, and then design curves were generated with the OringPro2023b program, in order to compare in the structural design of flexible pavement. It is concluded that the resilient module with the RAMCODES design curves optimizes the design of flexible pavements, since the resilient module increases by 10.64% compared to the conventional one, which represents a reduction of 13.79% in thickness and 12.24% in cost. of the subbase layer.

Keywords: CBR, Design of pavement, Resilient module, RAMCODES, saturation.

CAPÍTULO I

INTRODUCCIÓN

1.1. PLANTEAMIENTO DEL PROBLEMA

Los procedimientos de diseño para pavimentos flexibles, en nuestro país, considera que eventualmente los suelos de la subrasante podrían llegar a saturarse completamente a lo largo de su vida útil, lo cual es una suposición simplificada y costosa, debido a que no todas las regiones del país llegarán a tener subrasantes en esta condición. Asimismo, los resultados de campo y varias investigaciones de modelamiento numérico han resuelto que el contenido de agua de la subrasante cambiará con el tiempo (Zapata, 2018).

A consecuencia de esta premisa, es necesario estudiar metodologías de diseño que incluya considerar la subrasante en condición insaturada, así como la guía de diseño de pavimentos mecanístico-empírico del AASTHO, el cual no se logra adaptar en el Perú por el uso de costosos equipos dinámicos como el triaxial cíclico, pruebas para medir la succión y poca disponibilidad de extensa información climática (Maximiliano, 2016).

En nuestra región de Puno, se sigue usando el ensayo de CBR saturado para calcular el módulo resiliente de las carreteras, lo cual es muy convencional. Ante esta situación, se presenta la necesidad de estimar el módulo resiliente con el uso de las curvas de diseño RAMCODES, considerando la condición de clima del área analizado. Por lo expuesto, este estudio pretende comparar el módulo resiliente obtenido con las curvas de diseño RAMCODES y ensayos CBR convencional, para posteriormente evaluar el diseño estructural de la carretera Calacota, situada en la provincia Ilave-Puno.

1.2. FORMULACIÓN DEL PROBLEMA

1.2.1. Problema general

¿Cuál es la diferencia del módulo resiliente basado en curvas de diseño
 RAMCODES y ensayos CBR convencional para el diseño de pavimentos
 flexibles de la carretera Calacota-Ilave, 2023?

1.2.2. Problemas específicos

- ¿Cuál es el módulo resiliente basado en curvas de diseño RAMCODES para el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023?
- ¿Cuál es el módulo resiliente basado en ensayos CBR convencional para el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023?
- ¿Cuál es la diferencia de costo entre el diseño de pavimentos flexibles con las curvas de diseño RAMCODES y los ensayos CBR convencional?

1.3. HIPÓTESIS DE LA INVESTIGACIÓN

1.3.1. Hipótesis general

 El módulo resiliente basado en curvas de diseño RAMCODES respecto a ensayos CBR convencional optimiza el diseño de pavimentos flexibles de la carretera Calacota-Ilave, 2023.

1.3.2. Hipótesis específicas

 El módulo resiliente basado en curvas de diseño RAMCODES mejorará el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023.

- El módulo resiliente basado en ensayos CBR convencional sobredimensionará el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023.
- Existirá diferencia significativa de costo entre el diseño de pavimentos flexibles con las curvas de diseño RAMCODES y los ensayos CBR convencional.

1.4. JUSTIFICACIÓN DE LA INVESTIGACIÓN

En la república de Perú, la estimación de módulo de resiliencia en el diseño de pavimentos se basa en ensayos CBR convencionales que asume una condición completamente saturada de la subrasante del pavimento, sin embargo, la guía empírico-mecanicista de AASHTO, sugiere evaluar el módulo resiliente a través de equipos dinámicos como el cíclico triaxial, metodología aún no implementada en el país, debido a su elevado costo, y la no disponibilidad de pruebas para medir la succión del suelo y un amplio registro de información climática.

Ante esta situación, se fundamenta la necesidad de calcular el módulo de resiliencia de subrasante empleando las curvas de diseño RAMCODES, esto permite alcanzar diseños de capas de rodadura óptimos y económicos, debido a la elección de un CBR efectivo, en función al porcentaje mínimo de compactación y la saturación máxima de la zona en estudio. Por lo tanto, se obtienen menores espesores de subbase, lo cual se traduce en una reducción de costos.

Asimismo, el mapa de resistencias, calcula el porcentaje de compactación requerida, el cual se verifica por la prueba de cono de arena y se establece el número de pasadas del rodillo liso vibratorio, siendo menor respecto al método convencional.

Finalmente, la presente investigación proporcionará respaldo para realizar investigaciones posteriores en la ingeniería vial y la mecánica de suelos no saturados, por lo tanto, se justifica la contribución y la innovación de este análisis.

1.5. OBJETIVOS DE LA INVESTIGACIÓN

1.5.1. Objetivo general

Comparar el módulo resiliente basado en curvas de diseño RAMCODES y
ensayos CBR convencional para el diseño de pavimentos flexibles de la
carretera Calacota-Ilave, 2023.

1.5.2. Objetivos específicos

- Determinar el módulo resiliente basado en curvas de diseño RAMCODES para el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023.
- Evaluar el módulo resiliente basado en ensayos CBR convencional para el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023.
- Explicar la diferencia de costo entre el diseño de pavimentos flexibles con las curvas de diseño RAMCODES y los ensayos CBR convencional.

CAPÍTULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES DE LA INVESTIGACIÓN

Para enmarcar el estudio se revisaron trabajos relacionados al tema. A continuación, se presenta los siguientes antecedentes:

2.1.1. Antecedentes internacionales

Sánchez (2019), en su publicación presentó un enfoque llamado método RAMCODES para el diseño de suelos compactados, probados en proyectos reales. El diseño de un suelo, implica determinar el grado de compactación mínimo donde el suelo muestre una respuesta solicitada bajo condiciones específicas de hidratación, sobrecarga y tasa de carga. Esto se lleva a cabo mediante una curva de diseño, que es un gráfico que relaciona el grado de compactación del suelo con su respuesta en condiciones constantes de hidratación, sobrecarga y tasa de carga. Este método permite diseñar un suelo mediante el método simple o compuesto que produce un valor de resistencia promedio ponderado, con respecto a varias condiciones de hidratación a lo largo del periodo de diseño. En este artículo, los riesgos y las implicaciones económicas de diseñar con criterios basados en normas en lugar de criterios basados en el desempeño, se explican utilizando una construcción conceptual llamada pirámide de diseño RAMCODES.

Pulecio et al. (2019), en su estudio evaluó el comportamiento de materiales granulares de subbase de las canteras "La Caima" y "Martínez" ubicadas en Ibagué, Colombia, utilizando mapas de resistencia validados con los datos

tradicionales de contenido óptimo de humedad, peso unitario seco máximo y CBR. Los resultados de los mapas de resistencia generados para ambas canteras mediante el software Grapher revelaron que un contenido de humedad inferior al óptimo (determinado en la prueba proctor), conlleva a valores superiores de CBR. Por ejemplo, en las canteras "La Caima" y "Martínez", de materiales arcillosos no plásticos se observó un aumento del 31.61% y 24.46% respectivamente en el valor de CBR, al reducir la humedad óptima en un 0.5%. Estos resultados subrayan la eficacia de los mapas de resistencia para mejorar el control de la compactación en los materiales granulares de la subbase.

Oyola Guzmán & Oyola Morales (2019), en su investigación tuvieron como objetivo proponer el uso de técnicas de programación lineal para la generación de la zona de aceptación de la metodología RAMCODES, llamada "zona de rendimiento óptimo". Utilizaron material de una planta de producción de suelo ubicada en las colinas del Urubó, en el departamento de Santa Cruz, Bolivia. Esta metodología vincula variables del diseño de suelos (resistencia, condiciones de hidratación) con el control de la calidad tradicional (porcentaje mínimo de compactación). Dividieron su análisis en dos fases: la primera fue la caracterización del material y obtención de la zona óptima de comportamiento y la segunda se dedicó a comprobar los resultados obtenidos en la primera fase utilizando muestras compactadas. El suelo coincidió con la designación A-2-4(0) según ASTM D3282. Graficaron una superficie de respuesta a partir de datos experimentales, el mapa de resistencia del suelo, se obtuvo mediante el enfoque RAMCODES y propusieron una zona de comportamiento óptimo, que es un sitio geométrico en el plano cartesiano, en el cual un porcentaje de compactación tiene alta probabilidad de cumplir un valor preestablecido de respuesta mecánica. Estos

resultados implican que la zona de desempeño óptimo tiene aplicaciones de campo para control de calidad y aceptación de suelos compactados, garantizando un desempeño mecánico óptimo, que cumpla con el porcentaje mínimo de compactación y así mejorar la calidad de los suelos compactados.

Oyola Guzmán & Oyola Morales (2018), en su investigación explicaron la falla inesperada de suelos compactados utilizando curvas de diseño de la metodología RAMCODES. Su análisis se centró en el uso exclusivo del porcentaje mínimo de compactación como criterio de control de calidad de compactación suelos, utilizando las pruebas proctor estándar y modificado para suelo compactado con equipo liviano y pesado respectivamente. Después de cambiar las condiciones del contenido de agua, el suelo compactado con equipo pesado y liviano mostraron cambios en la capacidad de carga; el suelo compactado con equipo pesado no. Para identificar las causas de falla, se analizaron muestras de suelo en laboratorio, mediante curvas de diseño obtenidas de un diseño experimental factorial. El análisis reveló que el criterio del porcentaje mínimo de compactación no era adecuado para determinar el desempeño mecánico real del suelo.

Queiroz & Gutiérrez (2016), en su investigación tuvo como objetivo caracterizar el suelo laterítico de Brasilia bajo los criterios de la metodología RAMCODES. La zona de estudio fue el terreno ubicado en 503 norte, al lado del edificio Disbrave, Distrito Federal-Brasilia, teniendo como muestra un suelo tipo limo de baja compresibilidad (ML). El proceso de estudio se subdividió en tres fases principales: caracterización física del suelo, pruebas de compactación e índice de Soporte de California (ISC). Se realizaron pruebas CBR en muestras compactadas a distintas energías y grados de saturación, conforme a las curvas de

compactación del material bajo energías normales, intermedias y modificadas. Los resultados se analizaron mediante la elaboración de curvas de rendimiento y superficies para identificar la combinación óptima entre grado de saturación, energía de compactación y resistencia mecánica. Se observó que el aumento de la humedad disminuyó los valores de ISC en el suelo compactado, lo cual indica que la humedad óptima no necesariamente garantiza la máxima resistencia del suelo. Se sugiere la necesidad de desarrollar una nueva metodología que considere no solo parámetros como la humedad óptima, sino también otros factores relevantes para determinar la mejor condición de resistencia del suelo.

2.1.2. Antecedentes nacionales

Ccarita (2024), en su tesis busca determinar el impacto de la metodología RAMCODES, mediante un enfoque BIM, en el diseño de pavimentos asociados a la Carretera Chivay - Canacota. La investigación fue descriptiva de diseño experimental. La sección de análisis abarca desde el kilómetro 14+300 hasta la entrada del distrito de Caylloma. El procedimiento consistió en llevar a cabo 21 experimentos factoriales, cuyos resultados fueron procesados utilizando el software OringPro2023 para crear el mapa de resistencia. La superposición de este mapa con las curvas de saturación facilitó la generación del conjunto de curvas de diseño vinculadas a la vía. El diseño se optimizó, al incrementar el Índice de Soporte California (CBR) en un 26%, alcanzando una compactación del 96.5% y disminuyendo el grosor de la capa base en 5 centímetros. Posteriormente, se efectuó un análisis económico y cronológico mediante el modelado BIM, resultando en una reducción del 3% tanto en el presupuesto como en el cronograma inicial.

Inga & Gutiérrez (2022), en su artículo de investigación tienen como propósito implementar el espectro de curvas de diseño RAMCODES de subrasantes no saturadas para el diseño de pavimentos flexibles. La población analizada consistió en la carretera Oyón-Ambo, y se extrajo una muestra de 300 kg de arcilla limosa. Se efectuaron ensayos de CBR donde se variaron las intensidades de compactación y el contenido de agua. Luego, se integraron los resultados en el programa OringPro2019b para elaborar las curvas de diseño RAMCODES. Utilizó un modelo matemático para anticipar la evolución de la saturación durante el tiempo de estudio. Después, se determinaron los valores estacionales de CBR y se relacionaron entre sí para establecer los módulos resilientes. Finalmente, se llevaron a cabo dos diseños de estructuras de pavimento flexible, basado en la caracterización común de subrasante y conforme a la metodología propuesta. Los resultados muestran considerar que comportamiento no saturado de la subrasante optimiza el diseño del pavimento, dado que el módulo resiliente de la subrasante aumenta en un 28.8%, lo cual conlleva a una reducción del 25% en el grosor de la capa de subbase.

Pariona (2014), en su tesis propone determinar las relaciones entre la resistencia (CBR), el contenido de humedad y la energía de compactación de suelos. El método utilizado se caracteriza por su enfoque cuantitativo y aplicativo, implementando un diseño experimental-cuasiexperimental. Se realizaron pruebas en muestras aptas de la "cantera-Puente Negro" según las exigencias de las normativas ASTM y MTC, La cantidad de muestra representativa es de 555 kg. El procedimiento consiste en la realización de experimentos factoriales cuyos datos son analizados y organizados mediante los mapas de resistencia para establecer relaciones entre las variables dependiente e independiente. Se deduce

que la resistencia se ve significativamente influenciada por la humedad del material, evidenciando una disminución pronunciada en niveles de humedad elevados. Además, se evidencia una relación directa entre la energía de compactación y la resistencia (CBR).

2.1.3. Antecedentes locales

Luque & Ccolque (2016), en su tesis tienen el propósito de Contrastar el método AASHTO con RAMCODES para el diseño de suelos compactados como mejoramiento de la subrasante en pavimentos localizados en la ciudad de Juliaca. La investigación fue del tipo descriptiva. La población de estudio fue la cantera Taparachi con suelos del tipo GP-GC, se requirió una muestra total de 320 kg. El procedimiento implicó la realización de ensayos de laboratorio cuyos resultados fueron esenciales para analizar el material a través de la gráfica de densidad seca vs CBR (método proctor modificado) y los mapas de resistencia (metodología RAMCODES). De acuerdo con estos gráficos, se concluye que, en términos de optimización de los materiales, la metodología RAMCODES resulta más eficaz, ya que proporciona valores de resistencia (CBR) superiores en comparación con el método convencional (método proctor modificado AASHTO).

2.2. MARCO TEÓRICO

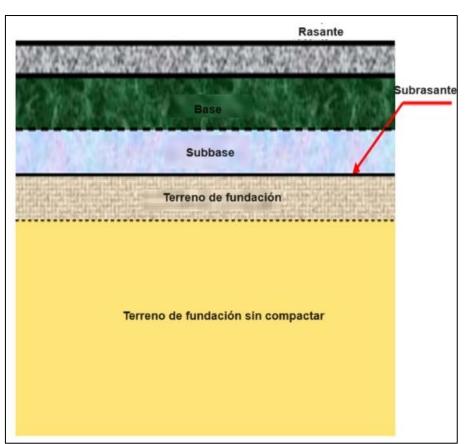
2.2.1. Pavimento flexible

MTC (2014) "menciona que es un sistema estratificado de capas granulares superpuestas, específicamente diseñadas para soportar las cargas de tráfico vehicular. Estas estructuras comprenden una capa asfáltica que se apoya en capas subyacentes de menor rigidez, compuestas de materiales granulares no tratados, que descansan directamente sobre el terreno natural" (p. 25).

2.2.1.1. Partes del pavimento flexible

Minaya & Ordóñez (2006) "en la configuración de un pavimento se encuentra una capa asfáltica que generalmente se sostiene sobre dos capas menos rígidas, conocidas como base y subbase" (p. 1).

La disposición típica de estas partes es:

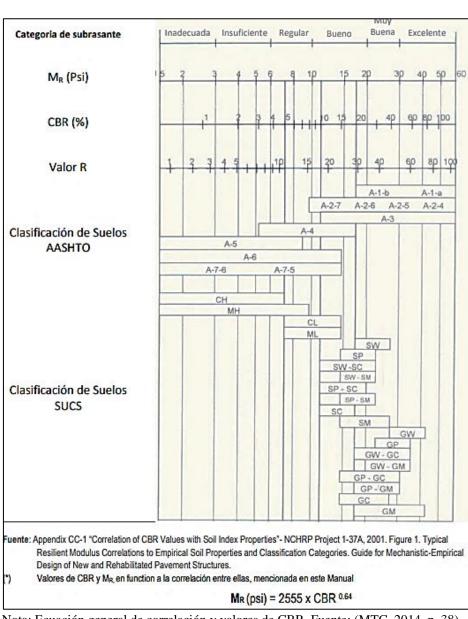

- a) Superficie de rodadura: "Corresponde a la sección superior de la estructura del pavimento, la cual está compuesta de material bituminoso, y tiene como función principal proporcionar el soporte directo al tráfico vehicular" (MTC, 2014, p. 25).
- b) Base: "Constituye la capa subyacente a la capa de rodadura, donde su función principal es la de soportar, distribuir y transmitir las cargas resultantes del tránsito vehicular. Esta capa puede estar compuesta por material granular drenante con un CBR igual o superior al 80%" (MTC, 2014, p. 25).

- c) **Subbase:** "Es una capa diseñada con el propósito de ofrecer soporte a la base y a la carpeta, además, se utiliza como estrato de drenaje y para regular la capilaridad del agua. Esta capa puede estar compuesta por material granular con un CBR de 40% o más." (MTC, 2014, p. 25).
- d) Subrasante: "Su función principal es brindar apoyo a la integridad estructural del pavimento. Los materiales por debajo de este nivel deben ser estables con un CBR ≥ 6, de lo contrario requiere estabilización" (MTC, 2014, pp. 24-25).

Figura 1

Estructura típica de pavimentos asfálticos

Nota: Componentes de la estructura del pavimento flexible. Fuente: (Minaya & Ordóñez, 2006, p.1).


2.2.2. Módulo resiliente

"Es un parámetro que evalúa la respuesta elástica del suelo, considerando particularidades no lineales. Su aplicación directa se extiende al diseño de pavimentos flexibles" (AASHTO, 1993).

2.2.2.1. Ecuación de correlación de módulo resiliente

Figura 2

Correlación entre las propiedades del suelo y módulo resiliente

Nota: Ecuación general de correlación y valores de CBR. Fuente: (MTC, 2014, p. 38).

2.2.3. Caracterización de la subrasante

Las exploraciones deben realizarse a intervalos especificados según la norma MTC, siguiendo la configuración siguiente:

Tabla 1Número de calicatas para exploración de suelos

Tipo de Carretera	Profundidad (m)	Número mínimo de Calicatas	Observación
Autopistas: carreteras de IMDA mayor de 6000 veh/día, de calzadas separadas, cada una con dos o más carriles Carreteras Duales o Multicarril: carreteras de	1.50 m respecto al nivel de subrasante del proyecto 1.50 m respecto al	Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4 calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido Calzada 2 carriles por sentido: 4 calicatas x km x sentido Calzada 3 carriles por sentido: 4	Las calicatas se Ubicarán longitudinalm ente y en forma
IMDA entre 6000 y 4001 veh/día, de calzadas separadas, cada una con dos o más carriles Carreteras de Primera Clase:	nivel de calicatas x km x so calicatas x km x so Calzada 4 carriles	calicatas x km x sentido Calzada 4 carriles por sentido: 6 calicatas x km x sentido	alternada
carreteras con un IMDA entre 4000-2001 veh/día, de una calzada de dos carriles	nivel de subrasante del proyecto.	4 calicatas x km	
Carreteras de Segunda Clase: carreteras con un IMDA entre 2000-401 veh/día, de una calzada de dos carriles.	1.50 m respecto al nivel de sub rasante del proyecto	3 calicatas x km	Las calicatas se ubicarán longitudinalm ente y en
Carreteras de Tercera Clase: carreteras con un IMDA entre 400-201 veh/día, de una calzada de dos carriles	1.50 m respecto al nivel de sub rasante del proyecto	2 calicatas x km	forma alternada
Carreteras de Bajo Volumen de Tránsito: carreteras con un IMDA ≤ 200 veh/día, de una calzada	1.50 m respecto al nivel de sub rasante del proyecto	1 calicata x km	

Nota: Número de calicatas según el tipo vía. Fuente: (MTC, 2014, p. 28).

2.2.3.1. Registro de excavación

"Se recolectarán muestras representativas de cada calicata con el propósito de realizar ensayos CBR y posteriormente correlacionar los resultados a través de ecuaciones de módulo resiliente. La cantidad de ensayos dependerá de la clasificación de la carretera" (MTC, 2014, p. 14).

Tabla 2Número de ensayos MR y CBR

Tipo de Carretera	N° MR y CBR	
	Calzada 2 carriles por sentido: 1 MR cada 3 km	
A	x sentido y 1 CBR cada 1 km x sentido	
Autopistas: carreteras de IMDA mayor de	Calzada 3 carriles por sentido: 1 MR cada 2 km	
6000 veh/día, de calzadas separadas, cada una con dos o más carriles	x sentido y 1 CBR cada 1 km x sentido	
una con dos o mas carries	Calzada 4 carriles por sentido: 1 MR cada 1 km	
	y 1 CBR cada 1 km x sentido	
	Calzada 2 carriles por sentido: 1 MR cada 3 km	
Carreteras Duales o Multicarril: carreteras	x sentido y 1 CBR cada 1 km x sentido	
de IMDA entre 6000 y 4001 veh/día, de	Calzada 3 carriles por sentido: 1 MR cada 2 km	
calzadas separadas, cada una con dos o más	x sentido y 1 CBR cada 1 km x sentido	
carriles	Calzada 4 carriles por sentido: 1 MR cada 1 km	
	y 1 CBR cada 1 km x sentido	
Carreteras de Primera Clase:		
carreteras con un IMDA entre	1MD 121 1CDD 111	
4000 - 2001 veh/día, de una	1 MR cada 3 km y 1 CBR cada 1 km	
calzada de dos carriles.		
Carreteras de Segunda Clase: carreteras con		
un IMDA entre 2000 – 401 veh/día, de una	Cada 1.5 km se realizará un CBR	
calzada de dos carriles.		
Carreteras de Tercera Clase: carreteras con	Cala Manager Cala	
un IMDA entre 400 - 201 veh/día, de una	Cada 2 km se realizará un CBR	
calzada de dos carriles.		
Carreteras con un IMDA ≤	Cada 3 km se realizará un CBR	
200 veh/día, de una calzada.		

Nota: Número de ensayos CBR según al tipo de carretera. Fuente: (MTC, 2014, p. 30).

2.2.3.2. Metodología de las diferencias acumuladas

Este enfoque constituye una metodología estadística para segmentar de manera homogénea tramos de pavimento, mediante el análisis de diversas mediciones de respuesta como: deflexiones, CBR, niveles de servicio, coeficientes de fricción e índices de deterioro (AASHTO, 1993).

Según AASHTO (1993), indica realizar los siguientes pasos:

- La primera columna, en una hoja de cálculo Excel, refleja las abscisas asociadas a cada ensayo.

$$X_1$$
 , X_2 , X_3 , X_4 , X_5 , X_n

Donde:

 X_1 : Abscisa en el punto 1.

 X_n : Abscisa en el enésimo punto.

En la segunda columna, identificada como "Intervalo de separación",
 se presentará la variación entre las abscisas registradas en la primera columna.

$$\Delta X_1 = 0$$

$$\Delta X_1 = X_1 - X_0$$

$$\Delta X_2 = X_2 - X_1$$

$$\Delta X_n = X_n - X_{n-1}$$

 En la tercera columna, conocida como "intervalo acumulativo", se representará la suma acumulativa de las distancias de la segunda columna.

$$\sum \Delta X_1 = 0$$

$$\sum \Delta X_2 = \Delta X_1 + \Delta X_2$$

$$\sum \Delta X_3 = \Delta X_1 + \Delta X_2 + \Delta X_3$$

$$\sum \Delta X_n = \Delta X_1 + \Delta X_2 + \dots + \Delta X_{n-1} + \Delta X_n$$

- La cuarta columna representa la respuesta (r) del pavimento, que viene
 a ser mediciones de respuesta del pavimento.
- En la quinta columna se indica el promedio entre las mediciones de respuesta del pavimento.

- La sexta columna, llamada "área de intervalo", se calcula utilizando la siguiente expresión:

$$\sum a_1 = 0$$

$$\sum a_2 = a_1 + a_2$$

$$\sum a_3 = a_1 + a_2 + a_3$$

$$\sum a_n = a_1 + a_2 + a_3 \dots + a_{n-1} + a_n$$

- En la séptima columna el factor de diferencia es con la siguiente fórmula matemática:

$$F = rac{ ext{\'A}rea\ acumulativa}{ ext{Distancia}\ Acumulativa}$$
 $F = rac{\sum a_n}{\sum \Delta X_n}$

- La octava columna establece la diferencia acumulativa mediante la siguiente expresión matemática.

$$Z_{X1} = 0$$

$$Z_{X2} = \sum a_2 - (F * \sum \Delta X_2)$$

$$Z_{Xn} = \sum a_n - (F * \sum \Delta X_n)$$

- Se genera un gráfico de Zx en función de la abscisa, que facilita la visualización de las secciones homogéneas.

2.2.4. Características físicas de la subrasante

Las propiedades físicas se definen por el comportamiento del material con la materia orgánica y su vínculo exterior, comprender estas propiedades es esencial para entender sus posibles usos que puede darse.

2.2.4.1. Contenido de humedad (MTC E 108)

MTC (2016) "Se define como la proporción, medida en porcentaje, del peso del agua contenido dentro de una masa específica de suelo en relación con el peso total" (p. 49).

Bowles (1981) "menciona que es un procedimiento de laboratorio estándar que busca determinar la cantidad de agua presente en una masa específica de suelo, expresada como porcentaje del peso seco del suelo" (p. 20).

Para su cálculo se tiene la siguiente ecuación:

$$w = \frac{W_w}{W_s} * 100$$

Donde:

w =Contenido de humedad (%)

 W_w = Peso del agua (g)

 W_s = Peso de sólidos (g)

2.2.4.2. Análisis granulométrico de suelos por tamizado (MTC E 107)

Bowles (1981) "consiste en establecer las proporciones relativas de los diferentes tamaños de partículas que se encuentran en una muestra de suelo específica" (p. 37).

Además, se "refiere en calcular cuantitativamente la distribución de la gradación de las partículas que lo componen" (MTC, 2016, p. 44).

Las proporciones mencionadas se realiza con los tamices normalizados de malla metálica, los cuales tienen las siguientes aberturas:

Tabla 3Serie de tamices

Tamices	Aberturas (mm)
3"	75.000
2"	50.800
1 ½"	38.100
1"	25.400
1/4"	19.000
3/8"	9.500
N°4	4.760
N°10	2.000
N°20	0.840
N°40	0.425
N°60	0.260
N°140	0.106
N°200	0.075

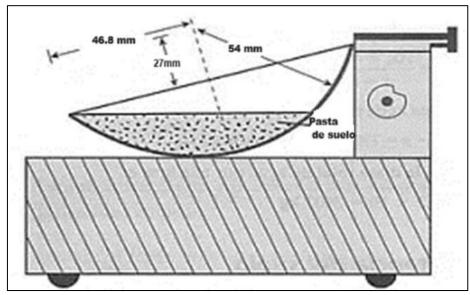
Nota: Aberturas de los tamices para granulometría. Fuente: (MTC, 2016, p. 44).

Tabla 4 *Muestra mínima para granulometría*

Diámetro Nominal de las Partículas más Grandes mm (pulg)	Peso Mínimo aproximado de la Porción (g)
9.50 (3/8")	500
19.60 (3/4")	1000
25.70 (1")	2000
37.50 (1 ½")	3000
50.00 (2")	4000
75.00 (3")	5000

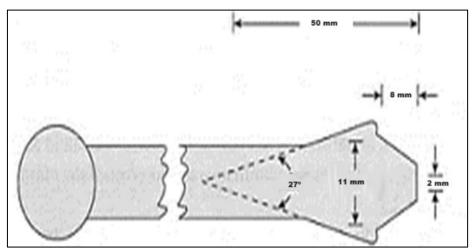
Nota: Cantidad mínima en peso para tamizado. Fuente:(MTC, 2016, p. 45).

Según la tabla N°4, la masa de la muestra, medida en gramos, varía en función del tamaño máximo nominal.


2.2.4.3. Límite líquido (MTC E 110)

MTC (2016) lo define como "la humedad al cual la ranura divisoria, ubicada entre dos partes de una mezcla de suelo, se cierra a lo largo de su base en una distancia de 13 mm (1/2") luego de dejar caer la copa 25 veces desde una altura de 1 cm, a una velocidad de 2 caídas por segundo" (p. 67).

Bowles (1981) se trata de una "evaluación de la capacidad del suelo para soportar esfuerzos cortantes, en función del contenido de humedad dada, este parámetro guarda similitud con un ensayo de resistencia, según observó Casa Grande en 1932. En sus investigaciones, determinó que cada golpe para cerrar la ranura en la copa se correlaciona con un esfuerzo cortante aproximado a un gramo por cm²" (p. 19).


Figura 3 *Equipo para realizar el ensayo*

Nota: Vista lateral de la cuchara de Casagrande. Fuente: (Das, 2001, p. 28).

Figura 4

Herramienta de corte estándar

Nota: Ranurador que corta por el centro la pasta de suelo. Fuente: (Das, 2001, p. 28).

Luego de calibrar el equipo para realizar el ensayo a continuación se considera una muestra de suelo de 250 g, pasante en el tamiz N°40, la cual se prepara en una cápsula junto con el agua para poner la mezcla de suelo en la copa de bronce y dejar caer desde una altura de 1 cm, a una

frecuencia de 2 impactos/segundo, hasta que las dos porciones de suelo se hayan separado aproximadamente 12.7 mm

La ecuación siguiente se emplea para calcular el límite líquido en un punto:

$$LL = W^n \left(\frac{N}{25}\right)^{0,121}$$

Donde:

N =Cantidad de impactos necesarios para cerrar la ranura.

 W^n = Humedad.

2.2.4.4. Límite plástico (L.P.) e índice de plasticidad (I.P.) (MTC E 111)

MTC (2016) "es la humedad mínima necesaria para moldear rollos de suelo con un diámetro de aproximadamente 3.2 mm (1/8"), al formar los rollos cilíndricos con la palma de la mano y un vidrio esmerilado" (p. 72).

Bowles (1981) lo define como "la humedad del suelo en el cual un cilindro se quiebra o agrieta al ser enrollado hasta alcanzar un diámetro de aproximadamente 3 mm" (p. 20).

Este procedimiento se utiliza para definir las fracciones granulométricas del suelo de acuerdo con las clasificaciones AASHTO y SUCS. Se calcula de la siguiente manera:

 $Limite\ plástico = \frac{Peso\ de\ agua}{Peso\ de\ suelo\ secado\ al\ horno} x100$

La plasticidad, se define:

$$IP = LL - LP$$

Donde:

LL = Límite líquido

LP = Límite plástico

A. Sistema unificado de clasificación de suelos

Das (2013) "Casagrande introdujo este enfoque en 1948, destinado a ser utilizado en la construcción de aeropuertos por ingenieros militares durante la segunda guerra mundial. Este procedimiento se actualizó en 1952 con la colaboración del Bureau of Reclamation (US)" (p.82).

Esta técnica divide a los suelos en:

- "Suelos gruesos, integrados por grava y arena en su estado original, contienen menos del 50% de partículas que pasan por la malla N°200.
 Los símbolos de clasificación utilizan los prefijos G para grava y S para arena" (Das, 2013, p. 83).
- "Suelos de grano fino donde el 50% o más de las partículas pasan por el tamiz N°200. Los prefijos de categorización son M para limo inorgánico, C para arcilla inorgánica y O para limos y arcillas orgánicas. Pt se utiliza para designar turba y suelos muy orgánicos" (Das, 2013, p. 83).

Para llevar a cabo una clasificación adecuada según este sistema, se debe conocer los siguientes pasos:

- "Porcentaje de grava: Fracción que atraviesa la malla de 76.2 mm y es retenido en la malla N°4 (4.75 mm)" (Das, 2013, p. 84).
- "Porcentaje de arena: Fracción que atraviesa la malla N°4 (4.75 mm)
 y es retenido en la malla N°200" (Das, 2013, p. 84).
- "Porcentaje de Limo y Arcilla: Fracción que pasa la malla N°200"
 (Das, 2013, p. 83).
- El Cu y el Cc, definidos por:

$$C_u = \frac{D_{60}}{D_{10}}$$

$$C_c = \frac{(D_{30})^2}{D_{60} \cdot D_{10}}$$

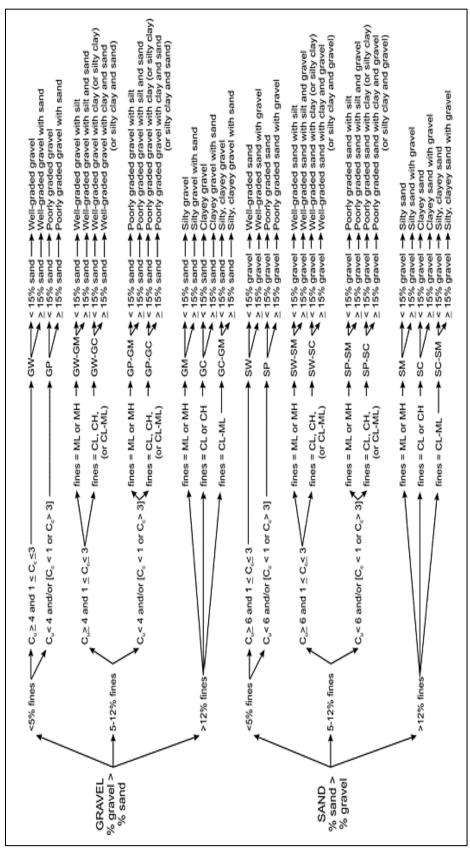
Donde:

 C_u : Coeficiente de uniformidad.

 C_c : Coeficiente de curvatura.

 D_{10} : Diámetro al 10% de finos.

 D_{30} : Diámetro al 30% de finos.


 D_{60} : Diámetro al 60% de finos.

- El LL e IP de las partículas pasantes el tamiz N°40.

Por lo tanto, el método de clasificación del suelo depende del porcentaje retenido en la malla N°200: para suelos de textura fina, donde más del 50% del suelo pasa a través del tamiz N°200, y se emplea la figura 6; mientras que para suelos donde más del 50% está retenido en el tamiz N°200, se utiliza la figura 5.

Figura 5


Diagrama de flujo para clasificación de suelos de partículas gruesas

Nota: Clasificación de gravas y arenas. Fuente: (ASTM D 2487-17, 2017, p. 5).

Figura 6Carta de plasticidad

Nota: Clasificación según los límites de consistencia para suelos finos. Fuente: (ASTM D2487-17, 2017, p. 6).

B. Sistema de clasificación AASHTO

Das (2013) "esta forma de clasificación de suelos, conocida como clasificación de administración de carreteras, fue desarrollada en 1929 y ha experimentado varias actualizaciones, siendo la versión de 1945 la que se utiliza en la actualidad. Divide a los suelos en 7 grupos, desde A1 hasta A7. Es así que, si ≤ 35% de partículas pasan de la malla N°200, son considerados materiales granulares y se identifican como A-1, A-2 y A-3. Por otro lado, si >35% de partículas pasa la malla N°200, el suelo pertenece al grupo A-4, A-5 y A-7 y son suelos finos" (p. 78).

Tabla 5Clasificación de materiales Granulares

Clasificación	Mate	riales gra	nulares (3	5% o men	os del tota	l de la mu	estra
general			pasada	por el nú	m. 200)		
	A-1 A-2						
Grupo de clasificación	A-1-a	A-1-b	A-3	A-2-4	A-2-5	A-2-6	A-2-7
Análisis de							
tamiz							
(porcentaje de							
paso)							
Núm.10	50	_	_	_	_	_	_
	máx.						
Núm.40	30	50	51 min.	_	_	_	_
110111.10	máx.	máx.	J1 IIIII.				
Núm 200	15	25	10	35	35	35	35
Num.200	máx.	máx.	máx.	máx.	máx.	máx.	máx.
Características							
de la fracción							
de paso							
núm.40							
Límite				40		40	41
Líquido	-		-	máx.	41 mín.	máx.	mín.
Índice de	6			10	10		11
plasticidad	máx.		NP	máx.	máx.	11 mín.	mín.
Tipos							
comunes de	Fragm	entos de					
materiales	roca,	grava y	Arena	Limo	o grava ar	cillosa y a	rena
significativos	ar	ena	fina				
constituyentes							
Clasificación							
general de la			Exc	elente a bi	ieno		
subrasante							

Nota: Clasificación según las características de granulometría y consistencia. Fuente: (Das, 2013, p. 79).

Tabla 6Clasificación de materiales Limo-Arcillosos

Clarifiantifa annual	Materiales granulares (35% o menos del total de la				
Clasificación general	muestra pasada por el núm. 200)				
				A-7	
Grupo de clasificación	A-4	A-5	A-6	A-7-5*	
				A-7-6†	
Análisis de tamiz					
(porcentaje de paso)					
Núm. 10	-	-	-	-	
Núm. 40	-	-	-	-	
Núm. 200	36 mín.	36 mín.	36 mín.	36 mín.	
Características de					
la fracción de paso					
núm.40					
Límite Líquido	40 máx.	41 min.	40 máx.	41 mín.	
Índice de plasticidad	10 máx.	10 máx.	11 mín.	11 mín.	
Tipos comunes de					
materiales significativos	Suelos limosos	3	Suelos arcillosos		
constituyentes					
Clasificación general de	Regular a malo				
la subrasante					
	DI .II		4 4	5 (5	

Nota: * para suelos del tipo: A-7-5, PI≤LL-30 y † para suelos de tipo A-7-6. Fuente: (Das, 2013, p. 79).

Además, este sistema de clasificación puede evaluar si un material es apto para el uso como subrasante de vías, mediante la ecuación siguiente:

$$IG = (F - 35)[0.2 + 0.005 (LL - 40)] + 0.01 (F - 15)(PI - 10)$$

Donde:

F = Porcentaje pasante el tamiz N°200.

LL = Límite líquido.

PI = Índice de plasticidad.

Cuando el cálculo del IG arroja un resultado negativo, se interpreta como un valor equivalente a cero; además, el valor resultante del IG se aproxima al entero más próximo. Los valores de la fórmula propuesta se evalúan de manera secuencial de izquierda a derecha, y deben indicarse entre paréntesis (Das, 2013, p. 81).

2.2.4.5. Gravedad específica de sólidos de suelo (Gs) (MTC E 113).

MTC (2016) "el ensayo incluye la medición de la gravedad específica de los sólidos de suelo que atraviesan la malla de 4.75 mm (malla N°4), empleando un picnómetro de agua" (p. 80).

"se define como la proporción entre su peso unitario y el peso unitario del agua destilada a una temperatura de 4°C" (Bowles, 1981, p. 62).

Tabla 7Cantidad de masa de suelo

Tipo de suelo	Masa seca (g), para un	Masa seca (g), para un
Tipo de suelo	picnómetro de 250 ml	picnómetro de 500 ml.
SP, SP-SM	60 ± 10	100 ± 10
SP-SC, SM, SC	45 ± 10	75 ± 10
Limo o arcilla	35 ± 10	50 ± 10

Nota: Cantidad de suelo para sumergir con agua en el picnómetro. Fuente: (MTC, 2016, p.82).

La fórmula empleada para su cálculo a una temperatura especifica se presenta a continuación:

$$G_{S} = \frac{\alpha * M_{S}}{(M_{\rho_{WS,t}} - (M_{\rho_{W,t}} + M_{S}))}$$

Donde:

 M_s : Masa de los sólidos del suelo seco en horno (g)

 $M_{\rho_{WL}}$: Masa del picnómetro y agua a temperatura de ensayo (g)

 $M_{\rho_{ws,t}}$: Masa del picnómetro, agua, y sólidos de suelo (g)

α : Coeficiente de corrección por temperatura

La siguiente tabla se emplea para realizar la corrección por temperatura:

 Tabla 8

 Corrección por temperatura

T. °C	α	γ g/cm ³
16	1.0007	0.99897
18	1.0004	0.99862
20	1.0000	0.99823
22	0.9996	0.99780
24	0.9991	0.99732
26	0.9986	0.99681

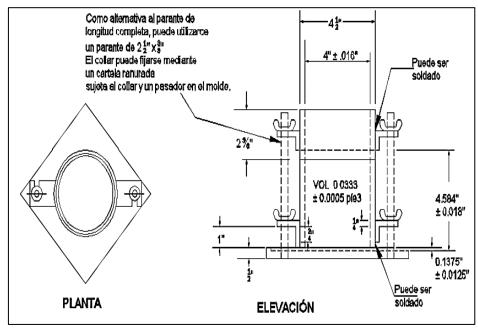
Nota: Valores "α", para cada temperatura de ensayo. Fuente: (Bowles, 1981, p. 64).

2.2.5. Características mecánicas de subrasante

Se refieren a las propiedades que describen el comportamiento del suelo a diferentes condiciones de carga y deformación. Estas propiedades son fundamentales para entender la capacidad de un suelo para soportar estructuras, su respuesta a cargas y su comportamiento en distintos contextos geotécnicos.

2.2.5.1. Compactación de suelos – Proctor modificado (MTC E 115)

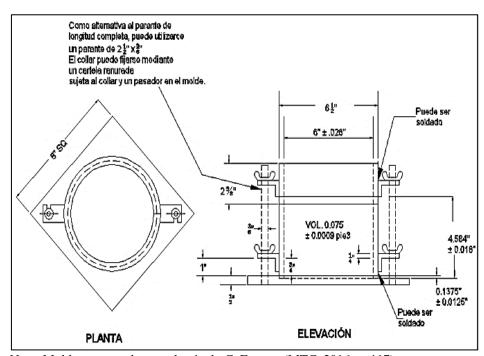
"Es establecer la relación entre el contenido de agua y el peso unitario seco de los suelos mediante la elaboración de la curva de compactación. Esto se logra compactando el suelo en un molde de 101.6 o 152.4 mm (4" o 6") de diámetro con un pisón de 44.5 N (10 lbf) que cae desde una altura de 457 mm (18"). Este proceso genera una energía de compactación de 2700 kN-m/m³ (56000 pie-lbf/pie³)" (MTC, 2016, p. 105).


Tabla 9 *Método a utilizar para el ensayo de proctor modificado*

Elemento	Método A Método B		Método C	
Diámetro del molde	101.6 mm	101.6 mm	152.4 mm	
Volumen del molde	943.3 cm ³	943.3 cm ³	2124 cm ³	
Peso del martillo	44.5 N	44.5 N	44.5 N	
Altura de la caída del martillo	457.2 mm	457.2 mm	457.2 mm	
Número de golpes de martillo por capa de suelo	25	25	56	
ero de capas de compactación	5	5	5	
Energía de compactación	2696 kN-m/m ³	$2696~\mathrm{kN}\text{-m/m}^3$	2696 kN-m/m ³	
Suelo utilizado	Porción que pasa el tamiz N°4. Puede ser utilizada si 20% o menos del peso de material es retenido en el tamiz N°4	Porción que pasa el tamiz de 9.5 mm. Puede utilizarse si el suelo retenido en el tamiz N°4 es más de 20% y 20% o menos del peso es retenido en el tamiz de 9.5 mm.	Porción que pasa el tamiz de 19 mm. Puede utilizarse si más de 20% del material es retenido en el tamiz de 9.5 mm y menos de 30% del peso es retenido en el tamiz de 19 mm.	

Nota: Método a utilizar según el suelo pasante o retenido en el tamiz de 9.5 mm y el tamiz $N^{\circ}4$. Fuente: (Das, 2013, p. 102).

Figura 7


Molde para realizar el ensayo de proctor modificado: "A" y "B"

Nota: Molde para prueba por el método A y B. Fuente: (MTC, 2016, p. 117).

Figura 8

Molde para realizar el ensayo de proctor modificado: "C"

Nota: Molde para prueba por el método C. Fuente: (MTC, 2016, p. 117).

El cálculo de la densidad húmeda y seca se realiza utilizando la siguiente fórmula:

$$\gamma_h = \frac{M_h}{V_m}$$

Donde:

 y_h : Densidad del suelo húmedo

 M_h : Peso del suelo húmedo compactado

 V_m : Volumen del molde cilíndrico

$$y_d = \frac{y_h}{1 + \frac{w}{100}}$$

Donde:

 y_d : Densidad seca del suelo compactado

W : Porcentaje del contenido de humedad

2.2.5.2. CBR de suelos - laboratorio (MTC E 132)

"Es un procedimiento bastante práctico que se emplea con frecuencia para calcular la resistencia del suelo en capas como la subrasante, base y subbase" (Minaya & Ordóñez, 2006, p.6).

Minaya & Ordóñez (2006) "define el índice de California Bearing Ratio (CBR) como la relación, en porcentaje, entre la resistencia a la penetración necesaria para que un pistón estándar penetre 0.1" en un suelo, y la resistencia a la penetración de una muestra estándar de referencia, que es una piedra chancada con una resistencia de 1000 psi" (p. 7).

La expresión del CBR es la siguiente:

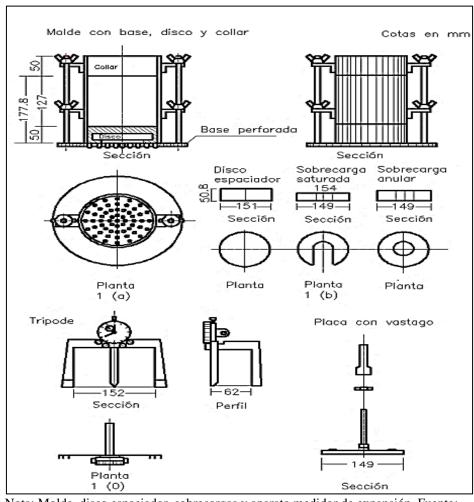

$$CBR = \frac{Resistencia\ a\ la\ penetración\ (psi)}{1000\ lb/pulg^2}*100$$

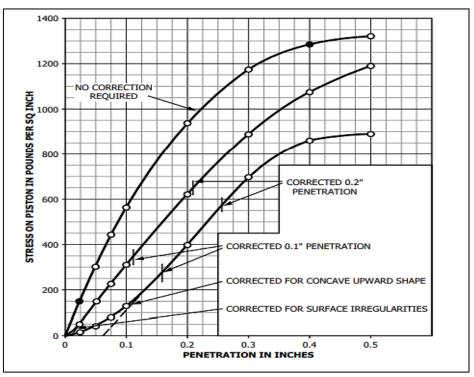
Tabla 10Características de la muestra patrón

Peneti	ración		Presión	
mm	pulgadas	MN/m ²	kgf/cm ²	lb/plg ²
2.54	0.1	6.9	70.31	1.000
5.08	0.2	10.35	105.46	1.500

Nota: Valor estándar de penetración y presión en una piedra chancada. Fuente: (MTC, 2016, p. 255).

Figura 9 *Equipos y materiales de CBR*

Nota: Molde, disco espaciador, sobrecargas y aparato medidor de expansión. Fuente: (MTC, 2016, p. 247).



"Si más del 75% del peso de la muestra atraviesa la malla de 3/4" (19.1 mm), se emplea el material que pasa a través de esta malla. Por otro lado, si la fracción de la muestra retenida en el tamiz 3/4" (19.1 mm) supera el 25% en peso, se sustituye por una proporción de material situada en los tamices de 3/4" y N°4" (ASTM D 1883-16, 2016, p. 5).

"La prueba consiste en fabricar tres especímenes con una humedad óptima y distinta cantidad de golpes por capa 12, 25 y 56, para luego sumergirlos en un tanque con sobrecargas que simulan el efecto de sobrecarga sobre la subrasante y tomando la primera lectura del hinchamiento, después de 4 días de estar sumergido se extrae los especímenes, para someterlo al ensayo" (MTC, 2016, pp. 251-252).

Figura 10

Curva para el cálculo de índice de CBR

Nota: Ajuste por superficie irregular y concavidad. Fuente: (ASTM D 1883-16, 2016, p.8).

2.2.6. Estimación de la variación de humedad de la subrasante

Hedayati & Hossain (2015, p. 1), a través de la ejecución de un estudio de caso, desarrollaron un modelo basado en datos en tiempo real para calcular la variación de la humedad del subsuelo en función de la precipitación. Se seleccionó un área específica del pavimento en el norte de Texas, donde se instalaron sensores de humedad y pluviómetros a diferentes profundidades del suelo con el fin de recopilar datos a cada hora durante un periodo de 2 años. Los datos registrados se analizaron para desarrollar un modelo estadístico capaz de estimar la variación de la humedad en tiempo real.

$$\theta = 0.1699 + 0.053e^{-0.639z}\sin(0.0172(t+70)) + 0.00058P$$

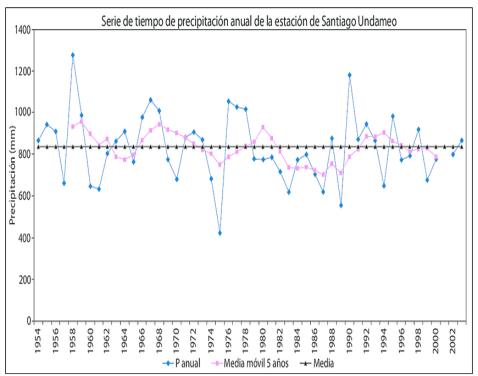
Donde:

 θ = contenido volumétrico de agua (cm³/cm³)

z = profundidad (m).

t = El tiempo desde un punto de vista arbitrario (días).

P = Precipitaciones definidas en series temporales (mm).

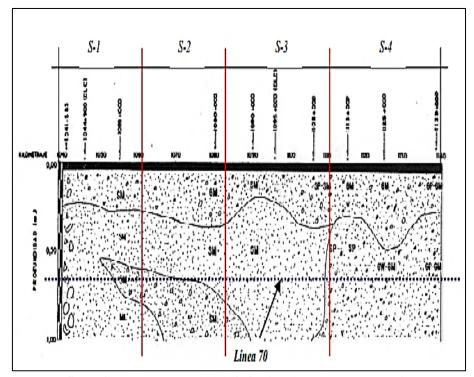

2.2.6.1. Precipitación máxima diaria

El registro total de la cantidad de lluvia en un periodo de 24 horas se efectúa en el programa de observación de prácticamente todas las estaciones meteorológicas del país. Este registro comprende la precipitación ocurrida entre las 07:00 horas de un día determinado y las 07:00 horas del día siguiente, periodo conocido como "Día pluviométrico". A partir de las mediciones diarias de precipitación, se determinan las máximas mensuales y, a partir de las series históricas de estas máximas, se identifican las máximas absolutas para cada ubicación de medición. Con

estos datos, se elaboran los mapas mensuales y anuales de las lluvias máximas en 24 horas, los cuales ofrecen una representación espacial de los eventos extremos.

Figura 11Serie de tiempo de precipitación anual

Nota: Serie precipitación anual de la Estación de Santiago Undameo. Fuente: (Allende & Mendoza, 2007, p. 69)


2.2.6.2. profundidad de análisis

Gutiérrez (2007) "recomienda evaluar el (CBR) mediante el método línea 70, que implica trazar una línea a 70 cm de altura desde la cota rasante o el nivel del terreno que sostendrá la estructura del pavimento, considerando como representativos aquellos suelos que por debajo de ella tengan 25 cm de espesor como mínimo. Asimismo, basándose en los principios de la distribución de esfuerzos en el suelo, se puede hacer una estimación inicial del bulbo de presiones, observando que

a 0.70 m de profundidad permanece el 80% de la carga equivalente. Esta Altura está libre de perturbaciones debido a movimientos en el terreno, manteniendo su capacidad de respuesta a la carga aplicada" (pp. 54-55).

Figura 12Determinación de la línea 70

Nota: Configuración propuesta para la delimitación de sectores que permita una evaluación particularizada de la carretera. Fuente: (Gutiérrez, 2007, p. 55).

2.2.6.3. Grado de saturación

"La relación entre la humedad volumétrica presente en el suelo y la humedad volumétrica que corresponde a su estado de saturación se conoce como grado de saturación" (Espinoza et al., 2015, p. 78).

$$S_r = \frac{G_s \gamma_w}{G_s \gamma_w - \gamma_d} \theta$$

Donde:

 S_r = Grado de saturación (%)

 G_s = Gravedad específica de los sólidos

 γ_w = Peso específico del agua (g/cm³)

 γ_d = peso unitario seco del suelo (g/cm³)

 θ = contenido volumétrico de agua (cm³/cm³)

2.2.7. RAMCODES para subrasante

Sánchez et al. (2009) se basa en "los principios estadísticos tanto para la ejecución y análisis de experimentos en el diseño como para el control de calidad, asegurando un manejo preciso de los niveles de error. Asimismo, esta metodología encuentra su fundamento en los principios de la mecánica de suelos no saturados, los cuales describen las variables más relevantes para obtener respuestas relacionadas con la densificación y resistencia del material" (p.3).

"Los experimentos factoriales suponen una innovación en los enfoques de diseño, persiguiendo la optimización y la utilización eficiente de materiales para la obtención de productos más confiables a un costo reducido" (Sánchez et al., 2009, p.4).

2.2.7.1. Clasificación cuantitativa de subrasante

"Este enfoque se orienta a dar un valor único las propiedades índices del suelo que tienen un mayor impacto en su comportamiento, tales como la proporción granulométrica y la superficie específica de la fracción fina" (Sánchez et al., 2002, p.3).

Sánchez et al. (2002) define "el factor característico, denotado como Fp, como el resultado de la multiplicación de la proporción entre las partículas finas y gruesas y el LL, el cual proporciona una medida de la superficie específica de las partículas finas" (p.4).

La ecuación matemática propuesta es la siguiente:

$$F_P = (1 + W_L) * \frac{F}{1 + G}$$

Donde:

 W_L : Límite líquido.

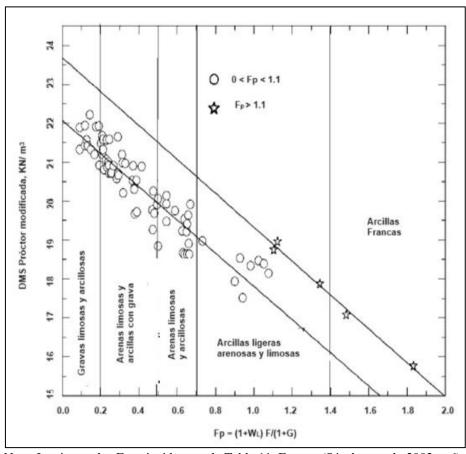
F : Porción que pasa el tamiz # 200

G: Fracción retenida en el tamiz # 4

Tabla 11Fp Relacionado con la clasificación descriptiva

Tipo	Rangos de Fp	Clasificación
RS1	0.0-0.2	"Gravas limosas y arcillosas"
RS2	0.2-0.5	"Arenas limosas y arcillosas con grava"
RS3	0.5-0.7	"Arenas limosas y arcillosas"
RS4	0.7-1.4	"Arcillas ligeras limosas y arenosas"
RS5	>1.4	"Arcillas francas"
RS1*	0.0-0.2	"Arenas limpias"
RS2*	0.0-0.2	"Arenas sin grava"

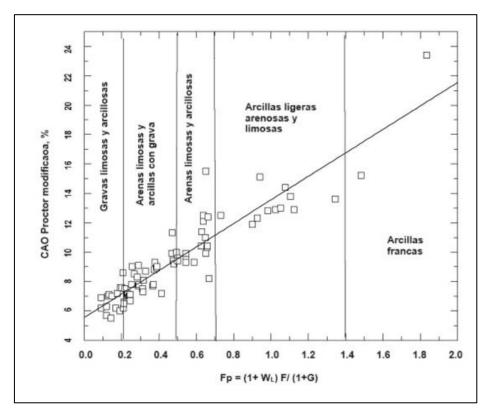
Fuente: (Sánchez et al., 2002, p.4).



2.2.7.2. Potencial de densificación de subrasante

Los parámetros para evaluar el potencial de densificación son la máxima densidad seca (MDS), la humedad óptima (CHO) y la forma de la curva que representa esta relación, conocida como curva de compactación.

"A través del factor característico Fp, estableció correlaciones lineales directas con los indicadores mencionados, para un conjunto de 84 muestras provenientes de la región Mesa de Guanipa en venezolana" (Sánchez et al., 2002, p.6).


Figura 13Variación de la MDS del proctor modificado vs Fp

Nota: Los intervalos Fp coinciden con la Tabla 11. Fuente: (Sánchez et al., 2002, p.6).

Figura 14Variación del CAO del Proctor vs Fp

Nota: Los intervalos Fp coinciden con la Tabla 11. Fuente: (Sánchez et al., 2002, p.7).

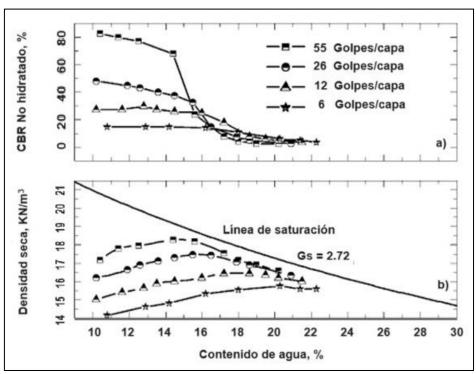
Se tienem³la ecuación que relaciona DMS y Fp:

$$MDS = A + B.Fp$$

Tabla 12Datos estadísticos de correlación para Fp vs MDS

Rangos para Fp	0.0-1.1	>1.1
A	22.07	23.68
В	-4.26	-4.35
n	79	5
r2	0.869	0.988
SD	0.43	0.16

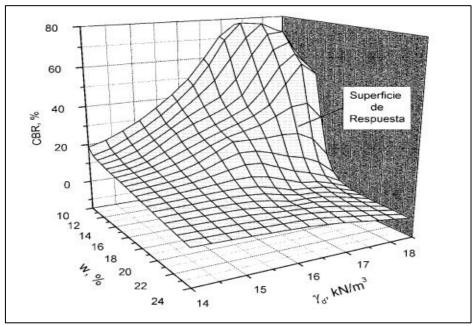
Fuente: (Sánchez et al., 2002, p. 7).



2.2.7.3. Relación entre humedad, densidad y resistencia de subrasante

Según el ASTM D 1883-99 (1999) indica que para la "relación de carga para un rango de contenido agua, se prepara las muestras de manera análoga a lo explicado para el CBR convencional, con la particularidad de que cada muestra destinada a construir la curva de compactación debe ser penetrada. Asimismo, es imperativo desarrollar la relación entre el contenido de agua y el peso unitario para las compactaciones realizadas con 25 y 10 golpes por capa, y es necesario penetrar cada muestra de prueba compactada. Además, se requiere llevar a cabo todo el procedimiento de compactación utilizando el molde CBR seleccionado" (p.4).

Figura 15


Contenido de agua de elaboración vs. densidad seca y CBR

Nota: Comportamiento "arcilla-Vicksburg". Fuente: (Sánchez et al., 2002, p.10).

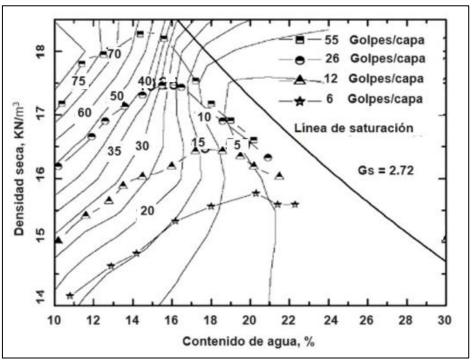
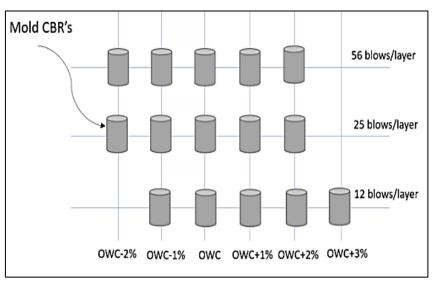


Figura 16Superficie de respuesta

Nota: Superficie de respuesta de Arcilla de Vicksburg. Fuente: (Sánchez et al., 2002, p.11).

Figura 17 *Mapa de resistencias*

Nota: Mapa de resistencia de la arcilla de Vicksburg. Fuente: (Sánchez et al., 2002, p.12).


Sánchez et al. (2002) "propuso la concepción de los mapas de resistencia, los cuales se caracterizan por representar, a través de gráficos de contorno, la superficie de respuesta que describe la resistencia del suelo cuando es compactado, abarcando un amplio rango de contenidos de agua y densidades secas, tal como se trata en un experimento factorial" (p. 9).

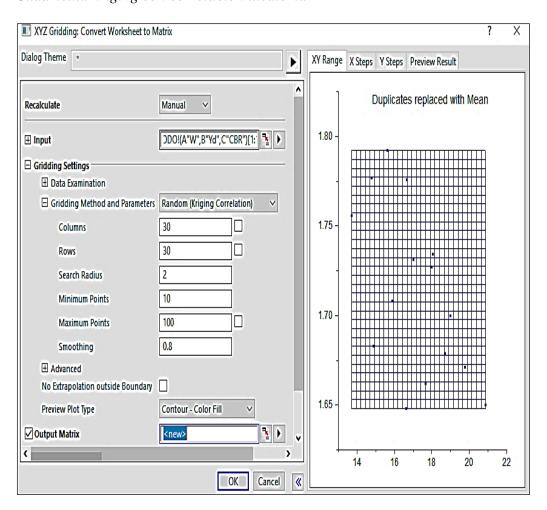
A. Diseño y elaboración del experimento factorial

Sánchez Leal (2009) "afirma que la realización de un experimento factorial en suelos es justificable únicamente cuando estos poseen una superficie específica de finos considerable. En consecuencia, no es adecuado aplicar experimentos factoriales en (SP, SW, GP, GW) ni en sus combinaciones" (p. 81).

Figura 18

Distribución referencial del rango de humedad y golpes por capa

Nota: Distribución de humedad y cantidad de golpes (12,25,56 golpes) para un experimento factorial de 15 especímenes. Fuente: (Inga & Gutiérrez, 2022, p. 4).


B. Procedimiento de obtención de las curvas de diseño

Los datos de los ensayos factoriales CBR, se procesaron en el programa estadístico OriginPro 2023b. Los pasos para obtener las curvas de diseño RAMCODES se desarrollan a continuación:

- a) Los datos provenientes de los ensayos factoriales CBR se introdujeron en una hoja de trabajo del programa OriginPro 2023b.
- A partir de los datos ingresados, se generó una representación matricial usando una técnica de cuadrícula kriging.

Figura 19

Cuadrícula kriging con correlación aleatoria

Nota: Configuración de columnas, filas, alcance de búsqueda, valores extremos y procedimientos de suavizado.

- c) A partir de la estructura matricial de datos, se crearon superficies tridimensionales (superficies de respuestas) y mapas de contornos (mapas de resistencias) utilizando la función "plot".
- d) Se habilitan nuevas hojas de cálculo con el propósito de ingresar diferentes valores de contenido de agua, con el fin de derivar las curvas de saturación empleando la siguiente ecuación:

$$\gamma_d = \frac{\gamma_w}{\frac{1}{G_S} + \frac{w}{S_r}}$$

Donde:

 γ_d : Peso unitario seco (g/cm3)

 γ_w : Densidad específica del agua (g/cm3)

w : Humedad (%)

 G_S : Gravedad específica

 S_r : Grado de saturación (%)

- e) Se añadieron al mapa de contornos las curvas de saturación obtenidas.
- f) En una hoja de Excel, se anotaron las coordenadas donde las curvas de saturación interceptan a los mapas de contorno (mapas de resistencia).
- g) Utilizando los datos consignados en el software cálculo Excel, se elaboraron las curvas de diseño RAMCODES.

2.2.8. Diseño de pavimentos (AASHTO-93)

"Esta metodología se basa en proporcionar una estimación del número de ejes equivalentes estándar de 80 kN que el pavimento puede soportar antes de alcanzar un valor definido de deterioro en su nivel de servicio. Esta estimación permite evaluar la duración proyectada del pavimento" (AASHTO,1993).

2.2.8.1. Procedimiento de diseño AASHTO 93

Minaya & Ordóñez (2006, p. 106), el número estructural SN es utilizado en el método AASHTO 1993 como una herramienta para cuantificar la resistencia estructural requerida por el pavimento, tomando en consideración aspectos como la resistencia del suelo, el volumen de tráfico anticipado y la pérdida de funcionalidad.

En consecuencia, se establece ecuación siguiente:

$$\log(W_{18}) = Z_R * s_O + 9.36 * \log(SN + 1) - 0.20 + \frac{\log\left[\frac{\Delta PSI}{4.2 - 1.5}\right]}{0.4 + \frac{1094}{(SN + 1)^{5.19}}} + 2.32 * \log(M_R) - 8.07$$

Donde:

SN : Número estructural necesario por la sección de la vía

 W_{18} : Número de ejes equivalentes de 80 kN, durante el diseño

 Z_R : Desviación estándar normal, en función de la confiabilidad

 s_0 : Error estándar resultante del impacto del tráfico

Δ*PSI* : Variación del índice de serviciabilidad

 M_R : Módulo resiliente de la subrasante (psi)

La determinación de los espesores de la carpeta asfáltica, base y sub base, se realiza mediante el número estructural SN. La ecuación de diseño es el siguiente:

$$SN = a_1 * D_1 + a_2 * D_2 * m_2 + a_3 * D_3 * m_3$$

Donde:

 a_1,a_2,a_3 : coeficientes estructurales correspondientes a la capa de rodadura, base y subbase. (1/pulg)

 D_1,D_2,D_3 : espesores de capa de rodadura, base y subbase. (pulg)

 m_2,m_3 : factores de drenaje específicos de la capa de base y subbase. (adimensional)

2.2.8.2. Parámetros de diseño AASHTO 93

A. Período de Diseño

"Es el intervalo de tiempo desde que el pavimento comienza a ser utilizado hasta el momento previo a que sea necesario llevar a cabo algún tipo de trabajo de rehabilitación" (Minaya & Ordóñez, 2006, p. 8).

Tabla 13Periodos estándar de diseño

Condición de las vías	Intervalo de estudio (años)
Vías urbanas con tráfico alto	30-50
Vías rurales con tráfico alto	20-50
Pavimentos con tráfico bajo	15-25
Superficie granular con tráfico bajo	10-20

Nota: Periodo de análisis (años). Fuente: (Minaya & Ordóñez, 2006, p. 8).

B. Tránsito

"En la etapa de diseño, se evalúa el número de ejes equivalentes (ESAL) para el intervalo de análisis en el carril correspondiente. Esto se obtiene mediante recuentos de tráfico vehicular y su conversión a ejes equivalentes" (Minaya & Ordóñez, 2006, p. 108).

Se tiene la siguiente ecuación:

$$W_{18} = D_D.D_L.\widehat{w}_{18}$$

Donde:

 D_D : Factor de distribución direccional

 D_L : Factor de distribución por carril

 \widehat{w}_{18} : Flujo vehicular total en ambos sentidos

Tabla 14Factor de distribución por carril D_L

N° carriles en una	% ESAL en carril diseño	
dirección	70 ESAL en carrir diseño	
1	100	
2	80-100	
3	60-80	
4	50-75	

Nota: El % de ESAL para Nº de carriles. Fuente: (Minaya & Ordóñez, 2006, p. 108).

C. Factor de confiabilidad, R.

Involucra un margen de seguridad durante el diseño para garantizar que los parámetros sean aptos para el tiempo de análisis.

Tabla 15Niveles sugeridos de confiabilidad, R

Tipo de vía	Confiabilidad recomendada	
	Zona urbana	Zona rural
Rutas interestatales	85-99.9	80-99.9
Arterias principales	80-99	75-99
Colectoras	80-95	75-95
Locales	50-80	50-80

Nota: Fiabilidad por tipo de vía. Fuente: (Minaya & Ordóñez, 2006, p.111).

D. Desviación Estándar Normal (Z_R)

La confiabilidad del proyecto guarda una relación directa con la desviación estándar normal. Se tiene la siguiente tabla:

Tabla 16Desviación estándar, Z_R

Confiabilidad	$\mathbf{Z}_{\mathbf{R}}$
50%	0.000
60%	- 0.253
70%	- 0.524
75%	-0.674
80%	-0.841
85%	-1.037
90%	-1.282
91%	-1.340
92%	-1.405
93%	-1.476
94%	-1.555
95%	-1.645
96%	-1.751
97%	-1.881
98%	-2.054
99%	-2.327

Confiabilidad	$\mathbf{Z}_{\mathtt{R}}$	
99.9%	-3.090	
99.99%	-3.750	

Nota: Valores de Z_R para distintos grados de confiabilidad., R. Fuente: (Minaya & Ordóñez, 2006, p. 112).

E. Pérdida de Serviciabilidad

Minaya & Ordóñez (2006) se utiliza el "Índice de Serviciabilidad Presente (PSI) para evaluar la calidad de servicio proporcionada por el pavimento, este índice fluctúa en una escala que va desde 0 (reflejando carreteras prácticamente intransitables) hasta 5 (indicando un estado óptimo de la carretera). La obtención del PSI implica la medición de la rugosidad y la evaluación de daños, como agrietamiento, parcheo y deformación permanente, a lo largo del periodo de servicio" (p. 12).

Según la guía AASHTO (1993), se utiliza la ecuación correspondiente:

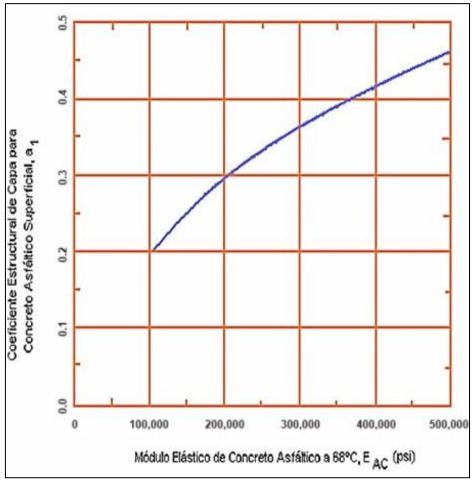
$$\Delta psi = p_0 - p_t$$

Donde:

 p_o : Índice de serviciabilidad inicial

 p_t :Índice de serviciabilidad final, antes de comenzar trabajos de rehabilitación en el pavimento

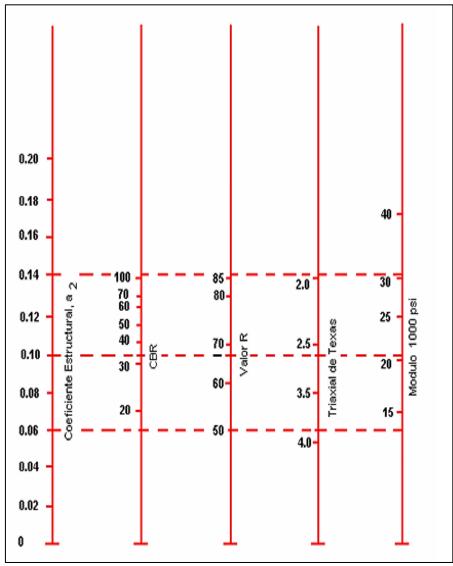
F. Coeficiente de capa ai


"Se establece una relación empírica entre el número estructural, SN, y el espesor de la capa mediante el coeficiente de capa" (Minaya & Ordóñez, 2006, p.113).

- **Concreto asfáltico:** se tiene la carta recomendada por AASHTO 93 y se muestra a continuación:

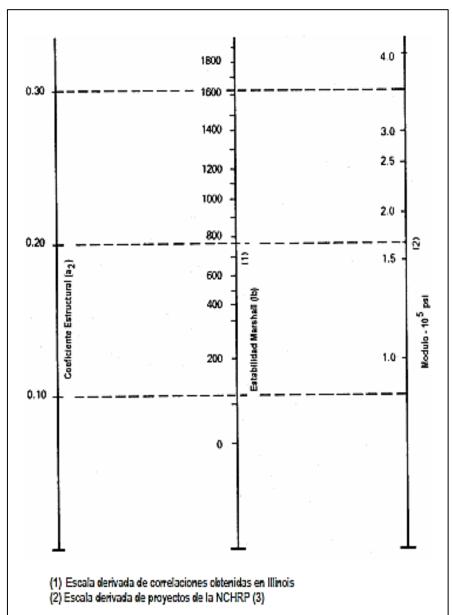
Figura 20

Carta para estimar el coeficiente estructural de concreto asfáltico


Fuente: (Minaya & Ordóñez, 2006, p. 114).

- **Base:** se tiene las siguientes cartas sugeridas por AASHTO 93:

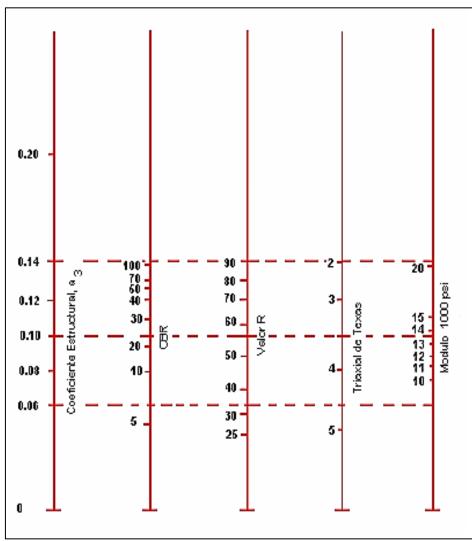
Figura 21


Rangos de coeficiente estructural de la capa de base granular (a2)

Fuente:(Minaya & Ordóñez, 2006, p. 115).

Figura 22

Rangos de coeficiente estructural de base estabilizada con asfalto (a2)


Fuente: (Minaya & Ordóñez, 2006, p. 116).

- **Sub base granular:** se tiene la siguiente carta sugerida:

Figura 23

Rangos de coeficiente de capa de subbase granular (a3)

Fuente: (Minaya & Ordóñez, 2006, p. 118).

G. Coeficientes de drenaje

Incorporar la "eficiencia de drenaje en el diseño conlleva a adaptaciones en los coeficientes de capa, el parámetro "mi" es el responsable de estas adaptaciones en los coeficientes de capa. No se toma en cuenta el eventual efecto del drenaje en el concreto asfáltico" (Minaya & Ordóñez, 2006, p. 119).

Tabla 17Condiciones de drenaje

Calidad de Drenaje	Eliminación de agua dentro de:
Excelente	2 horas
Bien	1 día
Justo	1 semana
Pobre	1 mes
Muy pobre	El agua no drena

Nota: Se exponen los niveles de drenaje. Fuente:(Minaya & Ordóñez, 2006, p. 113).

Tabla 18

Coeficientes de drenaje, mi

Porcentaje de tiempo de la estructura de pavimento							
Calidad	expuesto	a humedad a	niveles de satu	ración			
del drenaje	Menos del 1%	1-5%	5-25%	Mayor a			
	Weilds del 170	1070	0 2070	25%			
Excelente	1.40-1.35	1.35-1.30	1.30-1.20	1.20			
Bueno	1.35-1.25	1.25-1.15	1.15-1.00	1.00			
Justo	1.25-1.15	1.15-1.05	1.00-0.80	0.80			
Pobre	1.15-1.05	1.05-0.80	0.80-0.60	0.60			
Muy pobre	1.05-0.95	0.95-0.75	0.75-0.40	0.40			

Fuente: (Minaya & Ordóñez, 2006, p. 119).

2.2.9. Diseño de pavimento empírico-mecanístico

Minaya & Ordóñez (2006) afirma que está "Fundamentada en la mecánica estructural para analizar el desempeño de los distintos componentes del pavimento ante las cargas inducidas por el tráfico. Este proceso implica analizar esfuerzos, deformaciones" (p. 124).

2.2.9.1. Formas de daño estructural del pavimento

 a) Deformación horizontal en la capa asfáltica es producida por las cargas longitudinales La ecuación que describe el daño causado por agrietamiento por fatiga se presenta de la siguiente forma:

$$N_f = f_1 \cdot \varepsilon_t^{-f_2} \cdot E^{-f_3}$$

Donde:

 N_f = Repeticiones de carga para la falla por tracción

 ε_t = Deformación horizontal de tracción en la capa

 $E = \text{M\'odulo el\'astico de la carpeta asf\'altica (kg/cm}^2)$

 f_1 , f_2 , f_3 = Constantes obtenidas en pruebas experimentales

 b) Deformación vertical en la subrasante es producida por las cargas verticales y cuando supera los límites permisibles se produce el fenómeno de ahuellamiento.

La forma de daño se expresa como:

$$N_d = f_4 \cdot \varepsilon_Z^{-f_5}$$

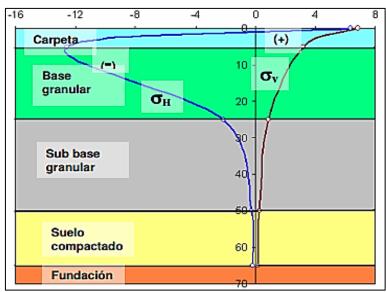
Donde:

 $N_d=$ Cantidad de repeticiones de carga admisible por deformación vertical elástica

 ε_z = Deformación vertical elástica

 f_4 , f_5 = Constantes obtenidas en pruebas experimentales.

Tabla 19Constantes obtenidas en pruebas experimentales


Criterios de Diseño	f_1	f_2	f_3	f_4	f_5
Instituto del asfalto	0.0796	3.291	0.854	1.365x10 ⁻⁹	4.477
Shell	0.0685	5.671	2.363	1.13x10 ⁻⁶	3.571

Nota: Constantes empíricos de regresión para ambos criterios de diseño.

2.2.9.2. Análisis deformacional de la estructura del pavimento

Su finalidad primordial es gestionar la distribución de las cargas de y no sobrepasen los valores permitidos.

Figura 24Distribución de las cargas de tránsito

Nota: Distribución de esfuerzos por tracción y compresión. Fuente: (Minaya & Ordóñez, 2006, p. 137).

CAPÍTULO III

MATERIALES Y MÉTODOS

3.1. METODOLOGÍA DE LA INVESTIGACIÓN

3.1.1. Tipo de investigación

"Es aplica, por utilizar los conocimientos generados en la investigación básica en ciencias fácticas o formales para identificar problemas concretos y proponer hipótesis orientadas a resolver las necesidades de la sociedad en su ámbito productivo" (Ñaupas et al., 2014, p. 93).

Este estudio sigue un "enfoque cuantitativo, fundamentado en la recopilación de datos con el propósito de validar hipótesis, apoyado en técnicas de medición numérica y procedimientos estadísticos para para elaborar modelos de comportamiento y validar las teorías planteadas" (Hernández et al., 2010, p. 4).

3.1.2. Nivel de investigación

"Es correlacional porque permite evaluar el grado de relación entre 2 conceptos, categorías o variables dentro de un contexto determinado" (Hernández et al., 2010, p. 81).

En este estudio se calcula el módulo resiliente a través de la aplicación de las curvas de diseño RAMCODES y ensayos CBR convencionales, para posteriormente analizar y comparar cómo este valor afecta el diseño estructural de la carretera Calacota-Ilave.

3.1.3. Diseño de investigación

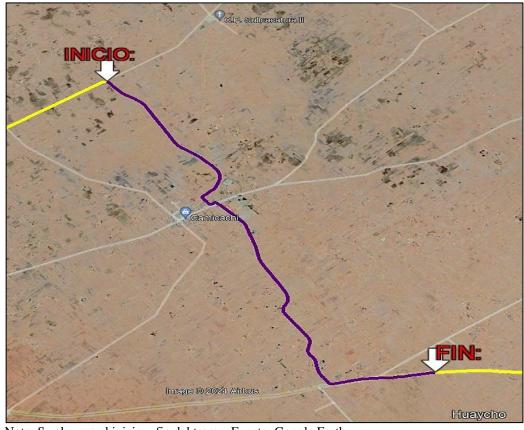
Se considera un "diseño no experimental, dado que se trata de estudios que no manipulan variables independientes, sino que se centran en la observación de fenómenos en su entorno natural y en su posterior evaluación" (Hernández et al., 2010, p. 149).

Las variables independientes como las curvas de diseño RAMCODES y CBR convencional que determinan el módulo resiliente no se manipulan, cada teoría se desarrolla tal como se dan para después analizarlas en el diseño estructural de pavimentos.

3.1.4. Población

Se trata de un conjunto de elementos que presentan similitudes inherentes, sobre los cuales las conclusiones obtenidas de la investigación se aplicarán de manera generalizada.

La población es la cantidad total de material de suelo, que se obtiene de la vía que une al centro poblado de Calacota con Santa Rosa, en el Distrito de Ilave, Provincia del Collao (Ruta 11). Esta vía tiene una longitud total de 5000 m (5 km), que comprende desde el kilómetro 4+750 hasta el kilómetro 9+750, donde convergen las rutas PU-1153, Emp. PU-1152 y PU-1160. Además, atraviesa el centro poblado de Camicachi y la IEI N° 310. A continuación, se presentan las coordenadas UTM del inicio y fin de la población:


Tabla 20Coordenadas UTM del inicio y final del tramo

Ubicación			Coo	rdenadas UTN	1
Ruta	Punto	Progresiva (km)	Este (m)	Norte (m)	Zona
PU-1153	INICIO	4+750	438096.00	8228895.00	10 V
PU-1160	FIN	9+750	440851.00	8225814.00	19 K

Nota: Ruta y coordenadas UTM del tramo.

Figura 25

Ubicación del tramo, km: 4+750 al km: 9+750

Nota: Se observa el inicio y fin del tramo. Fuente: Google Earth

El área estudiada se encuentra entre los kilómetros 4+750 y 9+750, cubriendo 5 km de longitud. La carretera tiene doble sentido, un carril por sentido, una calzada de 6.60 m de ancho y bermas de 0.90 m en ambos lados. No hay separador central y tiene una capa asfáltica de 2" de grosor, además de cunetas y obras de arte en áreas específicas a ambos márgenes.

3.1.5. Muestra

El proceso de muestreo se realiza según el criterio del investigador, así "la muestra se considera no probabilística cuando las técnicas empleadas no se basan en la probabilidad o el azar, lo que genera sesgos en las muestras y limita la certeza en la confiabilidad de los resultados" (Ñaupas et al., 2014, p. 253).

Para describir los suelos de subrasante del tramo que va del km 4+750 al km 9+750, se procederá a la excavación de calicatas con una frecuencia determinada por el número de tramos homogéneos, basándose en las mediciones del CBR.

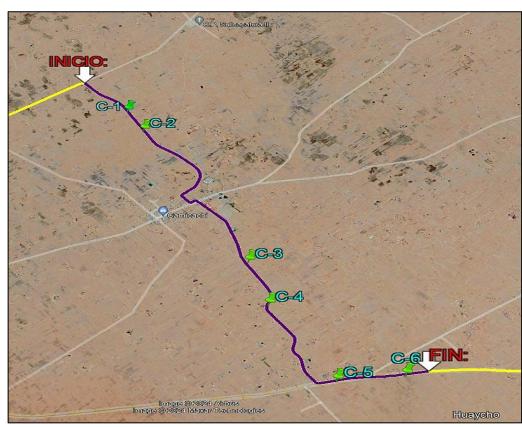
La identificación de los tramos homogéneos se realizará mediante el método de diferencias acumuladas, conforme a las recomendaciones de AASHTO 93, descrito en los siguientes párrafos.

 Tabla 21

 Identificación de puntos de análisis para pruebas de laboratorio.

Tramificación	Tramos	N° calicatas para	Descripción
Transmicación	homogéneos	ensayos de laboratorio	Descripcion
Metodología de			La ubicación de
diferencias			
acumuladas,	03 tramos	06 calicatas (02 por	calicatas se
sugerida por	homogéneos	tramo homogéneo)	realizará de forma
			alternada
AASHTO 93			

Nota: Metodología utilizada para la caracterización de la muestra.


Tabla 22Cantidad de puntos de análisis por tramo homogéneo

Tram	Tramos homogéneos N° de calicatas para ensayos de laboratorio				Coor	denadas U	ГМ	
Tramo	Prog. inicial	Prog. final	Calicata	Ubicación (km)	Lado	Este (m)	Norte (m)	Zona
1	4+750	6+250	C-1	5+000	Der.	438479	8228548	
1	4+730	4+730 0+230	C-2	5+250	Izq.	438630	8228314	
2	6+250 8-	6+250 8+500	C-3	7+000	Der.	439536	8226856	19 k
2			C-4	7+500	Izq.	439701	8226417	19 K
2	3 8+500	+500 9+750	C-5	9+000	Der.	440201	8225700	
3			C-6	9+500	Izq.	440687	8225784	

Nota: Ubicación y cantidad de calicatas por tramo homogéneo.

Figura 26

Ubicación de los puntos de evaluación: C-1, C-2, C-3, C-4, C-5, C-6

Nota: Ubicación de las calicatas: C-1, C-2, C-3, C-4, C-5, C-6. Fuente: Google Earth

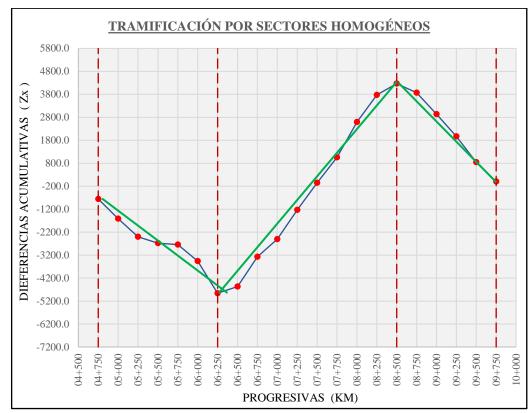
3.1.5.1. Metodología de las diferencias acumuladas

"Para obtener datos de los suelos de la subrasante entre las progresivas km: 4+750 y km: 9+750, se llevarán a cabo perforaciones exploratorias (calicatas) con una frecuencia determinada por el número de tramos homogéneos, calculadas en base a las mediciones de respuesta de la subrasante (CBR) obtenidas en estudios previos contenidos en el expediente técnico. Se hace referencia a esta técnica como diferencias acumuladas" (AASHTO, 1993).

La técnica de diferencias acumuladas se basa en un análisis matemático que utiliza la variable Zx, que mide la diferencia entre el área bajo la curva hasta una distancia "x" y el área cubierta por el promedio general del parámetro en esa misma distancia. Al representar gráficamente Zx en relación con la distancia a lo largo de la sección examinada, es factible detectar segmentos homogéneos donde se nota un cambio de pendiente en la curva.

A continuación, se muestra la tramificación mediante la metodología de diferencias acumuladas a partir de datos de CBR, obtenidos del expediente técnico y procesando valores de cada columna conforme a la base teórica desarrollada.

Tabla 23 *Metodología de diferencias acumuladas del AASHTO 93*


1	2	3	4	5	6	7	8	9
Progresiva	CBR (%)	# Intervalo	Dist. Entre intervalo	Dist. Acumulad a entre intervalos	Intervalo promedio	Área del intervalo	Área acumulada	Zx
04+750	10.2	1	250	250	10.2	2550	2550	-758.33
05+000	9.4	2	250	500	9.8	2450	5000	-1616.6
05+250	10.8	3	250	750	10.1	2525	7525	-2400.0
05+500	13.4	4	250	1000	12.1	3025	10550	-2683.3
05+750	12.6	5	250	1250	13.0	3250	13800	-2741.6
06+000	8.1	6	250	1500	10.4	2587.5	16387.5	-3462.5
06+250	7.2	7	250	1750	7.7	1912.5	18300	-4858.3
06+500	21.6	8	250	2000	14.4	3600	21900	-4566.6
06+750	15.2	9	250	2250	18.4	4600	26500	-3275.0
07+000	17.4	10	250	2500	16.3	4075	30575	-2508.3
07+250	19.3	11	250	2750	18.4	4587.5	35162.5	-1229.1
07+500	16.6	12	250	3000	18.0	4487.5	39650	-50.00
07+750	18.7	13	250	3250	17.7	4412.5	44062.5	1054.1
08+000	20.1	14	250	3500	19.4	4850	48912.5	2595.8
08+250	15.8	15	250	3750	18.0	4487.5	53400	3775.0
08+500	14.6	16	250	4000	15.2	3800	57200	4266.6
08+750	8.7	17	250	4250	11.7	2912.5	60112.5	3870.8
09+000	10.3	18	250	4500	9.5	2375	62487.5	2937.5
09+250	8.4	19	250	4750	9.4	2337.5	64825	1966.6
09+500	9.1	20	250	5000	8.8	2187.5	67012.5	845.83
09+750	10.6	21	250	5250	9.9	2462.5	69475	0.00
						At	69475	
						Lp	5250	
						F	13.23	

Nota: Procedimiento de cálculo de los valores Zx según la metodología de diferencias acumuladas.

Figura 27

Tramificación por sectores homogéneos

Nota: Tramificación en sectores homogéneos por diferencias acumuladas.

De acuerdo con la representación gráfica anterior, se distinguen (03) tramos homogéneos, lo que implica la ejecución de (02) calicatas como mínimo por cada tramo, sumando un total de (06) calicatas para identificar las propiedades de la subrasante.

3.1.6. Técnicas e instrumentos de recolección de datos

Para la recolección de datos de los ensayos se usó formatos que permiten registrar valores como peso, porcentajes, tiempo, esfuerzos, entre otros.

Los instrumentos para recopilar información comprenden manuales de procedimiento de ensayo, cámara fotográfica, equipos de laboratorio, equipo de computación con software Excel y OriginPro2023lab.

3.1.7. Operacionalización de variables

Naupas et al. (2014) "dice que trata de un método sistemático que implica la conversión de variables conceptuales en variables intermedias, seguidamente en variables observables o indicadores, y culmina con la construcción de índices de medida" (p. 191).

En este estudio se encuentran tanto las variables dependientes como las independientes, las cuales se operacionalizan en detalle a continuación:

Tabla 24Operacionalización de variables

Variables	Dimensiones	Indicadores	Unidad de medida
	Condiciones de	Gravedad específica	(-)
Variable	hidratación	Peso unitario seco	(g/cm^3)
independiente: Curvas de	Estudio climatológico	Precipitación máxima diaria	(mm)
diseño	E-manina auto fontanial	Próctor modificado	(gr/cm ³), (%)
RAMCODES	Experimento factorial	Ensayo CBR	(%)
		Contenido de humedad	(%)
Variable	Propiedades físicas	Análisis granulométrico	(mm), (pulg)
independiente:	del suelo	Límites de Atterberg	(%)
Ensayo CBR			
convencional	Propiedades	Próctor modificado	$(gr/cm^3), (\%)$
	mecánicas del suelo	Ensayo CBR	(%)
Variable	Estudio de tráfico	Índice medio diario anual	(veh/ día)
dependiente:	Diseño estructural	Espesores de capas	(cm)
Diseño de pavimentos Evaluación flexibles económica		Costo	(s/.)

Nota: Operacionalización de variables en sus dimensiones e indicadores.

3.2. MATERIALES

3.2.1. Características físicas de subrasante

A continuación, se tiene un resumen detallado de pruebas efectuadas.

3.2.1.1. Contenido de humedad (MTC E 108)

se tiene los siguientes resultados (Anexo 2):

Tabla 25Resultados de contenido de humedad

CALICATA	PROGRESIVA	LADO	CONTENIDO DE HUMEDAD (%)
C-1	KM: 5+000	Derecha	19.04
C-2	KM: 5+250	Derecha	20.18
C-3	KM: 7+000	Izquierda	10.80
C-4	KM: 7+500	Izquierda	9.29
C-5	KM: 9+000	Derecha	10.75
C-6	KM: 9+500	Derecha	8.43

Nota: Contenidos de humedad de las calicatas identificadas.

Figura 28

Muestreo para contenido de humedad: C-2, C-4, C-6

Nota: Muestreo de las calicatas: C-2, C-4, C-6.

Figura 29

Muestreo para contenido de humedad: C-1, C-3, C-5

Nota: Muestreo de las calicatas: C-1, C3, C-5.

3.2.1.2. Análisis granulométrico de suelos por tamizado (MTC E 107)

Los ensayos se realizaron de acuerdo al MTC E 107 y se tiene los siguientes resultados (Anexo 3):

Tabla 26Resultados de Análisis Granulométrico (% que pasa)

			ANÁLISIS GRANULOMÉTRICO % QUE PASA						ASA
Calicata	Prog. (km)	Lado	3/4"	3/8"	N°4	N°10	N°40	N°60	N°200
C-1	5+000	Der.	-	100	99	97.42	94.53	91.86	52.56
C-2	5+250	Der.	-	100	98.71	95.17	88.79	84.30	52.97
C-3	7+000	Izq.	-	100	99.39	95.13	76.48	51.62	20.36
C-4	7+500	Izq.	100	98.36	94.23	87.81	71.74	53.35	20.71
C-5	9+000	Der.	100	92.38	79.17	61.12	28.36	18.18	9.46
C-6	9+500	Der.	100	97.85	86.61	65.12	27.35	16.43	7.70

Nota: Porcentaje que pasa en cada N° tamiz.

Figura 30

Lavado de muestra para análisis granulométrico

Nota: Lavado de 250 g de muestra en el tamiz $N^{\circ}200$.

Figura 31

Ensayo de análisis granulométrico

Nota: Tamizado de la muestra previamente lavada y secada en un horno.

3.2.1.3. Límite líquido (MTC E 110)

Los ensayos se realizaron acorde al MTC E 110, y se obtienen los siguientes resultados (Anexo 3):

Tabla 27Resultados de Límite Líquido

PROGRESIVA	LADO	LÍMITE LÍQUIDO %
5+000	Der.	27.3
5+250	Der.	27.1
7+000	Izq.	NP
7+500	Izq.	NP
9+000	Der.	NP
9+500	Der.	NP
	5+000 5+250 7+000 7+500 9+000	5+000 Der. 5+250 Der. 7+000 Izq. 7+500 Izq. 9+000 Der.

Nota: Límite líquido de las muestras por calicatas.

Figura 32Realización de límite líquido

Nota: Prueba de límite líquido en la copa de Casagrande.

3.2.1.4. Límite plástico e índice de plasticidad (MTC E 111)

Los ensayos se realizaron acorde al MTC E 111, (Anexo 4):

Tabla 28Resultados de límite plástico e índice de plasticidad

CALICATA	PROGRESIVA	LADO	LÍMITE PLÁSTICO %	ÍNDICE DE PLASTICIDAD
C-1	5+000	Der.	25.4	1.96
C-2	5+250	Der.	24.9	2.3
C-3	7+000	Izq.	NP	NP
C-4	7+500	Izq.	NP	NP
C-5	9+000	Der.	NP	NP
C-6	9+500	Der.	NP	NP

Nota: Calicatas y su índice de plasticidad.

Figura 33Realización de límite plástico

Nota: Límite plástico en el vidrio esmerilado.

A. Clasificación de suelo

Para obtener una descripción detallada y tener mayor seguridad del tipo de suelo de subrasante a trabajar, se ha realizado la clasificación por los métodos de categorización SUCS y AASHTO (Anexo 5).

Tabla 29Características de granulometría y plasticidad

CALICATA	% QUE PASA Nº4	% QUE PASA N°200	LL	IP
C-1	99.00	52.65	27.3	2.0
C-2	98.71	52.97	27.1	2.3
C-3	99.39	20.36	NP	NP
C-4	94.23	20.71	NP	NP
C-5	79.17	9.46	NP	NP
C-6	86.61	7.70	NP	NP

Nota: Porcentajes que pasa para cada material sobre los tamices N°4 y N°200.

Las siguientes deducciones se extraen de la Tabla 30 con respecto a la categorización SUCS:

- Las calicatas C-1 y C-2 revelan que la fracción que atraviesa el tamiz
 N°200 supera el 50%, lo que indica la presencia de arcillas o limos.
- Las calicatas C-3, C-4, C-5, C-6, se nota que él % de material que pasa el tamiz N°200 es inferior al 50% por lo que son gravas o arenas.
- Las calicatas C-1 y C-2 presentan límite líquido menores que 50% e índice de plasticidad menor que 4% por lo que son suelos limos inorgánicos.
- Las calicatas C-3 y C-4 revelan la presencia de muestras donde más del 50% atraviesa el tamiz Nº4, con más del 12% que atraviesa el

tamiz N°200 y un índice de plasticidad inferior al 4%, lo que sugiere la presencia de arenas limosas.

Las calicatas C-5 y C-6 con más del 50 % que pasa la malla Nº4, con un porcentaje de finos entre 5 a 12%, coeficiente de uniformidad mayor a 6 y coeficiente de curvatura > a 1 y < que 3; se caracterizan como arenas bien graduadas con limos.

De la tabla N°26 se obtiene las siguientes conclusiones para la clasificación AASHTO:

- En las calicatas C-1 y C-2 el % de suelo que pasa por la malla N°200 son mayores al 35% y son suelos finos.
- Las calicatas C-3, C-4, C-5 y C-6 el porcentaje de muestra de suelo que pasa la malla N°200 son menores al 35% se tratan de suelos de grano grueso.
- Las calicatas C-1 y C-2 el % que pasa la malla N°200 es mayor al 36%, LL < 40%, IP < 10%, características que pertenecen a suelos limosos del grupo A-4 con índice de grupo 0.
- De las calicatas C-3 y C-4 el % que atraviesa la malla N°200 es menor al 35%, sin LL ni LP, pertenecen a suelos arenosos del grupo A-2-4 de IG= 0.
- En las calicatas C-5 y C-6 el % que pasa la malla Nº40 y Nº200 son menores al 50% y 25% por lo que corresponde a suelos arenosos del grupo A-1-b con índice de grupo igual a 0.

Tabla 30Resultados de la clasificación de suelo según SUCS y AASHTO

CALICATAS	UBICACIÓN	LADO	MÉTODO SUCS	MÉTODO AASHTO
C-1	5+000	Derecho	ML	A-4 (4)
C-2	5+250	Derecho	ML	A-4 (4)
C-3	7+000	Izquierdo	SM	A-2-4 (0)
C-4	7+500	Izquierdo	SM	A-2-4 (0)
C-5	9+000	Derecho	SW-SM	A-1-b (0)
C-6	9+500	Derecho	SW-SM	A-1-b (0)

Nota: Tipos de suelo de las calicatas realizadas.

3.2.1.5. Gravedad específica de sólidos de suelo (Gs) (MTC E 113)

Para su determinación se usa un extractor de aire y probetas graduadas en 500 ml (Anexo 6).

Tabla 31

Cantidad de masa de suelo para Gs

Tino de quelo	Masa seca (g), para un
Tipo de suelo	picnómetro de 500 ml.
ML	118.38; 117.47
SM	120.04; 120.03
SW-SM	120.07; 120.17

Nota: Cantidad de masa de suelo pasante la malla Nº4.

 Luego de realizar los métodos SUCS y AASHTO, de las 6 calicatas muestreadas, se obtiene 3 tipos de suelos según la clasificación mencionada, se realiza el ensayo de gravedad específica según el MTC E 113, donde obtenemos los siguientes resultados:

Tabla 32Resultados del ensayo de gravedad específica (Gs)

Calicata	Prog.	Lado	Clasificación		T	Gs	Gs
Cancata	(km)	Lauo	AASTHO	SUCS	°c	Gs	(prom)
C-1; C-2	5+000	Der.	A-4 (4)	ML	22	2.72	2.73
C-1, C-2	5+250	Der.	A-4 (4)	IVIL	°C	2.74	2.73
C > C A	7+000	Ina	A 2 4 (0)	CM	22°	2.70	2.70
C-3; C-4	7+500	Izq.	A-2-4 (0) SM	C	2.69	2.70	
$C \in C \subset C$	9+000	Dan	A 1 L (0)	CW CM	22	2.67	2.67
C-5; C-6	9+500	Der.	A-1-b (0)	SW-SM	°C	2.67	2.67

Nota: Gravedad específica (Gs), de los 3 tipos de suelos obtenidos.

Figura 34

Realización del ensayo de gravedad específica (Gs)

Nota: Extracción de vacíos llenos de aire

3.2.2. Caracterización mecánica de subrasante

para evaluar mecánicamente la subrasante del pavimento actual, con el propósito de determinar su capacidad de soporte se realizaron las siguientes pruebas:

3.2.2.1. Compactación de suelos – Proctor modificado (MTC E 115)

se realiza con las indicaciones de la norma MTC E 115 (Anexo 7).

Antes de llevar a cabo esta prueba, se selecciona el método de compactación utilizando la siguiente tabla:

Tabla 33Elección del método para el ensayo de proctor modificado

Calicata	Prog (km)	% Retenido acumulado tamiz 3/8"	% Retenido acumulado tamiz N°4	% Pasante tamiz N°4	Método selecto
C-1; C-2	5+000 5+250	0.00	1.29	98.71	A
C-3; C-4	7+000 7+500	1.64	5.77	94.23	A
C-5; C-6	9+000 9+500	7.62	20.83	79.17	В

Nota: Porcentaje retenido en el tamiz N°4.

- Las calicatas C-1 y C-2 corresponden a un suelo clasificado como ML,
 A-4 (4), y se compacta mediante el método A, dado que el % retenido en la malla Nº4 es menor o igual de 20%.
- Los suelos de las calicatas C-3; C-4 corresponde a un suelo: SM, A2-4 (0) y se realiza por el método A, porque % retenido en el tamiz
 N°4 ≤ 20 %.
- Las calicatas C-5; C-6 están clasificados como SW-SM, A-1-b (0) y se compactan por el método B, porque % retenido en la malla N°4 es mayor al 20 %.

El procedimiento se realizó de la siguiente manera:

- Siguiendo los métodos A y B, el suelo con un contenido de humedad definido se introduce en el molde en 5 capas. Luego se compacta mediante 25 golpes de un pisón de 10 lbf (44.5 N) desde una altura de 18 pulgadas (457 mm), ejerciendo un esfuerzo de compactación total cercano a 56,000 pie-lbf/pie³ (2,700 kN-m/m³). Luego, se mide la densidad seca obtenida.
- Este procedimiento se realiza con cuatro diferentes contenidos de humedad, estableciendo así una relación.
- Los resultados se trazan en un gráfico, evidenciando una relación de tipo curvilínea (curva de Compactación). Los valores de contenido humedad óptimo y máxima densidad seca modificado son obtenidos de la curva de compactación.

Tabla 34Resultados del ensayo de proctor modificado

Calicata	Prog. (km)	Lado	Contenido de humedad óptima (%)	Máxima densidad seca (g/cm3)	
C-1; C-2	5+000	Der.	17.38	1.750	
	5+250				
C-3; C-4	7+000	Izq.	14.55	1.852	
C 3, C 4	7+500	ızq.	14.55	1.032	
C 5. C 6	9+000	Der.	14.01	1.871	
C-5; C-6	9+500	Der.	14.01	1.0/1	

Nota: Relación del contenido de humedad óptima (%) y la máxima densidad seca (g/cm^3) .

Figura 35Realización del ensayo proctor modificado

Nota: Ejecución según método A y B elegido.

Figura 36Extracción de muestra compactada

Nota: Extracción de muestra, con la gata hidráulica.

3.2.2.2. CBR de suelos - laboratorio (MTC E 132)

Las normas utilizadas para el ensayo CBR son: MTC E 132 y ASTM D 1883 (Anexo 8).

El procedimiento de esta prueba es el siguiente:

- Se prepara una muestra de 20 kg
- Se seca la muestra al horno a 60 °C, luego desmenuzar los fragmentos existentes.
- Se tamiza por en ¾" y N°4, la fracción retenida en la malla ¾", deberá eliminarse y reemplazarse por la misma cantidad de material pasante por los tamices mencionados, luego se mezcla correctamente.
- Se obtiene la humedad.

A continuación, se presenta el equipo necesario para llevar a cabo la compactación y pruebas de penetración:

- Molde de 6" de diámetro, altura de 7" a 8" y un collarín de 2"
- Un disco espaciador de diámetro de 5 15/16" y altura de 2.5"
- Pisón de 10 lb, altura de caída de 18", trípode y extensómetro
- Dos pesas de plomo de 5 lb c/u
- Pistón circular de 2" de diámetro y prensa hidráulica

El ensayo de CBR también comprende:

Tabla 35Resultados de CBR convencional

Calicata	Prog. (km)		icación AASHTO	CBR al 100 % de MDS a 0.1"	CBR al 95 % de MDS a 0.1"	CBR al 100 % de MDS a 0.2"	CBR al 95 % de MDS a 0.2"
C-1; C-2	5+000 5+250	ML	A-4 (4)	25.18	18.05	29.60	18.80
C-3; C-4	7+000 7+500	SM	A-2-4 (0)	48.35	22.8	62.80	24.80
C-5; C-6	9+000 9+500	SW-SM	A-1-b (0)	68.20	38.6	74.9	40.10

Nota: Resultados de CBR a 0.1" y 0.2" de 03 tipos de suelos.

Figura 37

Ensayo CBR: selección de moldes

Nota: Selección de 03 moldes.

Figura 38

Ensayo CBR: compactación

Nota: Compactación de suelo, en el molde CBR.

Figura 39

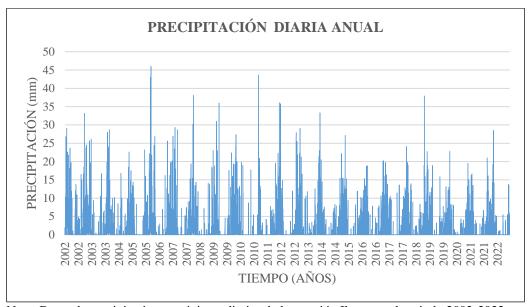
Ensayo de CBR: inmersión de muestras

Nota: Inmersión de las muestras, la cual se lectura inicialmente con el deformímetro.

Figura 40

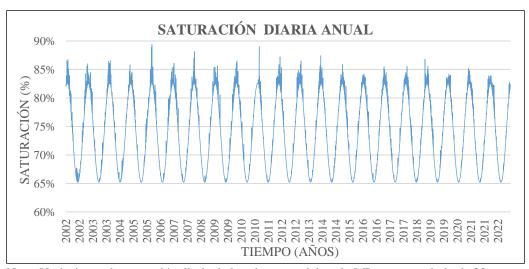
Ensayo de CBR: penetración de la muestra

Nota: Prueba CBR del espécimen.


3.2.3. Cálculo de la variación de saturación

Para analizar la variación de saturación de subrasante, se tuvo en cuenta las condiciones climáticas del tramo en estudio. Para ello fue necesario recopilar datos históricos sobre las precipitaciones diarias en la región de Ilave durante 20 años (Anexo 9).

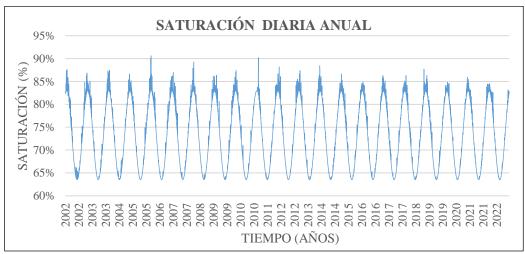
La temporada húmeda va de diciembre a marzo y la temporada seca va de mayo a agosto así mismo se presenta dos periodos de transición (setiembre-noviembre y abril), la precipitación máxima es de 46.0 mm, la mínima es de 0.0 mm y la precipitación promedio es 11.5 mm, según la figura 43 que se muestra a continuación:


Figura 41
Serie histórica de precipitación diaria anual

Nota: Datos de precipitaciones máximas diarias de la estación Ilave, en el periodo 2002-2022. Fuente: (SENAMHI, 2023)

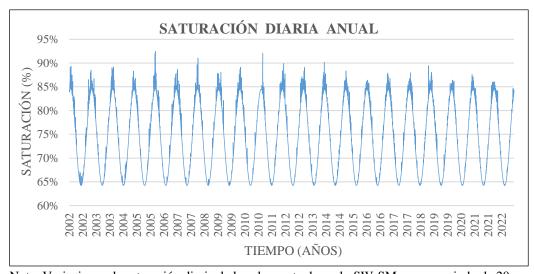
De la ecuación adaptada para el contenido volumétrico de agua y el grado de saturación en la subrasante en función de la precipitación, la profundidad de análisis y el tipo de suelo; se obtuvo la variación de las saturaciones diarias (Anexo 10).

Figura 42Serie temporal de variación de saturación del suelo: ML



Nota: Variaciones de saturación diaria de la subrasante del suelo ML, en un periodo de 20 años.

 La saturación máxima encontrada es de 89.38%, mientras que la mínima es 65.23%.


Figura 43Serie temporal de variación de saturación del suelo: SM

Nota: Variaciones de saturación diaria de la subrasante de suelo SM en un periodo de 20 años.

La saturación máxima encontrada es de 90.60%, mientras que la mínima es
 63.55%

Figura 44Serie temporal de variación de saturación del suelo: SW-SM

Nota: Variaciones de saturación diaria de la subrasante de suelo SW-SM, en un periodo de 20 años.

 La saturación máxima encontrada es de 92.47%, mientras que la mínima es 64.25%.

Tabla 36Variación de saturación promedio mensual

Meses	Suelo: ML	Suelo: SM	Suelo: SW-SM
Enero	83.09 %	83.56 %	85.12 %
Febrero	82.45 %	82.83 %	84.37 %
Marzo	79.67 %	79.73 %	81.13 %
Abril	75.24 %	74.77 %	75.95 %
Mayo	70.68 %	69.66 %	70.62 %
Junio	67.10 %	65.64 %	66.43 %
Julio	65.43 %	63.77 %	64.48 %
Agosto	66.06 %	64.48 %	65.22 %
Setiembre	68.88 %	67.64 %	68.52 %
Octubre	73.06 %	72.32 %	73.40 %
Noviembre	77.47 %	77.26 %	78.55 %
Diciembre	81.27 %	81.52 %	82.99 %

Nota: Variación promedio mensual de saturación en la subrasante para los tipos de suelos estudiados.

 Finalmente, se obtienen las saturaciones máximas promedio mensuales de un periodo de 20 años, utilizando esta información en la metodología RAMCODES.

Tabla 37Saturación máxima promedio mensual

Saturación máxima promedio		
mensual (20 años)		
83.09 %		
83.56 %		
85.12 %		

Nota: Saturación máxima del suelo de subrasante.

3.2.4. RAMCODES para subrasante

3.2.4.1. Clasificación cuantitativa de subrasante

Se resume a través del valor de factor característico Fp, el cual se calcula según la guía metodológica RAMCODES (Anexo 11).

Tabla 38Resultados de la clasificación cuantitativa RAMCODES

Calicata	Prog. (km)	\mathbf{W}_{L}	F	G	$\mathbf{F}_{\mathbf{P}}$	Tipo	Clasificación
C-1	5+000	0.273	0.5265	0.0100	0.6636	RS3	"Arenas limosas y arcillosas"
C-2	5+250	0.271	0.5297	0.0129	0.6647	RS3	"Arenas limosas y arcillosas"
C-3	7+000	0	0.2036	0.0061	0.2024	RS2	"Arenas limosas y arcillosas con grava"
C-4	7+500	0	0.2071	0.0577	0.1958	RS2	"Arenas limosas y arcillosas con grava
C-5	9+000	0	0.0946	0.2083	0.0783	RS1	Gravas limosas y arcillosas"
C-6	9+500	0	0.0770	0.1339	0.0689	RS1	Gravas limosas y arcillosas

Nota: Clasificación cuantitativa en relación con W_L : límite líquido, F: fracción pasa tamiz $N^{\circ}200$ y G: fracción retenida tamiz $N^{\circ}4$.

3.2.4.2. Potencial de densificación

Los parámetros clave utilizados para el potencial de compactación incluyen la (MDS), el (CHO) y la característica de la curva que ilustra esta relación, referida.

A continuación, la tabla muestra los resultados del potencial de densificación (MDS):

Tabla 39Resultados de potencial densificación (DMS)

Calicata	Prog. (km)	FP	Tipo	Clasificación RAMCODES	MDS (kN/m³)	MDS (g/cm³)
C-1	5+000	0.6636	RS3	Arenas limosas y arcillosas	19.24	1.92
C-2	5+250	0.6647	RS3	Arenas limosas y arcillosas	19.24	1.92
C-3	7+000	0.2024	RS2	Arenas limosas y arcillosas con grava	21.21	2.12
C-4	7+500	0.1958	RS2	Arenas limosas y arcillosas con grava	21.24	2.12
C-5	9+000	0.0783	RS1	Gravas limosas y arcillosas	21.74	2.17
C-6	9+500	0.0679	RS1	Gravas limosas y arcillosas	21.78	2.18

Nota: Cálculo de MDS, en función del Fp (factor característico), tipo y clasificación del suelo.

3.2.4.3. Relación entre el contenido de agua, la densidad y la resistencia

Para determinar la vinculación entre estas variables de diseño se empleó la técnica de los experimentos factoriales de 15 especímenes establecidos en la guía RAMCODES.

A. Diseño y elaboración del experimento factorial

Se realiza 15 especímenes según el (Anexo 12):

- Se utilizan los mismos equipos y accesorios que se requieren para el ensayo CBR convencional.
- Se elaboran quince (15) muestras de suelo (4.500 kg), con los contenidos de agua calculados, para luego ser conservadas en bolsas herméticas (para un mejor control de humedad).

Tabla 40Variación y ordenamiento de humedades del suelo RS3

Calicata	Tipo	Método Electo	CHO (%)	N° Golpes		Variacion	es de Hun	nedad (%))
				56	Wo-3	Wo-2	Wo-1	Wo	W_0+1
				30	13.71	14.78	15.63	16.67	18.04
C 1, C 2	DC2		17.20	25	W_{O} -2	W_{O} -1	\mathbf{W}_{O}	$W_O\!\!+\!1$	$W_O\!\!+\!\!2$
C-1; C-2	RS3	A	17.38	25	14.88	15.88	17.00	17.97	18.98
				10	W_{O} -1	\mathbf{W}_{O}	W_O+1	$W_O\!\!+\!\!2$	$W_O + 3$
				12	16.63	17.66	18.71	19.75	20.88

Nota: Preparación de muestras del suelo RS3, variando el contenido de humedad a partir de C.H.O. (W_0) y el N° golpes.

Tabla 41Variación y ordenamiento de humedades del suelo RS2

Calicata	Tipo	Método Electo	CHO (%)	N° Golpes		Variacion	es de Hun	nedad (%))
				5.6	Wo-4	Wo-3	Wo-2	Wo-1	Wo
				56	9.98	10.77	12.21	12.95	14.15
C 2. C 4	DCA	٨	1455	25	Wo-3	Wo-2	Wo-1	\mathbf{W}_{O}	$w_{o} \!\!+\! 1$
C-3; C-4	RS2	A	14.55	25	10.98	12.11	13.10	13.64	14.85
				10	W_{O} -2	W_{O} -1	W_{O}	$W_O + 1$	$W_O\!\!+\!\!2$
				12	12.20	13.29	14.32	15.26	16.14

Nota: Preparación de muestras del suelo RS2, variando el contenido de humedad a partir de C.H.O. (W_0) y el N° golpes.

Tabla 42Variación y ordenamiento de humedades del suelo RS1

Calicata	Tipo	Método Electo	CHO (%)	N° Golpes		Variacion	es de Hun	nedad (%))
				56	Wo-3	Wo-2	W_{O} -1	W_{O}	W_O+1
				30	11.10	12.13	12.79	13.95	14.80
C-5; C-6	RS1	В	14.01	25	Wo-3	Wo-2	Wo-1	\mathbf{W}_{O}	$w_{o} \!\!+\!\! 1$
C-3, C-0	KSI	Б	14.01	23	11.13	12.31	13.04	13.92	14.53
				12	Wo-2	Wo-1	\mathbf{W}_{O}	$W_O\!\!+\!1$	$W_{O}+2$
				12	13.23	13.81	14.36	14.91	16.00

Nota: Preparación de muestras del suelo RS1, variando el contenido de humedad a partir de C.H.O. (W_0) y el N° golpes.

Figura 45 *Muestras preparadas variando humedades*

Nota: La figura muestra las 15 muestras preparadas con varias humedades.

- Empleando el molde proctor de 6" y el martillo proctor de 10 lb, se organizan las quince muestras en tres grupos distintos según las energías de compactación: 56, 25 y 12 golpes por capa, y se procede a la compactación conforme a los métodos A y B del proctor modificado.

Figura 46

Compactación de muestras con rango de humedades

Nota: Compactación de 15 especímenes preparados.

 Tras finalizar la compactación, se retira el collar y la muestra se nivela con una regla metálica. Luego, el molde se desmonta y se anota el peso.

Figura 47Enrasamiento de la muestra compactada

Nota: Enrasamiento de la muestra con la regla metálica.

- La muestra compactada, que luego se introduce en la prensa universal para la penetración.

Figura 48

Penetración de la muestra compactada

Nota: Penetración de la muestra con los anillos puestos.

- En el paso final, el molde se desmonta y se extraen porciones para analizar su humedad.

Figura 49

Extracción de muestra compactada y penetrada

Nota: Extracción de la muestra penetrada, para luego obtener su humedad.

 Los datos se analizan en una hoja de Excel, aplicando las ecuaciones previamente establecidas para el ensayo CBR convencional, con el fin de obtener información sobre humedad, densidad y CBR.

Tabla 43Resultados del experimento factorial CBR: RS3

Tipo	N° Golpes	Humedad(%)	Densidad seca (g/cm3)	CBR 0.1" (%)
		13.71; 14.78;	1.756; 1.777;	132.56; 107.18;
	56	15.63; 16.67;	1.792; 1.776;	69.95; 29.30;
		18.04	1.734	8.82
		14.88; 15.88;	1.683; 1.708;	73.61; 65.14;
RS3	25	17.00; 17.97;	1.731; 1.727;	49.07; 30.58;
		18.98	1.700	7.25
		16.63; 17.66;	1.648; 1.662;	37.93; 31.67;
	12	18.71; 19.75	1.679; 1.671;	28.16; 8.62;
		; 20.88	1.650	1.92

Nota: Resultados del experimento factorial CBR del suelo RS3.

Tabla 44Resultados del experimento factorial CBR: RS2

Tipo	N° Golpes	Humedad(%)	Densidad seca (g/cm3)	CBR 0.1" (%)
-		9.98 ; 10.77 ;	1.862; 1.903;	157.59; 163.28;
	56	12.21 ; 12.95 ;	1.941; 1.910;	109.80 ; 42.67 ;
		14.15	1.860	14.51
		10.98 ; 12.11 ;	1.777; 1.864;	80.77 ; 103.90 ;
RS2	25	13.10 ; 13.64 ;	1.876; 1.863;	75.95 ; 29.23 ;
		14.85	1.828	12.94
		12.20 ; 13.29 ;	1.769; 1.800;	56.60 ; 57.43 ;
	12	14.32 ; 15.26 ;	1.825; 1.791;	50.35 ; 15.96 ;
		16.14	1.772	7.54

Nota: Resultados del experimento factorial CBR del suelo RS2 (SM).

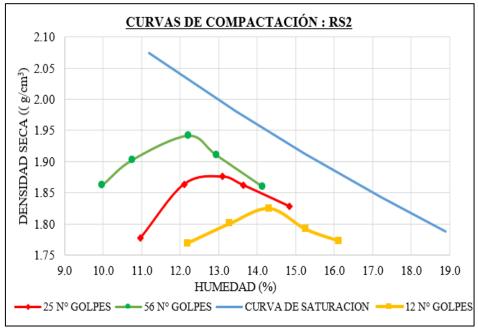
Tabla 45Resultados del experimento factorial CBR: RS1

Tino	N°	Humodod(0/)	Densidad seca	CDD 0.1% (0/)
Tipo	Golpes	Humedad(%)	(g/cm3)	CBR 0.1" (%)
		11.10 ; 12.13 ;	1.921 ; 1.942 ;	241.22; 168.11;
	56	12.79; 13.95;	1.932; 1.892	65.42 ; 26.10 ;
		14.80	; 1.847	12.94
		11.13; 12.31;	1.844 ; 1.873 ;	134.32; 139.69 ;
RS1	25	13.04; 13.92;	1.911 ; 1.871 ;	124.16 ; 54.05 ;
		14.53	1.857	4.48
		13.23 ; 13.81 ;	1.795 ; 1.832 ;	36.69 ; 72.54 ;
	12	14.36; 14.91;	1.851; 1.818	35.27 ; 20.08 ;
		16.00	; 1.791	7.82

Nota: Resultados del experimento factorial CBR del suelo RS1 (SW-SM).

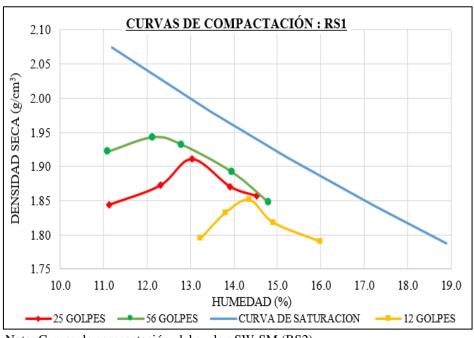
 Con los quince (15) datos de humedad, densidad seca y CBR, se generan gráficos de curvas de compactación y de resistencia CBR de cada tipo de suelo.

Figura 50


Curvas de compactación del suelo: RS3

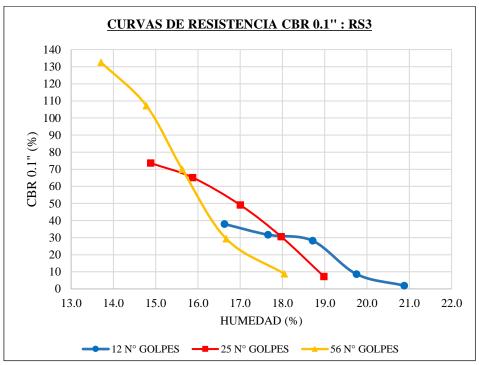
Nota: Curvas de compactación del suelo : ML (RS3).

Figura 51


Curvas de compactación del suelo: RS2

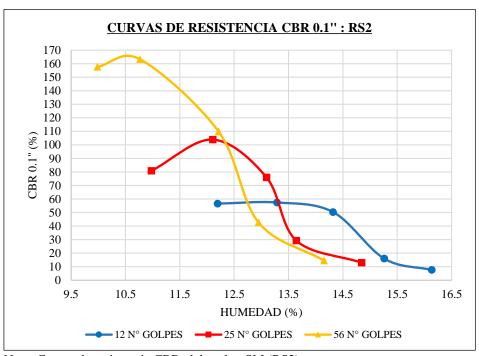
Nota: Curvas de compactación del tipo suelo : SM (RS2).

Figura 52


Curvas de compactación del suelo: RS1

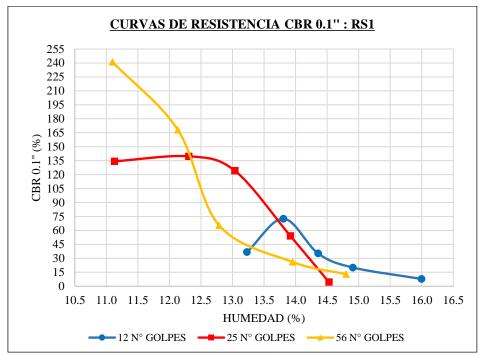
Nota: Curvas de compactación del suelo : SW-SM (RS2).

Figura 53


Curvas de resistencia CBR 0.1" del suelo: RS3

Nota: Curvas de resistencia CBR, del suelo: ML (RS3).

Figura 54


Curvas de resistencia CBR 0.1" del suelo: RS2

Nota: Curvas de resistencia CBR ,del suelo : SM (RS2).

Figura 55

Curvas de resistencia CBR 0.1" del suelo: RS1

Nota: Curvas de resistencia CBR, muestras de suelo: SW-SM (RS1).

B. Procedimiento de obtención de las curvas de diseño

Los datos derivados del experimento factorial CBR se procesaron con el software de análisis estadístico OriginPro 2023b. Se presentan a continuación los pasos empleados para obtener las curvas de diseño RAMCODES.

 Los datos obtenidos del experimento factorial CBR se ingresaron en una nueva hoja de trabajo del programa.

Figura 56

Datos del experimento factorial del suelo: RS3

Book1			5 O S	3
	A(X)	B(Y)	C(Z)	^
Long Name	w	Yd	CBR	
Units	%	g/cm3	%	
Comments	HUMEDAD	DENSIDAD	CBR	
F(x)=				
1	13.71	1.756	132.56	
2	14.78	1.777	107.18	
3	15.63	1.792	69.95	
4	16.67	1.776	29.3	
5	18.04	1.734	8.82	
6	14.88	1.683	73.61	
7	15.88	1.708	65.14	
8	17	1.731	49.07	
9	17.97	1.727	30.58	
10	18.98	1.7	7.25	
11	16.63	1.648	37.93	
12	17.66	1.662	31.67	
13	18.71	1.679	28.16	
14	19.75	1.671	8.62	
15	20.88	1.65	1.92	
↑) + ∨ ⟨ E	25gc / E12g	c λτοσο ∤	< >	

Nota: Datos del ensayo factorial del suelo: RS3 (ML).

Figura 57

Datos del experimento factorial del suelo: RS2

Book1				×-
	A(X)	B(Y)	C(Z)	^
Long Name	W	Yd	CBR	
Units	%	g/cm3	%	
Comments	HUMEDAD	DENSIDAD	CBR	
F(x)=				
1	9.98	1.862	157.59	
2	10.77	1.903	163.28	
3	12.21	1.941	109.8	
4	12.95	1.91	42.67	
5	14.15	1.86	14.51	
6	10.98	1.777	80.77	
7	12.11	1.864	103.9	
8	13.1	1.876	75.95	
9	13.64	1.863	29.23	
10	14.85	1.828	12.94	
11	12.2	1.769	56.6	
12	13.29	1.8	57.43	
13	14.32	1.825	50.35	
14	15.26	1.791	15.96	
15	16.14	1.772	7.54	<u>~</u>
4 → + ∨ (E	12gc \TOD	os /	< >	[::

Nota: Datos del ensayo factorial del suelo: RS2 (SM).

Figura 58Datos del experimento factorial del suelo: RS1

Book1 *				×
	A(X)	B(Y)	C(Z)	^
Long Name	w	Yd	CBR	
Units	%	g/cm3	%	
Comments	HUMEDAD	DENSIDAD	CBR	
F(x)=				
1	11.1	1.921	241.22	
2	12.13	1.942	168.11	
3	12.79	1.932	65.42	
4	13.95	1.892	26.1	
5	14.8	1.847	12.94	
6	11.13	1.844	134.32	
7	12.31	1.873	139.69	
8	13.04	1.911	124.16	
9	13.92	1.871	54.05	
10	14.53	1.857	4.48	
11	13.23	1.795	36.69	
12	13.81	1.832	72.54	
13	14.36	1.851	35.27	
14	14.91	1.818	20.08	
15	16	1.791	7.82	~
1 + + V (E	25gc 🕻 E12g	c λτοdos ,	< >	

Nota: Datos del ensayo factorial del suelo: RS1 (SW-SM).

- A partir de los datos ingresados, se generó una representación matricial

Figura 59

Red matricial del suelo: RS3

2 6 7 8 9 10 11 12 13 19.981967 F 6 76 76 75 F 6 76 78 7 F 76 76 7 F 107927 4 167 75 5 4167 75 5 4167 75 4 167 75 4 167 75 4 167 75 4 167 75 5 4167 75							l							<u>-</u>	·
65 23731 62 67082 59 9800 57 1319 54 16715 51 07927 47 87146 44 5392 41 05213 47 0555 43 2203 41 05213 45 0525 43 2203 40 0525 43 2203 47 0555 43 2207 42 2333 93 2025 68 84888 41 84 54 42 5337 47 0555 43 2207 42 2333 93 2025 43 2204 42 5374 42 5327 42 2333 93 2025 43 2204 42 5374 42 5327 42 2328 71 1445 67 1441 67 1441 67 1441 67 1441 67 1441 67 1440 67 1441	ì	2	3	4	5	9	7	8	6	10	11	12	13	14	15 D
66 74898 64 13611 61 37579 58 47221 55 43402 52 27326 49 00473 45 6518 42 29339 33 30255 68 38 38239 66 74576 61 508 69 96262 56 8499 53 65531 50 36733 41 05555 43 2673 40 5655 45 53704 42 23288 71 3843 66 74576 61 60613 61 60613 61 60141 65 7736 51 8659 53 42411 50 00165 48 8431 46 20152 45 35704 42 55570 71 3843 71 2704 88 3471 66 18 18 87701 65 27146 60 04642 56 5285 50 3051 48 8771 46 50 405 78 5037 48 62915 46 5047 46 5050 48 62915 46 5047 46 5047 47 471 47 477 48 6050 48 6066 46 600 46 60 60<	72.12454 69.	96195		65.23731	62.67082	59.96808	57.1319	54.16715	51.07927	47.87146	44.5392	41.05219	37.73177	36.07876	34.2219
68.38239 65.7327 62.92386 59.96262 56.86499 53.65531 60.36733 47.05556 48.2679 49.85662 45.87744 42.8288 70.34569 66.460613 61.589 58.4254 55.7555 51.86552 45.3774 42.8288 71.99849 69.30568 66.440418 66.18316 60.04642 56.52285 53.03517 49.6156 46.8241 45.0866 77.39593 727074 68.3417 66.04642 56.52285 53.03517 49.6156 47.2251 77.39505 77.2041 76.04576 68.25626 65.25286 53.03517 49.6156 47.2251 77.98305 77.2041 76.04576 68.26826 61.10415 59.0405 56.0914 42.2915 81.86902 86.5666 77.10467 68.30682 65.10464 56.2048 67.1476 68.419 67.14763 60.0564 68.2076 68.2076 68.2076 68.2076 69.2076 68.2076 68.2076 68.2076 69.2076 66.0946 46.2076 <t< td=""><td>73.71664 7</td><td>1.53564</td><td>69.2145</td><td>66.74898</td><td>64.13611</td><td>61.37579</td><td>58.47221</td><td>55.43402</td><td>52.27326</td><td>49.00473</td><td>45.65188</td><td>42.29339</td><td>39.30255</td><td>36.99643</td><td>34.8901</td></t<>	73.71664 7	1.53564	69.2145	66.74898	64.13611	61.37579	58.47221	55.43402	52.27326	49.00473	45.65188	42.29339	39.30255	36.99643	34.8901
70.13459 67.45765 64.60613 61.589 58.43244 56.552 45.35704 42.32823 71.98949 69.30583 66.44418 63.3416 60.10141 56.77995 53.4441 50.0157 46.82674 45.0568 77.9810 77.39593 73.3769 70.3859 67.05376 63.7146 60.04642 56.52285 53.03517 49.61516 42.29152 77.9810 72.39769 72.59870 68.22746 60.04642 56.52285 53.03517 4407428 42.29152 77.9810 72.59810 72.59870 68.22746 68.22746 66.04642 56.52285 53.03517 49.61541 42.2915 81.78912 72.59810 72.59810 66.22474 66.22474 68.22462 52.0514 44.0724 81.78912 72.59810 72.59810 66.2747 68.28844 61.40442 56.2285 53.14614 49.40743 81.68012 81.7886 74.7478 74.7478 74.7478 74.7474 66.28844 66.27476 66.27476	75.40459 7	3.21271	70.87399	68.38239	65.7327	62.92386	59.96262	56.86499	53.65531	50.36733	47.05555	43.82679	40.85665	38.22768	35.8109
6.6.14.14 6.3.33.18 6.0.10.14 5.6.77995 5.3.4241 5.0.0916 48.8431 43.732.23 8.8.8024 7.6.48934 7.3.9933 71.2074 88.3411 65.1671 61.83161 58.41925 54.88934 51.5052 48.26741 45.0568 8.8.80265 7.8.48281 7.3.3376 67.0376 65.56747 61.61801 5.0.3671 54.01791 50.8768 4.422915 8.8.418 8.6.47928 7.7.88005 75.3047 70.48504 66.8252 63.10751 59.3019 55.0035 50.8768 4.422915 8.8.418 8.6.4796 7.8.876 7.1.1001 7.1.1001 68.2160 66.26599 50.2024 4.40791 50.8768 7.1.1001 4.40791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684 6.2.52474 4.40791 50.87684 6.1.440791 50.87684 6.1.440791 50.87684	77.18464	74.98903	72.64182	70.13459	67.45765	64.60613	61.589	58.43254	55.17553	51.86591	48.56552	45.35704	42.32828	39.51603	36.8781
88 0049 76 45941 73959 712704 68.3411 65 1671 613161 58 41922 54.98934 51.5905 48.26741 45.0580 80 80049 78 45941 75.9374 73.3376 70.38597 67.05376 65.2745 60.04642 56.52285 53.0317 49.61516 46.2012 80 824318 80.4936 77.98273 77.98577 72.40761 75.98571 54.40791 50.78684 47.2251 44.40791 50.78684 47.2251 44.40791 50.78684 47.2251 44.40791 50.78684 47.2251 44.40791 50.78674 56.91273 52.05144 44.55684 44.40791 56.71075 50.3917 44.40791 44.40794 44.40	79.05	76.85622	74.50923	71.99849	69.30583	66.41418	63.3318	60.10141	56.77995	53.42411	50.09165	46.8431	43.73223	40.7876	38.0085
0.080265 78.46281 75.9813 73.33769 70.38597 67.05376 63.57146 60.04642 56.52285 53.03517 49.61516 46.29152 22.84318 80.47936 77.28305 75.39047 72.60375 68.2252 63.10151 59.3913 55.00514 44.5294 49.1376 82.48599 79.89238 77.2041 72.01667 68.2552 63.10151 59.3913 55.00514 44.5594 70.2527 84.5081 81.76847 77.2041 72.01667 68.3082 60.70657 56.91273 53.4614 44.20743 70.2527 84.5081 81.76847 77.2041 72.6476 68.8419 64.1739 60.70657 56.91273 55.10444 44.20743 90.052 86.7069 86.7069 82.52828 72.4473 68.4416 64.1739 60.16219 56.92824 56.0147 77.6561 74.7572 66.84173 56.1474 44.40743 77.4447 66.84173 66.84173 56.1474 44.40743 77.44474 77.44767 77.44767 <td></td> <td>78.80049</td> <td>76.45941</td> <td>73.9593</td> <td>71.27074</td> <td>68.3411</td> <td>65.1671</td> <td>61.83161</td> <td>58.41922</td> <td>54.98934</td> <td>51.59052</td> <td>48.26741</td> <td>45.0586</td> <td>41.99218</td> <td>39.0891</td>		78.80049	76.45941	73.9593	71.27074	68.3411	65.1671	61.83161	58.41922	54.98934	51.59052	48.26741	45.0586	41.99218	39.0891
2.84318 8.0 47936 7.39017 7.50375 68.87701 65.2147 61.61801 57.99571 54.0791 50.87684 47.42254 47.2041 7.401597 7.049504 68.82252 63.10751 59.9373 55.05144 48.42594 7.70257 84.50361 81.76847 72.0466 68.2262 63.10753 55.05144 49.4743 69.0173 55.05144 49.4743 69.0173 55.05143 55.0544 49.4744 49.4743 65.0173 52.05144 49.4744 49.4744 49.4744 49.4745 69.01745 59.01745 59.01746 69.0957 69.095	82.99575	80.80265	78.46281	75.9813	73.33769	70.38597	67.05376	63.57146	60.04642	56.52285	53.03517	49.61516	46.29152	43.0897	40.0357
44.91376 82.48599 79.89238 77.12041 74.01597 70.49504 66.82252 63.10751 59.3913 55.70035 52.05144 48.45594 87.02527 84.50361 81.78847 77.20466 83.0882 64.51601 60.70557 56.91235 55.15043 51.4385 82.0145 86.7416 81.8874 77.2516 71.19036 67.4747 69.05068 54.7381 50.0544 48.4529 83.845 90.9957 88.7416 80.0568 77.17601 77.2647 68.41739 60.16219 56.0928 57.19697 83.845 90.9957 88.4306 82.5282 87.4079 77.1767 66.4176 66.4757 61.19975 56.0928 57.19697 99.0063 94.852 90.7221 86.4206 87.2798 87.6014 77.0526 66.4757 61.8952 57.1997 56.9928 57.1997 88.2224 78.8088 87.6014 77.0529 66.4759 66.4757 67.4257 67.1997 66.4757 67.4257 67.1997 <td>85.05502</td> <td>82.84318</td> <td>80.47936</td> <td>77.98305</td> <td>75.39017</td> <td>72.50375</td> <td>68.87701</td> <td>65.25147</td> <td>61.61801</td> <td>57.99571</td> <td>54.40791</td> <td>50.87686</td> <td>47.42251</td> <td>44.06369</td> <td>40.8209</td>	85.05502	82.84318	80.47936	77.98305	75.39017	72.50375	68.87701	65.25147	61.61801	57.99571	54.40791	50.87686	47.42251	44.06369	40.8209
97.02627 84.50361 81.76947 78.80059 75.54814 72.01667 68.30882 64.51601 60.70657 56.91273 53.4614 49.40743 99.20145 86.57416 83.69802 80.56666 77.17601 73.55061 69.75224 65.8584 61.34415 56.0505 54.17381 50.29841 99.20145 86.57416 83.5834 80.5660 95.67871 82.42842 77.17601 77.5074 61.9395 55.15643 51.14895 99.2024 90.50274 82.5282 74.0344 80.6767 74.3447 64.1759 60.2025 55.15643 51.14892 90.5027 90.5027 82.52828 74.0344 72.6476 74.3447 64.1757 61.9975 56.99258 57.4091 90.5027 90.5027 82.52828 74.0344 72.6476 74.3447 64.1757 61.9975 56.95926 57.14901 91.82027 91.9022 91.5027 82.24028 74.3444 72.6476 68.4146 63.1364 49.4074 40.2436		84.91376	82.48599	79.89238	77.12041	74.01597	70.49504	66.82252	63.10751	59.39139	55.70035	52.05144	48.45594	44.92301	41.46
99 20145 86.57416 83.68802 80.56656 77.17601 73.55061 69.7524 65.85864 61.94415 58.05058 54.17381 50.93841 93 2045 88.73109 85.7152 82.42842 78.8876 75.12516 71.1036 67.14763 67.1055 55.15043 51.14895 93 3824 88.73109 85.7152 82.42842 78.8876 75.12516 71.1036 67.14739 60.16279 56.5050 51.14895 990005 95.9024 92.4024 88.63743 88.4278 80.08388 74.13418 69.7679 66.5597 66.5592 57.10908 57.10908 57.20908 57.20908 57.20908 74.13418 69.7679 66.5592 66.5592 57.10908 57.20908 57.20908 57.20908 74.1418 69.7679 66.5592 66.5592 57.10908 57.20908 57.20908 57.20908 77.106908 77.1176 68.4166 67.1476 57.4096 57.20908 57.20908 77.20908 77.20909 77.20909 77.20909 77.20909	89.33648	87.02527	84.50361	81.76947	78.80059	75.54814	72.01667	68.30682	64.51601	60.70657	56.91273	53.14614	49.40743	45.69466	42.0046
93.845 98.71521 82.42842 78.8876 75.12516 71.19036 67.14763 63.10158 59.12355 55.15043 51.14895 93.845 90.9957 87.83518 84.38474 80.6753 76.14737 72.6476 68.419 64.17399 60.16219 56.0918 51.96925 93.845 90.0957 87.83518 84.38474 80.6753 76.14767 72.6476 68.419 64.17399 60.16219 56.0918 51.96925 99.0063 95.90234 92.40291 88.55743 84.4278 80.08388 72.6476 6.8419 64.17399 60.16219 56.09288 51.96925 99.0063 95.90248 88.25749 88.26179 87.20329 72.2432 62.47572 62.8659 62.14235 57.7959	91.58156	89.20145	86.57416	83.69802	80.56656	77.17601	73.55061	69.75224	65.85864	61.94415	58.05058	54.17381	50.29841	46.41243	42.5032
93.845 90.9957 87.83518 84.38474 80.6753 76.74737 72.6476 68.419 64.17399 60.16219 56.9918 51.96926 96.35221 93.38234 90.06376 86.43069 82.52828 78.40987 74.13418 69.76791 65.42757 61.19975 56.99268 52.74901 99.0063 95.60234 92.40291 88.5743 84.4278 80.08388 75.60141 71.06363 66.55929 62.14235 57.79597 53.45124 1182225 98.56009 94.852 90.75271 86.3485 81.72865 76.90203 67.4757 62.86541 58.77859 53.45124 1182225 98.56009 94.852 90.75271 80.32485 81.73529 68.1456 68.1456 68.24569 53.45124 68.93662 53.445124 66.976791 66.56592 62.14267 53.45124 53.45124 66.976791 66.56592 62.14569 82.44578 80.9888 81.77565 88.8444 78.22849 78.13626 68.14562 62.14503 68.96647	93.92012	91.46751	88.73109	85.71521	82.42842	78.8876	75.12516	71.19036	67.14763	63.10158	59.12355	55.15043	51.14895	47.10404	42.9997
99.36224 90.06376 86.43069 82.52828 78.40987 74.13418 69.76791 65.42757 61.19975 56.99268 52.74901 99.0063 95.90234 92.40291 88.55743 84.4278 80.08388 75.60141 71.06363 66.5929 62.14235 57.79597 53.45124 91.82525 98.56069 94.852 90.75217 86.3485 81.72865 76.98303 72.20323 67.47572 62.8651 58.39425 54.00826 98.04243 101.38336 97.4071 92.99787 88.26179 83.30444 78.22849 73.13329 68.11252 62.8651 58.12322 54.23906 98.04243 101.38336 97.52968 91.35278 88.26178 78.22849 73.81329 68.11526 63.4956 56.23494 58.61232 54.23906 11.88224 101.3837 91.93252 86.10996 91.32279 88.11322 63.4466 91.32477 67.4757 62.8654 57.4669 49.84823 11.0824 10.277049 10.27703 <	96.37106	93.845	90.9957	87.83518	84.38474	80.6753	76.74737	72.6476	68.419	64.17399	60.16219	56.0918	51.96925	47.77924	43.5057
99.0063 95.90234 92.40291 88.55743 84.4278 80.08388 75.60141 71.06363 66.5929 62.14235 57.79597 53.45124 63.45124 67.9597 53.45124 67.4552 68.2660 94.852 90.75217 86.3485 81.72865 76.98303 72.20323 67.47572 62.8651 58.39425 54.00826 94.862 97.20323 67.47572 62.8651 58.39425 54.00826 98.04243 78.20323 67.47572 62.8651 58.39425 54.00826 98.04243 78.20323 67.47572 62.8651 58.39425 54.00826 98.04244 78.20323 67.47572 62.8651 58.20306 98.04244 78.20323 67.47572 62.8651 58.20306 99.203242	98.95267	96.35221	93.38234	90.06376	86.43069	82.52828	78.40987	74.13418	69.76791	65.42757	61.19975	56.99258	52.74901	48.4219	43.987
94.855 98.56609 94.852 90.75217 86.3485 81.72865 76.98303 72.0323 67.47572 62.8651 58.39425 54.00826 94.82947 101.38336 97.4071 92.99787 88.26179 83.30444 78.22849 73.1329 68.11252 63.2494 58.61232 54.23906 98.04243 101.3837 95.2708 91.3525 86.10906 80.1755 79.2009 73.81376 68.1426 63.19242 58.61232 54.23906 11.8827 107.49238 102.77095 97.52968 91.93252 86.10906 80.1751 74.22431 68.36458 62.67423 57.20035 51.88636 11.8822 110.74937 99.70942 93.60219 87.2739 80.2778 74.24477 67.38704 57.4669 49.84823 19.0866 11.818228 110.14596 103.38012 96.23793 89.04252 73.3733 60.56944 57.4669 49.84823 19.0766 11.81.8238 11.66785 11.46493 17.3452 88.24342 81	101.6834		95.90234	92.40291	88.55743	84.4278	80.08388	75.60141	71.06363	66.55929	62.14235	57.79597	53.45124	48.99472	44.3570
92.947 101.38336 97.4071 92.99787 88.26179 83.30444 78.22849 73.13329 68.11552 63.2494 58.61232 54.23906 98.04243 104.36071 100.05675 95.27018 90.13593 84.77555 79.30009 73.81376 68.4146 63.19242 58.61232 54.23906 11.8927 107.4923 10.27709 97.52968 91.9352 86.1092 88.2434 86.4146 63.19242 57.2003 51.8863 11.8927 10.7492 97.0942 93.60219 87.2739 80.2778 74.36611 67.98704 61.77004 57.4669 49.84823 19.086 11.81822 11.14459 10.38012 98.2739 81.26501 74.25477 67.3233 60.56944 57.4669 49.84823 19.086 11.81823 11.14459 10.38012 98.2739 81.26501 74.25477 67.3233 60.56944 57.4659 49.84823 10.076 11.14459 10.64193 97.3629 88.99325 81.43587 77.568403 <td>22</td> <td>101.82525</td> <td>98.56609</td> <td>94.852</td> <td>90.75217</td> <td>86.3485</td> <td>81.72865</td> <td>76.98303</td> <td>72.20323</td> <td>67.47572</td> <td>62.8651</td> <td>58.39425</td> <td>54.00826</td> <td>49.4732</td> <td>44.4794</td>	22	101.82525	98.56609	94.852	90.75217	86.3485	81.72865	76.98303	72.20323	67.47572	62.8651	58.39425	54.00826	49.4732	44.4794
88 04243 104.36071 100.05675 95.27018 90.13593 84.77555 79.30009 73.81376 68.4146 63.19242 58.22782 53.59634 11.8927 107.49238 102.77095 97.52968 91.93252 86.10906 80.17151 74.22431 68.36458 62.67423 57.20035 57.80636 51.89636 15.18822 110.73449 102.77095 97.52968 91.93252 86.10906 80.17151 74.22471 68.36458 62.67423 57.20035 57.8669 98.88869 19.10861 113.93413 108.0246 10.170387 95.08539 88.24342 81.26501 74.25477 67.32333 60.56944 54.05377 47.76579 29.1701 116.66785 110.14596 103.38012 96.32793 89.00482 81.49235 73.9132 65.26949 57.41556 50.03472 45.63171 29.1702 11.66785 110.14596 103.38012 98.71526 89.9325 81.43587 72.58403 65.66409 57.41556 57.6529 40.70111	9	104.82947	101.38336	97.4071	92.99787	88.26179	83.30444	78.22849	73.13329	68.11252	63.2494	58.61232	54.23906	49.91262	44.2166
1.1892/2 107.49238 102.77095 97.52968 91.93252 86.10906 80.17151 74.22431 68.36458 62.67423 57.20035 51.89636 15.18822 110.73449 105.47787 99.70942 33.60219 87.2739 80.2778 74.36611 67.98704 61.77004 55.74669 49.84823 19.0861 113.93413 108.0246 101.70387 95.08539 88.24342 81.26501 74.25477 67.32333 60.56944 54.05377 47.76579 29.1701 116.66785 110.14596 103.38012 96.32793 89.00482 81.49235 73.91352 66.20793 59.11669 52.16527 45.63171 29.1701 116.66785 110.14596 103.38012 96.32793 89.00482 81.49235 73.91352 66.26949 57.41656 50.0447 43.32709 29.1702 11.66782 11.64193 97.316284 89.77379 81.53643 73.9156 57.41656 50.04472 43.32709 20.7662 11.27443 110.27031 99.771	32	108.04243	104.36071	100.05675	95.27018	90.13593	84.77555	79.30009	73.81376	68.4146	63.19242	58.22782	53.59634	49.32404	42.8093
10.0822 110.73449 105.47787 99.70942 93.60219 87.2739 80.82778 74.36611 67.98704 61.77004 55.74669 49.84823 19.0861 113.93413 108.0246 101.70387 95.08539 88.24342 81.26501 74.25477 67.32333 60.56944 54.05377 47.76579 29.1701 116.66785 110.14596 103.38012 96.32793 88.00482 81.49235 73.91352 66.26949 57.41656 50.03472 43.32709 24.79696 118.18708 111.64953 104.64193 97.31623 88.57379 81.53604 73.37432 65.26949 57.41656 50.03472 43.32709 25.2795 118.18708 112.17471 105.52904 98.11536 88.99925 81.43587 72.68463 65.26949 57.41656 50.03472 43.32709 25.2765 118.18708 110.71477 99.70174 90.43911 80.81405 71.12169 61.38905 51.60186 47.7768 47.7768 47.7768 47.7768 47.7768	22	111.48927	107.49238	102.77095	97.52968	91.93252	86.10906	80.17151	74.22431	68.36458	62.67423	57.20035	51.89636	46.40877	39.9646
9.10861 113.93413 108.0246 10.170387 95.08539 88.24342 81.26501 74.25477 67.32333 60.56944 54.05377 47.76579 29.1701 116.66785 110.14596 103.38012 96.32793 89.00482 81.49235 73.91352 66.20793 59.11669 52.16527 45.63171 24.79696 118.18238 111.54953 104.64193 97.31623 89.57379 81.53604 73.37432 65.26949 57.41656 50.03472 43.32709 23.52795 118.18708 112.17471 105.52904 98.11536 89.99926 81.43587 72.68463 65.26949 57.41656 50.03472 43.32709 21.38256 112.17471 105.52904 98.11536 89.99926 81.43587 72.68463 65.26949 57.4167 47.7768 40.70111 21.38256 117.27143 112.2879 106.25061 98.8969 90.2452 81.2159 71.91015 62.5806 53.4167 47.7768 37.5554 16.54069 110.77012 107.77	00	115.18822		105.47787	99.70942	93.60219	87.2739	80.82778	74.36611	67.98704	61.77004	55.74669	49.84823	43.84921	37.4698
2.91701 116.66785 110.14596 103.38012 96.32793 89.00482 81.49235 73.4135 66.40793 59.11669 52.16527 45.63171 24.79696 118.18708 111.54953 104.64193 97.31623 89.57379 81.53604 73.37432 65.26949 57.41656 50.03472 43.32709 23.52795 118.18708 112.17471 105.52904 98.11536 89.9925 81.43587 72.68463 65.26949 57.41656 50.03472 43.32709 21.38526 112.17471 105.52904 98.11536 89.9925 81.43587 72.68463 65.26949 57.4165 47.7768 47.7768 47.7768 47.7768 47.7768 47.7768 47.7754 47.7768 47.7768 47.7768 47.7768 47.7768 47.87554 47.87634 47.87634 47.87554 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634 47.87634	6	119.10861	113.93413		101.70387	95.08539	88.24342	81.26501	74.25477	67.32333	60.56944	54.05377	47.76579	41.61268	35.4854
24.79696 118.18238 111.54953 104.64193 97.31623 89.57379 81.53604 73.37432 65.26949 57.41656 50.03472 43.32709 23.52795 118.18708 112.17471 105.52904 98.11536 89.99925 81.43587 72.68463 65.26949 57.41656 50.3472 47.32709 40.70111 21.38526 117.27143 112.25979 106.25061 98.86969 90.32452 81.21519 71.91015 62.58606 53.41167 44.77768 37.57554 19.07662 115.84543 111.95572 107.11197 99.70174 90.43911 80.81408 71.12169 61.38905 51.60186 41.88983 33.65581 16.54069 113.8027 110.70126 107.71865 107.7248 80.71462 80.6098 70.36591 60.65454 50.8202 40.69993 30.84321 10.64675 107.72827 104.18043 99.7248 99.22455 77.38479 68.95322 60.68583 52.662 45.24865 39.08039 10.64076 1	7	122.91701	85		103.38012	96.32793	89.00482	81.49235	73.91352	66.40793	59.11669	52.16527	45.63171	39.51783	33.77713
23.5795 118.18708 112.17471 105.52904 98.11536 89.9925 81.43587 72.68463 63.95677 55.4794 47.78639 40.70111 21.38526 117.27143 112.25979 106.25061 98.86969 90.32452 81.21519 71.91015 62.58606 53.41167 44.77768 37.57554 99.7662 115.84543 111.95572 107.11197 99.70174 90.43911 80.81408 71.12169 61.38905 51.60186 41.86983 33.66581 66.54069 113.80277 110.70125 107.68288 99.77525 89.81712 80.0608 70.36591 60.65454 50.8202 40.69093 30.84321 13.75005 111.01396 107.77865 103.54468 96.73434 80.1462 77.38479 68.95332 60.68583 52.662 45.23865 39.08039 10.64675 107.78272 104.18043 99.47248 93.2285 85.65455 77.38479 68.29916 61.0885 54.0475 47.5459 41.55459 41.55459	72	124.79696			104.64193	97.31623	89.57379	81.53604	73.37432	65.26949	57.41656	50.03472	43.32709	37.37969	32.1185
21.38526 117.27143 112.25979 106.25061 98.86969 90.32452 81.21519 71.91015 62.58606 53.41167 44.77768 37.57554 19.07662 115.84543 111.95572 107.11197 99.70174 90.43911 80.81608 71.12169 61.38905 51.60186 41.86983 33.66581 16.54069 113.80217 110.70125 107.68288 99.77525 89.81712 80.0608 70.36591 60.65454 50.8202 40.69093 30.84321 13.70058 111.01396 107.77865 103.54468 96.73434 80.1462 78.85929 69.64918 60.48133 51.39254 42.65812 35.56671 10.64675 107.77867 104.18043 99.47248 93.2285 86.65455 77.38479 68.29916 61.0885 52.662 45.23865 39.08039 17.55676 104.51904 100.72939 95.99767 90.19123 83.41733 75.96904 68.29916 61.0885 54.0475 47.5459 41.5545	6	123.52795	80		105.52904	98.11536	89.99925	81.43587	72.68463	63.95677	55.4794	47.58539	40.70111	35.05349	30.4341
9.07662 115.84543 111.95572 107.11197 99.70174 90.43911 80.81408 71.12169 61.38905 51.60186 41.86983 33.66581 16.54069 113.80217 110.70125 107.77865 107.55468 99.77525 89.81712 80.0608 70.36591 60.65454 50.8202 40.69093 30.84321 13.70058 111.01396 107.77865 103.54468 96.73434 88.01462 78.85929 69.64918 60.48133 51.39254 42.65812 35.56671 10.64675 107.77872 104.18043 99.47248 93.2285 85.65456 77.38479 68.95332 60.68583 52.662 45.23865 39.08039 17.55676 104.51904 100.72939 95.99767 90.19123 83.41733 75.96904 68.29916 61.0885 54.0475 47.5459 41.55679	$\overline{}$	121.38526	43		106.25061	98.86969	90.32452	81.21519	71.91015	62.58606	53.41167	44.77768	37.57554	32.48322	28.7989
16.54069 113.80217 110.70125 107.68288 99.77525 89.81712 80.0608 70.36591 60.65454 50.8202 40.69093 30.84321 13.70058 111.01396 107.77865 103.54468 96.73434 88.01462 78.85929 69.64918 60.48133 51.39254 42.65812 35.55671 10.64675 107.77867 104.18043 99.47248 93.2285 86.65455 77.38479 68.95332 60.68583 52.662 45.23865 39.08039 77.55676 104.51904 100.72939 95.99767 90.19123 83.41733 75.96904 68.29916 61.0885 54.0475 47.5459 41.5567	2	119.07662			107.11197	99.70174	90.43911	80.81408	71.12169	61.38905	51.60186	41.86983	33.66581	29.94915	27.6063
3.70058 11101396 107.77865 103.54468 96.73434 88.01462 78.85929 69.64918 60.48133 51.39254 42.65812 35.55671 0.64675 107.778272 104.18043 99.47248 93.2285 85.65455 77.38479 68.95332 60.68583 52.662 45.23865 39.08039 77.56076 104.51904 100.72939 95.99767 90.19123 83.41733 75.96904 68.29916 61.0885 54.0475 47.5459 41.9501	3	116.54069	113.80217		107.68288	99.77525	89.81712	8090.08	70.36591	60.65454	50.8202	40.69093	30.84321	29.21022	27.6049
0.64675 107.78272 104.18043 99.47248 93.2285 85.65455 77.38479 68.95332 60.68583 52.662 45.23865 39.08039 77.56076 104.51904 100.72939 95.99767 90.19123 83.41733 75.96904 68.29916 61.0885 54.0475 47.5459 41.9501	00	113.70058	111.01396		103.54468	96.73434	88.01462	78.85929	69.64918	60.48133	51.39254	42.65812	35.55671	31.54914	29.092
77.56076 104.51904 100.72939 95.99767 90.19123 83.41733 75.96904 68.29916 61.0885 54.0475 47.5459 41.9501		110.64675	107.78272	104.18043	99.47248	93.2285	85.65455	77.38479	68.95332	60.68583	52.662	45.23865	39.08039	34.60494	31.4073
		107.56076		100.72939	95.99767	90.19123	83.41733	75.96904	68.29916	61.0885	54.0475	47.5459	41.9501	37.44517	33.9016
kiny/	. •	▶ + V Output Matrix													^

Nota: Red matricial del suelo RS3 (ML).

Figura 60

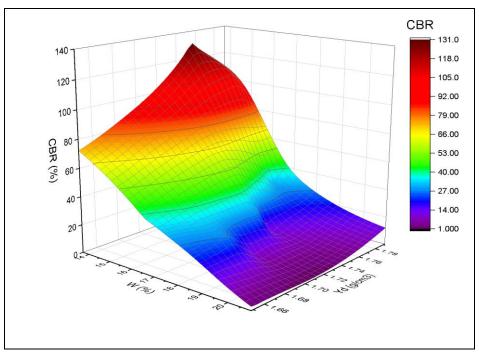
Red matricial del suelo: RS2

1 17 17 17 17 17 17 17	🖽 MBook3:1/1 CBR*	/1 CBR *													0	×
1 94.27373 9 12.6056 87.92160 87.92160 1 17.29260 7 10.0122 60.0122 1 17.29280 1 95.0124 1 65.9442 6 16.652 6 88.2950 6 56.7269 5 64.6529 2 64.6529 2 64.6529 2 95.045 9 20.9452 8 16.7727 8 10.0451 8 10.045		1	2	3	4	5	9		8	6	10	- 11	12	13	14	15 <mark>D</mark>
2 9677669 9136902 903463 867177 8579601 7572202 76.0772 77.27788 912041 6152542 616525 616535 912049 567209 568979 41025191 9102	1	94.27373	91.21605	87.95168	84.49511	80.91111	77.39165	74.01466	70.57171	66.94219	63.06998	58.84593	56.16692	54.67062	52.84465	50.77649
99.52666 96.43097 93.09144 92.05077 85.70531 82.01646 72.9509 71.2726 68.25026 61.85235 93.2466 61.85687 61.8568	2	96.77699	93.68092	90.34863	86.77127	82.94001	79.22802	76.07732	72.70838	69.12041	65.36442	61.66264	58.80706	56.72083	54.6629	52.44984
10.51981 99.4589 96.1646 92.6014 89.0227 86.4162 87.1386 74.2529 74.2520 67.9778 67.2520 67.2520 86.1426 88.1426 87.1386 74.2520 74	3	99.52656		93.09134	89.50737	85.70631	82.03031	78.74841	75.35901	71.82785	68.25021	64.83536	61.85335	59.29462	56.897	54.46427
Fig. 105.74087 102.7372 99.6043 96.0775 92.5048 89.9765 88.3727 81.7028 78.0946 77.65278 77.6578 77.5728 77.5	4	102.51981		96.16461	92.66014	89.02371	85.41682	81.91446	78.41289	74.87161	71.35208	67.97782	64.86487	62.02039	59.34486	56.70702
6 1001 16839 10 2/2788 10.26718 10.24718 10.2	5		102.73732	99.5043	96.07715	92.52048	88.91655	85.31217	81.7028	78.09163	74.52325	71.07101	67.80001	64.72963	61.82871	59.03351
11772823 109 00.056 106.17094 103.41419 99.87375 96.19386 92.64593 87.95075 87.99075 77.02377 77.02377 77.31005 67.31976 69.17499 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.05491 97.05472 97.054	9		106.22789	103.05186	99.67383	96.14302	92.51386	88.82791	85.11013	81.38613	77.69644	74.09331	70.62518	67.32189	64.19261	61.2361
11 128 88935 126 1712 113 174 171 112 171 1	7		109.90365	106.77094	103.41419	99.87375	96.19386	92.41489	88.57151	84.69807	80.83406	77.02377	73.31065	69.73148	66.31407	63.0744
120 120	8		113.74631	110.64123	107.28063	103.7013	99.94426	96.04989	92.05593	87.99907	83.91734	79.851	75.84144	71.92908	68.14996	64.52472
14 124 824 121 89654 118 79575 115 35296 111 6115 107 61807 103 41654 99 04489 94 5353 89 9164 85 27703 80 47068 75 7197 710 1888 935 129 1904 133 2088 115 5445 115 67275 115 113 319 107 1286 102 53829 97 7742 92 8551 87 88 78 93 3 8 2 8 2 8 9 93 9 7 7 4 9 0 5556 8 7 7 8 9 9 9 9 9 9 9 7 7 7 7 8 9 9 9 9	6		117.74549	114.65161			103.75545	99.72009	95.54917	91.27833	86.9423	82.577	78.22124	73.9176	69.71159	65.64723
12 133.3879 130.6556 17.46435 123.8705 119.5445 116.67275 1115.913 107.12867 102.53829 97.77421 92.85511 87.73803 82.62603 77.3759 72.10534 133.3879 130.6556 17.46435 123.82405 119.32441 19.32441 19.32441 112.8442 12.855299 13.106414 128.8432 123.82529 13.106614 128.8332 123.82529 13.106614 128.8332 123.82529 13.106614 128.8325 13.106614 128.8325 13.106614 128.8325 13.106614 128.8422 13.106201 13.106202 13.10620	10		121.89654	118.79575	115.35296			103.41654	99.04489	94.5353	89.9164	85.21703	80.47068	75.7197	71.01888	66.43867
12 133 1879 130 65556 127 46435 123 81205 19 77908 15 43675 110 83876 10 6 02015 10 0.99854 95 77774 90 3561 8473893 78 94993 73 03939 73	11			123.06896	_	_	-	_	102.53829	97.77421	92.85511	87.79803	82.62603	77.3759	72.10534	66.90106
13 137 92435 135 26999 131 96614 128 13338 123 89281 119 33418 11451588 109 47008 104 20419 98.70166 92 93192 86 87306 80 52936 73 93411 14 142 72919 140 04229 136 53367 132 4445 127 95153 123 4445 127 95153 124 4445 127 95153 124 4445 127 95153 124 4445 127 95153 124 4445 127 95153 124 4445 127 95153 124 4445 127 95150 135 54708 130 25405 124 12523 11 10 10 43279 143 95 6503 13 13 13 13 13 13 13 13 13 13 13 13 13	12		130,65556	127.46435	_		-	110.83876	106.02015	100.99854	95.77774	90.3561	84.73893	78.94993	73.0392	67.09352
14 14272919 14004229 135.3367 132.4445 127.3468 118.11041 112.84842 107.3694 101.6331 95.6208 89.9208 82.21559 74.94475 15 147.78098 144.9253 14.05201 136.6220 132.54708 130.25405 116.08683 110.43675 104.56074 98.26693 91.43062 80.09208 17.56003 16 152.21036 149.05271 146.22324 140.62302 136.2406 127.66205 111.7427 110.38262 95.6208 87.9247 80.0638 17.56003 18 157.3025 156.62243 156.6228 138.2507 130.24128 123.9484 117.2974 103.82802 96.5008 87.9247 80.04038 20 156.62243 156.62287 144.60291 132.2507 130.2418 17.30241 130.82802 11.23484 17.1420 10.05569 12.24918 87.9002 17.50003 10.05669 87.5002 87.6008 87.6008 87.6008 87.6008 87.6008 87.6008 87.6008	13		135.26999	131.96614		_		114.51588	109.47008	104.20419	98.70166	92.93192	86.87306	80.52982	73.93411	67.15122
15 147.78098 144.94253 141.05901 136.63308 131.86302 126.82195 121.55231 116.08683 110.43675 104.55074 98.26693 914.3062 84.08073 76.24205 155.21036 149.74517 145.27324 140.52302 135.51708 130.25405 124.75828 119.08209 113.27817 101.04397 93.81855 86.08261 77.95003 17 157.2023 153.3415 148.73856 143.983 138.25405 124.56205 127.17437 115.66446 109.65378 103.9763 96.5018 87.9448 81.96003 18 157.2023 155.54381 149.50767 144.0293 132.5407 13.24248 125.71834 118.3892 113.318 103.47171 95.08515 87.9344 81.50602 126.63217 156.63243 156.63263 155.54381 149.50767 144.0293 136.63108 122.71834 118.93842 111.02572 102.06162 93.13554 84.5008 74.40978 12.84497 119.86137 111.02572 102.06162 93.13554 84.5008 74.40978 12.84497 119.86137 111.02572 102.06162 93.13554 84.5008 74.4497 12.84497 119.9342 111.02572 102.06162 93.13554 84.5008 74.4497 12.84497 12.98810 11.9744 12.9233 99.40507 88.48017 77.28491 65.37512 140.0187 159.7848 159.7846 159.7848 153.72428 146.7739 138.3861 144.0917 129.88101 119.9313 109.5557 98.6159 88.97602 74.4497 12.84497 12.9469 12.0508 99.9059 14.0917 12.9499 14.0917 12.9499 12.0508 99.9059 14.0917 12.9499 12.0508 19.9059 14.0917 12.9499 12.0508 19.9059 19.9059 14.0917 12.9499 12.0508 19.9059 19.9059 14.0917 12.9499 12.0508 19.9059 19.9059 19.9059 14.0917 12.9499 12.9499 12.0508 19.9059 19.9059 19.9059 14.0917 12.9499 12.9499 12.9499 19	14		140.04229	136.53367			-		112.84842	107.3694	101.6331	95.56208	89.09208	82.21559	74.94475	67.28881
157.2025 153.2115 145.27324 140.62302 135.51708 130.2405 124.75928 119.08209 113.27817 101.04397 93.81855 86.08261 77.95003 77.95003 77.95023 75.32115 148.73856 143.93843 138.832 133.39491 127.66205 121.71437 115.66446 109.65378 103.97653 95.79826 87.92477 80.01633 157.22804 155.72804 155.72804 155.72804 155.72804 155.72804 155.67287 144.60291 188.90183 132.24458 122.11672 113.318 103.1717 95.08748 81.96602 158.60241 159.65748 157.86548 157.86156 154.90139 150.33988 144.0893 132.64458 129.8427 119.8425 111.2874 10.85829 10.69449 10.88880 144.0972 157.6864 119.8427 119.8425 111.2874 10.88880 144.0972 157.7689 146.77839 146.77839 147.7127 129.3979 120.08047 110.2972 10.06448 137.5989 147.497 129.3478 149.86674 153.72428 146.77839 138.45441 129.3867 119.3425 114.4077 102.06658 147.9184 139.7488 149.86604 144.0972 138.81430 127.8411 129.8461 1	15		144.94253	141.05901						110,43675	104.55074	98.26693	91.43062	84.08073	76.24205	67.80281
157.2804 155.1611 151.35316 148.73856 143.93843 138.832 133.39491 127.66205 121.71437 115.66446 109.65378 103.97653 95.79826 87.92477 80.01633 156.72804 155.16111 151.35316 146.86732 141.81936 136.2507 130.24126 123.91484 117.41204 110.83599 104.01663 96.55001 89.07448 81.96602 158.60243 156.63263 156.63283 156.63283 144.69213 132.54458 172.7184 118.59906 113.318 103.1771 95.08515 87.3823 80.40708 82.51215 156.63264 155.63284 156.63284	16		149.74517	145.27324			130.25405			113.27817	107.35704	101.04397	93.81855	86.08261	77.95003	69.06116
18 157.72804 155.16111 151.35316 146.86732 141.81936 136.2507 130.24126 123.91484 117.41204 110.8559 104.01663 96.5507 89.07448 81.96602 158.60243 156.63263 155.64381 149.50767 144.60291 138.90183 132.54458 125.71834 118.59906 111.2974 103.82802 96.26746 88.99446 82.51215 12.956308 155.67281 155.67287 155.11672 144.0577 159.63748 155.67281 157.8815 1	- 17		153.32115		143.93843		133.39491	127.66205	121.71437	115.66446	109.65378	103.97653	95.79826	87.92477	80.01633	71.40064
19 158.60243 156.63263 153.54381 149.50767 144.60291 33.90183 132.54458 125.71834 118.59906 111.2974 103.82802 96.26746 88.99446 82.51215 20 159.63068 158.14308 155.67287 152.11672 147.37328 144.47691 134.65678 127.21191 119.81373 109.5527 102.06162 93.13554 84.50082 76.40648 82 141.3018 125.6534 159.6543 155.6544 153.9762 144.0912 138.38277 129.3979 120.08047 110.2572 102.06162 93.13554 84.50082 76.40648 12.223 161.6553 161.64554 161.5064 161.12566 157.2845 146.7739 138.38277 129.3979 120.08037 109.9323 99.40507 88.48017 77.28491 65.37512 24 161.20425 161.20134 161.30231 158.38963 149.14244 139.57481 129.36762 119.77122 109.60087 98.72004 86.9562 74.17457 60.08819 12.58267 157.6848 159.38748 159.37481 139.57481 129.3678 110.22268 99.90058 88.72867 76.79789 64.71954 129.3678 155.0841 153.35862 150.67206 146.75502 141.5298 139.57481 129.86803 120.04216 111.44077 102.06559 91.87515 81.69542 129.346 144.0997 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.29432 139.04559 141.49713 141.4977 102.06559 91.87815 91.87815 91.49576 91.04944 137.31939 139.29432 139.29432 139.04569 144.0973 139.29432 139.04569 144.0973 139.29432 139.04569 144.0978 120.2418 149.0418 137.3769 120.2418 149.6449 144.0418 137.3769 120.2418 149.6449 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6448 137.3769 120.2418 149.6448 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6449 137.3769 120.2418 149.6448 137.3769 120.2418 149.6448 137.3769 120.2418 149.6448 137.3769 120.2418 149.6449 137.3769 120.2418 120.2418 149.6449 137.3769 120.2418 120.2418 140.4418 137.3769 120.2418 120.2418 140.4418 137.3769 120.2418 120.2418 140.4418 137.3769 120.2418 120.2418 120.2418 120.2418 120.2418 120.2418 120.2418 120.2418 120.2418	18		155.16111		146.86732	141.81936	136.2507	130.24126	123.91484	117.41204	110.83599	104.01663	96.55001	89.07448	81.96602	74.81003
20 159.63068 158.14308 155.67287 152.11672 147.3328 141.47691 134.65678 127.21191 119.8425 111.33138 103.17171 95.08515 87.38327 80.40708 80.40708 22 160.63171 159.65748 157.86156 154.90139 150.33988 144.09183 138.38277 129.3379 110.02572 102.06162 93.13554 84.50082 75.40648 77.28491 63.3758 77.28491 63.3758 77.28491 63.3758 77.28491 77.28491 63.3758 77.28491 63.3768 77.28491 77.28491 63.3758 77.28491 63.3758 77.28491 77.28491 77.28491 77.28491 63.3751 77.28491 63.37481 77.28491 77.48491 77.48491 77.48491 77.48491 77.48491 77.48491 7	19		156.63263		149.50767	144.60291	138.90183	132.54458	125.71834	118.59906	111.29744	103.82802	96.26746	88.99446	82.51215	77.41331
24 160.63171 159.65748 157.86156 154.90139 150.33988 144.09139 139.563108 128.4497 119.86137 111.02572 102.06162 93.13554 84.50082 76.40648 71.58084 71.5808 71.580844 71.58084 71.58	20	159.63068	158.14308		152.11672	147.37328	141.47691			119.38425	111.33138	103.17171	95.08515	87.38321	80.40708	74.05167
22 161.39126 160.95964 159.99357 157.9845 153.72428 146.77393 138.38277 129.3979 120.08047 110.49903 100.69443 90.76261 80.92486 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.580844 71.58084 71.58084 71.580844 71.58084 71.58084 71.58084 71.58084 71.58084 71.58084 71.580	21		159.65748	157.86156	154.90139	150.33988		136.63108	128.4497	119.86137	111.02572	102.06162	93.13554	84.50082	76.40648	68.75896
23 161.65253 161.64554 161.50664 161.12566 157.7696 149.01608 139.54648 129.92157 120.08038 109.93233 99.40507 88.48017 77.28491 66.37512 24 161.20425 161.27162 161.29134 161.30231 158.38963 149.14244 139.57481 129.38762 119.3713 109.5557 98.61599 86.97602 74.53598 61.44497 25 160.0187 159.78446 159.18729 157.68821 153.79762 146.87958 138.45441 129.36762 119.77122 109.60087 98.72004 86.9692 74.17457 60.08819 26 158.26707 157.58438 156.30744 153.97428 149.96604 144.09172 136.81814 128.63972 119.77122 109.60087 98.72004 86.9692 74.17457 60.08819 27 156.1862 155.09841 153.35862 150.67206 146.75502 141.52989 135.17904 127.96187 120.04216 111.44077 102.06658 91.87615 81.169 70.80563 28 153.96578 152.57534 150.56507 147.7568 144.00973 139.29432 133.7998 126.90663 121.06295 114.96147 108.43721 100.25659 90.73055 81.63546 29 151.72316 150.12559 147.97163 145.15475 141.60448 137.31939 132.37598 126.90663 121.2213 116.17659 111.49137 104.14021 94.37568 85.63958 149.56041 142.79316 139.435 135.50616 131.07505 126.2298 121.2213 116.17659 111.49137 104.14021 94.37568 85.63958	22		160.95964	159.99357	157.9845	153.72428	146.77393	138.38277	129.3979	120.08047	110.49903	100.69443	90.76261	80.92486	71.58084	63.20168
24 161.20425 161.27162 161.29134 161.30231 158.38963 149.14244 139.57481 129.36782 119.9313 109.5557 98.61599 86.97602 74.53598 61.44497 61.44997 25.6160187 159.78446 159.18729 157.68821 153.79762 146.87958 138.45441 129.36762 119.77122 109.60087 98.2004 86.9692 74.17457 60.08819 27.1954 27.1958 149.96604 144.09172 136.81814 128.63972 119.77195 110.22268 99.90058 88.72867 76.79789 64.71954 27.1958 149.96604 144.09172 136.81814 128.63972 119.77195 111.44077 102.06658 91.87615 81.169 70.80563 70.80563 70.80563 70.80563 74.1954 72.80563 72.1954 72.105559 72.1954 72.105559 74.72316 72.105559 74.72316 74	23		161.64554	161.50664	161.12566	157.7696			_	_	109.93233	99.40507	88.48017	77.28491	66.37512	57.19771
25 160.0187 159.78446 159.18729 157.68821 153.79762 146.87958 138.45441 129.36762 119.77122 109.60087 98.72004 86.9692 74.17457 60.08819 62.008819 25 158.26707 157.58438 156.30744 153.397428 149.96604 144.09172 136.81814 128.63972 119.77195 110.22268 99.90058 88.72867 76.79789 64.71954 27.8562 150.66706 146.75502 141.52989 135.17904 127.96167 120.04216 111.44077 102.06658 91.87615 81.69789 64.71954 128.95637 155.08841 153.35862 150.66706 146.75502 141.52989 135.17904 127.96167 120.04216 111.44077 102.06658 91.87615 81.69789 64.71954 128.95697 141.04047 132.37598 126.90693 127.41479 120.54511 113.12918 104.98717 95.85097 86.05424 76.58624 120.5559 147.87163 145.156475 141.60448 137.31939 132.37598 126.90663 121.05295 114.96147 108.43121 100.25659 90.73055 81.63546 149.87178 149.55641 142.79316 139.435 135.50616 131.07505 126.2596 121.2213 116.17659 111.49137 104.14021 94.37568 85.63958 149.50044 Matrix /	24		161.27162	161.29134	_				129.88801	119.9313	109.5557	98.61599	86.97602	74.53598	61.44497	50.24445
26 158.26707 157.58438 156.30744 153.37286 149.96604 144.09172 136.81814 128.63972 119.77195 110.22268 99.90058 88.72867 76.79789 64.71954 64.7195	25		159.78446	159.18729	_				_	119.77122	109.60087	98.72004	86.9692	74.17457	60.08819	45.72893
27 156.1862 155.09841 153.35862 150.67206 146.75502 141.52989 135.17904 127.96167 120.04216 111.44077 102.06658 91.87615 81.169 70.80563	26		157.58438	156.30744	_	_	_			_	110.22268	99.90058	88.72867	76.79789	64.71954	54.86088
28 153.96578 152.57534 150.56507 147.7568 144.00973 139.29432 133.709 127.41479 120.54611 113.12918 104.98717 95.85097 86.05424 76.58624 76.58624 29 151.72316 150.12559 147.87163 145.15475 141.60448 137.31939 132.37598 126.90663 121.06295 14.96147 108.43121 100.25659 90.73055 81.63546 30 149.52075 147.78785 145.56641 142.79316 139.435 135.50616 131.07505 126.2596 121.2213 116.17659 111.49137 104.14021 94.37568 85.63958 14 Notput Matrix /	27	156.1862	155.09841	153.35862		_			_		111.44077	102.06658	91.87615	81.169	70.80563	62.14641
29 151.72316 150.12559 147.97163 145.15475 141.60448 137.31939 132.37598 126.90663 121.06295 114.96147 108.43121 100.25659 90.73055 81.63546 30 149.52075 147.78785 145.56641 142.79316 139.435 135.50616 131.07505 126.2596 121.2213 116.17659 111.49137 104.14021 94.37568 85.63958 1	28		152.57534	150.56507		_	139.29432			120.54611	113.12918	104.98717	95.85097	86.05424	76.58624	68.37276
30 149.52075 147.78785 145.56641 142.79316 139.435 135.50616 131.07505 126.2596 121.2213 116.17659 111.49137 104.14021 94.37568 85.63958 + V \ Output Matrix /	29		150.12559	147.97163								108.43121	100.25659	90.73055	81.63546	73.64679
	30		147.78785	_	142.79316			131.07505	126.2596	121.2213		111.49137	104.14021	94.37568	85.63958	77.94054
	\ \ \ \ \ \ \ \ \	Output Matr	ix /								v					^

Nota: Red matricial del suelo RS2 (SM).

Figura 61

Red matricial del suelo: RSI


OUKS . I	MBooks:1/1 CBK "													0	×
	1	2	3	4	2	9	_ 7	8	6	10	-11	12	13	14	15 <mark>D</mark>
1	100.19185	96.47656	92.59497	88.53773	84.29309	79.84695	75.18269	70.28055	65.11657	59.66143	53.88233	47.76837	41.58778	37.72184	36.88138
2	102.96076	99.23864	95.35055	91.28612	87.03209	82.57268	77.88941	72.96005	67.75626	62.23872	56.3479	49.98335	42.96077	38.649	38.85657
3	105.92051	102.2099	98.33909	94.29747	90.07164	85.64679	81.0077	76.13923	71.02666	65.65782	60.03523	54.23648	48.71458	44.95946	43.24266
4	109.06259 105.38041	_	101.54946	97.55882	93.39521	89.04618	84.50312	79.76402	74.8376	69.75264	64.58247	59.50707	54.91901	51.3348	48.74925
5	112.37416 108.73511	-	104.96468	101.05006	96.97635	92.73267	88.3173	83.74208	79.03804	74.26504	69.52885	65.00326	60.92461	57.47398	54.56003
9	115.83841 112.25483	112.25483	108.5645	104.74825	100.78501	96.66237	92.38331	87.9706	83.47111	78.96168	74.555	70.39761	66.63898	63.34867	60.40139
7	119.43485	119.43485 115.91775	112.32919	108.63363	104.79544	100.79614	96.64068	92.35898	88.00748	83.67079	79.46124	75.51004	71.94085	68.81667	66.05103
8	123.13873	123.13873 119.70098 116.24573	116.24573	112.69789	108.99459	105.10857	101.04593	96.84137	92.55627	88.27805	84.11748	80.20108	76.65643	73.59061	71.05611
6	126.9183	123.5845 120.32133	120.32133	116.95612	113.38973	109.59324	105.57752	101.38075	97.06574	92.71898	88.44757	84.37264	80.6209	77.3194	74.60466
10	130.725	130.725 127.57392 124.61901	124.61901	121.46167	118.01117	121.46167 118.01117 114.26217 110.23479	110.23479	105.96758	101.52019	96.97471	92.43168	88.00053	83.78614	79.8708	76.27394
11	134.48777	134.48777 131.90792 129.32206	129.32206	126.30349	122.90021	119.13637	115.03165	126.30349 122.90021 119.13637 115.03165 110.61447 105.93397	105.93397	101.06536	96.10338	91.14531	86.26729	81.49081	76.71929
12		140.35526 137.39742 134.62536	134.62536	131.5379	128.07591	124.22862	119.98664	131.5379 128.07591 124.22862 119.98664 115.34879 110.34259 105.03699	110.34259	105.03699	99.53018	93.91892	88.2655	82.56346	76.69453
13	146.61514	143.479	140.3871	137.10247	133.50338	129.52676	125.11342	120.20612	114.79256	137.10247 133.50338 129.52676 125.11342 120.20612 114.79256 108.94316	102.78339	96.43179	89.95911	83.36666	76.56474
14		152.82173 149.62861	146.3375	142.85387	139.09368	134.98227	130.41207	125.22761	119.33117	142.85387 139.09368 134.98227 130.41207 125.22761 119.33117 112.82173 105.90763	105.90763	98.75387	91.45024	84.02563	76.44607
15		159.00864 155.76776 152.32245	152.32245	148.64852	144.71742	148.64852 144.71742 140.48898 135.84638			123.98876	130.46505 123.98876 116.65663 108.89401	108.89401	100.90249	92.76644	84.54201	76.28048
16	165.19082 161.87768	161.87768	158.263	154.36533	150.21035	145.82996	141.22595	136.0073	128.6777	120.29278	111.66512	102.86187	93.90277	84.85225	75.85163
17	171.38512 167.95805	167.95805	164.12	159.91655	155.40978	150.67717	145.81466	140.837	132.50501	123.37798	114.12255	104.64007	94.89622	84.94451	74.96091
18	177.61997	177.61997 174.02884 169.89114	169.89114	165.27076	160.24723	154.88723	149.16637	142.69771	134.76768	125.79047	116.29312	106.33925	95.89662	84.99136	73.76869
19	183.94013 180.13267		175.60863	170.45478	164.77555	158.64765	152.05265	144.8159	136.74324	127.88891	118.37321	108.16627	97.17347	85.36863	72.84214
20	190.40842	190.40842 186.33224	181.32507	175.51762	169.07025	162.12051	154.74205	146.93465	138.66841	129.91375	120.5605	110.35778	99.03895	86.5217	72.91991
21	197.10672	197.10672 192.70482 187.09342	187.09342	180.48816	173.14652	165,30059	157.13321	148.78156	140.33727	131.79185	122.90067	113.09086	101.7329	88.72176	74.49427
22	204.13989 199.33637	199.33637	192.9447	185.34659	176.9454	168.075	159.01262	150.01825	141.34025	133.12771	125.16846	116.44082	105.3454	91.78669	77.20126
23		206.30844	198.84633	189.99321	180.34391	170.29078	160.14725	150.26327	141.07951	133.07729	126.51256	120.33617	109.76291	94.76357	79.7884
24	219.83623		213.6379 204.58674	194.18825	183.16719	171.82391	160.3892	149.22142	138.92047	130.34538	124.48787	122.44264	112.54707	95.23935	80.70488
22		229.10932 220.92125 209.47941	209.47941	197.47782	185.22161	172.66598	159.81666	159.81666 146.91664 134.61196 124.02966	134.61196		116.41446	111.35042	103.11831	90.91929	79.15249
26		240.5033 225.30488 212.07103	212.07103	199.28108	186.39439	173.01656	158.86311	199.28108 186.39439 173.01656 158.86311 143.92623 128.72682 114.62944	128.72682	114.62944	103.89249	97.22097	91.36118	84.0563	75.9513
27		230.66127 222.67674 211.3806	211.3806	199.35326	199.35326 186.79246 173.31607	173.31607	158.34213	158.34213 141.47504 122.90374 103.72126	122.90374	103.72126	88.51012	83.38893	81.30078	77.74597	72.70373
78		223.59898 217.45618 208.49211	208.49211	198.07067	198.07067 186.69947 174.10396		159.2631	159.2631 141.15235 119.98612	119.98612		68.24638	73.79677	75.27751	73.91517	70.72277
53		217.52518 212.17578 204.74641	204.74641	195.91779	186.18076	175.54811	162.48676	195.91779 186.18076 175.54811 162.48676 143.78489 121.90587	121.90587	99.46233	81.45797	76.20077	75.13383	73.41839	70.6396
30		212.04127 207.13209 200.66494	200.66494	193.03395	184.68364	176.08687	168.37346	176.08687 168.37346 147.18916 126.20094 107.11071	126.20094	107.11071	92.32727	83.69744	79.07154	75.68203	72.33921 V
É															

Nota: Red matricial del suelo RS1 (SW-SM).

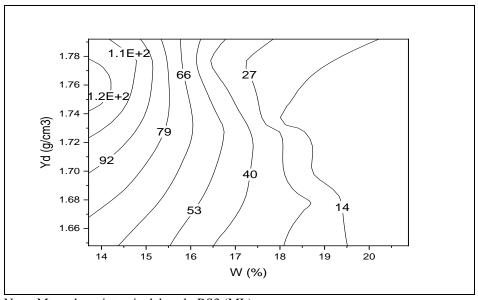

- Utilizando la red matricial se elaboran superficies de respuesta tridimensional y mapas de contornos de resistencia.

Figura 62Superficie de respuesta tridimensional del suelo: RS3

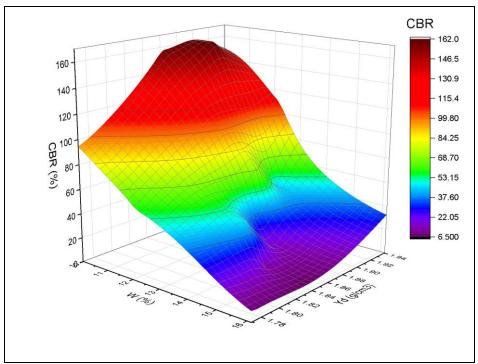
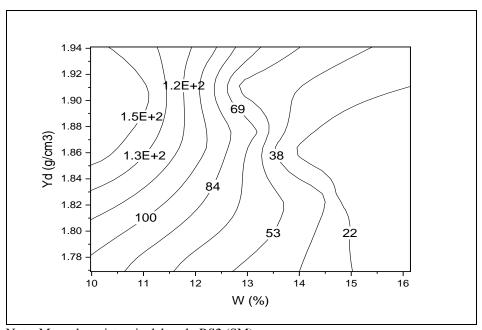

Nota: Superficie de respuesta del suelo RS3 (ML).

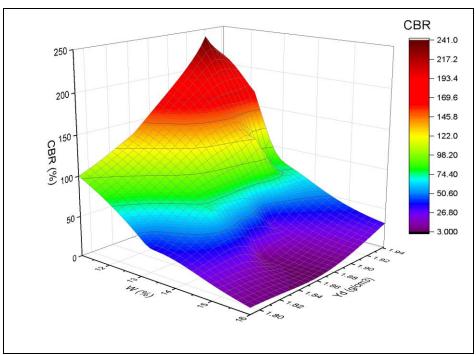
Figura 63Mapa de resistencia del suelo: RS3

Nota: Mapa de resistencia del suelo RS3 (ML).

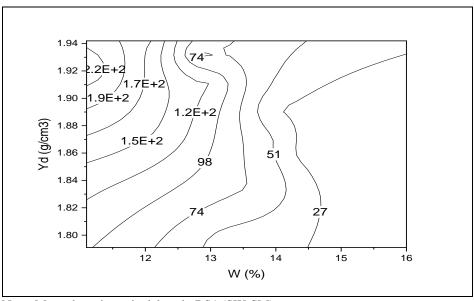

Figura 64Superficie de respuesta tridimensional del suelo: RS2

Nota: Superficie de respuesta del suelo RS2 (SM).

Figura 65


Mapa de resistencia del suelo: RS2

Nota: Mapa de resistencia del suelo RS2 (SM).


Figura 66Superficie de respuesta tridimensional del suelo: RS1

Nota: Superficie de respuesta del suelo RS1 (SW-SM).

Figura 67

Mapa de resistencia del suelo: RS1

Nota: Mapa de resistencia del suelo RS1 (SW-SM).

Se realizan hojas de cálculo en Excel, donde se ingresaron diferentes valores de contenido de agua, tal como se preparó para los ensayos

factoriales de los suelos: RS3 (ML), RS2 (SM), RS1 (SW-SM) con el fin de obtener las curvas de saturación. Mediante la siguiente ecuación:

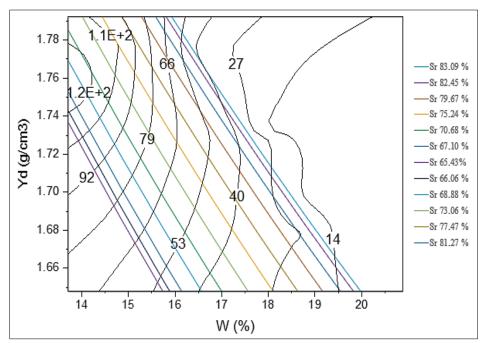
$$\gamma_d = \frac{\gamma_w}{\frac{1}{G_S} + \frac{w}{S_r}}$$

Donde:

 γ_d = Densidad seca del suelo (g/cm3)

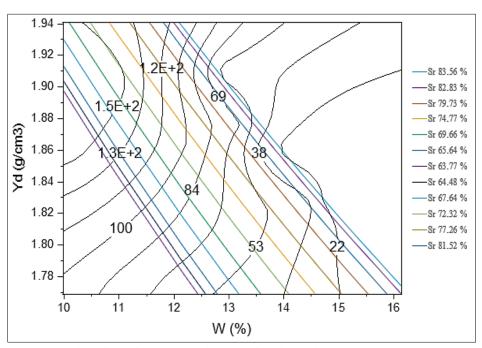
 γ_w = Densidad del agua (g/cm3)

 G_S = Gravedad específica de los sólidos


w = humedad del suelo (%)

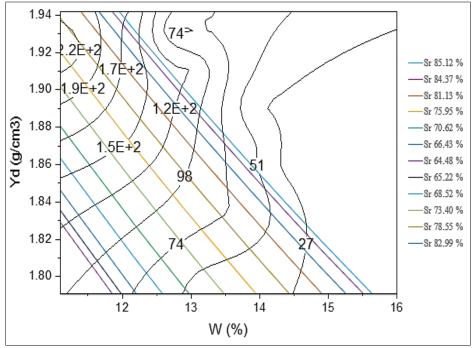
 S_r = Grado de saturación del suelo (%)

Se añadieron al mapa de contornos de los suelos: RS3 (ML), RS2 (SM), RS1 (SW-SM), las curvas de saturación correspondiente a cada mes del año. Se observa a continuación (Anexo 12):


Figura 68

Mapas de resistencia vs curvas de saturación: RS3

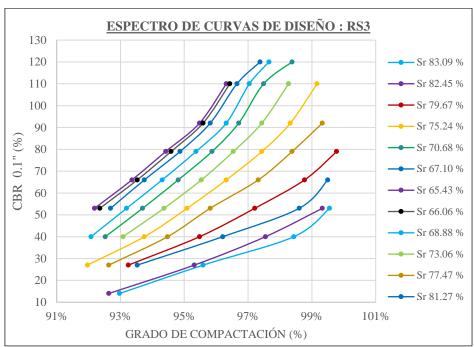
Nota: Mapa de resistencia vs curvas de saturación del suelo RS3 (ML).


Figura 69Mapas de resistencia vs curvas de saturación: RS2

Nota: Mapa de resistencia vs curvas de saturación del suelo RS2 (SM).

Figura 70

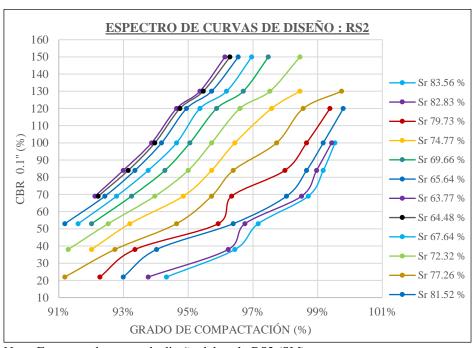
Mapas de resistencia vs curvas de saturación: RS1



Nota: Mapa de resistencia vs curvas de saturación del suelo RS1 (SW-SM).

- Utilizando los datos consignados en la hoja de cálculo Excel, se elaboraron las curvas de diseño RAMCODES y se muestra a continuación (Anexo 13 y 14):

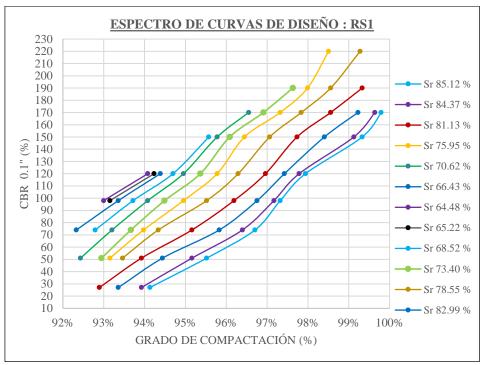
Figura 71


Espectros de curvas de diseño: RS3

Nota: Espectros de curvas de diseño del suelo RS3 (ML).

Figura 72

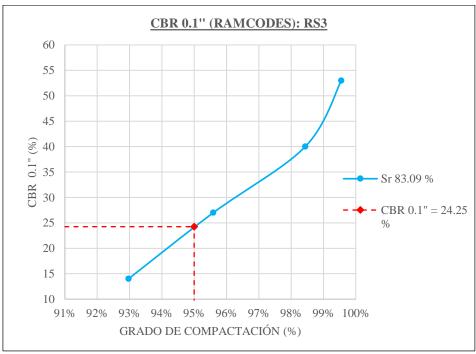
Espectros de curvas de diseño: RS2



Nota: Espectros de curvas de diseño del suelo RS2 (SM).

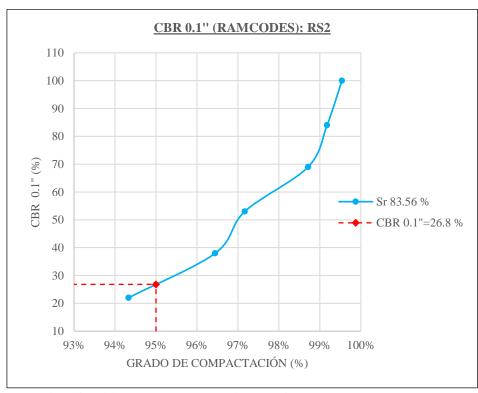
Figura 73

Espectros de curvas de diseño: RS1


Nota: Espectros de curvas de diseño del suelo RS1 (SW-SM).

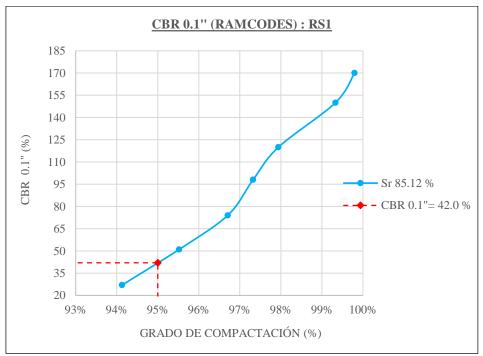
 A continuación, se muestra los CBR 0.1" al 95% de la máxima densidad seca, obtenidas por la metodología RAMCODES de los tipos de suelos estudiados: RS3 (ML), RS2 (SM), RS1 (SW-SM), según él % de saturación obtenida del suelo (Anexo 14):

Figura 74


CBR 0.1" (RAMCODES): RS3

Nota: Obtención del CBR 0.1" a 83.09 % de saturación.

Figura 75


CBR 0.1" (RAMCODES): RS2

Nota: Obtención del CBR 0.1" a 83.56 % de saturación.

Figura 76

CBR 0.1" (RAMCODES): RS1

Nota: Obtención del CBR 0.1" a 85.12 % de saturación.

 Se obtienen los siguientes datos de CBR 0.1" al % de saturación calculada para cada suelo estudiado, mediante los espectros de curvas de diseño RAMCODES.

Tabla 46

CBR 0.1": RAMCODES

Calicata	Prog.	Clasifi	cación	CBR al 95% de
Cancata	(km)	SUCS y RA	MCODES	MDS A 0.1"
C-1; C-2	5+000	ML	RS3	24.25 %
C-1, C-2	5+250	WIL	KSS	24.23 70
C 2. C 4	7+000	SM	RS2	26.80 %
C-3; C-4	7+500	SIVI	K52	20.80 %
$C \in C \subset C$	9+000	CW CM	DC1	42.00.0/
C-5; C-6	9+500	SW-SM	RS1	42.00 %

Nota: CBR 0.1", obtenido por el espectro de curvas de diseño RAMCODES.

3.2.5. Módulo resiliente con ensayos CBR convencional

El módulo resiliente con ensayos de CBR convencional se obtuvieron al 95 % de la (MDS), además se definió la categoría de subrasante según a los resultados de CBR a 0.1", obtenido de los suelos estudiados en la presente investigación.

Tabla 47 *Módulo resiliente convencional*

Clasificación SUCS y AASHTO	Prog. (km)	CBR 0.1" (%) convencional al 95% de MDS	Módulo resiliente convencional (psi)	Categoría de Sub rasante
ML; A-4 (4)	5+000	18.05	16275.6	S3: Subrasante
1,12,11 1 (1)	5+250	10.02	10275.0	buena
SM; A-2-4 (0)	7+000	22.8	18900.3	S4: Sub rasante
SIVI, A-2-4 (0)	7+500	22.0	18900.3	muy buena
CW/ CM. A 1 b (0)	9+000	38.6	26473.2	S5: Subrasante
SW-SM; A-1-b (0)	9+500	36.0	204/3.2	excelente

Nota: Obtención de resultados de módulo resiliente con ensayos de CBR convencional.

3.2.6. Módulo resiliente basado en curvas de diseño RAMCODES

El módulo resiliente basado en curvas de diseño RAMCODES, se obtuvieron al 95 % de la densidad máxima seca (D.M.S), el cual se obtuvo mediante los ensayos factoriales, además se definió la categoría de sub rasante según a los resultados de CBR a 0.1", obtenido de los suelos estudiados en la presente investigación.

Tabla 48 *Módulo resiliente RAMCODES*

Clasificación RAMCODES	Prog. (km)	CBR 0.1" (%) RAMCODES al 95% de DMS	Módulo resiliente con curvas de diseño RAMCODES (psi)	Categoría de Sub rasante
RS3	5+000	24.25	19661.0	S4: Sub rasante
103	5+250	21.23	17001.0	muy buena
RS2	7+000	26.8	20960.3	S4: Sub rasante
K52	7+500	20.8	20900.3	muy buena
RS1	9+000	42.00	27942.8	S5: Sub rasante
KS1	9+500	42.00	21942.8	excelente

Nota: Obtención de resultados del módulo resiliente con el espectro de curvas de diseño RAMCODES.

3.2.7. Parámetros de diseño AASHTO 93

A. Período de Diseño

- Según la tabla 13, el intervalo de diseño que corresponde a la carretera pavimentada con bajo volumen cuyo periodo de análisis es 15-25 años.

B. Tránsito

- MTC (2014) muestra que "el número de repeticiones acumuladas de ejes equivalentes de 8.2 ton, en el carril de diseño (cuadro 12.2)" (p. 129).

$$ESAL = 7'302,605.3 EE (ver anexo 15)$$

- T_{P8} (EE) debido a 7'302,605.3 EE (tráfico pesado expresado en EE)

C. Factor de confiabilidad, R.

 MTC (2014) afirma que "para una etapa de diseño única (10 o 20 años), los valores sugeridos de confiabilidad basados en el rango de tráfico, de acuerdo con el cuadro 12.6" (p. 133).

$$R = 90 \%$$

D. Desviación Estándar Normal (Zr)

- MTC (2014) "para un periodo de diseño único (10 o 20 años), el coeficiente estadístico de la desviación estándar normal (Zr), conforme al cuadro 12.8, se calcula en base al nivel de confiabilidad elegido y al rango de tráfico" (p. 135).

$$Z_r = -1.282$$

E. Desviación estándar combinada (So)

- MTC (2014) "recomienda adoptar "valores de So comprendidos entre 0.40 y 0.50" (p. 136).

$$S_o = 0.45$$

F. Serviciabilidad inicial (Pi)

- MTC (2014) "se encuentra que "el índice de serviciabilidad inicial (Pi) según rango de tráfico (cuadro 12.10)" (p. 137).

$$P_i = 4.00$$

G. Serviciabilidad final o terminal (Pt)

- MTC (2014) "se tiene que "el índice de serviciabilidad final (Pt) según rango de tráfico (cuadro 12.11)" (p. 138).

$$P_t = 2.50$$

H. Variación de serviciabilidad (Δ PSI)

- MTC (2014) "se tiene que el diferencial de serviciabilidad (Δ PSI) según el tráfico (cuadro 12.12)" (p. 139).

$$\Delta PSI = 4.00 - 2.50$$

$$\Delta PSI = 1.50$$

I. Coeficiente de capa ai

- El coeficiente estructural de las capas de la estructura del pavimento ai corresponde:
 - a) "Capa superficial con módulo elástico igual a 2,965 MPa (430,000 PSI) a
 20 °C (68 °F)" (MTC, 2014, p. 140).

$$a_1 = 0.170$$
 cm

b) "Base de CBR 80%, compactada al 100% de la MDS, para tráfico ≤ 10′000,000" (MTC, 2014, p. 140).

$$a_2 = 0.52 \text{ cm}$$

c) "Subbase de CBR 40%, compactada al 100% de MDS" (MTC, 2014, p. 140).

$$a_3 = 0.047 \text{ cm}$$

J. Coeficientes de drenaje

"Para la definición de las secciones de estructuras de pavimento del presente manual, el coeficiente de drenaje para las, asumido fue de 1.00" (MTC, 2014, p. 142).

$$m_2 = 1.00$$
; $m_3 = 1.00$

- "El espesor mínimo constructivo para las capas superficiales, que incluyen carpeta asfáltica en caliente, es de 40 mm, y el espesor mínimo constructivo para las capas es de 150 mm" (MTC, 2014, p.146).

Para el diseño se usó unas hojas de cálculo de Excel y mediante iteraciones se logra predimensionar las capas del pavimento por ambas metodologías (Anexo 16 y 17).

3.2.8. Parámetros de diseño mecanístico-empírico

 Tránsito: de acuerdo al estudio de tráfico vial se tiene un número de ejes equivalentes:

$$ESAL = 7'302,605.3 EE$$

2. Módulo elástico (E):

• Carpeta asfáltica: según el MTC (2014), para capa asfáltica a 20 °c, se tiene:

$$E = 430,000.00 PSI$$

• Base: según la figura 20, para una base granular con CBR de 80 %, se tiene:

$$E = 30,000.00 PSI$$

• Subbase: según la figura 23, para subbase granular con CBR DE 40 %, se tiene:

$$E = 17,000.00 PSI$$

• Sub rasante: según el CBR de subrasante se tiene:

 $E_1 = 23,015.00 \text{ PSI (metodología RAMCODES)}$

 $E_2 = 20,801.4 \text{ PSI}$ (metodología convencional)

3. Coeficiente de Poisson (v):

Tabla 49

Coeficientes de Poisson

Capas del pavimento	Relación de Poisson (v)
Carpeta asfáltica	0.35
Base	0.40
Sub base	0.40
Subrasante	0.45

Nota: Valores de Poisson por capas del pavimento. Fuente: (Minaya & Ordóñez, 2006).

4. Espesores: se evalúa los espesores del pavimento previamente obtenidos mediante el diseño AASHTO 93 de pavimentos flexibles.

Tabla 50Espesores de capa del pavimento flexible

Capas del	Espesores (cm)	Espesores (cm)
pavimento	RAMCODES	convencional
Carpeta asfáltica	6	6
Base	20	20
Sub base	25	29

Nota: Espesores previamente obtenidos por el método AASHTO 93.

Esfuerzos y deformaciones admisibles: son calculados a través del software
 "WinDepav" y se vuelve a establecer nuevos espesores de capa (Anexo 18).

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. RESULTADOS DE MÓDULO RESILIENTE RAMCODES

4.1.1. Resultados de la clasificación RAMCODES

Tabla 51Resumen de la clasificación cuantitativa RAMCODES

Calicata	Prog. (Km)	WL	F	G	FP	Tipo	Clasificación
C-1	5+000	0.273	0.5265	0.0100	0.6636	RS3	"Arenas limosas y arcillosas"
C-2	5+250	0.271	0.5297	0.0129	0.6647	RS3	"Arenas limosas y arcillosas"
C-3	7+000	0	0.2036	0.0061	0.2024	RS2	"Arenas limosas y arcillosas con grava"
C-4	7+500	0	0.2071	0.0577	0.1958	RS2	"Arenas limosas y arcillosas con grava"
C-5	9+000	0	0.0946	0.2083	0.0783	RS1	"Gravas limosas y arcillosas"
C-6	9+500	0	0.0770	0.1339	0.0689	RS1	"Gravas limosas y arcillosas"

Fuente: Elaboración propia

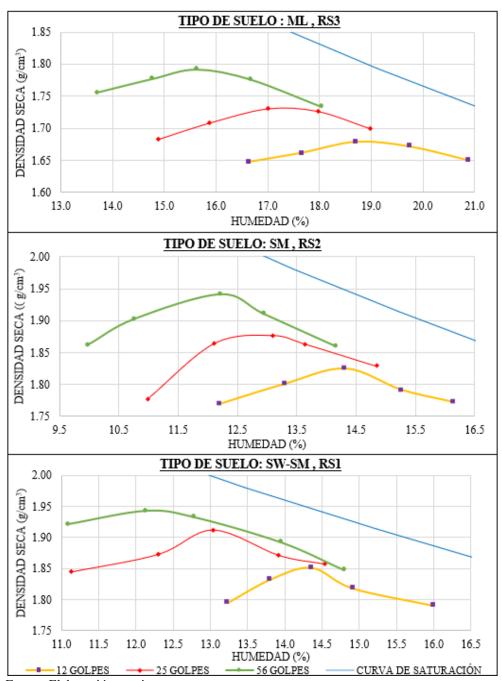
En la tabla se observa:

- En el artículo de Sánchez Leal (2019, p. 1636) el procedimiento RAMCODES se aplica para el diseño de suelos compactados, específicamente en suelos con resistencia propensa a la saturación, como aquellos que contienen partículas finas plásticas, GM, GC, GC-GM, SM, SC y SC-SM. De acuerdo a nuestro estudio con suelos de subrasante tales como ML, SM y SW-SM se encuentran dentro del rango de análisis y son

apropiados para uso en la construcción de la conformación de subrasante de proyectos viales.

4.1.2. Resultados de la elaboración de experimentos factoriales

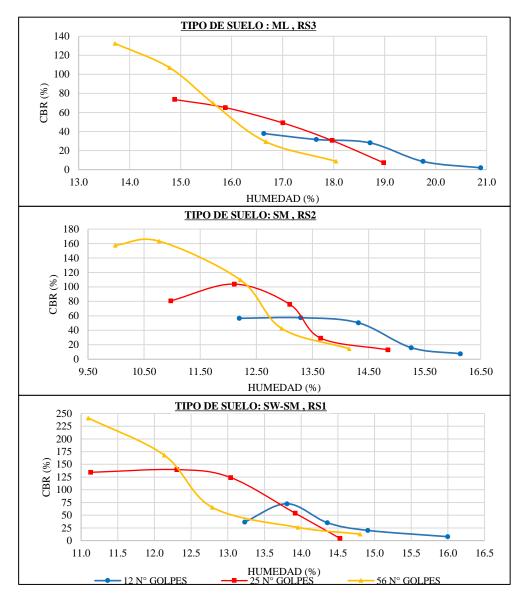
Tabla 52


Resumen de experimentos factoriales para suelo: RS3, RS2 y RS1

Suelo	N°	Humedad	Densidad seca	CBR a 0.1"
Suelo	Golpes	(%)	(g/cm3)	(%)
	56	13.71, 14.78, 15.63,	1.756, 1.777, 1.792,	132.56, 107.18, 69.95,
	30	16.67, 18.04	1.776, 1.734	29.30, 8.82
DC2	25	14.88, 15.88, 17.00,	1.683, 1.708, 1.731,	73.61, 65.14, 49.07,
RS3	25	17.97, 18.98	1.727, 1.700	30.58, 7.25
	12	16.63, 17.66, 18.71,	1.648, 1.662, 1.679,	37.93, 31.67, 28.16,
	12	19.75, 20.88	1.671, 1.650	8.62, 1.92
	56	9.98, 10.77, 12.21,	1.862, 1.903, 1.941,	157.59, 163.28, 109.80,
	56	12.95, 14.15	1.910, 1.860	42.67, 14.51
RS2	25	10.98, 12.11, 13.10,	1.777, 1.864, 1.876,	80.77, 103.90, 75.95,
K52	12	13.64, 14.85	1.863, 1.828	29.23, 12.94
		12.20, 13.29, 14.32,	1.769, 1.800, 1.825,	56.60, 57.43, 50.35,
12		15.26, 16.14	1.791, 1.772	15.96, 7.54
	56	11.10, 12.13, 12.79,	1.921, 1.942, 1.932,	241.22, 168.11, 65.42,
	56	13.95, 14.80	1.892, 1.847	26.10, 12.94
RS1	25	11.13, 12.31, 13.04,	1.844, 1.873, 1.911,	134.32, 139.69, 124.16,
KSI	25	13.92, 14.53	1.871, 1.857	54.05, 4.48
	10	13.23, 13.81, 14.36,	1.795, 1.832, 1.851,	36.69, 72.54, 35.27,
	12	14.91, 16.00	1.818, 1.791	20.08, 7.82

Fuente: Elaboración propia

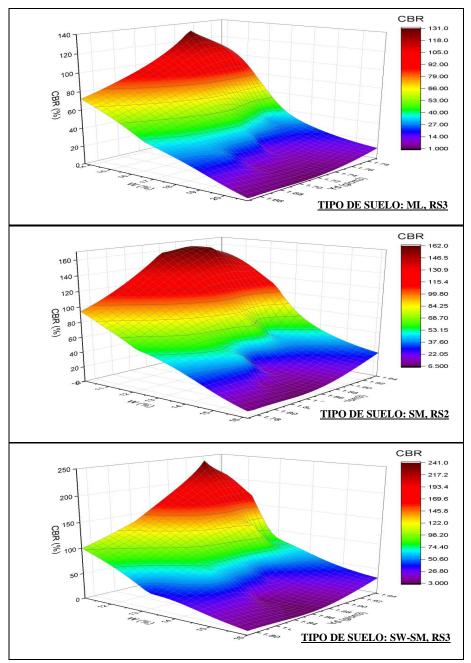
Figura 77Resumen de las curvas de compactación con ensayos factoriales


Fuente: Elaboración propia

 Conforme se incrementa el esfuerzo de compactación, el peso unitario seco máximo también se incrementa y el contenido óptimo de humedad se reduce en cierta medida. Esto verifica la correcta realización de los ensayos factoriales (Das, 2013, p. 87).

Figura 78

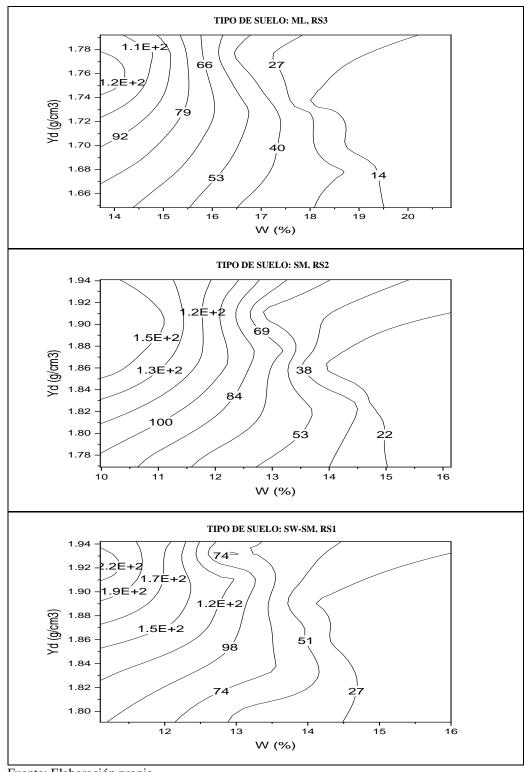
Resumen de las curvas de resistencia CBR con ensayos factoriales



Fuente: Elaboración propia

Las resistencias más altas no ocurren cuando el suelo tiene un peso unitario seco igual al máximo y un contenido de agua igual al óptimo, sino que se dan cuando el suelo tiene un contenido de agua inferior al óptimo; este comportamiento no es incorrecto, sino que sigue la tendencia de la arcilla de Vicksburg. (Sánchez Leal et al., 2002, p. 9)

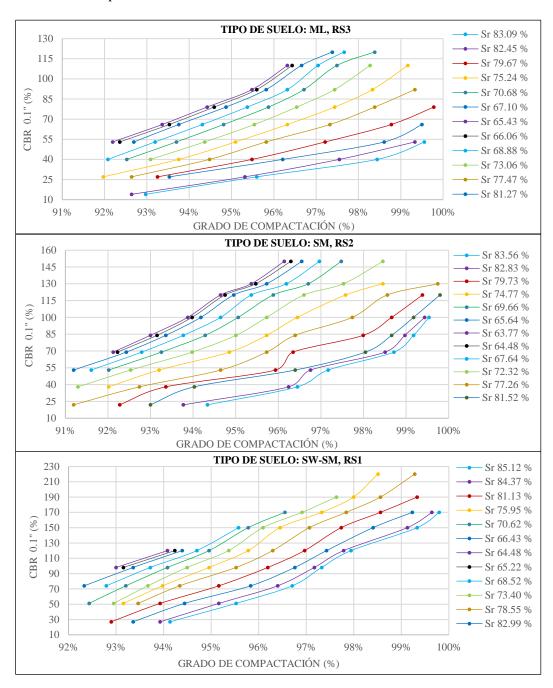
Figura 79Resumen de superficies de respuestas tridimensionales



Fuente: Elaboración propia

 Las resistencias mínimas del suelo ocurren cuando tienen niveles altos de humedad, pero las resistencias máximas no ocurren cuando el suelo tiene mayor densidad. (Inga & Gutiérrez, 2022, p. 120)

Figura 80Resumen de mapas de resistencias de los suelos


Fuente: Elaboración propia

Las resistencias máximas de los tipos de suelos supera a las obtenidas de la arcilla de Vicksburg lo cual es correcto ya que el suelo en estudio es granular

y tienen mayor resistencia que los suelos finos (Sánchez Leal et al., 2002, p. 12).

Figura 81Resumen de espectros de curvas de diseño RAMCODES

Fuente: Elaboración propia

Se nota que el incremento de la resistencia del suelo está vinculado al incremento de su densidad, ya que esto incrementa el contacto entre

partículas, generando mayor fricción y, por consiguiente, mayor resistencia. Además, la disminución de la saturación del suelo también contribuye al aumento de la resistencia, explicado por las curvas características suelo-agua, que muestran una relación inversa entre la saturación y la succión del suelo: a menor saturación, mayor succión y por ende mayor resistencia (Inga & Gutiérrez, 2022, p. 120).

4.1.3. Resultados de módulo resiliente basado en curvas de diseño RAMCODES

Tabla 53Resumen de módulo resiliente RAMCODES correlacionado

	Dung	Duos		Clasificación		Módulo resiliente RAMCODES	
Calicata	Prog. (km)	Lado	SUCS	RAMCODES	Al 95% MDS	Módulo resiliente (PSI)	Módulo resiliente (kg/cm2)
C-1	5+000	Der.	ML	RS3	24.25	19661.04	1382.31
C-2	5+250	Der.	IVIL	KSS	24.23		
C-3	7+000	Izq.	SM	DGG	26.80	20960.28	1472 65
C-4	7+500	Izq.	SIVI	RS2	20.80	20900.28	1473.65
C-5	9+000	Der.	SW-	DC1	12.00	270.42.02	1064.50
C-6	9+500	Der.	SM RS1		42.00	27942.83	1964.58
Promedio				31.02	23015.00	1618.09	

Fuente: Elaboración propia

En la siguiente tabla se puede observar:

MTC (2014, p.12) los resultados de módulos resilientes para los tipos de suelos como: limo inorgánico es igual 19661.04 PSI, para arena limosa es igual a 20960.28 PSI y Arena bien graduada con limo es de 27942.83 PSI. Estos resultados se encuentran dentro de los límites establecidos por correlación de CBR.

4.2. RESULTADOS DE MÓDULO RESILIENTE CONVENCIONAL

4.2.1. Resultados de la caracterización física de la subrasante

Tabla 54Resumen de las características físicas del suelo de subrasante

Calicata Prog. (km)	_	Lado		Análisis granulométrico (%)		Límites de consistencia (%)			Clasificación de suelos	
		Grava	Arena	Finos	LL	LP	IP	SUCS	AASTHO	
C-1	5+000	Der.	1.00	46.44	52.56	27.3	25.4	1.96	ML	A-4 (4)
C-2	5+250	Der.	1.29	45.75	52.97	27.1	24.9	2.3	ML	A-4 (4)
C-3	7+000	Izq.	0.61	79.03	20.36	NP	NP	NP	SM	A-2-4 (0)
C-4	7+500	Izq.	5.77	73.52	20.71	NP	NP	NP	SM	A-2-4 (0)
C-5	9+000	Der.	20.83	69.70	9.46	NP	NP	NP	SW-SM	A-1-b (0)
C-6	9+500	Der.	13.39	78.90	7.70	NP	NP	NP	SW-SM	A-1-b (0)

Fuente: Elaboración propia

se observa lo siguiente:

- Según SUCS, el suelo de subrasante del tramo en análisis se caracteriza por tres tipos de suelos, tales como: limo inorgánico (ML), arena limosa (SM) y arena bien gradada con limos (SW-SM).
- MTC (2014, p. 35) el suelo clasificado en AASTHO como A-4(4) con índice de grupo igual a 4 sería un suelo regular para su uso como subrasante, mientras que los suelos como A-2-4 (0) y A-1-b (0) con índice de grupo igual a 0, clasifica al suelo como suelo de subrasante muy bueno. Basándonos en estas premisas los tipos de suelos presentes en el tramo son apropiados para su empleo como subrasante.

4.2.2. Resultados de la caracterización mecánica de la subrasante

Tabla 55

Resumen de las características mecánicas del suelo de subrasante

Calicata	prog.	lado	Tipo de	Gravedad específica		óctor ificado	CBR a	0.1" (%)
Cancata	(km)	lauo	suelo	(Gs)	CHO (%)	MDS (g/cm ³)	95% MDS	100% MDS
C-1 C-2	5+000	Der.	ML	2.73	17.38	1.750	18.05	25.18
C-1 C-2	5+250	Der.	MIL	2.13	17.56	1.750	10.05	23.16
C-3 C-4	7+000	Izq.	SM	2.70	14.55	1.852	22.80	48.35
C-3 C-4	7+500	Izq.	SIVI	2.70	14.33	1.032	22.80	40.33
C-5 C-6	9+000	Der.	SW-SM	2.67	14.01	1.871	29.60	68.20
	9+500	Der.	2 M -2M	2.07	14.01	1.8/1	38.60	08.20

Fuente: Elaboración propia

De acuerdo a la tabla:

- Bowles (1981, p. 64) los valores típicos de gravedad específica para el tipo de suelo como: arena varían entre 2.65-2.67, arena limosa entre 2.67-2.70. Además, el MTC (2014, p. 88) establece un valor promedio de 2.725 para el limo inorgánico. Por lo tanto, los valores de gravedad específica de cada tipo de suelo de subrasante en nuestro estudio estarían dentro de los límites aceptables.
- Conforme al MTC (2014, p. 37) para el suelo limo inorgánico con CBR igual a 18.05% clasifica al suelo como subrasante buena, mientras que para los suelos como la arena limosa con CBR igual a 22.80% y la arena bien graduada con presencia de limos que tiene CBR de 38.6%; tendrían categorías de subrasante muy buena a excelente respectivamente. Además, los valores de CBR de estos 3 tipos de suelos estarían dentro de los rangos establecidos para las correlaciones típicas entre el tipo de suelo y el valor de la capacidad de soporte (CBR).

4.2.3. Resultados del módulo resiliente con ensayos CBR convencional

Tabla 56Resumen de módulo resiliente convencional correlacionado

			Clasificación		CBR a 0.1''	Módulo resiliente convenciona	
Calicata	Prog. (km)	Lado	SUCS	AASTHO	Al 95 % DMS	Módulo resiliente (PSI)	Módulo resiliente (kg/cm2)
C-1	5+000	Der.	ML	A A (A)	18.05	16275.57	1144.29
C-2	5+250	Der.	MIL	A-4 (4)	18.03	102/3.37	1144.29
C-3	7+000	Izq.	CM	A 2 4 (0)	22.90	19000 22	1220.02
C-4	7+500	Izq.	SM	A-2-4 (0)	22.80	18900.32	1328.82
C-5	9+000	Der.	CW CM	A 1.1 (0)	20.26	26472.22	1061.05
C-6	9+500	Der.	SW-SM	A-1-b (0)	38.26	26473.22	1861.25
		Prome	dio		26.48	20801.40	1462.46

Fuente: Elaboración propia

En la siguiente tabla se puede observar:

De acuerdo al MTC (2014, p.37) los valores de módulos resilientes para los tipos de suelos como: limo inorgánico es igual 16275.57, para arena limosa es igual a 18900.32 y Arena bien graduada con limo es de 26473.22. Estos resultados se encuentran en concordancia con los límites establecidos para el módulo resiliente según la clasificación SUCS y AASHTO para cada tipo de suelo.

4.3. CUMPLIMIENTO DE OBJETIVOS

Objetivo específico 1: Determinar el módulo resiliente basado en curvas de diseño
 RAMCODES para el diseño de pavimentos flexibles de la carretera Calacota-Ilave,
 2023.donde se tiene la siguiente tabla (Anexo 16):

Tabla 57Altura del pavimento respecto a módulo resiliente RAMCODES

Tipo de suelo	CBR (%)	Módulo resiliente (PSI)	Altura del pavimento (cm)
ML, (RS3)	24.25	19661.04	53.00
SM, (RS2)	26.80	20960.28	53.00
SW-SM, (RS1)	42.00	27942.83	48.00
Promedio	31.02	23015.04	51.00

Nota: Elaboración propia

A partir de la observación de los resultados, se realiza una comparación en relación al tipo de suelo subrasante, identificado como limo inorgánico (ML), presentando:

- La altura del pavimento permanece constante cuando el suelo de subrasante pertenece a la categoría de arena limosa (SM).
- Cuando el suelo de subrasante es del tipo arena bien graduada con limo (SW-SM) la altura del pavimento disminuye en 9.43%.
- El valor promedio de la altura del pavimento en relación a los tipos de suelo del terreno se reduce en un 3.77%.

Este objetivo fue logrado al calcular el módulo resiliente a través del análisis de las curvas de diseño RAMCODES, y posteriormente evaluando este parámetro en el diseño del pavimento de la vía Calacota-Ilave.

Objetivo específico 2: Evaluar el módulo resiliente basado en ensayos CBR convencional para el diseño de pavimentos flexibles de la carretera Calacota-Ilave,2023. Se tiene el siguiente cuadro (Anexo 17):

Tabla 58Altura del pavimento respecto a módulo resiliente convencional

Tipo de suelo	CBR (%)	Módulo resiliente (PSI)	Altura del pavimento (cm)
ML, (RS3)	18.05	16275.6	58.00
SM, (RS2)	22.08	18900.3	57.00
SW-SM, (RS1)	38.60	26473.2	50.00
Promedio	26.48	20801.4	55.00

Nota: Elaboración propia

Respecto a la altura del pavimento del tipo de subrasante caracterizado como limo inorgánico (ML), se deduce:

- Cuando el suelo de subrasante tiene las características de arena limosa, se tiene una reducción del 1.27% en la altura del pavimento.
- Cuando el suelo de subrasante es del tipo arena bien graduada con limo la altura del pavimento se reduce en 13.79%.
- Finalmente, cuando se toma un promedio de CBR, la altura del pavimento se reduce en un 8.62%.

Se cumplió con el objetivo establecido al poder calcular el módulo resiliente utilizando ensayos CBR convencionales, lo que habilita su utilización en la evaluación del diseño del pavimento flexible.

 Objetivo específico 3: Explicar la diferencia de costo entre el diseño de pavimentos flexibles con las curvas de diseño RAMCODES y los ensayos CBR convencional.
 Se presenta (Anexo 19):

Tabla 59Costo del diseño de pavimento flexible RAMCODES

Ítem	Descripción	Unid	Metrado	Precio	Parcial	Subtotal	Total
01	Pavimento flexible						444,906.00
	Material						
01.01	seleccionado					175,266.00	
	para subbase						
01.01.01	Extracción y	m3	12 600 0	170	60 229 00		
01.01.01	apilamiento	1113	12,600.0	4.78	60,228.00		
01.01.02	Carguío	m3	12,600.0	2.07	26,082.00		
01 01 02	Transporte a la	2	12 (00 0	7.06	00.056.00		
01.01.03	obra	m3	12,600.0	7.06	88,956.00		
01.02	Conformación					260 640 00	
01.02	de subbase					269,640.00	
01.02.01	Sub base	m2	42,000.0	6.42	269,640.00		

Nota: Presupuesto por subpartidas de subbase para diseño RAMCODES.

Tabla 60Costo del diseño de pavimento flexible convencional

Ítem	Descripción	Unid	Metrado	Precio	Parcial	Subtotal	Total
02	Pavimento flexible						506,968.56
02.01	Material seleccionado para subbase					203,308.56	
02.01.01	Extracción y apilamiento	m3	14,616.0	4.78	69,864.48		
02.01.02	Carguío	m3	14,616.0	2.07	30,255.12		
02.01.03	Transporte a la obra	m3	14,616.0	7.06	103,188.96		
02.02	Conformación de subbase					303,660.0	
02.02.01	Sub base	m2	42,000.0	7.23	303,660.0		

Nota: Presupuesto por subpartidas de subbase para diseño convencional.

Según la información proporcionada, se observa lo siguiente:

- En la partida: "material seleccionado para subbase", la reducción de costo es 28,042.56 s/. y representa el 13.79 %.
- En la partida: "conformación de subbase", la reducción de costo es 34,020.00 s/. y representa el 11.20%.
- La diferencia de costo en el diseño de pavimento flexible con módulos resilientes,
 obtenidos por CBR RAMCODES y CBR convencional es de 62,062.56 s/. y
 representa 12.24 %.
- El presupuesto, la lista de insumos y el análisis de costos unitarios se adjuntan en los anexos.

 Objetivo general: Comparar el módulo resiliente basado en curvas de diseño RAMCODES y ensayos CBR convencional para el diseño de pavimentos flexibles de la carretera Calacota-Ilave, 2023. Se muestran los siguientes cuadros (anexo 16,17 y 18):

Tabla 61Espesores del pavimento con curvas de diseño RAMCODES

Estructura		Espe	sores (cm)		
		Tipo de sue	lo de subrasante		
del pavimento	ML, (RS3)	SM, (RS2)	SW-SM, (RS1)	Promedio	
Carpeta	7.00	6.00	5.00	6.00	
asfáltica	7.00	0.00	3.00	0.00	
Base	20.00	20.00	20.00	20.00	
Subbase	26.00	27.00	23.00	25.00	
Altura Total	53.00	53.00	48.00	51.00	

Fuente: Elaboración propia.

Tabla 62Espesores del pavimento con ensayos CBR convencional

Estructura		Es	pesores (cm)		
del pavimento		Tipo de s	uelo de subrasante		
uei pavimento	ML, (RS3)	SM, (RS2)	SW-SM, (RS1)	Promedio	
Carpeta	7.00	6.00	5.00	6.00	
asfáltica	7.00	0.00	3.00	0.00	
Base	20.00	20.00	20.00	20.00	
Subbase	31.00	31.00	25.00	29.00	
Altura Total	58.00	57.00	50.00	55.00	

Fuente: Elaboración propia.

 Tabla 63

 Verificación mecanística de pavimento con curvas de diseño RAMCODES

Criterios de		Espesores	(cm)		_ Altura	
diseño mecanístico	Carpeta asfáltica	Base asfáltica	Base	Sub base	total (cm)	
Instituto del asfalto	10	12	20	25	67	
Shell	6	12	20	25	63	

Fuente: Elaboración propia.

Tabla 64

Verificación mecanística de pavimento con ensayos CBR convencional

Criterios de diseño		Espesores	(cm)		_ Altura	
mecanístico	Carpeta	Base	Base	Sub base	total (cm)	
mecanistico	asfáltica	asfáltica	Dasc	Sub base	totai (CIII)	
Instituto del asfalto	10	12	20	29	71	
Shell	6	12	20	29	67	

Fuente: Elaboración propia.

Se procede a comparar el diseño de pavimentos flexibles mediante las curvas de diseño RAMCODES y ensayos CBR convencionales, para cada categoría de suelo de subrasante, como se detalla en los cuadros precedentes, donde se tiene:


- En el caso de que el suelo de subrasante pertenezca al tipo limo inorgánico (ML), se experimenta una disminución en la altura de la subbase en 16.12%.
- La presencia de suelos de subrasante clasificado como arena limosa (SM), conlleva a una disminución en la altura de la subbase de aproximadamente 12.90%.
- Cuando el suelo de subrasante es del tipo arena bien graduada con limo (SW-SM) se observa que la altura de la subbase se reduce en 8.00%.
- Finalmente, se puede observar que, en promedio, la disminución de la subbase se reduce en un 13.79%.

De la verificación mecanística del diseño de pavimentos con las curvas de diseño RAMCODES y ensayos de CBR convencional, se tiene:

- Por el criterio del instituto del asfalto y Shell, luego de la evaluación por esfuerzos y
 deformación en las interfaces de las capas, se sugiere una carpeta asfáltica de 10 cm
 y 6 cm, base asfáltica de 12 cm, base de 20 cm en los dos criterios.
- Finalmente, en la capa de subbase, previa evaluación por los criterios mencionados, se obtiene un predimensionamiento igual al método AASHTO-93, manteniéndose los espesores de 25 cm y 29 cm.

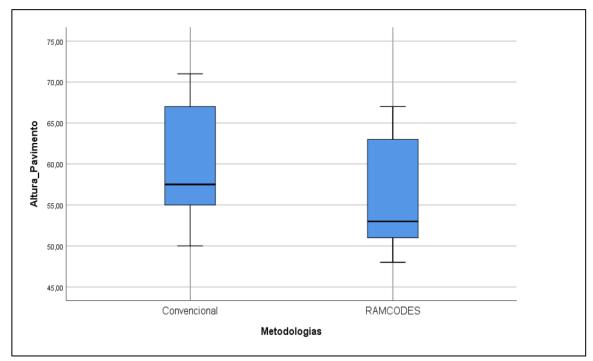
Figura 82Altura de la subbase en el diseño estructural del pavimento

Fuente: Elaboración propia

- La reducción en de la subbase durante el diseño de la estructura del pavimento se presenta de manera más destacada en la figura anterior. Se observa que el diseño estructural con RAMCODES reduce los espesores de subbase en comparación con el diseño convencional. Sin embargo, para el tipo de suelo de subrasante de arena bien graduada con limo la diferencia es mínima por lo que podemos decir que la saturación máxima propuesta en el diseño RAMCODES es cercana a la saturación de 4 días del suelo en el diseño convencional.
- También se efectúa un análisis de prueba de hipótesis de correlación, utilizando como variable independiente a las metodologías RAMCODES y CBR convencional y variable dependiente a la altura del pavimento flexible. (Anexo 20)

Tabla 65Correlaciones no paramétricas de variables

CORRELACIONES				
			Metodologías	Espesor de subbase (cm)
		Coeficiente de	1.000	- 0.315
	M-4-4-1(correlación	1.000	
Rho de Spearman	Metodologías	Sig.(bilateral)	-	0.319
		N	8	8
		Coeficiente de	- 0.315	1.000
	Espesor de	correlación		
	subbase (cm)	Sig. (bilateral)	0.319	
		N	8	8


Nota: Elaboración propia

El coeficiente de correlación entre variables es de -0.315, nos indica que primeramente es una relación negativa, entonces se tiene una relación inversa: es decir al evaluar el diseño del pavimento con ensayos CBR convencional la altura del pavimento es elevado, mientras que la altura del pavimento se reduce en cierta medida al evaluar el diseño del pavimento con las curvas de diseño RAMCODES, entonces se acepta la hipótesis: "El módulo resiliente basado en curvas de diseño RAMCODES

respecto a ensayos CBR convencional optimiza el diseño de pavimentos flexibles de la carretera Calacota-Ilave, 2023".

Figura 83Relación entre diseño de pavimentos Convencional y RAMCODES

Nota: Elaboración propia

 De la figura, se evidencia que hay una línea de pendiente negativa decreciente, lo cual significa que los diseños de pavimentos flexibles utilizando la metodología convencional incrementa el espesor de la subbase, mientras que los diseños con la metodología RAMCODES disminuyen estos valores.

4.4. DISCUSIÓN

Los resultados de los módulos resiliente basados en curvas de diseño RAMCODES y obtenidos a partir del (CBR), que son de 24.25%, 26.80%, y 42.00% para los suelos ML, SM y SW-SM, respectivamente, asumen un grado de compactación del 95% de la máxima densidad del ensayo proctor y un grado de saturación como la condición de servicio promedio o menos favorable del pavimento. Consideración que coincide con Oyola Guzmán & Oyola Morales (2019), que afirma que el porcentaje mínimo de compactación que aparece en las especificaciones de control de calidad es un valor propuesto desde la tradición y desde experiencias anteriores utilizado para inferir un rendimiento mecánico en términos de capacidad portante. En contra parte, el MTC (2016), indica que el valor de CBR se debe estimar considerando un grado de saturación del 100% que se obtiene con muestras empapadas durante 4 días y ensayadas bajo agua. Asimismo, Sánchez (2019), explica que el preestablecimiento de un grado de compactación del 95%, sin relacionarlo con la respuesta del suelo, es una práctica inaceptable, demostrando con la curva de diseño al 70 % del grado de saturación para una grava limosa. Siendo la resistencia requerida del proyecto de 25% de CBR, esta resistencia podría alcanzarse fácilmente compactando el suelo al 92% de la máxima densidad seca de proctor. Sin embargo, si se compacta al 95 % de Proctor, este suelo exhibiría un valor CBR del 130 por ciento, es decir 2,6 veces la resistencia requerida por el proyecto. También, Pariona (2014), deduce de la curva de diseño para una grava bien graduada, que la resistencia del suelo tiene relación inversa con la humedad del material y relación directa con una energía específica baja, siendo todo lo contrario para energías altas. Confirmando que la hidratación perjudica las condiciones estructurales del suelo. Luque & Ccolque (2016), sostiene que la metodología RAMCODES presenta mejoras en

el índice de calidad del suelo (CBR), registrando un incremento del 7.58% en comparación con la metodología AASHTO.

Basándonos en los resultados de la evaluación del módulo resiliente convencional a través del índice de capacidad de soporte (CBR) para diferentes tipos de suelos (ML, SM y SW-SM), con valores del 18,05%, 22,80% y 38,26%, respectivamente; se tuvo en consideración el contenido óptimo de humedad, la máxima densidad seca y un grado de compactación del 95% como parámetros para estimar el índice de resistencia del suelo (CBR), variables de consideración que coinciden con el ASTM D 1883-16 (2016), que sugiere determinar el valor de CBR al 95% de peso unitario seco máximo y al contenido óptimo de agua; sin embargo, Queiroz & Gutiérrez (2016), en su estudio, se evidencia que en la muestra de suelo caracterizada como limo de baja compresibilidad (ML), existe una relación inversa entre el índice de soporte de California (ISC) y el grado de saturación, lo que implica que el ISC más elevado no se logra necesariamente al alcanzar la humedad óptima de compactación. Asimismo; Oyola Guzmán & Oyola Morales (2019), en su estudio dio a conocer a través de mapas de resistencia que la resistencia máxima no está asociada con el peso unitario seco máximo medido en laboratorio, demostrando que para el material del tipo A-2-4(0), se alcanzó una resistencia a la compresión no confinada de 276.3 KPa, con un contenido óptimo de agua de 10.3% y la resistencia a la compresión libre máxima fue de 326,1 KPa que se obtuvo con un contenido de agua del 7.3% a 9%; por lo que sugiere que el porcentaje de compactación mínimo requerido se debe establecer utilizando la sección de curvas de diseño de la metodología RAMCODES. Pulecio et al. (2019), amplía los hallazgos anteriores al demostrar que al disminuir el contenido de humedad óptimo en un 0.5%, se produce un incremento del 31.61% y 24.46% en el valor de CBR para suelos no plásticos y arcillosos de baja plasticidad, respectivamente.

Los valores de la capacidad de carga (CBR) convencional de 18,05%, 22,80% y 38,26% para suelos ML, SM y SW-SM respectivamente, fueron determinados considerando un porcentaje mínimo de compactación del 95% de la máxima densidad seca obtenida del ensayo proctor modificado; además de una saturación de 4 días de inmersión, que representa la condición más desfavorable del suelo en el ensayo de CBR. Consideraciones que coinciden con el MTC (2014), que indica que los últimos 0.30 m de suelo debajo del nivel superior de la subrasante, deberán ser compactados al 95% de la máxima densidad seca obtenida del ensayo proctor modificado y la guía ASTM D 1883 (1999), aclara que el valor de CBR debe calcularse a los 4 días de inmersión en agua, para simular las peores condiciones del suelo utilizado en el diseño de pavimentos. Sin embargo, la norma ASTM D 1557-12 (2012), sugiere que el porcentaje de compactación requerido debe determinarse de acuerdo con experiencias y/o experimentaciones previas. Por otra parte, Oyola Guzmán & Oyola Morales (2018), en su análisis revela que el criterio del porcentaje mínimo de compactación no es adecuado para determinar el desempeño mecánico real del suelo, demostrando con las curvas de diseño para un suelo del tipo A-2-4(0) que para porcentajes de compactación iguales o superior al 95% (respecto al peso unitario seco máximo obtenido mediante la prueba Próctor modificada) y grados de saturación del 60% al 80%, el material muestra valores más altos que el CBR mínimo requerido. Sin embargo, con un porcentaje mínimo de compactación del 94% (respecto al peso unitario seco máximo obtenido con la prueba Próctor modificada) y un grado de saturación del 80% el material cumple con el CBR mínimo requerido del proyecto.

Los resultados de módulos resilientes para los tipos de suelos ML, SM y SW-SM, mediante las curvas de diseño RAMCODES muestran una mejora significativa respecto a los resultados obtenidos a través de los ensayos CBR convencional, con incrementos de

21%, 11% y 6%, respectivamente, mientras que se evidencia una disminución del espesor de las capas de subbase del pavimento del 16%, 13% y 8%, respectivamente. Estos resultados respaldan la afirmación planteada en el artículo de Inga & Gutiérrez (2022), donde sostienen que al considerar el comportamiento no saturado de la subrasante mediante el uso de las curvas de diseño RAMCODES en comparación con la metodología tradicional de caracterización de subrasantes, se optimiza el diseño del pavimento para el tipo de suelo SC-SM. Esto se traduce en un aumento del 29% en el módulo de resiliencia y una reducción del 25% en el espesor de las capas del pavimento, particularmente en lo que respecta al espesor de la capa de subbase. Por otra parte Ccarita (2024), valida las conclusiones anteriores al interpretar que al emplear la herramienta del espectro de curvas de diseño de la metodología RAMCODES, se alcanzó un Índice de Soporte California (CBR) del 27%, al incrementar el porcentaje de compactación al 96.5%. Este valor cumple con las especificaciones mínimas (CBR = 24%), a diferencia de la metodología tradicional que arrojó un CBR del 9% con un 95% de compactación según lo estipulado por la normativa. La discrepancia en los valores de CBR obtenidos mediante las diferentes metodologías, analizados mediante correlación, resultó en diferentes módulos de resiliencia aplicados en la ecuación de diseño del pavimento, lo que se tradujo en una diferencia de 5 cm en los espesores de la base, mientras que el espesor de la capa asfáltica permaneció inalterado.

de subbase.

V. CONCLUSIONES

PRIMERO: En relación al objetivo general, se concluye que el módulo resiliente con las curvas de diseño RAMCODES, optimiza el diseño de pavimentos flexibles, ya que el módulo resiliente se incrementa en un 10.64 % respecto al convencional, lo que representa una reducción del 13.79% de espesor

SEGUNDO: Se determinó el módulo resiliente a partir de las curvas de diseño RAMCODES utilizando los mapas de resistencia y la saturación máxima del suelo de subrasante para luego evaluarlos en el diseño de pavimento flexible. Se concluye que utilizando dicha metodología para los tipos de suelo: ML, SM y SW-SM del tramo en estudio se tiene valores de módulos resilientes de: 19,661.04 PSI, 20,960.28 PSI y 27942.83 PSI; en promedio 23,015.00 PSI.

TERCERO: Se evaluó el módulo resiliente basado en ensayos CBR convencional para el diseño de pavimentos flexible del tramo en estudio donde se concluye que utilizando este método convencional para los tipos de suelos: ML, SM y SW-SM del tramo en estudio caracterización de subrasante se tiene valores de módulos resilientes de: 16,275.57 PSI, 18,900.32 PSI y 26,473.22 PSI, en promedio 20,801.40 PSI.

CUARTO: En relación a la diferencia de costo del diseño de pavimentos flexibles con las curvas de diseño RAMCODES y ensayos CBR convencional, se concluye que existe una diferencia de costo de construcción de s/. 62,062.56 que representa un 12.24 % de diferencia.

VI. RECOMENDACIONES

PRIMERO: Para determinar el CBR con los métodos RAMCODES y convencional de

laboratorio, se recomienda usar bolsas herméticas para controlar las

variaciones de humedad de los 15 especímenes del ensayo factorial y las 3

probetas sometidos a cuatro días de inmersión, ya que la humedad de

preparación tiene un rol muy importante sobre la resistencia. Asimismo,

se debe corregir las curvas de carga-penetración por concavidad hacia

arriba.

SEGUNDO: Se recomienda usar las curvas de diseño RAMCODES para la estimación

del módulo resiliente y control de compactación de las estructuras que

componen el pavimento flexible, ya que esta metodología representa un

beneficio con respecto a costo y genera diseños estructurales de

pavimentos flexibles más racionales que reflejan las condiciones reales de

saturación de subrasante en campo.

TERCERO: Se sugiere realizar investigaciones que comparen el módulo resiliente con

las curvas de diseño RAMCODES y ensayos CBR convencional para

distintos tipos de suelos susceptibles a humedecimiento como los suelos

con finos plásticos y aptos para el uso como material de subrasante en

carreteras con distintas condiciones ambientales de saturación y tránsito, a

fin de obtener suficiente data y tener un mayor grado de confiabilidad en

la selección de los módulos resilientes para el diseño estructural de

pavimentos flexibles.

VII. REFERENCIA

- AASHTO. (1993). AASHTO GUIDE FOR Design of Pavement Structures.

 AMERICAN ASSOCIATION OF STATE HIGHWAY AND

 TRANSPORTATION OFFICIALS.
- Allende, T. C., & Mendoza, M. E. (2007). Análisis hidrometeorológico de las estaciones de la cuenca del lago de Cuitzeo. *Investigaciones Geográficas*, 63, 56-76. https://doi.org/10.14350/rig.29910
- ASTM D 1557-12. (2012). Métodos de ensayo normalizado para las características de compactación de suelos en laboratorio usando una energía modificada (56,000 Pie-lbf/Pie3 (2,700 kN-m/m3)). https://doi.org/10.1520/D1557-12.Edición
- ASTM D 1883-16. (2016). Standard Test Method for California Bearing Ratio (CBR) of Laboratory Compacted Soils. ASTM INTERNATIONAL. https://doi.org/10.1520/D1883-16
- ASTM D 1883-99. (1999). Standard Test Method for CBR (California Bearing Ratio) of Laboratory-Compacted Soils 1. ASTM INTERNATIONAL. www.astm.org
- ASTM D 2487-17. (2017). Práctica estándar para la clasificación de suelos para fines de ingeniería (Sistema Unificado de Clasificación de Suelos. ASTM INTERNATIONAL. https://doi.org/10.1520/D2487-17
- Bowles, J. E. (1981). *Manual de Laboratorio de Suelos en Ingeniería Civil* (primera edición). McGRAW-HILL. https://stehven.files.wordpress.com/2015/08/josephe-e-bowles-manual-de-laboratorio-de-suelos.pdf
- Ccarita Mejia, F. E. (2024). *Influencia de la metodología RAMCODES en el diseño* de pavimentos en carreteras urbano-rurales bajo un enfoque BIM Caso de estudio: Carretera Chivay -Canacota [Tesis de pregrado, Universidad Católica de Santa Maria]. https://hdl.handle.net/20.500.12920/13595
- Das, B. M. (2001). Fundamentos de Ingeniería Geotécnica (Primera edición). THOMSON LEARNING.
- Das, B. M. (2013). *Fundamentos de Ingeniería Geotécnica* (cuarta edición). CENGAGE Learning.

- $https://www.academia.edu/37854899/Fundamentos_de_Ingenieria_Geotecnica_Braja_M_Das$
- Espinoza Meléndrez, J. A., Tamari, S., & Aguilar Chávez, A. (2015). Simulación de la infiltración del agua a partir de un daño en la carpeta de pavimento. *Tecnología y Ciencias del Agua*, *XX*(4), 77-95. https://www.revistatyca.org.mx/ojs/index.php/tyca/article/view/1018
- Gutiérrez Lázares, J. W. (2007). *Modelación Geotécnica de Pavimentos Flexibles*con Fines de Análisis y Diseño en el Perú [Tesis de maestría, Universidad Nacional de Ingeniería]. Repositorio

 Institucional.http://hdl.handle.net/20.500.14076/809
- Hedayati, M., & Hossain, S. (2015). Data based model to estimate subgrade moisture variation case study: Low volume pavement in North Texas. *Transportation Geotechnics*, 3, 48-57. https://doi.org/10.1016/j.trgeo.2015.03.001
- Hernández Sampieri, R., Fernández Collado, C., & del Pilar Baptista Lucio, M. (2010). *Metodología de la investigación* (Quinta Edición). Mc Graw Hill. www.FreeLibros.com
- Inga López, H. J., & Gutiérrez Lazares, J. W. (2022). Implementación del espectro de curvas de diseño RAMCODES de suelos no saturados de subrasantes en el diseño de pavimentos flexibles. *TECNIA*, *32*(2), 112-126. https://doi.org/10.21754/tecnia.v32i2.1388
- Luque Ramirez, A. B., & Ccolque Mamani, C. E. (2016). Comparación metodológica con experimentos factoriales de AASTHO y RAMCODES para compactación de suelos aplicado a pavimentos en la ciudad de Juliaca [Tesis de Pregrado, Universidad Andina Néstor Cáceres Velásquez]. Repositorio Institucional. http://repositorio.uancv.edu.pe/handle/UANCV/629
- Maximiliano velasquez, E. J. (2016). *Implementación del modelo climático EICM* con fines de diseño para pavimento de concreto asfáltico aplicando la metodología MEPDG [Tesis de Pregrado, Universidad Nacional de Ingenieria]. Repositorio Institucional. http://hdl.handle.net/20.500.14076/5411
- Minaya González, S., & Ordóñez Huamán, A. (2006). *Diseño Moderno de Pavimentos Asfálticos* (Segunda Edición). ICG Instituto de la 168

- Construcción y Gerencia. www.construccion.org.pe/Email:icg@icg.org.pe/Telefax:421-7896
- MTC. (2014). Manual de Carreteras Suelos Geología, Geotecnia y Pavimentos:

 Sección Suelos y Pavimentos (abril de 2014).

 https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales.

 html
- MTC. (2016). *Manual de Ensayo de Materiales* (mayo de 2016). https://portal.mtc.gob.pe/transportes/caminos/normas_carreteras/manuales. html
- Ñaupas Paitán, H., Mejía Mejía, E., Novoa Ramírez, E., & Villagómez Paucar, A.
 (2014). Metodología de la investigación: Cuantitativa Cualitativa y
 Redacción de la Tesis (Cuarta Edición). Ediciones de la U.
- Oyola Guzmán, R. D., & Oyola Morales, R. (2018). Forensic Evaluation of Compacted Soils using RAMCODES. *Civil Engineering Journal*, 4(10), 2275-2283. http://dx.doi.org/10.28991/cej-03091157
- Oyola Guzmán, R. D., & Oyola Morales, R. (2019). Linking Soil Design and Quality Control of Compacted Soils Through an Improvement of the Acceptance Zone of the RAMCODES Methodology. *Indian Geotechnical Journal*, 49(5), 492-500. https://doi.org/10.1007/s40098-018-0345-z
- Pariona Quintana, L. (2014). Estudio de la resistencia de la sub-base usando experimentos factoriales basado en el contenido de humedad, energía de compactación y la hidratación [Tesis de Pregrado, Universidad Nacional del Centro del Perú]. Repositorio Institucional. http://hdl.handle.net/20.500.12894/408
- Pulecio Diaz, J. A., Pallares Muñoz, M. R., & Rodríguez Calderón, W. (2019).

 Performance evaluation of granular sub-base by maps of resistance using grapherTM. Case study: Ibague, Colombia. *Journal of Engineering and Applied Sciences*, 14(9). www.arpnjournals.com
- Queiroz de Amorim, L., & Gutiérrez Góngora, I. A. (2016). Caracterização do solo laterítico de brasília através da metodologia racional para a análise de densificação e resistência de geomateriais compactados "RAMCODES".

 **Programa de Iniciação Científica PIC/UniCEUB Relatórios de Pesquisa, 1(1). https://doi.org/https://doi.org/10.5102/pic.n1.2015.5388

- Sánchez Leal, F. J. (2009). Manual de aplicación RAMCODES. *Venezuela: Solestudios CA*, 1-207.
- Sánchez Leal, F. J. (2019). RAMCODES Method for Compacted Soil Design: Development and Applications. *Geotechnical Engineering in the XXI Century: Lessons learned and future challenges*, 17(20), 1635-1648. https://ebooks.iospress.nl/doi/10.3233/STAL190216
- Sánchez Leal, F. J., Garnica Anguas, P., Gómez López, J. A., & Pérez García, N. (2002). RAMCODES: Metodología Racional para el Análisis de Densificación y Resistencia de Geomateriales Compactados. *Publicación Técnica N° 200*, 1-55.
- http://www.imt.mx/archivos/Publicaciones/PublicacionTecnica/pt200.pdf SENAMHI. (2023). *Datos hidrometeorológicos a nivel nacional*. https://www.senamhi.gob.pe/?&p=estaciones
- Zapata, C. E. (2018). Empirical Approach for the Use of Unsaturated Soil Mechanics in Pavement Design. *Geotechnical Special Publication*, 2017(300), 149-173. http://ascelibrary.org/doi/10.1061/9780784481677.008

ANEXOS

- **ANEXO 1:** Constancia de laboratorio de suelos
- **ANEXO 2:** Contenido de humedad
- ANEXO 3: Análisis granulométrico
- **ANEXO 4:** Límites de Atterberg
- **ANEXO 5:** Clasificación de suelos
- **ANEXO** 6: Gravedad específica
- **ANEXO 7:** Proctor modificado
- **ANEXO 8:** CBR convencional
- ANEXO 9: Precipitación máxima diaria
- ANEXO 10: Saturación máxima del suelo
- ANEXO 11: Clasificación RAMCODES y potencial de densificación
- **ANEXO 12:** CBR RAMCODES
- ANEXO 13: Mapas de resistencia y Curvas de saturación
- ANEXO 14: Espectro de curvas de diseño RAMCODES
- **ANEXO 15:** Estudio de tráfico vial
- **ANEXO 16:** Diseño AASHTO 93 RAMCODES
- **ANEXO 17:** Diseño AASHTO 93 convencional
- **ANEXO 18:** Diseño empírico-mecanístico
- ANEXO 19: Costos y presupuestos del diseño convencional y RAMCODES
- **ANEXO 20:** Prueba de hipótesis
- **ANEXO 21:** Panel fotográfico

DECLARACIÓN JURADA DE AUTENTICIDAD DE TESIS

Por el presente documento, Yo Jose Luis Condori Mamani identificado con DNI 7081958 en mi condición de egresado de: **Escuela Profesional, Programa de Segunda Especialidad, Programa de Maestría o Doctoración de el profesional, Programa de Maestría o Doctoración que he elaborado el/la **Tesis o Trabajo de Investigación denominada: **COMPARACIÓN DEL MADULO RESILIENTE BASADO EN CURVAS DE DISEA RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISENO DE PAVIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023 Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/copia de ningun paturaleza en especial de esta de segunda Especialidad, Programa de Maestría o Doctoración de egresado de: **Escuela Profesional, Programa de Segunda Especialidad, Programa de Maestría o Doctoración de nominada: **COMPARACIÓN DEL MADULO RESILIENTE BASADO EN CURVAS DE DISEA RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISENO DE PAVIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023
Escuela Profesional, ☐ Programa de Segunda Especialidad, ☐ Programa de Maestría o Doctorad informo que he elaborado el/la ☒ Tesis o ☐ Trabajo de Investigación denominada: "COMPARACIÓN DEL MODULO RESILIENTE BASADO EN CURVAS DE DISEÑ RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISEÑO DE PAVIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023 Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagia/capia de nineuro.
informo que he elaborado el/la Z Tesis o Trabajo de Investigación denominada: "COMPARACIÓN DEL MODULO RESILIENTE BASADO EN CURVAS DE DISEÑ RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISEÑO DE PAVIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023 Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/capia de ningua.
RAMCODES Y ENSAVOS CBR CONVENCIONAL PARA EL DISEÑO DE PAUIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023 Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/capia de ninevo.
RAMCODES Y ENSAVOS CBR CONVENCIONAL PARA EL DISEÑO DE PAUIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023 Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/capia de ninevo.
RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISEÑO DE PAVIM FLEXIBLES DE LA CARRETERA CALACOTA- ILAVE, 2023 Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/capia de nineuro.
Es un tema original. Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/capia de ninegro
Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/capia de ningun
Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio/copia de ningun
naturaleza, en especial de otro documento de investigación (tesis, revista, texto, congreso, o similar presentado por persona natural o jurídica alguna ante instituciones académicas, profesionales, dinvestigación o similares, en el país o en el extranjero.
Dejo constancia que las citas de otros autores han sido debidamente identificadas en el trabajo de investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, ya sea de fuentes encontradas en medios escritos, digitales o Internet.
Asimismo, ratifico que soy plenamente consciente de todo el contenido de la tesis y asumo la responsabilidad de cualquier error u omisión en el documento, así como de las connotaciones éticas y legales nvolucradas.
En caso de incumplimiento de esta declaración, me someto a las disposiciones legales vigentes y a las anciones correspondientes de igual forma me someto a las sanciones establecidas en las Directivas y otras formas internas, así como las que me alcancen del Código Civil y Normas Legales conexas por el neumplimiento del presente compromiso
Puno 13 de Junio del 2024
FIRMA (obligatoria) Huella

DECLARACIÓN JURADA DE AUTENTICIDAD DE	TESIS
Por el presente documento, Yo Tulio (esar Condori Mama identificado con DNI 71590604 en mi condición de egresado de:	ıni
🗵 Escuela Profesional, 🗆 Programa de Segunda Especialidad, 🗆 Programa de Mae	stría o Doctorado
Ingenieria civil	
informo que he elaborado el/la & Tesis o Trabajo de Investigación denominada: "COMPARACIÓN DEL MÓDULO RESILIENTE BASADO EN CURVAS	5 DE DISEÑO
RAMCODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISE	NO DE
PAUMENTOS FLEXIBLES DE LA CARRETERA CALACOTA - 11A Es un tema original.	VE, 2023
Declaro que el presente trabajo de tesis es elaborado por mi persona y no existe plagio / naturaleza, en especial de otro documento de investigación (tesis, revista, texto, con presentado por persona natural o jurídica alguna ante instituciones académicas, investigación o similares, en el país o en el extranjero.	areso o similar
Dejo constancia que las citas de otros autores han sido debidamente identificadas investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, y encontradas en medios escritos, digitales o Internet.	en el trabajo de ya sea de fuentes
Asimismo, ratifico que soy plenamente consciente de todo el contenido de la teresponsabilidad de cualquier error u omisión en el documento, así como de las connotacione involucradas.	esis y asumo la es éticas y legales
En caso de incumplimiento de esta declaración, me someto a las disposiciones legales sanciones correspondientes de igual forma me someto a las sanciones establecidas en las I normas internas, así como las que me alcancen del Código Civil y Normas Legales incumplimiento del presente compromiso	Directives v etres
Puno 13 de Junio	del 20 <u>24</u>
FIRMA (dbligatoria)	Huella
FIRMA (obligatoria)	Huella

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL

Por el presente documento, Yo <u>Jase Luis Condari Mamani</u> identificado con DNI <u>70819588</u> en mi condición de egresado de:

⊠Escuela Profesional, □Programa de Segunda Especialidad, □Programa de Maestría o Doctorado

informo que he elaborado el/la 🛭 Tesis o 🗆 Trabajo de Investigación denominada:

"COMPARACIÓN DEL MÓDULO RESILIENTE BASADO EN CURVAS DE .

DISEÑO RAMIODES Y ENSAYOS CBR CONVENCIONAL PARA EL DISEÑO

DE PAVIMENTOS FLEXIBLES DE LA CARRETERA CALACOTA-ILAVE, 2023

para la obtención de Grado, ATítulo Profesional o Segunda Especialidad.

Por medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a favor mío; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia: Creative

Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: https://creativecommons.org/licenses/by-nc-sa/4.0/

En señal de conformidad, suscribo el presente documento.

Puno 13 de Jonio del 204

174

IRMA (obligatoria)

Huella

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL
or el presente documento, Yo Julio Cesar Condori Mamani
dentificado con DNI 71590604 en mi condición de egresado de:
☑Escuela Profesional, □Programa de Segunda Especialidad, □Programa de Maestría o Doctorado
Ingenieria Civil
nformo que he elaborado el/la ☑ Tesis o ☐ Trabajo de Investigación denominada: COMPARACIÓN DEL MÓDULO RESILIENTE DASADO EN CURUAS DE -
DE PAVINENTOS FLEXIBLES DE LA CARRETERA CALACOTA-TLAVE, 2023.
ara la obtención de □Grado, ☒Título Profesional o □Segunda Especialidad.
or medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los erechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los roductos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio estitucional de la Universidad Nacional del Altiplano de Puno.
ambién, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, estricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, eproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.
autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio astitucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, nodificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad plique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor derechos conexos, a título gratuito y a nivel mundial.
n consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a avor mío; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú eterminen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o straer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen ecesarios para promover su difusión.
utorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia: Creative
ommons Reconocimiento-NoComercial-Compartirlgual 4.0 Internacional. Para ver una copia de sta licencia, visita: https://creativecommons.org/licenses/by-nc-sa/4.0/
n señal de conformidad, suscribo el presente documento.
Puno 13 de Junio del 204
- Lavert A
FIRMA (obligatoria) Huella