

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA GEOLÓGICA Y METALÚRGICA

ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

"EXPLORACIÓN GEOLÓGICA Y ANÁLISIS ESTRUCTURAL DEL PROSPECTO POTRERO, CORONGO, ANCASH – PERÚ"

TESIS

PRESENTADA POR:

JUAN CARLOS FIGUEROA APAZA

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO GEÓLOGO

PUNO – PERÚ

2017

Universidad Nacional del Altiplano

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERÍA GEOLÓGICA Y METALÚRGICA ESCUELA PROFESIONAL DE INGENIERÍA GEOLÓGICA

"EXPLORACIÓN GEOLÓGICA Y ANÁLISIS ESTRUCTURAL DEL PROSPECTO POTRERO, CORONGO, ANCASH – PERÚ"

TESIS

PRESENTADA POR:

JUAN CARLOS FIGUEROA APAZA

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO GEÓLOGO

APROBADA POR EL JURADO CONFORMADO POR:

Msc. Emiliano Guevara Guerra

Ing.

PRIMER MIEMBRO

PRESIDENTE DE JURADO

Ing Miguel Yanarico Apaza

May

SEGUNDO MIEMBRO

ASESOR DE TESIS

Ing. Luis Vicente Ortiz Gallegos

gustín Víctor Vélez Vilca

DIRECTOR DE TESIS

Msc. Andrés Olivera Chura

Witsam-

ÁREA: Geología de Minas **TEMA:** Exploración Geológica y Análisis Estructural

> PUNO – PERÚ 2017

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

DEDICATORIA

A MI MADRE *María Rosa,* que partió muy pronto; por todo su apoyo, decisión constante y el tiempo que hemos vivido juntos.

MI PADRE *David Ciro,* por su motivación, consejos y confianza en mí.

MIS HERMANOS Denis y Cristhian, por el apoyo en los momentos felices y difíciles que nos ha tocado vivir.

MI ESPOSA Nancy, por todo su amor, cariño y el ánimo que me brinda día a día para alcanzar nuevas metas.

MI HIJO Rodrigo, por su ternura y su sonrisa que me alegra todos los días.

AGRADECIMIENTOS

A la empresa Minera Peñoles de Perú S.A. representado por el Ingeniero Felipe Ortigoza Cruz, por su apoyo y la facilidad para realizar el presente trabajo.

Al Ingeniero Tomás Antonio Almonacid Chávez, gerente de Geología, por sus sugerencias y facilidades para realizar el estudio.

A los Ingenieros Marcos Gervassi, Andrés Ccopa, Pool Corrales, que a su vez son grandes amigos que me motivaron y dieron la confianza conformando un equipo sólido de exploraciones.

Al Ingeniero Andrés Olivera como Director y al Ingeniero Luis Ortiz Gallegos como Asesor, por sus ideas, aportes y sugerencias en la revisión y corrección para mejorar el presente trabajo.

A la Universidad Nacional del Altiplano y a todos los docentes la Escuela Profesional de Ingeniería Geológica, por haberme brindado sus conocimientos.

ÍNDICE

DEDICATORIA	i
AGRADECIMIENTOS	ii
ÍNDICE	iii
LISTA DE FIGURAS	ix
LISTA DE CUADROS	xii
ABREVIATURAS Y SIGLAS	xiii
RESUMEN	xiv
ABSTRACT	xv

CAPITULO I

INTRODUCCIÓN

1.1. PROBLEMA DEL ESTUDIO	1
1.1.1. PLANTEAMIENTO DEL PROBLEMA DE ESTUDIO	1
1.1.2. FORMULACIÓN DEL PROBLEMA	2
1.2. ANTECEDENTES	2
1.3. JUSTIFICACIÓN	3
1.4. HIPÓTESIS	3
1.5. OBJETIVOS	3
1.5.1. OBJETIVO GENERAL	3
1.5.2. OBJETIVOS ESPECÍFICOS	4
1.6. METODOLOGÍA DE TRABAJO	4
1.7. EQUIPO Y MATERIALES UTILIZADOS	5

CAPITULO II

MARCO TEÓRICO

2.1. PROCESOS GEOMORFOLÓGICOS	6
2.1.1. PROCESOS ENDÓGENOS	6
2.1.2. PROCESOS EXÓGENOS	6
2.1.3. PROCESOS BIÓTICOS Y ANTRÓPICOS	7
2.2. GEOMORFOLOGÍA REGIONAL	7
2.3. FACTORES GEOMORFOLÓGICOS	7

2.3.1. FACTOR ESTRUCTURAL
2.3.2. FACTOR LITOLÓGICO
2.3.3. FACTOR EROSIONAL
2.4. UNIDADES GEOMORFOLÓGICAS8
2.4.1. CORDILLERA ORIENTAL9
2.4.2. CORDILLERA OCCIDENTAL
2.4.3. CUENCA DEL SANTA9
2.4.4. CORDILLERA BLANCA
2.4.5. CORDILLERA NEGRA10
2.5. GEOLOGÍA REGIONAL10
2.5.1. FORMACIÓN CHICAMA (Js-Ch)10
2.5.2. FORMACIÓN CHIMÚ (Ki-Chi)11
2.5.3. FORMACIÓN SANTA (Ki-Sa)12
2.5.4. FORMACIÓN CARHUAZ (Ki-Ca)13
2.5.5. FORMACIÓN PARIAHUANCA (Ki-P)13
2.5.6. FORMACIÓN CHULEC (Ki-Ch)14
2.5.7. FORMACIÓN PARIATAMBO (Ki-P)14
2.5.8. DEPÓSITOS CUATERNARIOS15
2.5.9. ROCAS INTRUSIVAS15
2.6. TECTÓNICA
2.6.1. CICLOS OROGÉNICOS ANDINOS17
2.6.1.1. Fase Peruana17
2.6.1.2. Fase Inca17
2.6.1.3. Fase Quechua18
2.7. GEOLOGÍA ESTRUCTURAL REGIONAL19
2.8. PROSPECCIÓN Y EXPLORACIÓN MINERA
2.9. FUERZA Y ESFUERZO21
2.10. DEFORMACIÓN21
2.11. ESPECTROMETRÍA (TERRASPEC)22
2.12. ESTUDIOS GEOQUÍMICOS23
2.12.1. ANÁLISIS GEOQUÍMICO23
2.13. VETILLAS
2.13.1. VETILLAS TIPO M
2.13.2. VETILLAS TIPO EB

2.13.3. VETILLAS TIPO A	25
2.13.4. VETILLAS TIPO B	25
2.13.5. VETILLAS TIPO D	26
2.14. LOS SISTEMAS PORFIRÍTICOS DE Cu (Mo-Au)	27
2.14.1. ALTERACIONES HIDROTERMALES EN PÓRFIDOS	28
2.14.1.1. Etapa Tardimagmática	29
2.14.1.2. Etapa Transicional	
2.14.1.3. Etapa Hidrotermal Principal	
2.14.1.4. Etapa Hidrotermal Tardía	31
2.14.1.5. Tipos de Alteraciones	32
2.15. FILONES	34
2.15.1. SOLUCIONES MINERALIZANTES	34
2.15.2. FALLAS Y FISURAS	35
2.16. ANÁLISIS ESTRUCTURAL	35
2.16.1. ANÁLISIS DESCRIPTIVO	35
2.16.2. ANÁLISIS CINEMÁTICO	37
2.16.3. ANÁLISIS DINÁMICO	
2.16.4. MODELO DE FALLAS CONJUGADAS DE ANDERSON	
2.16.5. SISTEMA DE FRACTURAMIENTO DE RIEDEL	
2.16.6. SALTOS EN INFLEXIONES EN FALLAS	41
2.17. CONTROL ESTRUCTURAL REGIONAL DE PÓRFIDOS	43
2.18. TREND	43
2.19. PALEOESFUERZOS	44

CAPITULO III

CARACTERIZACIÓN DEL ÁREA DE INVESTIGACIÓN

3.1. UBICACIÓN POLÍTICA Y GEOGRÁFICA	45
3.2. ACCESIBILIDAD	46
3.3. TOPOGRAFÍA Y FISIOGRAFÍA	46
3.4. CLIMA	47
3.5. FLORA	48
3.6. FAUNA	48
3.7. DRENAJE E HIDROLOGÍA	49

3.8. GEOMORFOLOGÍA LOCAL
3.8.1. UNIDADES GEOMORFOLÓGICAS51
3.8.1.1. Cordillera51
3.8.1.2. Circo Glaciar51
3.8.1.3. Superficie Puna51
3.8.1.4. Cuestas Andinas52
3.8.1.5. Valle de Erosión52
3.9. GEOLOGÍA LOCAL
3.9.1. FORMACIÓN CHICAMA53
3.9.1.1. Lutitas
3.9.1.2. Areniscas Limosas Grises, Limolitas54
3.9.1.3. Areniscas Cuarzosas Blanquecinas54
3.9.2. DEPÓSITOS CUATERNARIOS55
3.9.3. ROCAS INTRUSIVAS
3.9.3.1. Intrusivo Granodiorítico56
3.9.3.2. Intrusivo Diorítico57
3.9.4. ROCAS METAMÓRFICAS
3.9.4.1. Hornfels
3.9.4.2. Cuarcitas

CAPITULO IV

EXPOSICIÓN Y ANÁLISIS DE RESULTADOS

4.1. GEOLOGÍA ESTRUCTURAL LOCAL	61
4.1.1. LINEAMIENTOS	61
4.1.1.1. Interpretación Según Modelo de Riedel	62
4.1.2. SISTEMA DE PLIEGUES	64
4.1.3. SISTEMA DE FALLAS	64
4.1.3.1. Sistema de Fallas S45°E	64
4.1.3.2. Sistema de Fallas N10°W – N30°W	65
4.1.3.3. Sistema de Fallas S35°W	66
4.1.4. ANÁLISIS ESTRUCTURAL	67
4.1.4.1. Distribución de Datos (vetas)	67
4.1.4.2. Distribución de Datos (vetillas)	68

4.1.4	4.3. Distribución de Datos (fallas, fracturas, vetas y vetillas)	69
4.1.5.	DIAGRAMA DE ROSAS Y ANÁLISIS RIEDEL	71
4.1.6.	CRONOLOGÍA DE EVENTOS	73
4.2. RE	SULTADOS DE EXPLORACIÓN	73
4.2.1.	ESPECTROMETRÍA (TERRASPEC)	73
4.2.1	1.1. Análisis de Firmas Espectrales	74
a.	Illita	74
b.	Muscovita	76
C.	Cloritas	78
d.	Otros Espectros Reconocidos	79
4.2.2.	GEOLOGÍA ECONÓMICA	82
4.2.2	2.1. Alteraciones Hidrotermales	82
a.	Alteración Potásica temprana	82
b.	Alteración Fílica	83
C.	Silicificación	84
d.	Alteración Argílica	85
4.2.2	2.2. Vetillas	85
a.	Vetillas Tipo EB	85
b.	Vetillas Tipo A	86
C.	Vetillas Tipo B	86
d.	Vetillas Tipo D	86
4.2.2	2.3. Estructuras Mineralizadas	87
a.	Veta Potrero	87
b.	Veta Freddy	89
C.	Veta Nilo	90
4.2.2	2.4. Mineralización	90
a.	Diseminación	90
b.	Vetillas	91
C.	Vetas	92
4.2.2	2.5. Mineralogía	92
a.	Minerales de Mena	92
b.	Minerales de Ganga	93
4.2.2	2.6. Controles De Mineralización	94
a.	Control Estructural	94

b. Control Litológico	95
4.2.2.7. Génesis y Tipo de Yacimiento	95
4.2.2.8. Geoquímica	97
a. Análisis de Muestras	
Geoquímica Superficial del Cobre	
Geoquímica Superficial del Molibdeno	
Geoquímica Superficial del Plomo	
Geoquímica Superficial del Zinc	
Geoquímica Superficial del Wolframio	

CONCLUSIONES	
RECOMENDACIONES	105
BIBLIOGRAFÍA	106
ANEXOS	
ANEXO I - Datos Espectrales (Espectrometría)	
ANEXO II - Resultados de Geoquímica	
ANEXO III - Datos Estructurales	
ANEXO IV – Mapas Geológicos	

LISTA DE FIGURAS

N°	Descripción p	ag.
Figura N° 1:	Columna estratigráfica regional (Modificado de "Memoria explicativa del mapa geológico del Perú" - INGEMMET- Marzo 2000)	16
Figura N° 2:	Interacción partícula y longitud de onda	23
Figura N° 3:	Esquema de vetilleo típico para Pórfidos. (Sillitoe 2000)	26
Figura N° 4:	Franjas de pórfidos cupríferos en el mundo y su relación con la tectónica global (Sawkins, 1984)	28
Figura N° 5:	Modelo idealizado del desarrollo evolutivo de la alteración hidrotermal en yacimientos tipo pórfido cuprífero (Oyarzun, J. 1991)	29
Figura N° 6:	Zonación de alteración y mineralización (Lowell y Gilbert, 1970)	32
Figura N° 7:	Distintos tipos de cambios que puede experimentar un cuerpo de roca durante su deformación (Georges H. D., Stephen J. R., 1996)	37
Figura N° 8:	Teoría de Anderson (1951)	39
Figura N° 9:	Modelo de Riedel representando relaciones angulares	40
Figura N° 10:	Representación de sistema de fracturamiento de Riedel	40
Figura N° 11:	Situaciones de extensión y compresión en sistemas de fallas dextrales y sinestrales con inflexiones y saltos (Georges H. D, Stephen J. R, 1996)	42
Figura N° 12:	Representación esquemática de eventos generados por inflexiones de fallas. (Georges H. Davis, Stephen J. Reynolds, 1996)	42
Figura N° 13:	Modelo de Riedel (Quispe et. Al, 2007)	43
Figura N° 14:	Ubicación y accesos al prospecto Potrero (modificado de la Red vial Ancash – MTC)	47
Figura N° 15:	Principales sistemas de drenaje divididos en subcuencas (Modificado de mapa de drenajes INGEMMET)	50
Figura N° 16:	Vista panorámica al Sur, principales unidades geomorfológicas	52

Figura N° 17:	Lutitas de la formación Chicama 54					
Figura N° 18:	Areniscas limosas grises de grano medio a fino de coloración gris oscura y Areniscas cuarzosas blanquecinas de grano medio	55				
Figura N° 19:	Secuencia sedimentaria de la formación Chicama, nótese el plegamiento en el sentido SE-NW (vista al sur)					
Figura N° 20:	Intrusivo granodiorítico, se observa cristales de plagioclasas, ojos de cuarzo y ferromagnesianos en la matriz (biotitas principalmente)					
Figura N° 21:	Intrusivo diorítico con textura porfirítica, se observa fenocristales de plagioclasas y hornblendas	58				
Figura N° 22:	Hornfels ubicado en el contacto con intrusivo granodiorítico.	59				
Figura N° 23:	Cuarcitas con vetillas de py	59				
Figura N° 24:	Columna estratigráfica local del prospecto Potrero. Modificado de "Memoria explicativa del mapa geológico del Perú" Boletín Nº 136-INGEMMET-Marzo 2000)	60				
Figura N° 25:	Lineamientos regionales comparado con el modelo de Riedel (1929) con componente sinestral	62				
Figura N° 26:	Diagrama de polos de planos de estratificación, mostrando distribución de los pliegues producidos por deformación compresiva					
Figura N° 27:	Diagramas estereográficos sistema de fallas S45°E	65				
Figura N° 28:	Diagramas estereográficos sistema de fallas N10°-30°W 66					
Figura N° 29:	Diagramas estereográficos sistema de fallas S35°W 67					
Figura N° 30:	Diagramas estereográficos sistema de vetas S04°W 68					
Figura N° 31:	Diagramas estereográficos sistema de vetillas					
Figura N° 32:	Distribución de polos clasificados por tipo de estructuras 69					
Figura N° 33:	Diagrama de planos y roseta representando direcciones de las diferentes estructuras	70				
Figura N° 34:	Diagrama de rosas representando direcciones de las diferentes estructuras	71				
Figura N° 35:	Sistema de cizalla frágil Riedel derecho (Riedel, 1929)	72				

Figura N° 36:	Representación	gráfica	de	diferentes	sistemas	
	estructurales					72
Figura N° 37:	Espectro de la illita	a				75
Figura N° 38:	Concentración de Illita					
Figura N° 39:	Espectro de la mu	scovita				77
Figura N° 40:	Concentración de	muscovita				77
Figura N° 41:	Espectro de las clo	oritas				78
Figura N° 42:	Concentración de	cloritas				79
Figura N° 43:	Espectro de las es	mectitas				80
Figura N° 44:	Concentración de	esmectitas				80
Figura N° 45:	Espectro de la anc	alucita				81
Figura N° 46:	Concentración de	andalucita				81
Figura N° 47:	Alteración potásica	a				83
Figura N° 48:	Alteración fílica					84
Figura N° 49:	Silicificación					84
Figura N° 50:	Alteración argílica					85
Figura N° 51:	Vetillas tipo EB					85
Figura N° 52:	Vetillas tipo B					86
Figura N° 53:	Vetillas tipo D					87
Figura N° 54:	Veta Potrero					88
Figura N° 55:	Veta Freddy					89
Figura N° 56:	Stockwork de vetil	las				91
Figura N° 57:	Minerales de mena	a (calcopirit	a, calc	osina, molibo	denita)	94
Figura N° 58:	Isovalores de cobr	e en ppm				99
Figura N° 59:	Isovalores de moli	bdeno en p	pm			100
Figura N° 60:	Isovalores de plon	no en ppm .				101
Figura N° 61:	Isovalores de zinc	en ppm				102
Figura N° 62:	Isovalores de wolf	ramio en pp	om			103

LISTA DE CUADROS

N°	Descripción p		
Cuadro N° 1:	Vértices del prospecto Potrero	45	
Cuadro N° 2:	Accesibilidad y tiempo estimado	46	
Cuadro N° 3:	Parámetros geoestadísticos y cálculo de anomalías de muestras superficiales	98	

ABREVIATURAS Y SIGLAS

Ag	: Plata
arc	: Arcillas
As	: Arsénico
Au	: Oro
bio	: Biotita
bio sec	: Biotita secundaria
сс	: Calcosina
cl	: Clorita
сру	: Calcopirita
Cu	: Cobre
E	: Este
Fe	: Fierro
Fm.	: Formación
goe	: Goethita
INGEMMET	: Instituto Geológico, Minero y Metalúrgico
jar	: Jarosita
Ν	: Norte
Ма	: Millones de años
mag	: Magnetita
Mn	: Manganeso
Мо	: Molibdeno/Molibdenita
Ox.Fe	: Óxidos de fierro
Pb	: Plomo
РСМ	: Punre-Canchis-Magistral
Ру	: Pirita
qz	: Cuarzo
S	: Sur
SENAMHI	: Servicio Nacional de Meteorología e Hidrología
ser	: Sericita
SFP	: Sistema de fallas Pataz
SFPC	: Sistema de fallas Punrre-Canchis
SFACQ	: Sistema de fallas Alto Cruz-Quiruvilca
SFCB	: Sistema de fallas Cordillera Blanca
SFC	: Sistema de fallas Lasma
SFRCR	: Sistema de fallas Huacilan-Churin
	: Sistema de fallas Tapacocha
SFRK	: Sistema de fallas Huaraz-Recuay
	: Sistema de fallas Quesquenda
SFCR	: Sistema de fallas Chonta
StW	
τΖ	
villa	
vv Zra	
ZN	: ZINC

RESUMEN

El Prospecto Potrero se encuentra ubicado en el distrito de Cusca, provincia de Corongo y departamento de Ancash, hacia el flanco oriental de la cordillera blanca en el extremo Norte.

El objetivo principal fue definir las características geológicas del Prospecto Potrero, además de realizar un análisis estructural utilizando la metodología descriptiva; se inició con la recopilación de información, trabajos de campo y procesamiento de datos; realizando mapeo geológico 1:5000, muestreo para análisis geoquímico- terraspec y toma de datos para el análisis estructural.

El área de estudio comprende secuencias sedimentarias de lutitas grises en la base, areniscas limosas grises y areniscas blanquecinas silicificadas hacia la parte superior, siendo parte de la Formación Chicama (Jurásico Superior), interrumpidas por intrusivos granodioríticos y dioríticos (Terciario Superior).

Como resultado de exploración, el pórfido granodiorítico presenta alteración potásica (biotita-magnetita), sobreimpuesta por una alteración fílica; se observó silicificación en zonas puntuales hacia el contacto con el pórfido granodiorítico-vetas y una alteración argílica por acción supérgena hacia el borde del pórfido. La mineralización del pórfido granodiorítico se restringe a la zona central del sistema con valores de cobre muy bajos y valores de molibdeno en promedio de 87.6 ppm ocurriendo principalmente en vetillas. Las vetas presentan altos valores de cobre siendo el principal elemento de interés, pero restringido en potencias menores de 30 cm aproximadamente; estas vetas son posteriores al sistema de mineralización tipo pórfido.

Según el análisis estructural, la mineralización en la zona está controlada por dos eventos de deformación; el primero controla el emplazamiento del pórfido granodiorítico bajo régimen compresivo, las cuales generaron zonas de tensión o por inflexión de fallas. El segundo evento originado por relajación del sistema las cuales generaron los principales sistemas de fallas: primer sistema S45°E, el segundo N20°W, el tercero S35°W y las vetas S04°W siendo paralelo a la dirección del esfuerzo principal σ 1 (N04°E) ejerciendo el esfuerzo compresivo.

Palabras clave: Análisis Estructural, Alteraciones Hidrotermales, Espectrometría, Modelo de Riedel, Pórfidos.

ABSTRACT

The Potrero Prospect is located in the district of Cusca, province of Corongo and department of Ancash, towards the eastern flank of the White Mountain range in the far north.

The main objective was to define the geological characteristics of the Potrero Prospect, in addition to performing a structural analysis using the descriptive methodology; began with the collection of information, fieldwork and data processing; performing geological mapping at a scale of 1: 5000, sampling for geochemical-terrapec analysis and data collection for structural analysis.

The study area includes sedimentary sequences of shales at the base, silty sandstones and whitish silica sandstones towards the upper part, being part of the Chicama Formation (Upper Jurassic), interrupted by intrusive granodiorites and diorites (Upper Tertiary).

As a result of the exploration, granodioritic porphyry presents potassium alteration (biotite-magnetite), superimposed by a phyllic alteration; silicification was observed in punctual zones towards the contact with the granodioritic porphyry and box of veins. The granodiorite porphyry mineralization is restricted to the central zone of the system with very low copper values and molybdenum values averaging 87.6 ppm occurring mainly in veinlets. The veins have high values of copper being the main element of interest, but restricted in potencies less than 30 cm approximately; these veins are posterior to the porphyry-type mineralization system.

According to the structural analysis, the mineralization is controlled by two deformation events; the former controls the placement of the granodiorite porphyry under compressive regime, taking advantage of zones of tension or inflexion of failures. The second event originated by relaxation of the system which generated the main fault systems that resemble the Riedel model with dextral component; with the veins S04°W parallel to the direction of the main stress σ 1 (N04°E) exerting the maximum compressive force.

Keywords:Structural analysis, hydrothermal alterations, spectrometry, Riedel model, porphyries.

CAPITULO I INTRODUCCIÓN

1.1. PROBLEMA DEL ESTUDIO

1.1.1. PLANTEAMIENTO DEL PROBLEMA DE ESTUDIO

En el Prospecto "Potrero" ubicado en el distrito de Cusca, Provincia de Corongo y Departamento de Ancash; existen pequeñas labores mineras que se realizaron artesanalmente siguiendo vetas de 20 a 30cm de potencia, estas vetas constan de cuarzo lechoso con minerales de Fe, Cu, como son (arsenopirita – pirita –calcopirita), esta última como mineral de mena, también las personas que viven por la zona nos indicaron que estas vetas tenían minerales con wolframio, la cual no era visible a simple vista.

Dado al interés de la empresa Minera Peñoles de Perú S.A. en el descubrimiento de nuevos depósitos de minerales en la zona, se observó gran cantidad de materiales rodados de intrusivo, también rodados de vetas de cuarzo, pirita, calcopirita y óxidos de fierro. Surgió el interés de conocer el prospecto y llegar a la fuente de donde provenían estos materiales rodados, se emprendió con el reconocimiento y se encontraron estructuras que vienen siendo explotadas por pequeños mineros, estos ya con el uso de motores de combustión realizando labores por campañas de dos a tres semanas. Continuando con la exploración se encontró un intrusivo granodiorítico emplazado como dique con vetillas de cuarzo-molibdenita-pirita-calcopirita.

Por la forma como se presentan las estructuras en el área de estudio, se cree que son vetas del tipo relleno de fracturas probablemente de origen filoneano, también la existencia de un fuerte stockwork de vetillas de cuarzo, nos indicaría

que probablemente nos encontramos en un ambiente porfirítico, por lo que surgió la necesidad de conocer las características geológicas del prospecto.

La existencia de depósitos de minerales de tipo Pórfido de Cobre – Molibdeno como son (El Águila, Racaycocha, Santa Rosa y Pucapampa) en zonas cercanas al área de estudio, es un indicador para considerar al Prospecto Potrero como un blanco de exploración que albergue un sistema de mineralización tipo pórfido, ya que se encuentran en la misma franja metalogenética del emplazamiento de estos cuerpos mineralizados.

1.1.2. FORMULACIÓN DEL PROBLEMA

A razón del planteamiento del problema y conociendo el interés de la empresa Minera Peñoles de Perú S.A, se plantea:

- ¿Qué características geológicas presenta el Prospecto Potrero?
- ¿Cuál es la génesis del Prospecto Potrero?
- ¿Es posible determinar los controles estructurales del Prospecto Potrero y definir los paleoesfuerzos, para tener una guía en la ubicación nuevos blancos de exploración?

1.2. ANTECEDENTES

En julio de 1978 el instituto de Geología y Minería encargó a la cooperación minera Peruano-Alemana el estudio de los yacimientos de tungsteno de Tarica (Mina Mercedes y Potrero), distrito de Cusca, provincia de Corongo, departamento de Ancash. (Santalla y Schwartz 1978, INGEMMET).

El estudio tenía como objetivo principal considerar la posibilidad de usar las facilidades que brindaría a la planta concentradora que en ese entonces estaba instalada en Mayucayan, para tratar el mineral que podría explotarse. Se llegó a la conclusión de que el mineral explotable no cumplía con los requisitos previstos, ya que las minas Mercedes y Potrero tienen bajas leyes de wolframio, y las vetas con potencias variables entre (0.1-1m); la mineralización en la mina Mercedes consiste con cuarzo y Ox.Fe: en niveles inferiores sericita, arsenopirita, pirita, calcopirita y wolframita. Por otro lado en las vetas de Potrero con potencias menores a 25cm, la mineralización consiste con qz-Ox.Fe y sulfuros sin wolframio visible.

En sus conclusiones recomendaron realizar labores por debajo del nivel inferior de la mina Mercedes y Potrero con motivos exploratorios ya que las vetas podrían ampliar su potencia.

1.3. JUSTIFICACIÓN

La importancia del conocimiento de las características geológicas del prospecto Potrero, como información geológica, mineralógica, estructural, alteraciones hidrotermales, espectrometría de arcillas, etc, nos sirve para definir la génesis del yacimiento.

También el estudio contribuirá como guía para la exploración de nuevos yacimientos de tipo pórfido relacionados al batolito de la cordillera Blanca; dado que los pórfidos de Cu son yacimientos de gran tonelaje y baja ley y que en los últimos años las empresas mineras han puesto mucho énfasis en la búsqueda de este tipo de yacimientos.

1.4. HIPÓTESIS

Se postula que las vetas del Prospecto Potrero pueden guardar cierta relación con un sistema del tipo pórfido, que probablemente se encuentre aflorando o cercano a la superficie con anomalías de Cu-Mo o tal vez por la cercanía al batolito de la cordillera blanca tenga también anomalías de Wolframio.

El conocimiento de los paleoesfuerzos que interactuaron en la zona nos servirá como guía en la ubicación de nuevos blancos de exploración en este corredor "Antamina – Magistral" ya que se tiene nuevos pórfidos como son Racaycocha, Pucapampa, Santa Rosa, entre otros.

1.5. OBJETIVOS

1.5.1. OBJETIVO GENERAL

 Definir las características geológicas y estructurales, determinando los paleoesfuerzos que condicionaron a la zona de Potrero para albergar mineralización, tomando la teoría de esfuerzos de Anderson y el modelo de Riedel.

1.5.2. OBJETIVOS ESPECÍFICOS

- Definir los controles litológicos, alteraciones hidrotermales y mineralización.
- Definir el control estructural de la zona, determinando los paleoesfuerzos.
- Realizar análisis geoquímico de muestras.
- Realizar un análisis de arcillas mediante espectrometría (Terraspec).

1.6. METODOLOGÍA DE TRABAJO

Para la elaboración de esta Tesis, se ha utilizado la metodología de investigación descriptiva, la cual radica en describir características fundamentales del aspecto geológico del prospecto Potrero; también con la metodología explicativa centrándonos en determinar las causas de un determinado conjunto de fenómenos, con el objetivo de dar a conocer qué sucesos geológicos favorecieron a la zona, para que pueda albergar mineralización. Se ha optado por tres etapas:

FASE I

Recopilación de información de la zona de "Potrero", con ayuda boletines geológicos (18h principalmente), separatas y papers elaborados por el INGEMMET y bibliografía relacionada al tema de estudio, si bien es cierto este área de estudio no cuenta con mucha información o estudios anteriores. **Interpretación de Imágenes LandSat TM**, con la ayuda de imágenes satelitales de 7 bandas en el software ENVI, se realizó un análisis preliminar de fallas y lineamientos para su interpretación posterior y comparación con el sistema de Riedel, 1929, también con estas imágenes se puede ubicar anomalías y zonas de alteración.

FASE II

En la **etapa de campo** se realizó mapeo geológico estructural a escala 1:5000, mapeo de las alteraciones, cuerpos y estructuras mineralizadas.

También se realizó la recolección de muestras para laboratorio, de roca caja y vetas para realizar un análisis geoquímico, muestras para su interpretación espectroscópica (Terraspec) y muestras de mano para su descripción y estimación visual mineralógica.

FASE III

Análisis e interpretación, en base a los datos obtenidos en campo se procedió a elaborar los respectivos planos y mapas geológico y estructural mediante la digitalización en los software ArcGis y Geosoft, se realizó la interpretación geoquímica de las muestras obtenidas y elaboración de mapas de isovalores por elementos, con la ayuda del Terraspec se determinaron las arcillas existentes y la temperatura de su formación, también se realizó una descripción petrológica con las muestras de mano y estimación de minerales existentes

Con los resultados de la caracterización estructural en campo se procedió a elaborar diagramas de polos, planos y rosetas con la ayuda del DIPS, para localizar zonas de debilidad y definir el control estructural.

Redacción del informe final, luego de las etapas anteriores, se procedió a editar los resultados obtenidos y a elaborar la presentación de la Tesis.

1.7. EQUIPO Y MATERIALES UTILIZADOS

En el presente trabajo se ha utilizado los siguientes equipos y materiales:

- GPS (Garmin Etrex 20)
- Brújula (Brunton GEO 5010)
- Martillo de Geólogo (Picota Estwing)
- Cámara fotográfica (Panasonic Lumix DMC-LS5)
- Lupa (Iwamoto Achromatic 20x)
- Wincha (Stanley)
- Flexómetro (Stanley)
- Tablero de dibujo (Sheet Holder)
- Libreta Geológica (Rite in the Rain)
- Lápices de Color
- Lápiz Rayador
- Lápiz imantado
- Protactor
- Marcadores para Roca
- Planos y formatos de mapeo geológico
- EPPs

CAPITULO II

MARCO TEÓRICO

2.1. PROCESOS GEOMORFOLÓGICOS

Los procesos geomorfológicos son cambios que se producen en los materiales (diferentes afloramientos rocosos) o formas que se presenten en la superficie terrestre que evolucionan con el tiempo, estos procesos pueden ser endógenos, exógenos, bióticos y antrópicos los cuales modifican el relieve terrestre con el pasar del tiempo.

2.1.1. PROCESOS ENDÓGENOS

Estos procesos actúan desde el interior de la tierra, se clasifican en orogénicos (forman montañas) y epirogénicos (ascenso y descenso de bloques de corteza). Este proceso depende de las fuerzas internas de la tierra que afectan a la corteza terrestre, como por ejemplo el levantamiento del batolito de la cordillera blanca, que son consecuencia del movimiento de placas (subducción).

2.1.2. PROCESOS EXÓGENOS

Estos procesos solo se dan sobre la superficie terrestre, también dependen de los procesos atmosféricos o del clima, podemos subdividirlo en agradación y degradación.

Agradación se refiere a la acumulación de sedimentos que traerá consigo la construcción de otros relieves.

Degradación se refiere a la destrucción del relieve mediante la erosión de los materiales debido a diferentes agentes externos como la precipitación, la escorrentía, hielo viento y entre otros.

En la zona de estudio se puede observar la destrucción y formación de unidades geomorfológicas por la acción de las escorrentías y del glaciar, que enmarcan el relieve actual de dicha zona.

2.1.3. PROCESOS BIÓTICOS Y ANTRÓPICOS

Estos procesos son enmarcados por la acción biológica, en el primer caso (proceso biótico) es causado por los seres vivos tanto animales como vegetales. Ej., las raíces de algunas plantas disgregan las rocas, en el segundo caso (proceso antrópico) se dan por la acción del hombre. Ej. Construcción – deforestación.

En este proceso la acción biológica en la zona es mínima, no se cuenta con mucha vegetación y la acción del hombre influye en la recuperación de reservas minerales las cuales son extraídas y alteran la morfología natural, también la acción del hombre se limita a la interacción con depósitos cuaternarios, no generando mucho disturbio en el relieve actual de la zona.

2.2. GEOMORFOLOGÍA REGIONAL

La geomorfología de la zona de estudio está conformada básicamente por la cordillera blanca, la cual genera redes de drenajes que se denominan cuencas, principalmente la zona de estudio se encuentra dentro de la cuenca del rio santa. Morfoestructuralmente forma parte de la Cordillera Occidental y a su vez al sistema plegado de los Andes. (Meléndez, 2008).

2.3. FACTORES GEOMORFOLÓGICOS

2.3.1. FACTOR ESTRUCTURAL

La forma del relieve terrestre depende en buena medida de las estructuras geológicas, es decir, de cómo estén dispuestos los materiales que la componen, el factor estructural en la zona de Potrero tiene bien marcada la topografía actual. Las estructuras rocosas son de dos clases:

Estructuras originales. Son las estructuras que se forman conjuntamente con la formación de las rocas, por los mismos procesos petrogénicos que forman las rocas. Por ejemplo, en las rocas sedimentarias de la formación Chicama la estructura original típica es en forma de estratos.

Estructuras deformadas. Son estructuras alteradas por la aplicación natural de fuerzas dirigidas (esfuerzos) sobre formaciones rocosas preexistentes. Las deformaciones correspondientes alteran la disposición previa de los materiales, que podía ser una estructura de tipo original o ser el resultado de alguna deformación anterior. El prospecto Potrero forma parte de un anticlinorio.

El tectonismo regional ha producido grandes deformaciones durante la Orogenia Andina, generando así plegamientos, fallas, lineamientos, fracturamientos y diaclasamientos.

2.3.2. FACTOR LITOLÓGICO

La litología existente en la zona de estudio consta de una intercalación de rocas sedimentarias intruídas por diques de intrusivo, esta litología variable trae consigo una erosión diferencial ya que los niveles menos competentes (lutitas fisibles) son menos resistentes a la erosión y los niveles más competentes (areniscas) resisten a la erosión formando así crestas o farallones con cambios abruptos en el relieve actual.

2.3.3. FACTOR EROSIONAL

La erosión es un factor muy importante en la modificación del relieve terrestre, la acción del deshielo de los glaciares y lluvias generan escorrentías, ríos erosionando rocas menos competentes y formando valles juveniles. La zona de estudio se encuentra cerca de cerca del nevado Champara, la cual la escorrentía de las aguas erosiona fuertemente a la formación Chicama por ser lutitas y tienden a formar valles juveniles.

2.4. UNIDADES GEOMORFOLÓGICAS

Para definir las unidades geomorfológicas se ha tomado como base el boletín N° 60 (INGEMMET, 1995).

2.4.1. CORDILLERA ORIENTAL

La cordillera Oriental está constituida por montañas formadas en el Paleozoico. La formación de esta cordillera se inicia durante el tectonismo Hercínico (Devónico) sobre un basamento o núcleo precambriano. El levantamiento fue controlado por fallas regionales longitudinales. Esta unidad geomorfológica tiene de sur a norte del Perú un rumbo paralelo a la cordillera Occidental teniendo un fuerte arqueamiento Este-Oeste.

2.4.2. CORDILLERA OCCIDENTAL

La Cordillera Occidental está constituida por un núcleo Paleozoico cubierto por rocas mesozoicas y cenozoicas, deformadas por intenso plegamiento, fallas inversas y grandes sobrescurrrimientos; su presente altura se formó por movimientos epirogénicos hasta el Terciario Tardío y Cuaternario. Se extiende en dirección noroeste-sureste desde la frontera ecuatoriana hasta la chilena. Hacia el oeste limita con las pampas costaneras del océano Pacífico

2.4.3. CUENCA DEL SANTA

Está representada por el terreno de pendiente suave, comúnmente formando terrazas (terrazas de erosión y terrazas de acumulación). Las terrazas de acumulación (gravas y conglomerados) son relativamente abundantes entre el rio Santa y la cordillera blanca.

La etapa valle incluye principalmente al callejón de Huaylas y el curso alto del rio Santa; aunque la parte baja del callejón de Huaylas, esta localmente encañonada. La expresión típica de la etapa de cañón, está ubicada en el cañón del Pato y el curso del Santa, aguas debajo de Huallanca.

2.4.4. CORDILLERA BLANCA

Se le denomina así por las nieves perpetuas que presentan los glaciares, se extienden cerca de 180 km de longitud, desde el nevado de Tuco en el sur hasta las cercanías del nevado Champara en el norte; los que en su gran mayoría se han formado sobre la amplia e irregular masa ígnea de granodiorita que quedo expuesta; llegando a cotas superiores a los 6,000 msnm.

2.4.5. CORDILLERA NEGRA

Llamada así por carecer de nevados y glaciares, presenta altitudes por debajo de los 5,000 metros de altura, la cual tiene una función como "barrera de contención climática" permite que en nuestro país se forme la cordillera tropical de nevados más alta del mundo.

2.5. GEOLOGÍA REGIONAL

Regionalmente el Prospecto Potrero se encuentra en afloramientos de rocas clásticas del Mesozoico. Las rocas más antiguas ocupan gran parte del área y presentan una alternancia de lutitas, limolitas y areniscas que corresponden a la formación Chicama, le suprayace concordantemente rocas silicoclásticas el grupo Goyllarizquizga, y a este grupo le suprayace la formación Pariahuanca constituida por calizas, con intercalaciones de lutitas margosas y calizas arenosas, inmediatamente después se presenta la formación Chulec con calizas, margas y limolitas calcáreas con abundancia en variedad de fauna fósil, hacia la parte superior suprayaciendo a la formación Chulec se tiene la formación Pariatambo que presenta una alternancia de margas, lutitas bituminosas y calizas (ver mapa geológico regional en anexo IV).

Las rocas intrusivas del área de estudio están representadas por granodioritas y tonalitas de grano medio a grueso que corresponderían como parte del Batolito de la cordillera Blanca, además se tiene diques y sills de pórfidos feldespáticos de composición dacítica, dioritas y andesitas en el contexto regional.

2.5.1. FORMACIÓN CHICAMA (Js-Ch)

La formación Chicama presenta predominancia de lutitas Laminares, y piritosas de color gris a gris oscuro con presencia de nódulos ferruginosos que se intercalan con areniscas finas de color gris, que presenta una estratificación laminar milimétrica a centimétrica, con presencia de horizontes de areniscas carbonosas en los niveles superiores; Contienen abundantes nódulos negros, piritosos, algunas veces con fósiles algo piritizados, es común observar manchas blancas amarillentas. Las rocas de la formación Chicama son

blandas, debido a la cantidad de material limo arcilloso que han favorecido el desarrollo de una topografía suave.

Como en otras partes, en la zona de estudio, no se ha visto la base de la formación Chicama, se supone que descansa discordantemente sobre las calizas del grupo Pucará. Su contacto superior es generalmente de aparente conformidad con la formación Chimú, siendo más probable una concordancia.

Por el sector oriental, el intenso disturbamiento sufrido por estas rocas dificulta la exacta estimación de sus grosores sin embargo, en el sector occidental, los estratos están menos deformados excepto donde se presentan algunas intrusiones pequeñas y medianas que distorsionan los estratos, a pesar de lo cual puede estimarse un grosor de 1,000m.

La litología y el alto contenido de pirita en los sedimentos de la formación Chicama, sugieren que el material se deposita en una cuenca anaeróbica, en donde prevalecía un ambiente de reducción. Los sectores donde la formación muestra una coloración rojiza con mayor contenido de areniscas, pueden presentar el borde de esta cuenca, ya que se tiene la seguridad de que los sedimentos Titonianos no se depositaron hacia el este del flanco occidental del Geoanticlinal del Marañón. Por tal razón, los sobreescurrimientos son menos intensos a medida de que se avanza hacia el este del supuesto limite oriental.

Edad y ambiente de sedimentación, En esta formación se encontraron Anmonites Perisphinctes, Berriasella, Aspidoceras, las cuales indicarían una edad Titoniana La formación Chicama es correlacionable con las formaciones, Puente Piedra de la zona de Lima, y con la parte inferior del Grupo Yura en Arequipa (INGEMMET, 1995).

2.5.2. FORMACIÓN CHIMÚ (Ki-Chi)

Esta formación se emplaza como una unidad que cubre grandes áreas del río Chicama, forma farallones en la margen de los ríos. Litológicamente está constituido por cuarcitas, areniscas y limolitas-lutitas con bancos de niveles antracíticos hacia la base

El espesor varía de 150 a 490m. y básicamente comprende dos miembros; el miembro inferior que consiste de areniscas cuarzosas gris claras intercaladas

con limolitas de color beige y presenta horizontes de lutitas gris oscuras carbonosas de naturaleza antracítica, mientras que el miembro superior consiste de paquetes gruesos y macizos de cuarcitas gris blanquecinas con escasa intercalación de limolitas; que básicamente está distribuido en la zona Noreste y Sureste de la zona de estudio, en forma elongada en dirección NW-SE formando generalmente el núcleo de los anticlinales regionales, que constituyen las áreas más prominentes de la zona (en forma de crestas rocosas) debido a su alta resistencia a la erosión por estar constituido de altos porcentajes de cuarzo.

Edad y ambiente de sedimentación, Esta formación suprayace a la formación Chicama (Titoniano) e infrayace a la formación Santa (Valanginiano Superior), por lo tanto se le asignaría una edad Valanginiano inferior a medio; se han observado la presencia de estratificaciones cruzadas en facies de canales en trenza a la base y ligeramente meandriformes hacia el nivel superior, las cuales indicarían un ambiente de deposición deltaico (INGEMMET, 1995).

2.5.3. FORMACIÓN SANTA (Ki-Sa)

Esta formación, hacia la base consiste de calizas grises con nódulos de chert y hacia parte superior hay una alternancia de areniscas y limolitas calcáreas de color gris marrón con cierta silicificación.

El espesor varía entre 100 y 140 m. esta formación suprayace a la formación Chimú e infrayace a la formación Carhuáz, ambos contactos con discordancia paralela; esta formación ha sido cartografiada como Santa-Carhuáz debido a su espesor restringido y en muchos casos a su litología similar; en la área de estudio, según el mapa geológico regional está distribuido en la zonas Noreste y Sureste formando los núcleos de los anticlinales y sinclinales regionales.

Edad y ambiente de sedimentación, en esta formación de han encontrado especies de Buchotrigonias, Paraglauconia Strumbiformes Schloteim, pero estas no diagnostican una edad precisa, sin embargo se le atribuye una edad Valanginiana en base a los fósiles diagnósticos de la formación Carhuáz. (INGEMMET, 1995).

2.5.4. FORMACIÓN CARHUÁZ (Ki-Ca)

Regionalmente, esta formación suprayace a la formación Santa e infrayace a la formación Farrat, pero en la zona de estudio no se ha reportado afloramientos de la formación Farrat, sin embargo se supone que infrayace en forma discordante a la formación Pariahuanca.

Litológicamente consiste de una alternancia de areniscas cuarzosas finas marrón rojizas en capas delgadas con limolitas y lutitas de colores marrón rojizo, gris y beige; su espesor promedio es aproximadamente de 500m; según el mapa geológico regional se le representa como Santa-Carhuaz y con espesores mucho menores (≤ 140m.) y está distribuido en las zonas Noreste y Sureste del área, con forma elongada en dirección NW-SE, formando el núcleo de los anticlinales y sinclinales regionales.

Edad y ambiente de sedimentación, (Benavides, 1956) encontró restos de Valanginitis brogii, que es un fósil característico del Valanginiano superior, en la base de la formación Carhuáz, en el Callejón de Huaylas; y además en los niveles superiores a esta formación en la región de Uchucchacua se ha reportado un Parahoplites lo que señala una edad del Albiano inferior. Por lo tanto la formación Carhuáz correspondería al Valanginiano superior a Aptiano. La presencia de escasos niveles carbonatados, de pelecípodos y raros bivalvos con abundante bioturbación por anélidos nos ubicaría en un paisaje de costas pantanosas cortado por escasos canales meandriformes. (INGEMMET, 1995).

2.5.5. FORMACIÓN PARIAHUANCA (Ki-P)

Esta formación hacia la base está constituida por calizas de color marrón con alternancia de lutitas margosas y calizas arenosas con niveles de laminación ondulada que corresponden a la estructura sedimentaria tipo flaser bedding. Teóricamente suprayace a la formación Farrat, pero en la zona de estudio no se han observado afloramientos de la formación Farrat, debido a ello se supone que suprayace en forma discordante a la Formación Carhuáz e infrayace a las calizas margosas de la formación Chulec. El espesor en la zona de estudio varía entre 65 y 100m. aproximadamente.

Edad y ambiente de sedimentación, (Benavides, 1956) encontró un fragmento de Parahoplites, género que caracteriza a la edad Albiana-Aptiana, además se le correlaciona con la formación Inca del Albiano inferior y por lo tanto se le considera de la misma edad.

Las estructuras sedimentarias presentes tales como flaser bedding y lenticular bedding asociado a ondulaciones de corrientes indicarían facies de borde de plataforma en ambiente tidal.

2.5.6. FORMACIÓN CHULEC (Ki-Ch)

Esta formación en la zona de estudio, teóricamente suprayace a la formación Pariahuanca e infrayace a la formación Pariatambo en forma concordante. Litológicamente está constituido por paquetes medianas a delgadas de calizas, margas y limolitas calcáreas con abundancia de fauna fósil. El espesor de esta Formación aproximadamente varía entre los 50 a 120m.

Edad y ambiente de sedimentación, por la presencia de Parahoplites en la parte basal de la Formación y por otro lado la abundancia de especies como los anmonites Knemiceras, Parengonoceras y Douvilleiceras, indicarían una edad Albiano medio. (INGEMMET, 1995).

En cuanto al ambiente de sedimentación, la abundancia de horizontes margosos indicaría una zona distal de una plataforma carbonatada.

2.5.7. FORMACIÓN PARIATAMBO (Ki-P)

Esta formación está constituida por una alternancia de margas, lutitas bituminosas y calizas, cuyo espesor varía entre 100 a 150m. la cual suprayace a la formación Chulec en forma concordante e infrayace a los depósitos clásticos recientes.

De manera local en algunas zonas de la región esta Formación ha sido subdividida en dos miembros; en donde el miembro inferior consiste de una intercalación de calizas y lutitas bituminosas negras, mientas que el miembro superior está compuesto por una alternancia de calizas nodulares y margas bituminosas negras. Pero en la zona de estudio ha sido cartografiado junto con las formaciones Pariahuanca y Chulec, debido a su restringido espesor.

Edad y ambiente de sedimentación, presenta una fauna exclusivamente pelágica de Oxytropidoceras, Diploceras, Lyelliceras y Venezoliceras, mientras la fauna bentónica se restringe a Inoceramus y Exógyra. (INGEMMET, 1995).

2.5.8. DEPÓSITOS CUATERNARIOS

Cubriendo gran parte de todas las unidades litoestratigráficas antes mencionadas, se encuentran los depósitos clásticos recientes, constituidos por los depósitos Fluvioglaciares, morrénicos, coluviales y fluvioaluviales.

Los depósitos fluvioglaciares están restringidos al fondo de las quebradas constituido por gravas, arenas y limos; presentan una débil compactación.

Los depósitos morrénicos están ubicados al pie de zonas glaciares y en las quebradas circundantes a estas últimas.

Los depósitos coluviales cubren gran parte de la superficie puna y las faldas de los cerros, que en muchos casos son terrenos fértiles.

Los depósitos fluvioaluviales están ubicados en las partes bajas, como producto de material transportado por el agua de la lluvia y los ríos, las cuales se forman en los bordes de los ríos como terrazas y que son muy útiles para la agricultura.

2.5.9. ROCAS INTRUSIVAS

Regionalmente en la zona de estudio se encuentran rocas intrusivas de composición granodiorítica a tonalítica de grano medio a grueso, generalmente con textura porfirítica, con presencia de fenocristales de plagioclasas, escasos ferromagnesianos (hornblenda, biotita) y presencia de ojos de cuarzo menor al 10%, todos englobados en una matriz silícea y con desarrollo de foliación en algunos sectores; estos intrusivos son considerados como parte del Batolito de la Cordillera Blanca.

Además hay presencia de afloramientos de diques y sills de pórfidos feldespáticos, de composición dacítica, cuarzo diorítica, diorítica y andesítica; las cuales generalmente tienen un rumbo preferencial NW-SE y con espesores que varían entre 10 y 50 metros aproximadamente, pero la escala del mapa geológico regional no aparecen en la misma y están distribuidas generalmente

Universidad Nacional del Altiplano

en la zona Noreste del cuadrángulo de Corongo y a ellas están asociadas las principales sistemas de mineralización de tipo pórfido Cu-Mo.

Estructuralmente, en los intrusivos se observan hasta tres sistemas principales de diaclasas, un sistema con rumbo NW-SE, otro sistema de rumbo aproximado NE-SW; ambos sistemas con buzamientos subverticales y además un tercer sistema con rumbo aproximado E-W y con buzamiento subhorizontal, en donde los dos primeros sistemas generalmente están asociados a sistema de fallas regionales.

COLUMNA ESTRATIGRÁFICA REGIONAL							
-	(Prospecto Potrero)						
ERA	SISTEMA	SERIE	UNIDAD LITOLÓGICA		Esp. (m)	LITOLOGÍA	DESCRICIÓN LITOLÓGICA
020100	CUATERNARIO	HOLOCENO PLEIST.	Depósitos coluviales Depósitos fluvioglaciares Depósitos morrénicos				Depósitos limo-arcillosos con clastos polimícticos y subangulosos. Depósitos no consolidados de gravas englobados en matriz limosa. Depósitos conglomerádicos con clastos redondeados y emplazados en las márgenes de las quebradas
Z	NEÓGENO		-				
ш	PALEÓGENO	GENO					
O			Fm.	Pariatambo	150		Alternancia de margas, lutitas bituminosas y calizas nodulares.
		INFERIOR	Fm.	Chulec	120		Calizas arenosas, margas y lutitas calcareas.
							Calizas marrones con alternancia de lutitas
	ËO		⊢m.	Pariahuanca	100		margosas y calizas arenosas.
			INFERIOR	Fm. Carhuaz	500		Intercalación de areniscas cuarzosas marrón rojizas con limolitas y lutitas de colores beige y gris respectivamente.
0	AC		aris	2	5		Calizas grises con nódulos de chert hacia la
\overline{O}	Ξ		oyll	Fm. Santa	140		base y alternancia de areniscas y limolitas
MESOZO	CR	CR	Grupo G	Fm. Chimú	490		Intercalación de cuarcitas, areniscas, limolitas y lutitas; con paquetes gruesos de cuarcitas en el nivel superior y horizontes de lutitas carbonosas en el nivel inferior.
	JURÁSICO	SUPERIOR	Fm. Chicama		500		Intercalación de lutitas gris oscuras laminares y deleznables con areniscas grisaceas de grano fino y horizontes limolíticos. Tonalita/granodiorita

Figura N° 1: Columna estratigráfica regional (Modificado de "Memoria explicativa del mapa geológico del Perú" Boletín N° 136-INGEMMET-Marzo 2000).

2.6. TECTÓNICA

La zona de estudio está controlado principalmente por la tectónica de convergencia de placas, a consecuencia de la subducción oblicua de la placa de nazca y la sudamericana. El responsable de la evolución del ciclo andino seria el rifting activo iniciado en el Paleozoico (Zappetini et al, 2001).

La zona de estudio se encuentra ubicada dentro del dominio geotectónico del mesozoico representado por pliegues y fallas inversas con tendencia general NW-SE que afectan a los sedimentos, es decir un dominio sedimentario (Dúctil-frágil) y que han servido como zonas de debilidad para el emplazamiento de rocas intrusivas y por consiguiente de cuerpos mineralizados. Por otra parte en este dominio Jurásico-Cretáceo se ubican varios yacimientos metálicos de gran trascendencia, entre las más destacadas Tenemos: Antamina, Pierina, Magistral, Lagunas Norte, Michiquillay, El galeno, etc. y algunos proyectos avanzados como: Águila, Santa Rosa, Racaycocha, Melchora, Purísima y otros (ver mapa de dominios tectónicos en anexo IV).

2.6.1. CICLOS OROGÉNICOS ANDINOS

2.6.1.1. Fase Peruana (Cretáceo superior)

Se estima una edad de 65-70 Ma (Steinman, 1927) en la cual se producen amplios plegamientos y fallamientos con rumbo NW-SE en rocas mesozoicas representadas por el Grupo Pucará, Grupo Goyllarisquizga, y las formaciones Chicama, Chulec y Pariatambo del Centro y Norte del Perú, además en esta fase tectónica se tuvo el emplazamiento de grandes porciones del batolito de la costa.

2.6.1.2. Fase Inca (Eoceno)

Se estima una edad de 40 Ma (Steinman, 1927), en la cual se producen perturbaciones locales que culminan en el Eoceno superior con fuerte deformación compresional, Se genera imbricamiento a lo largo de fallas inversas de alto ángulo, esta fase está asociada a vulcanismo continental formando el grupo Calipuy inferior en el Norte, Rimac-Sacsaquero en el Centro y Tacaza en el Sur.

Las estructuras tienen una orientación NW - SE, habiendo originado la compresión plegamientos apretados, que están en función a la litología afectada. El acortamiento producido ha sido en dirección E - W.

2.6.1.3. Fase Quechua (Mioceno)

Es el responsable de la formación y diseño definitivo de la cordillera de los andes. Se estima una edad de 20-5 Ma, en esta fase se producen fallas compresivas en menor grado a comparación de la fase Inca y también fallas de rumbo (Noble y McKee, 1985).

Las secuencias volcánicas y volcano-sedimentarias discordantes entre sí y cuyas edades comprenden el rango Eoceno hasta Plioceno están afectadas por 3 subfases de deformación (Soulas 1977, Mégard et al. 1984, 1985), cuyos acortamientos tienen el siguiente rumbo:

Primero: NE - SW probablemente en el Mioceno inferior (14-19 Ma.).

Luego: N–S, NE-SW probablemente en el Mioceno medio - superior (9-10 Ma.).

Finalmente: E - W probablemente en el Mioceno superior (5-7 Ma.).

a) Fase Quechua I

Es compresiva formando pliegues más abiertos y fallamientos reactivados se hace presente a través de la deformación que causa a las formaciones Tantará, Sacsaquero y Castrovirreyna. Las edades para este evento oscilan entre 19 -14 Ma. (Mégard et al. 1984, 1985).

En esta fase, se produce un acortamiento N45°E y S45°W dando origen a plegamientos con la orientación NW - SE, así, como fallamientos a lo largo de la cordillera Occidental. Esta fase de tectónica compresiva está seguida por un amplio levantamiento y erosión, resultando en una superficie Puna (Mégard 1984).

b) Fase Quechua II

Esta fase tectónica, determinada en 9-10 Ma. (Mégard et al. 1984, 1985), afecta a la Formaciones Castrovirreyna en el centro, en el norte se tiene una

fase compresiva en Mioceno medio a superior, produciendo etapas de esfuerzos compresivos con direcciones NE-SW generando fallamiento inverso y afectando a rocas jurásicas y cretáceas inferiores (Noble y Mckee, 1999).

La dirección de los esfuerzos de la intensa compresión presenta un acortamiento en las altas mesetas de dirección N-S y de N45°E - S45°W en la Cordillera Occidental con movimientos dextrales, fracturamiento y en partes replegamiento de los pliegues producidos en la primera fase.

El inicio del volcanismo del Grupo Huachocolpa (formaciones Caudalosa y Apacheta) es contemporáneo y probablemente vinculado a esta fase tectónica.

Esta fase termina con la deposición del volcánico Huambo (9-5 Ma) es realmente la faja plegada y sobreescurrida Subandina, que originalmente se pensó era principalmente de la edad Miocénica tardía.

c) Fase Quechua III

Es el resultado de la deformación episódica que involucró las tres fases de deformación Quechua como lo sugiere la deformación de las molasas asociadas (Alemán y Marksteiner, 1997). Desde tiempos del Plioceno, los Andes se levantaron por lo menos 3,000 metros. La Faja Plegada y Sobreescurrida del Subandino continúa su propagación al antepaís. Sin embargo el alto andino y las tierras bajas del Pacífico experimentaron fallas de rumbo e inversión de fallas (Sébrier y Soler, 1991).

Esta fase conocida también como Quechua tardía, se da en el límite del Mioplioceno determinada entre 5-7 Ma., (Mégard et al. 1984, 1985) con una dirección de acortamiento E-W, originando pliegues asimétricos, sobreescurrimientos y fallas de dirección andina, también ocurren fallas conjugadas transversales a la dirección andina.

2.7. GEOLOGÍA ESTRUCTURAL REGIONAL

El Prospecto Potrero se encuentra en un corredor estructural controlado por fallas inversas, fallas transcurrentes y plegamientos que deformaron sedimentos del mesozoico, a consecuencia de la tectónica y sus fases orogénicas los sedimentos sufrieron múltiples deformaciones ocasionando

condiciones favorables para el emplazamiento de magmas profundos y soluciones hidrotermales.

Dentro de este corredor estructural conformado por las fallas regionales principales como SFCh (Sistema de fallas Chonta), SFCB (Sistema de fallas Cordillera Blanca); destacan grandes unidades mineras además de proyectos de exploración de gran envergadura (ver mapa de dominios tectónicos en anexo IV).

El sistema de fallas de la cordillera blanca tienen dirección de rumbo andino del tipo normal, con buzamiento al W y sigue activa (Schwartz, 1988; Farber et al., 2000), esta falla es del tipo detachment (McNulty y Farber, 2002), que tiene varios cientos de metros de desplazamiento, con movimientos sinestrales y normales.

El sistema de fallas chonta tiene dirección de S45°E con buzamientos 60°-80°SW del tipo inverso sinestral y afectan a sedimentos del mesozoico.

2.8. PROSPECCIÓN Y EXPLORACIÓN MINERA

Se llama prospección a la búsqueda de anomalías minerales: se prospecta una región para encontrar yacimientos (Kreiter V.M., 1968). Se hace en base a mapas de distinto tipo, fotografías aéreas, imágenes satelitales, antecedentes mineros, geológicos, geofísicos, geoquímicos, catastrales, económicos, etc. La prospección puede hacerse de distintas maneras y con diferentes técnicas, de acuerdo al tipo de yacimiento que se busque: prospección geológica, recopilación de antecedentes, uso de fotografías aéreas e imágenes satelitales, trabajos de campo, observaciones directas, tóma de muestras, análisis y ensayos, uso de planos y perfiles, prospección geoquímica, geofísica.

La exploración es el conjunto de operaciones o trabajos dirigidos a evaluar cualitativa y cuantitativamente el recurso minero con el objeto de definir la factibilidad técnico-económica de la explotación de un yacimiento. La exploración está enfocada en un reconocimiento detallado del depósito mineral. (Hartman H., 1987). Se lleva a cabo mediante labores mineras superficiales (calicatas, pequeños pozos, etc.) y labores subterráneas (pozos profundos o

piques y túneles) con las cuales se reconoce el cuerpo mineral en sus tres dimensiones.

2.9. FUERZA Y ESFUERZO

La fuerza es aquella que tiende a producir un cambio en el estado de reposo o movimiento uniforme de un cuerpo, los efectos que se produce por la fuerza es que se deforme un cuerpo.

Cuando se habla de esfuerzos se hace referencia a la fuerza aplicada a un área determinada de roca. En la naturaleza, según la dirección de las fuerzas aplicadas, el esfuerzo puede reconocerse en tres variedades; la compresión, la tensión y la cizalla (García, 2012).

La compresión es el esfuerzo al que son sometidas las rocas cuando se comprimen por fuerzas dirigidas unas contra otras a lo largo de una misma línea. Cuando los materiales se someten a este tipo de esfuerzos, tienden a acortarse en la dirección del esfuerzo mediante la formación de pliegues o fallas según que su comportamiento sea dúctil o frágil.

La tensión es el resultado de las fuerzas que actúan a lo largo de la misma línea pero en dirección opuesta. Este tipo de esfuerzo actúa alargando o separando las rocas.

La cizalla es el esfuerzo en el cual las fuerzas actúan en paralelo pero en direcciones opuestas, lo que da como resultado una deformación por desplazamiento a lo largo de planos poco espaciados

2.10. DEFORMACIÓN

Deformación es un término general que se emplea para referirse a cambios en la forma y/o volumen que pueden experimentar las rocas. Como resultado del esfuerzo aplicado, una roca puede fracturarse o deformarse arrugándose. La deformación se produce cuando la intensidad del esfuerzo es mayor que la resistencia interna de la roca. Las condiciones y ambientes de deformación de las rocas son muy variados, ya que pueden encontrarse desde niveles muy superficiales hasta los 40 kilómetros de profundidad (García, 2012).

2.11. ESPECTROMETRÍA (TERRASPEC)

La espectrometría es la técnica espectroscópica para tasar la concentración o la cantidad de especies determinadas; el espectro infrarrojo de absorción, reflexión o de emisión de un mineral es una característica única del mismo, por eso el espectro puede dar la fórmula estructural sin tener los datos del análisis químico. Los análisis cualitativos de una sustancia desconocida (por ejemplo, mineral) pueden hacerse en general sin conocer los detalles de la interacción entre la energía infrarroja y una muestra, utilizando este método realizan también el análisis semicuantitativo de los minerales y sus mezclas.

Como primer paso se toman las lecturas las cuales deben de ser debidamente codificadas así como las muestras para evitar posibles confusiones; a continuación se corrigen las lecturas por el salto detectado entre el espectro visible y el infrarrojo cercano.

Con las lecturas listas para su interpretación se procede a revisar la forma del espectro. Se revisa el número de rangos de absorción apreciables en el espectro tomando muy en cuenta los picos y las ondulaciones y se observa si estos tienen partes curvilíneas o rectas. Se toma en cuenta que lo que se lee es el punto de una roca con varios minerales lo que se traduce en una lectura con un espectro compuesto la cual siempre tendrá ligeras variaciones respecto a los espectros de la biblioteca de los programas de análisis utilizados.

Las arcillas siempre tienen muchos elementos huésped por su característica física de permeabilidad y porosidad por lo que se tendrán algunos espectros aún más confusos y discordantes con nuestros espectros de biblioteca. Además se tiene que el agua es un elemento que puede variar los espectros "suavizando" los picos y dando lecturas erróneas.

La espectrometría en este trabajo constituye una herramienta muy versátil y muy importante para la mineralogía principalmente de filosilicatos (arcillas). La importancia se da en la reflectancia y las absorciones, con espectros con formas de picos y valles algunas más angostas y otras más amplias (rango de absorción).

Figura N° 2: Interacción partícula y longitud de onda.

2.12. ESTUDIOS GEOQUÍMICOS

Se ha realizado el muestreo geoquímico en rocas para determinar anomalías geoquímicas. El muestreo en el prospecto se realizó de manera sistemática e irregular, utilizando los siguientes métodos:

Muestreo por Chip, es el método más sencillo; este muestreo es muy usado en los depósitos pórfidos de cobre donde se obtiene muestras a partir de mallas previamente elaboradas, en el prospecto Potrero se ha elaborado una malla de 50x50m para realizar un muestreo sistemático e irregular y obtener muestras de 2.5 a 3kg, se realiza la descripción de la muestra, se apunta las coordenadas y se codifica.

Muestreo por Canales, este método consiste en cortar una ranura rectangular a través de toda la estructura mineralizada, para obtener una muestra de un determinado peso de acuerdo a la longitud del canal, este método fue utilizado para muestrear las vetas del prospecto.

2.12.1. ANÁLISIS GEOQUÍMICO

Para el análisis geoquímico se utilizó el método de Fluorescencia de rayos X (XRF), en la cual la radiación primaria promueve la salida de electrones atómicos desde los niveles electrónicos internos; a medida que los electrones

de niveles más externos caen a los niveles internos vacantes se emiten radiación X secundaria.

Esta técnica se basa en la excitación de una muestra por rayos-X. Los rayos-X primarios excitan rayos-X secundarios que tienen longitudes de onda características para el elemento presente en la muestra. La intensidad de los rayos-X secundarios se utiliza para estimar la concentración del elemento, comparándola con la de un estándar de composición química conocida. En este caso, la materia analizada está en forma de polvo prensado para los elementos traza o como perla fundida con metaborato de litio para el análisis de los elementos mayores. Esta técnica que no necesita de la puesta en disolución de la muestra, está altamente automatizada y permite análisis de gran precisión en elementos mayores y numerosos elementos traza, se caracteriza por:

- Es un análisis no destructivo, ya que la medida de elementos químicos no necesita destrucción previa de la muestra.
- No se necesita realizar ningún tratamiento (ni físico ni químico) previo a la muestra.
- Se puede realizar las medidas en condiciones de vacío o incluso en condiciones atmosféricas.

Posibilidades de análisis

- Análisis cualitativo (identificación de elementos químicos presentes en la muestra).
- Análisis semi-cuantitativo (determinación de las concentraciones de elementos químicos presentes en la muestra) sin necesidad de utilizar standards.
- Análisis cuantitativo, utilizando standards específicos a la naturaleza del problema a analizar.

2.13. VETILLAS

2.13.1. VETILLAS TIPO M

Fue el primer sistema de vetillas que fue emplazada, se presentan por lo general cuando están las vetillas tipo A y EB en los intrusivos tempranos (fase 1) de la etapa tardimagmática o potásica. Las vetillas tipo M, en conjunto conforman lo que se conoce como zona de alteración potásica biotítica típica para pórfidos ricos en oro, en donde tenemos un aumento importante de magnetita, superando el 10% en volumen, indicativo de un estado de oxidación con fuertes razones fo2/fs2 (Sillitoe & Gappe 1984), y siendo el contenido de feldespato potásico significativamente menor.

2.13.2. VETILLAS TIPO EB

Son vetillas irregulares con espesores menores a 10mm, están constituidas principalmente por biotita ± cuarzo acompañada algunas veces con variable albita, feldespático potásico, actinolita, apatito, andalusita, corindón, cordierita, ilmenita y esfeno, puede contener mineralización de bornita, calcopirita y pirita.

2.13.3. VETILLAS TIPO A

Son vetillas muy comunes en zonas donde existe alteración potásica biotítica pervasiva, están constituidas por cuarzo granular. Se caracterizan por ser sinuosas y discontinuas, sin halo de alteración, indicando equilibrio con los intrusivos que las contienen, deduciendo de esta manera que los magmas asociados se encontraban en estado plástico, al momento de formación de estas no totalmente cristalizados, siendo este comportamiento anterior al proceso de fracturamiento frágil (Fournier, 1999), donde se emplazaran las vetillas que las procederán. En ocasiones contienen Pirita, Calcopirita y Magnetita en la vetilla siendo el cuarzo siempre el principal componente.

2.13.4. VETILLAS TIPO B

Vetillas que evidencian los efectos retrógrados causados, por el descenso de la temperatura y la incorporación de fluidos meteóricos al sistema (Gustafson y

Hunt, 1975). Se presenta con sutura de sulfuros principalmente (calcopiritapirita-molibdenita), corta a las vetillas tipo A y EB.

2.13.5. VETILLAS TIPO D

Se caracterizan por desarrollarse a manera de finas vetillas (máx. 2mm de diámetro) continuas, se observa como vetillas finas con óxidos de fierro por alteración de la Py. Una característica de estas vetillas es su sobreimposición a las fases de alteración precedentes (telescoping), es decir, en zonas de vetillas de mayor temperatura. Algunas veces suelen aparecer con halos sericíticos.

Figura N° 3: Esquema de vetilleo típico para depósitos porfiríticos. (Sillitoe 2000).

2.14. LOS SISTEMAS PORFIRÍTICOS DE CU (MO-AU)

Los sistemas porfiríticos son denominados de esta manera debido a que están asociados con rocas ígneas intrusivas con fenocristales de feldespatos en una masa fundamental cristalina de grano fino (Maksaev, 2004), están relacionados genéticamente y espacialmente con intrusiones ígneas félsicas, por lo general múltiples cuerpos de rocas intrusivas emplazadas en varios pulsos y frecuentemente asociados con enjambres de diques y brechas.

Los pórfidos cupríferos constituyen un grupo muy variado de depósitos minerales y con una amplia diversidad de características, por lo que quizás deberían ser analizados caso a caso (Hunt, 1991), pero estos grandes depósitos minerales también comparten muchos rasgos comunes lo que ha permitido realizar varias generalizaciones y el desarrollo de modelos empíricos (Lowell y Gilbert, 1970).

Los pórfidos de Cu (Mo-Au) se han formado centrados en intrusivos porfiríticos con diámetros que van desde 100 metros hasta unos pocos kilómetros de diámetro, los cuales son apófisis sobre cúpulas de plutones félsicos a intermedios más profundos (Sillitoe, 1996). Típicamente dentro de los sistemas de pórfido Cu existen varias fases de intrusión y las más tempranas tienden a poseer las leyes más altas. Las rocas de caja también hospedan la mineralización en depósitos de tipo pórfido cuprífero, los intrusivos como la roca de caja muestran típicamente un fracturamiento intenso y pervasivo, la mineralización y alteración se presenta tanto en los intrusivos cómo en la roca caja.

Constituyen un grupo variado de depósitos minerales con una amplia diversidad de características, son depósitos grandes, de baja ley y gran tonelaje.

Su ocurrencia está relacionada a un ambiente tectónico-magmático constituido por arcos vulcano-plutónicos calco-alcalinos de tipo arco-isla o margen continental activo relacionados con fenómenos de subducción (Oyarzun y Frutos, 1974; Sawkins, 1984).

Figura N° 4: Franjas de pórfidos cupríferos en el mundo y su relación con la tectónica global y cadenas de plegamiento (Sawkins, 1984).

2.14.1. ALTERACIONES HIDROTERMALES EN PÓRFIDOS

Se entiende como proceso de alteración hidrotermal al intercambio químico ocurrido durante una interacción fluido hidrotermal-roca.

Esta interacción conlleva cambios químicos y mineralógicos en la roca afectada producto del desequilibrio termodinámico entre ambas fases. En estricto rigor, una alteración hidrotermal puede ser considerada como un proceso de metasomatismo, dándose transformación química y mineralógica de la roca original en un sistema termodinámico abierto (Townley, B. 2001).

La alteración hidrotermal puede ser definida como la conversión de una asociación mineral original en una nueva asociación mineral que es más estable bajo las nuevas condiciones de presión y temperatura y sobretodo con respecto a la composición de un fluido hidrotermal que atraviesa la roca, las texturas y estructuras originales pueden estar ligeramente o completamente modificadas (Fontboté L., 1998).

Los procesos de alteración hidrotermal y mineralización de los sistemas porfiríticos de Cu de los Andes de Perú y Chile han sido bien descritos por (Camus, F., 2003), quien resume estos procesos en las siguientes etapas:

Figura N° 5: Modelo idealizado del desarrollo evolutivo de la alteración hidrotermal en yacimientos tipo pórfido cuprífero (Oyarzun, J. 1991).

2.14.1.1. Etapa Tardimagmática

Llamada también potásica está asociada al emplazamiento de intrusivos portadores de la mineralización de cobre en los sistemas porfiríticos (Gustafson y Hunt, 1975). Se produce en condiciones de equilibrio con el magma fuente, bajo condiciones de temperaturas superiores a 300°C a partir de fluidos altamente salinos, con altas razones de K⁺/H⁺ y en un régimen de alta fugacidad de oxígeno y actividad de azufre (Beane y Titley, 1981).

La paragénesis que caracteriza a la alteración potásica son feldespato potásico, biotita y anhidrita, que reemplaza a los feldespatos minerales máficos y rellena vetillas tipo B y A (Gustafson y Hunt, 1975). Ocasionalmente con rutilo y magnetita. La bornita y calcopirita son los principales minerales responsables de fijar el cobre.

Los sistemas porfiríticos ricos en oro muestra una asociación de minerales similar pero el contenido en feldespato potasico es significativamente menor, sin embargo aumenta significativamente su contenido en magnetita (Sillitoe y Gappe, 1984; Perello y Cabello, 1989; Vila y Sillitoe, 1991).

Contemporáneo a la alteración potásica, se desarrolla hacia sus márgenes una fase de menor temperatura que constituye un halo externo denominado alteración propilítica constituida por clorita, epidota, carbonato y pirita, ocasionalmente albita, magnetita y hematita especular. Generalmente define los límites externos de los sistemas porfiríticos.

Cuando los fluidos asociados a la alteración potásica entran en contacto con rocas carbonatadas, las reacciones químicas producidas desarrollan en los contactos rocas corneanas o skarn con asociaciones mineralógicas del tipo prógrado con granate, clinopiroxenos y magnetita (Camus, 2003).

2.14.1.2. Etapa Transicional

Constituye una fase de alteración intermedia entre la etapa tardimagmática y las etapas hidrotermales posteriores (Gustafson y Hunt, 1975). Ocurre al cristalizar los intrusivos consecuentemente las condiciones de presión y temperatura han disminuido. En esta etapa se observan las primeras evidencias de efectos retrógrados causados por el descenso de la temperatura y la incorporación de flujos de agua meteóricas al sistema (Sheppard y Gustafson, 1976; Skewes y Atkinson, 1985).

Durante esta etapa hay introducción de cobre pero es la mineralización de molibdeno la que pasa a ser importante. Esta etapa está caracterizada por presentar una brusca caída en la temperatura y presión lo que contribuye con la depositación de sílice, ya que su solubilidad decrece a casi cero bajo los 250°C tiene su mejor desarrollo en la parte superior de los complejos intrusivos siendo el origen de los fluidos también magmáticos aunque los halos sericíticos indican la participación en algunos casos de aguas meteóricas.

2.14.1.3. Etapa Hidrotermal Principal

Es conocida también como fase fílica o cuarzo - sericítica, se desarrolla en la medida en que los fluidos hidrotermales migran desde el magma fuente y comienzan a enfriarse bajo condiciones de alta actividad de S_2 , baja fugacidad de O_2 y baja razón K⁺/H⁺ comparada con las etapas anteriores. Bajo estas

Universidad Nacional del Altiplano

condiciones la textura original de la roca afectada es destruida casi por completo (Camus, 2003).

La paragénesis está caracterizada por la asociación de cuarzo, sericita, pirita con proporciones menores de calcopirita, bornita, enargita, esfalerita y galena. En forma local se presenta anhidrita, turmalina y rara vez carbonatos (Camus, 2003).

En los depósitos que presentan desarrollo de skarn la alteración hidrotermal principal se presenta como una fase de tipo retrograda con minerales hidratados como actinolita además de cuarzo, magnetita, carbonatos, clorita, epidota y pirita (Camus, 2003).

Esta alteración está caracterizada porque puede profundizar sus efectos en forma importante sobreponiéndose a las fases de alteración precedentes (telescoping) hasta el extremo de reemplazarlas casi totalmente. Su origen se asocia a procesos físicos y químicos relacionados con la separación por enfriamiento, a partir de fluidos generados en condiciones supercríticas de dos fases líquida y vapor, que producen aumento de volumen con el incremento en el fracturamiento y la formación de chimeneas de brecha (Tosdal y Richards, 2001).

Durante esta fase además se incorpora mineralización de cobre aunque en un volumen relativamente menor comparado con lo que se introduce durante las fases tempranas precedentes.

2.14.1.4. Etapa Hidrotermal Tardía

Es la última fase de alteración hidrotermal que afecta a los sistemas porfiríticos y se la conoce como alteración argílica avanzada (Sillitoe, 1996) reconoció que las zonas de alteración argílica avanzada forman recubrimientos de rocas alteradas o "lithocaps" sobre los sistemas porfiríticos a lo largo de distintos distritos mineros en el mundo y representa la expresión superficial de los pórfidos de cobre, oro molibdeno y estaño.

La fase hidrotermal tardía se produce por la acción de fluidos muy ácidos y relativamente oxidados y rocas ubicadas en el ambiente subvolcánico (Sillitoe, 1996). Las estructuras de alto ángulo y los patrones de fracturamiento actúan como conductos para el ascenso de los fluidos los cuales son ricos en HCl y SO₂ lo que produce en el fluido un pH bajo que va de 0 a 1 y origina en una extensa lixiviación de tipo ácido en las rocas afectadas (Hedenquist, 1987).

Figura Nº 6: Zonación de alteración y mineralización (Lowell y Gilbert, 1970).

2.14.1.5. Tipos de Alteraciones

Es el resultado de la interacción de fluidos de origen magmático y de aguas de origen formacional o meteóricas (Camus, 2003), presentándose tanto en la roca caja como en el pórfido, son importantes ya que estas, como su nombre nos indica, nos reflejan el ambiente hidrotermal de su generación (Allen et al. 1996). Su morfología, distribución y mineralización se encuentra en función de cantidad de variables como son los controles estructurales, la litología, evolución magmática, permeabilidad, disponibilidad y distribución espacial de los fluidos (Camus, 2003).

a) Alteración Potásica – Biotítica

Esta alteración se produce por un intercambio catiónico con Potasio. Ej.: reemplazo de cationes de Ca²⁺ y Na⁺ por K⁺ en solución, en la superficie de minerales. Este tipo de alteración representa el estado primario de la formación

del depósito, por ello es la zona que tuvo la mayor temperatura en los depósitos porfiríticos. Está estrechamente relacionada al emplazamiento de intrusivos portadores de la mineralización de Cu, Au en los sistemas porfiríticos (Gustafson y Hunt, 1975; Sillitoe, 2000). Los minerales característicos son Biotita, feldespato potásico, magnetita y como minerales asociados tenemos al cuarzo, albita, muscovita, anhidrita, epidota.

Es un evento que se produce, inicialmente en condiciones de temperatura superiores a 300°C y pH neutro a alcalino, a partir de fluidos altamente salinos (menor 35-40% en peso equivalente de NaCl) con altas razones K/H y en un régimen de alta fugacidad de oxígeno y actividad de azufre (Beane & Titley 1981).

Las reacciones de formación de feldespato potásico y biotita son las siguientes:

Formación de feldespato potásico secundario: Plagioclasa + K⁺ -> feldespato potásico + (Na⁺, Ca²⁺) Formación de biotita secundaria: Hornblenda + (H⁺, Mg²⁺, K⁺) -> biotita + (Na⁺, Ca²⁺)

b) Alteración Fílica

Ambos feldespatos (plagioclasas y feldespato potásico) transformados a sericita y cuarzo secundarios, con cantidades menores de caolinita. Normalmente los minerales máficos también están completamente destruidos en este tipo de alteración. Es el resultado de una hidrólisis moderada a fuerte de los feldespatos, en un rango de temperatura de 300°-400°C y en un rango de pH 5 a 6.

La reacción de formación de sericita es la siguiente:

Sericitización del feldespato potásico: 3 KAISi₃O₈ + 2H⁺ --- KAI₃Si₃O₁₀(OH)₂ + 6 SiO₂ + 2 K⁺

A temperaturas más bajas se da illita (200°-250°C) o illita-esmectita (100°-200°C). A temperaturas sobre los 450°C, corindón aparece en asociación con sericita y andalucita.

c) Silicificación

Se trata de una alteración de fuerte temperatura, proximal, en la cual se presenta adición de Sílice, lixiviación de Álcalis y lixiviación de Aluminio. Los minerales característicos son Cuarzo, Calcedonia y Jaspe, aunque en ocasiones la sílice no presenta estructura definida.

2.15. FILONES

La formación de filones tiene características muy peculiares, por lo que su génesis es muy compleja, ya que está ligada íntimamente a las estructuras geológicas (fallas y fracturas), este tipo de estructuras condiciona en la formación de este tipo de yacimientos.

El desplazamiento de las soluciones hidrotermales desde su origen hasta el lugar de deposición, depende de gran manera de las aperturas que se hallan dispuestas en la rocas, Se afirma que la fuerza de cristalización de los cristales al adquirir grosor puede separar también como una cuña las paredes de una grieta y practicar una fisura más amplia. Los cristales en proceso de crecimiento ejercen, efectivamente, una decidida presión dentro de los límites de su fuerza sobre las substancias de alrededores a los mismos pero parece muy dudoso que esta fuerza sea lo suficiente para formar fisuras, salvo en rocas ligeras que estén cerca de la superficie.

2.15.1. SOLUCIONES MINERALIZANTES

Los constituyen aquellas concentraciones minerales que se forman a partir de soluciones acuosas calientes, con una temperatura que oscila entre los 400°C. El origen de las aguas va a ser magmática, son aguas connatas, embebidas en los sedimentos, de tipo meteórico, aguas juveniles.

Estos elementos metalogénicos (Cu, Pb, Zn, Ag), van a ser fluidos y en un momento determinado, aprovechando los espacios porosos por los que circulan se produzca un cambio en las condiciones de presión, temperatura o bien de pH, precipitan los elementos metalogénicos, y dan así origen a los filones y brechas. Por otro lado, estos fluidos calientes, producen una alteración hidrotermal que ayudará a su prospección.

2.15.2. FALLAS Y FISURAS

Los filones tienen la particularidad de tener como agente principal el tectonismo, porque gracias a este proceso se forman fisuras y fallas preminerales, que son aperturas tabulares continuas en las rocas, generalmente se debe a que posteriormente serán rellenadas por fluidos mineralizantes de algún foco magmático que se encuentre cerca de la roca caja, la formación de un filón de fisura implica

- La formación de la fisura misma.
- Los procesos de formación del mineral.

Ambos factores pueden haber estado separado por un largo intervalo de tiempo ninguno de estos puede determinar la veta de fisura por sí mismo se necesita: La coincidencia de ambos.

Las fisura pueden formase en virtud de tensiones que actúan en la corteza terrestre, y pueden ir o no acompañado de fallas así mismo puede ampliarse en el momento de la mineralización, por la fuerza intrusiva de la soluciones mineralizantes que actúa como una cuña y separa las rocas siguiendo alguna grietas o líneas débiles.

2.16. ANÁLISIS ESTRUCTURAL

Para este análisis tomamos la teoría de (Georges H. Davis, Stephen J. Reynolds, 1996). En el estudio básico de las estructuras y sistemas estructurales los geólogos basan su trabajo en el Análisis Estructural de detalle, haciendo particular énfasis en el análisis del esfuerzo. Son tres las perspectivas fundamentales en las cuales se basa el análisis estructural de detalle:

2.16.1. ANÁLISIS DESCRIPTIVO

En el análisis descriptivo se reconocen estructuras, se determinan sus orientaciones y se describe sus componentes físicos y geométricos. El análisis descriptivo resulta de las propiedades físicas de las estructuras, así como de la orientación y configuración interna de estas.

El fundamento para un sólido análisis estructural es el mapeo geológico, el cual revela la naturaleza entre los cuerpos de roca, ayudándonos a reconstruir la historia secuencial de eventos mayores. Más aun, el mapeo geológico es de vital importancia en la confección de blocks diagramas tridimensionales en los cuales se aprecia la arquitectura geométrica de los sistemas rocosos bajo investigación y que constituyen la base para la interpretación de la historia estructural y tectónica del área de estudio.

Los rasgos estructurales que puedan ser reconocidos y descritos dependen en gran parte de la escala de observación:

- Escala microscópica (corte delgado).- Ej.: defectos reticulares, maclas, acodamientos, reptación, recuperación, recristalización, clivajes, lineaciones, foliaciones, etc.
- Escala mesoscópica (muestra de mano).- Ej.: clivajes, lineaciones, foliaciones, etc.
- Escala megascópica (afloramientos).- Ej.: diaclasas, fracturas de cizalla, fallas, pliegues, zonas de cizalla, etc. (nos basaremos en esta escala principalmente).

Cada estructura está compuesta por elementos estructurales que deben ser identificados y descritos para permitirnos llevar a cabo un completo análisis descriptivo. Los elementos estructurales son los componentes físicos y geométricos de las estructuras. Los elementos físicos son reales y tangibles, y tienen una geometría y orientación medibles. Los elementos geométricos son líneas y planos imaginarios, invisibles pero identificables en el campo; los elementos geométricos también tienen una geometría y orientación medibles.

Por ejemplo, un pliegue consiste en estratos plegados, las superficies de estratificación entre las capas, el punto de máxima curvatura de cada estrato plegado (charnela) y la superficie constituida por un plano que contiene a las líneas de charnela de todos los estratos plegados que constituyen el pliegue (superficie axial). Los estratos plegados son físicos y reales y están compuestos por rocas deformadas. Las líneas de charnela también son reales, pues su posición está fijada y contenida en la roca. La superficie axial y

las superficies de estratificación, en cambio, son elementos geométricos e imaginarios. Las superficies de estratificación son discontinuidades que separan cada uno de los estratos plegados. La superficie axial es una ayuda conveniente para definir la orientación y forma del pliegue.

Las orientaciones son graficadas y evaluadas estadísticamente para determinar la orientación preferencial. A través de estos procesos, pueden determinarse juegos de estructuras o elementos estructurales. Los juegos están compuestos por elementos físicos y/o geométricos comunes dispuestos en paralelo. Dos o más juegos de cualquier estructura o elemento estructural constituyen un sistema.

2.16.2. ANÁLISIS CINEMÁTICO

El análisis cinemático comienza cuando el análisis descriptivo concluye. El análisis cinemático trata del reconocimiento y descripción de los cambios que, durante la deformación, se producen en el cuerpo de roca, ya sea por movimientos de todo el cuerpo o por movimientos internos del mismo.

Figura N° 7: Distintos tipos de cambios que puede experimentar un cuerpo de roca durante su deformación: a) Traslación (cambio de posición); b) rotación (cambio de orientación); c) dilatación (cambio de volumen); y d) distorsión (cambio de forma). (Georges H. Davis, Stephen J. Reynolds, 1996).

Cuando un cuerpo de roca, o parte de éste, es forzado a cambiar de posición, el fenómeno recibe el nombre de traslación (figura N° 7a). Cuando se produce un cambio de orientación hablamos de rotación (figura N° 7b), de dilatación

cuando se evidencia un cambio de volumen (figura N° 7c) y de distorsión cuando se percibe un cambio de forma (figura N° 7d).

El objetivo final del análisis cinemático es interpretar las combinaciones de traslación, rotación, dilatación y distorsión que alteran la posición, orientación, volumen y forma, respectivamente, de un cuerpo de roca. El análisis cinemático se realiza a todas las escalas, desde lo sub microscópico a lo regional.

2.16.3. ANÁLISIS DINÁMICO

El análisis dinámico interpreta las fuerzas y esfuerzos así como los mecanismos que dan origen a las estructuras. Para que un análisis dinámico sea significativo, éste debe explicar las características físicas y geométricas de las estructuras, la cinemática y las relaciones entre los esfuerzos y la deformación.

El objetivo principal del análisis dinámico es describir la orientación y magnitud del esfuerzo y la respuesta de los materiales ante la aplicación de dichos esfuerzos. Este es un paso desafiante en el análisis estructural de detalle pues deben hacerse importantes inferencias respecto al ambiente de deformación, resistencia y estado de los materiales durante la deformación, tasa de deformación, ambiente geodinámico, etc.

La literatura geológica está repleta de modelos útiles en la interpretación del origen de las estructuras. Los modelos son descripciones de las condiciones bajo las cuales se forman las estructuras geológicas. Las bases para el análisis dinámico son investigaciones teóricas y experimentales. Para este trabajo nos basaremos en el modelo estructural de Riedel y teoría de Anderson.

2.16.4. MODELO DE FALLAS CONJUGADAS DE ANDERSON

Basándose en el criterio de fracturación de Mohr Coulomb, Anderson (1951) establece que, como norma general, las fallas aparecen según dos familias conjugadas que se cortan formando un diedro agudo y otro obtuso. Las estrías situadas sobre ellas son perpendiculares a la línea de intersección de los planos. En la bisectriz de los diedros agudo y obtuso se sitúan los ejes de

compresión máxima (σ 1) y mínima (σ 3), respectivamente; en la línea de intersección de las dos familias de planos se halla el eje intermedio (σ 2).

La teoría predice que se formaran fallas normales allí donde el esfuerzo vertical sea el esfuerzo máximo, fallas inversas donde el esfuerzo vertical sea el mínimo y fallas de rumbo donde el esfuerzo vertical sea el intermedio. (Figura N° 8).

FALLAS INVERSAS

FALLAS TRANSCURRENTES

Figura N° 8: teoría de Anderson (1951), los números indican el sigma correspondiente.

2.16.5. SISTEMA DE FRACTURAMIENTO DE RIEDEL

FALLAS NORMALES

El modelo de Riedel (1929), explica la deformación adentro de una zona que sufre las fuerzas que corresponden a una falla del rumbo. Riedel originalmente solo se refiere a una escala de decímetros. Pero más tarde su modelo fue adoptado a escalas de kilómetros.

Mediante modelos experimentales y observaciones geológicas se ha establecido que cuando una zona se somete a deformación por cizallamiento en un dominio de cizalla simple, en la cobertura se forma comúnmente u patrón predecible de cinco familias de fracturas (Sylvester, 1988), las cuales presentamos a continuación:

- Cizallas (Y) fallas principales paralelas a la zona de desplazamiento principal.
- Cizalla Riedel (R) fallas sintéticas de desplazamiento lateral.
- Cizalla Riedel conjugada (R') fallas antitéticas de desplazamiento lateral.
- Cizallas (P) fallas sintéticas secundarias de desplazamiento lateral simétrico a (R).
- Fracturas de tensión (T) fallas normales.

Universidad Nacional del Altiplano

Figura N° 9: modelo de Riedel representando relaciones angulares, siendo σ1 el esfuerzo principal máximo; a) derecho (dextral); b) izquierdo (sinestral).

Figura N° 10: Representacion del sistema de fracturamiento de Rieldel: a) ejemplo del fracturamiento de Riedel mapeado en campo, b) fracturamientos mapeados dibujados en la red estereográfica. (Nótese que los planos de las estructuras dibujadas interceptan en un punto en el diagrama de planos (b)).

Los pliegues abundarían, junto con las fallas inversas y de empuje de bajo ángulo en caso que el régimen fuera transpresional. En cambio en un régimen transtensional los pliegues corresponden a flexuras. No todos los elementos del

sistema Riedel se desarrollan forzosamente, bajo condiciones naturales se ha establecido que no se producen simultáneamente sino de una forma secuencial (Sylvester, 1988).

2.16.6. SALTOS E INFLEXIONES EN FALLAS

El movimiento de las fallas a lo largo de superficies planares perfectas (poco común en la naturaleza) se desarrolla sin complicaciones, deslizándose una pared sobre la otra sin interferencias. Bajo estas condiciones la aparición de ramales a partir de la falla principal es mínima a inexistente. Sin embargo, si una falla presenta una inflexión abrupta o gradual se producen situaciones complejas, que dan lugar a procesos de estiramiento o acortamiento. La curvatura de las fallas puede ser descrita en términos de inflexiones (bends) (Georges H. Davis, Stephen J. Reynolds, 1996). (Figura N° 11). Inflexiones en apertura (releasing bends; zona en extensión) tienden a crear espacios, en tanto que las inflexiones en cierre (restraining bends; zona en compresión) son sitios donde el acortamiento genera apilamiento. Hablaremos de inflexiones en cierre cuando el movimiento de uno de los bloques a lo largo de la falla se realiza "contra" la curva. Por el contrario, si el movimiento "aleja" el bloque de la curva, diremos que se trata de una inflexión en apertura. Bajo el punto de vista de la exploración de yacimientos minerales, las inflexiones en apertura son las más interesantes, ya que es en esos lugares geométricos donde se generan espacios, y por ende, donde las soluciones hidrotermales pueden circular con mayor facilidad. Además, a escala regional, una inflexión en apertura es el lugar perfecto para el desarrollo de intrusiones menores bajo condiciones extensionales.

Aparte de las inflexiones otro rasgo típico en fallas son los saltos (stepovers, offsets) (Figura N° 11), que a diferencia de las inflexiones, no se conectan entre sí, aunque mantienen parecida dirección y el mismo sentido de movimiento. Al igual que las inflexiones, decimos que los saltos pueden generar zonas en apertura o en cierre.

Figura N° 11: Situaciones de extensión y compresión (ver sentido de las flechas) en sistemas de fallas dextrales y sinestrales con inflexiones y saltos. (Tomada de Georges H. Davis, Stephen J. Reynolds, 1996).

Las zonas en apertura y en cierre (en inflexiones y saltos) pueden dar lugar respectivamente a depresiones (pull-aparts) susceptibles de ser rellenadas por materiales sedimentarios, o alzamientos compresionales (pop-ups, push-ups).

Figura N° 12: Representación esquemática de eventos generados por inflexiones de fallas A: Depresión (pull-apart) susceptible de ser rellenada por materiales sedimentario y alzamiento compresional (pop-up, push-up) asociados a una falla transcurrente dextral; B: Esquema sinóptico (en planta) de la situación observada en el bloque superior. U: bloque levantado, D: bloque descendido (movimiento relativo). (Georges H. Davis, Stephen J. Reynolds, 1996).

Universidad Nacional del Altiplano

2.17. CONTROL ESTRUCTURAL REGIONAL DE LOS SISTEMAS PORFIRÍTICOS

El principal control estructural para el emplazamiento de depósitos porfiríticos está relacionado a un sistema de fallas regionales conocida como el nombre de Punre – Canchis – Magistral (PCM) (Quispe et al., 2007). Debido al cambio de orientación de la convergencia (aproximadamente 20° en sentido del reloj) de la placa de Nazca (Pardo Casas y Molnar, 1987), se infiere que el sistema de fallas PCM tuvo dos sentidos de movimientos a través del tiempo.

Figura N° 13: Modelo de Riedel: izquierda, sentido del movimiento dos sistema de fallas PCM durante el paleógeno. Derecha, sentido del movimiento de sistema de fallas PCM durante el Mioceno, ambos ajustados al modelo Riedel (Quispe et. al 2007).

El primer comportamiento fue el de una falla de rumbo con sentido dextral (Paleoceno a Oligoceno) (ver lado izquierdo de figura N° 13) y el segundo y más importante movimiento fue transcurrente sinestral (Mioceno) (lado derecho). Este último movimiento permitió el emplazamiento de los sistemas porfiríticos en zonas de tensión.

Estos principales movimientos también generaron un sistema de fallas de rumbo a menor escala, con orientaciones entre NE y NW. Se infiere que las fallas de movimiento NE tuvieron un movimiento dextral, como es el caso de El Galeno (Davies, 2002), las fallas con rumbo NW tuvieron un movimiento sinestral (Harvey et al., 1999).

2.18. TREND

Es un patrón con orientaciones preferenciales de cuerpos mineralizados dentro de un corredor estructural, se utiliza este término con el fin de tratar de

identificar una tendencia en la cual podemos explorar y ubicar nuevos blancos de exploración con interés económico.

2.19. PALEOESFUERZOS (PALEOSTRESS)

Se entiende por tensiones que actuaron en el pasado geológico (es decir, millones de años atrás). El análisis de paleoesfuerzos se ocupa de derivar las direcciones a lo largo de la cual los esfuerzos actuaron y dieron lugar a presentar característica estructural en las rocas en la tierra. Paleoesfuerzos es un subconjunto de la tensión mecánica dentro de la geología.

Tanto macroscópica y microscópicamente pueden ser elástica y sólo existirá mientras la tensión diferencial exista o puede ser inelástica, ya que es la deformación debida a un acontecimiento particular, el esfuerzo se mantiene incluso después de eliminar la tensión. En este último caso, en la deformación inelástica, el campo de tensiones responsable de la deformación se pueden deducir los paleoesfuerzos. Análisis clásico de Anderson de fallamiento sirve como una simple aplicación de análisis paleoesfuerzos en términos de componentes principales de esfuerzo.

CAPITULO III

CARACTERIZACIÓN DEL ÁREA DE INVESTIGACIÓN

3.1. UBICACIÓN POLÍTICA Y GEOGRÁFICA

El área de estudio se encuentra ubicada en el distrito de Cusca, provincia de Corongo y departamento de Ancash, en la quebrada denominada Llullayacu.

El Prospecto Potrero se sitúa al SW del poblado de Tarica hacia el flanco Este de la cordillera Blanca en la parte norte del departamento de Ancash, el área de estudio se encuentra ubicado en una zona de relieves abruptos con altitudes variables que van de los 3300 m.s.n.m. hasta los 3800 m.s.n.m. ubicada dentro de las siguientes coordenadas UTM.

Cuadro N° 1: Vértices del Prospecto Potrero (PSAD56).					
COORDENADAS UTM					
Vértice	Norte	Este	Zona		
1	9 047 250	194 750	18S		
2	9 047 250	196 750			
3	9 046 000	196 750			
4	9 046 000	194 750			

En el aspecto geológico se encuentra dentro del cuadrángulo de Corongo (18-H), influenciado por el batolito de la cordillera Blanca, siguiendo la dirección de fallas NW-SE del sistema andino y plegamientos típicos, con afloramientos de rocas sedimentarias estratificadas que buzan al SW de la formación Chicama.

Regionalmente se tiene la cordillera occidental (cordillera Blanca, cordillera Negra), cordillera oriental y el valle del Marañón, económicamente se tiene los depósitos de minerales tipo pórfido (Santa Rosa, Pucapampa y el Águila).

3.2. ACCESIBILIDAD

Para poder llegar al área de estudio desde la ciudad de Lima, se tiene que tomar la Panamericana Norte con rumbo a la ciudad de Trujillo con un total de 570 km en un tiempo aproximado de 9 horas, o preferiblemente vía aérea Lima - Trujillo con un tiempo de 1 hora.

Desde la ciudad de Trujillo se toma la vía asfaltada Trujillo-Santa-Chuquicara con un total de 160 km en un lapso de 2.5 horas, para después seguir por carretera afirmada Chuquicara-Tarica con 95 km en 3 horas, y de Tarica hacia el prospecto "Potrero" se accede por trocha carrozable aproximadamente 3km cuesta arriba en 15 min. (Ver mapa de ubicación y accesos en anexo IV).

VÍAS DE ACCESO					
Tramo	Tipo de Vía	Distancia	Tiempo (hrs)		
Lima – Trujillo	Asfaltada	570 km	9:00		
Trujillo – Santa – Chuquicara	Asfaltada	190 km	2:30		
Chuquicara – Tarica	Afirmada	95 km	3:00		
Tarica – Prospecto	Carrozable	3 km	0.15		
Total		828 km	14:45		

Cuadro Nº 2: Accesibilidad y Tiempo Estimado

3.3. TOPOGRAFÍA Y FISIOGRAFÍA

La configuración topográfica del área de estudio es accidentada muy variada típicamente compuesta por laderas de empinadas, con cerros escarpados de relieve abrupto cuyas pendientes sobrepasan generalmente 40°.

La zona de estudio abarca contrastes típicamente cordilleranos, presentando pendientes abruptas que van desde los 3400m.s.n.m en el poblado de Tarica, hasta los 4500m.s.n.m en el Prospecto. Las partes altas del área están constituidas por areniscas-limolitas, areniscas cuarzosas y/o rocas intrusivas, las cuales han sido afectadas por el intemperismo, esto aunado con la naturaleza intrínseca de la roca expuesta provocan la formación de relieves topográficos característicos, cubiertos por material coluvial y suelo.

Las glaciaciones ocurridas durante el cenozoico y los eventos de glaciación reciente han provocado la formación de depósitos fluvioglaciares, morrenas, etc.

Figura N° 14: Ubicación y accesos al prospecto Potrero (modificado de la Red vial Ancash – MTC).

3.4. CLIMA

El Prospecto se ubica en una zona de clima frío debido a la altitud, existiendo una marcada diferencia térmica entre la exposición al sol y a la sombra, evidentemente existe gran diferencia térmica entre el día y la noche, en un día soleado puede llegar hasta los 15°C y por las noches por debajo de 0°C.

Presenta un clima lluvioso a fines de primavera y todo el verano, por lo general durante los meses de diciembre a marzo. De acuerdo al mapa climático del SENAMHI se trata de un clima templado a semitropical, este clima es característico de una amplia zona de la cordillera peruana.

3.5. FLORA

La vegetación del área de estudio comprende plantas silvestres como el ichu, pastos naturales, etc. Cabe destacar que el ichu y los pastos naturales cubren gran parte de la extensión del terreno y que sirve como alimento para algunos animales silvestres y como pastoreo de animales domésticos.

También existe la vegetación cultivada por el hombre como son papa, olluco, eucalipto, cipres, molle, pino, etc. Cabe mencionar que la agricultura es la primera actividad productiva económica más importante de la zona y el sustento de muchas familias, se tiene cultivos principalmente en la parte baja del área de estudio debido a la cercanía a la población, además que se tiene un relieve plano y pendientes suaves a comparación del relieve abrupto que se tiene en la zona de interés por las partes altas.

3.6. FAUNA

En cuanto a la fauna silvestre observada en la zona y según la versión de los pobladores podemos mencionar los siguientes:

Entre los mamíferos tenemos: zorro, zorrillo, venado, vizcacha, puma, ratón, etc. y entre las aves podemos citar al cóndor, águila, halcón, gavilán, cernícalo, perdiz, picaflor, etc. mientras que entre las especies domésticas mamíferos tenemos, la vaca, el caballo, el burro, la oveja, la cabra, el cerdo, el perro, el gato, el cui, etc. y entre las aves de corral están la gallina, el pato y el pavo.

Destacamos que la ganadería es la segunda actividad económica más importante de la zona, después de la agricultura, que está conformado principalmente por el ganado vacuno y ovino que producen carne, leche y lana según sea el caso y además es una de las bases para el sustento de las familias.

Existen pequeñas industrias donde fabrican queso a partir de la leche de vaca, preferentemente en los caseríos de Hualcallanca y Urcón; por otra parte también crían ganado vacuno de especie brava (Salvaje) las cuales son utilizados en las corridas de toros en festividades locales.

3.7. DRENAJE E HIDROLOGÍA

La litología en la zona de estudio condiciona el tipo de sistema de drenaje, generalmente el drenaje principal es de tipo subparalela que es característico de rocas sedimentarias y tipo subdendrítica específicamente en zonas altas.

Hidrográficamente la zona de estudio corresponde a la vertiente del Pacifico, originándose en las partes altas; la zona se ha dividido en tres subcuencas (Cahuacona, Collota y Urcon) y dos microcuencas (Mercedes y Potrero) como parte de la cuenca de Urcon.

En la cuenca Cahuacona, el rio Atocshayco, es afluente del rio Cahuacona que aguas abajo se denomina rio Utuhuaylla, en la cuenca Collota el rio Pisgochaga, Tinyacocha y Huin chuncocha son afluentes del rio Collota que aguas abajo discurren hacia el rio Utuhuaylla.

La cuenca Urcon se dividió en dos microcuencas (Potrero y Mercedes) esta cuenca tiene su origen en el nevado Champará y al unirse con el rio Corongo (Subcuenca Corongo) forman el rio Manta (Cuenca Manta) que entrega sus aguas al rio Santa en el lugar denominado "El Chorro", el rio Santa después de recorrer unos 115 Km. desemboca en el litoral del Pacífico

Microcuenca Potrero; tiene su origen en la parte alta con la laguna Chacllacocha, los afluentes son muy pequeños por la pendiente y corto recorrido de las aguas, estos afluentes que discurren por la quebrada Llullayacu en la zona de estudio vienen cargadas con Ox.Fe, que las vuelven acidas y generan un Drenaje Acido de Mina; esto por una mala gestión del manejo de las aguas y cuidado con el medio ambiente, ya que la zona es propiedad de la pequeña minería que no tienen un programa de gestión ambiental.

Microcuenca mercedes; al igual que la zona de Potrero presentan labores mineras abandonadas las cuales generan un pasivo ambiental, las aguas que discurren son de corto recorrido. La microcuenca Potrero y Mercedes desembocan en el rio Tarica que es afluente del rio Urcon-Corongo.

Figura N° 15: Principales sistemas de drenaje divididos en subcuencas (Modificado de mapa de Distribución Hidrografica Ingemmet).

3.8. GEOMORFOLOGÍA LOCAL

La evolución geomorfológica de la zona de estudio, está controlada por acción de la orogenia, la tectónica y la acción climática, presentando diferentes complejos estructurales y litológicos; los cuales por procesos de erosión forman diversas unidades geomorfológicas (ver mapa geomorfológico en anexo IV).

La zona de estudio presenta un relieve abrupto siendo accidentado en ciertas zonas, también se tiene pendientes empinadas y farallones que pueden llegar a los 200-300m en rocas más competentes, se pudo observar también restos de circos glaciares y valles circundantes como producto de la erosión glaciar.

3.8.1. UNIDADES GEOMORFOLÓGICAS

3.8.1.1. Cordillera

Esta unidad se encuentra en el extremo SSW de la zona de estudio conformada por secuencias rocosas empinadas y abruptas con presencia de nieves perpetuas gran parte del año, se caracteriza por presentar un clima frígido con temperaturas bajo cero durante todo el año, esta zona cordillerana forma parte del nevado de Champara que es uno de los importantes nevados de la cordillera Blanca (en su extremo norte).

3.8.1.2. Circo Glaciar

El circo glaciar es la cuenca circular o semi circular producida por la acción del hielo de un glaciar en su zona de acumulación o de alimentación. La masa de hielo comprimido se mueve por deslizamiento y esta acción forma, por la abrasión, la concavidad rocosa circular o circo, esta unidad se observa al SSW de la zona de interés conformada por depósitos morrenicos que fueron transportados por la acción glaciar.

3.8.1.3. Superficie Puna

Esta unidad está representada por una extensión de superficies llanas, laderas con escasa pendiente, lomas onduladas-suaves y en algunos sectores con presencia de colinas empinadas con crestas rocosas, que cubre las partes bajas de la zona norte del área de estudio; presenta un clima frio con

temperaturas que varían entre 0° a 10°C, y básicamente se da entre los 4000 y 4400 m.s.n.m.

3.8.1.4. Cuestas Andinas

Esta unidad consiste de un relieve escalonado a manera de cuestas, originado por rocas sedimentarias resistentes a la erosión con una marcada inclinación e interrumpido por erosión fluvial. De manera particular en esta unidad se observan algunos rasgos estructurales como plegamientos y fallamientos, que generalmente afecta a las secuencias sedimentarias de las formaciones Chicama y Chimú. Que se da entre los 3500 y 4000 m.s.n.m.; presenta un clima frio a templado gran parte del año, con temperaturas que oscilan entre 0° a 15°C.

3.8.1.5. Valle de Erosión

Esta unidad comprende las quebradas circundantes a las colinas en forma de "U", las cuales son producto de la erosión glaciar que ha sufrido la zona después del levantamiento de los Andes, que se da entre los 2500 y 3500 m.s.n.m., esta unidad cubre una pequeña parte del área de estudio formando un valle juvenil en forma de "V", generalmente en las partes más bajas de la zona, que en ciertos tramos forman amplias terrazas aluviales que sirven de terrenos agrícolas a los pobladores de la zona.

Figura N° 16: Vista panorámica al Sur, principales unidades geomorfológicas.

3.9. GEOLOGÍA LOCAL

De acuerdo a las características físicas observadas de la litología y el cartografiado en la zona de estudio; estos afloramientos litológicos corresponden a la secuencia sedimentaria de la formación Chicama, dichos afloramientos se encuentran plegados y fallados a causa de diferentes procesos de deformación originados principalmente por procesos compresivos de la orogenia andina en su fase Quechua II.

El Prospecto Potrero se encuentra en parte de la franja denominada "cinturón metalogenético del Mioceno del centro y norte del Perú" (Noble y McKee, 1999), que consiste en una franja de dirección N30°W con depósitos minerales asociados a intrusiones miocénicas; en esta franja se encuentran alineados los prospectos Magistral, Pucapampa, Santa Rosa, El Águila, Pucajirca y Racaycocha, pórfidos de Cu más conocidos dentro de la región.

Estas secuencias sedimentarias del Chicama se encuentran intruídas por stocks porfídicos granodiorítico y diorítico, de las cuales el pórfido granodiorítico fue causante de la mineralización (ver mapa geológico local en anexo IV).

3.9.1. FORMACIÓN CHICAMA (1000m – Titoniano)(Js-Ch)

El Prospecto Potrero se encuentra hospedado en su totalidad en secuencias de rocas sedimentarias del Chicama, las cuales están constituidos por intercalaciones de lutitas carbonosas gris oscuras, areniscas grises y areniscas cuarzosas blanquecinas hacia la parte superior.

Presenta una fauna pelágica bien desarrollada y no hay presencia de especies bentónicas, la cual sugeriría que se ha depositado en una cuenca reductora.

Se describe cada una de las secuencias sedimentarias observadas localmente en esta formación:

3.9.1.1. Lutitas

Son secuencias de lutitas fisibles de color beige con intercalación de lutitas carbonosas, las cuales le dan la coloración de grises oscuras, en ciertas zonas

Universidad Nacional del Altiplano

presentan nódulos ferruginosos y en algunos casos con py; estas lutitas se encuentran hacia la base de la formación Chicama en la zona de estudio y corresponden a estadios de baja velocidad de aporte de sedimentos en ambientes anóxicos.

Figura N° 17: Lutitas de la formación Chicama: a la izquierda lutitas grises nótese su fisibilidad típica; derecha lutitas de color gris claro con intercalación de lutitas grises.

3.9.1.2. Areniscas Limosas Grises, Limolitas

Son intercalaciones de areniscas grises de grano medio a fino con limolitas de color grises oscuras de estratificación delgada, en ciertas zonas esta secuencia se encuentra parcialmente silicificadas relacionadas a vetas e intrusivos.

3.9.1.3. Areniscas Cuarzosas Blanquecinas

Esta secuencia de areniscas blanquecinas son más frecuentes en la zona de estudio y se encuentran hacia la parte superior, esta secuencia corresponde a areniscas limpias cuarzosas bien compactadas que son de grano medio bien seleccionadas, presentan intercalación de algunos niveles de areniscas grises y limolitas-lutitas con estratificación delgada.

Universidad Nacional del Altiplano

Figura N° 18: a) Areniscas limosas grises de grano medio a fino de coloración gris oscura, b) Areniscas cuarzosas blanquecinas de grano medio; hacia el contacto con intrusivo se presenta como cuarcitas por metamorfismo de contacto.

Figura N° 19: Secuencia sedimentaria de la formación Chicama, nótese el plegamiento en el sentido SE-NW (vista al sur).

3.9.2. DEPÓSITOS CUATERNARIOS (Qh-Co)

Hacia la parte baja de la zona de estudio se encuentra cubierta por potentes bancos de depósitos coluviales constituidos por gravas, arenas y limos poco

consolidados, son fragmentos subangulosos a subredondeados de roca sedimentaria e intrusiva, hacia la parte superior por los bordes de circos glaciares se puede apreciar remanentes de material morrénico conformado por los mismos detritos descritos.

Mientras que hacia las partes más bajas, en los bordes de los ríos, se observan depósitos fluvioaluviales formando pequeñas terrazas aluviales, las que son utilizadas como terrenos de cultivo por los pobladores.

3.9.3. ROCAS INTRUSIVAS

En el Prospecto Potrero, se han identificado dos tipos de intrusivos ambos con textura porfirítica, que corresponden a intrusivos miocénicos que cortan rocas sedimentarias clásticas de mesozoico, ya que el Prospecto Potrero se ubica en el cinturón metalogenético del Mioceno de centro y norte de Perú (Noble y McKee, 1999).

Estas rocas ígneas del Prospecto Potrero ocurren como diques y sills en forma elongada siguiendo el rumbo NW-SE, emplazadas según las características estructurales que controlan a zona de estudio. El primer intrusivo tiene una composición granodiorítica con textura porfirítica y el otro de composición diorítica, a continuación describiremos cada una de ellos:

3.9.3.1. Intrusivo Granodiorítico (N-Gd)

Este intrusivo se caracteriza por tener textura porfirítica con ojos de cuarzo, según el mapeo ocupa un área de 5ha en afloramiento, extendiéndose hacia la zona SE; se encuentra emplazada en forma elongada en dirección NW-SE con xenolitos de hornfels, arenisca cuarzosa, limolitas hacia los contactos.

En la zona de estudio se puede apreciar un fuerte plegamiento formando anticlinales, sinclinales y fallamientos siguiendo el rumbo andino NW-SE, este dique de intrusivo Granodiorítica es el primer evento del prospecto Potrero, donde su emplazamiento probablemente sea contemporáneo a esfuerzos transpresivos asociado a fallas inversas y de rumbo, que fue el causante del plegamiento y posterior fallamiento. La extensión de la estructura (dique) se encuentra emplazado en uno de los flancos del sistema de plegamiento.

Universidad Nacional del Altiplano

Según la descripción física del intrusivo, presenta una coloración gris clara con textura porfirítica y fenocristales (<10mm) de grano medio a grueso. Está compuesta principalmente por fenocristales euhedrales a subhedrales de plagioclasas con porcentajes de 30% a 40%; ortosa de 5% hasta 10%, cuarzo de 25 % a 30%, y cantidades variables de elementos accesorios y secundarios como biotita, hornblenda, etc y todos ellos englobados en una matriz silícea

Figura N° 20: Intrusivo granodiorítico, se observa cristales de plagioclasas, ojos de cuarzo y ferromagnesianos en la matriz (biotitas principalmente).

3.9.3.2. Intrusivo Diorítico (N-Dio)

En la zona de estudio se puede apreciar otro evento de intrusivo emplazado como sills, a la cual se le denomina como Diorita por su composición petrológica y la notable ausencia de cuarzo, probablemente este intrusivo sea un segundo evento tardío y esté relacionado más a sistemas distensivos por relajación del sistema compresivo.

El afloramiento de este intrusivo es muy pequeño ubicado al Norte del intrusivo granodiorítico aprovechando niveles de estratificación en forma de sills. Según la descripción física de este intrusivo, presenta una coloración gris, con textura porfirítica y fenocristales (<7mm) de grano medio a fino.

Sus constituyentes mineralógicos macroscópicamente están compuestos por: fenocristales subhedrales a euhedrales de plagioclasas con porcentajes de 30% a 35% y como minerales accesorios presenta cristales anhedrales a

subhedrales de (hornblendas y biotitas) en porcentaje estimado de 15% a 20%, todas ellas englobados en una matriz silícea.

Figura N° 21: intrusivo diorítico con textura porfirítica, se observa fenocristales de plagioclasas y hornblendas.

3.9.4. ROCAS METAMÓRFICAS

El proceso metamórfico se realiza en estado sólido, es decir las transformaciones se producen sin que la roca llegue a fundirse. La mayoría de las rocas metamórficas se caracterizan por un aplastamiento general de sus minerales que hace que se presenten alineados.

En el prospecto Potrero apreciamos 2 tipos de roca metamórfica (hornfels y cuarcitas), formándose por metamorfismo de contacto, las cuales se presentan principalmente en los bordes de los intrusivos o cercanos a estos.

3.9.4.1. Hornfels

Los hornfels en la zona de estudio se aprecia hacia los contactos con el pórfido granodiorítico y en menor grado hacia el contacto con el intrusivo diorítico formada por metamorfismo de contacto, la composición de los hornfels depende directamente de la composición de la roca original la cual deriva de la formación Chicama que corresponde a secuencias.

Esta roca presenta una coloración gris a gris oscura de textura granoblástica, este tipo de roca se compone de diversos granos minerales equidimensionales

principalmente de cuarzo, feldespatos y micas. En algunas muestras se ha vista biotita como componente de roca tanto en matriz y en algunas vetillas.

Figura N° 22: a) hornfels ubicado en el contacto con intrusivo granodiorítico, nótese el bandeamiento de coloración marrón debido a la estructura original de la roca y la presencia de py-mo en vtlls. b) textura y forma típica de un hornfels con fracturas angulosas muy dura.

3.9.4.2. Cuarcitas

Las cuarcitas se caracterizan por tener más de 95% de cuarzo dentro de su composición, los granos de cuarzo se encuentran recristalizados producto del metamorfismo causadas por altas presiones y temperaturas. Están constituidas por cristales de cuarzo íntimamente soldados a menudo entrelazados.

Las cuarcitas en el área de estudio se formaron al igual que los hornfels por metamorfismo de contacto estando cercanas a los intrusivos. En el prospecto este tipo de roca se encuentra en un horizonte de estratificación, siendo la roca original una arenisca cuarzosa de la formación Chicama.

Figura N° 23: Cuarcitas con vetillas de py.

COLUMNA ESTRATIGRÁFICA LOCAL (Prospecto Potrero)						
ERA	SISTEMA	SERIE	UNIDAD LITOLÓGICA	Esp. (m)	LITOLOGÍA	DESCRICIÓN LITOLÓGICA
CENOZOICO	CUATERNARIO	HOLOCENO HOLOCENO	Depósitos coluviales Depósitos fluvioglaciares Depósitos morrénicos			Depósitos limo-arcillosos con clastos polimícticos y subangulosos. Depósitos no consolidados de gravas englobados en una matriz limo-arcillosa. Depósitos conglomerádicos con clastos redondeados y emplazados en los márgenes del circo glaciar fosil.
MESOZOICO	JURÁSICO	SUPERIOR	Fm. Chicama	1000		areniscas cuarzosas bien compactadas de grano medio bien seleccionadas, presentan intercalación de algunos niveles de areniscas grises y lutitas-limolitas.
						Intercalación de areniscas grises de grano medio a fino con limolitas de color grises oscuras con estratificación delgada Intercalación de lutitas fisibles de color beige con intercalación de lutitas carbonosas de coloración gris oscuras Z -> Intrusivo Diorítico

Figura N° 24: Columna estratigráfica local del prospecto Potrero. *Modificado de "Memoria explicativa del mapa geológico del Perú" Boletín N° 136-INGEMMET-Marzo 2000).*

CAPITULO IV

EXPOSICIÓN Y ANÁLISIS DE RESULTADOS

4.1. GEOLOGÍA ESTRUCTURAL LOCAL

El prospecto Potrero ha sido afectado por varios eventos tectónicos principalmente compresivos, originados por la orogenia Andina en sus diferentes fases anteriormente mencionadas (principalmente fase quechua); estos procesos de deformación compresivos originaron plegamientos y diferentes tipos de fallas (principalmente inversas), algunas de las cuales fueron reactivadas con los posteriores eventos de deformación extensivos relacionados al emplazamiento de la cordillera blanca.

Para la formación de estructuras y cuerpos mineralizados en el prospecto Potrero, se tienen controles estructurales bien definidos, que corresponden a un corredor estructural conformado por plegamientos y fallas con rumbo andino, preferencialmente (N50°W), a consecuencia de estos plegamiento y posteriores fallamientos en la zona de estudio, se formaron condiciones favorables para albergar mineralización ya sea en cuerpos y/o estructuras.

Para un mejor entendimiento del aspecto estructural comenzaremos definiendo los lineamientos regionales de la zona, ya que interactuaron dos eventos de deformación que permitieron la mineralización en el Prospecto.

4.1.1. LINEAMIENTOS

Los lineamientos son estructuras geológicas o rasgos morfológicos que siguen cierta orientación, en ocasiones están cubiertas por material cuaternario y en otras expuestas a la superficie, la finalidad de estos lineamientos es definir la ubicación del prospecto Potrero en el marco estructural regional, mediante la

comparación con lineamientos y fallas importantes que estén cercanas a la zona de estudio; el trend de yacimientos de gran envergadura y la relación que tienen con los principales sistemas de fallas, son los mismos que afectaron y condicionaron al prospecto Potrero.

Se ha elaborado un mapa de lineamientos regionales con una imagen satelital TM LanSat Banda 4; en la imagen se ha trazado los lineamientos principales siguiendo rasgos morfológicos y de fallas, para definir controles estructurales regionalmente (ver mapa de lineamientos regionales en anexo IV).

4.1.1.1. Interpretación Según Modelo de Riedel

Los lineamientos elaborados, se ajustan al criterio de cizalla según Riedel 1929, con desplazamiento sinestral, estos lineamientos forman parte de un trend donde se encuentran yacimientos de gran envergadura y que puede servir como una ayuda para la ubicación de nuevos blancos de exploración.

Figura N° 25: lineamientos regionales comparado con el modelo de Riedel (1929) con componente sinestral; tomado de mapa de lineamientos regionales (anexo IV) sin imagen satelital de fondo.

a) Fallas Sintéticas: tipo de falla secundaria cuyo sentido de desplazamiento es similar a su falla primaria asociada. Los conjuntos de trampas antitéticassintéticas son habituales en las zonas de fallamiento directo.

b) Fallas Antitéticas: Una falla secundaria, que normalmente forma parte de un conjunto, cuyo sentido de desplazamiento es opuesto al de las fallas primarias y sintéticas asociadas.

Teniendo estos conceptos claros definimos:

En la figura N° 25; se observa un control estructural regional conformadas por fallas que corresponden a un sistema de cizalla frágil con desplazamiento sinestral (Cizalla de Riedel); se observa que las fallas Maestras son sinestrales y siguen un rumbo NW-SE variando entre N30°-35°W, típicamente con dirección del rumbo andino.

R y P; son fallas sintéticas contemporáneas a las fallas maestras que también son sinestrales con rumbos entre N50°W para las R y N15°W para las P, las cuales forman un ángulo entre 15°-20° con las fallas maestras.

R'; fallas conjugadas de cizalla antitética que se forman posterior a las sintéticas dentro de la evolución de la zona de cizalla; las fallas antitéticas por lo general tienen movimiento contrario a las fallas sintéticas en este caso corresponderían a un movimiento dextral con dirección entre N40°-45°E; formando un ángulo entre 75°-80° con las fallas maestras.

T; son fallas de tensión (de apertura) que generalmente son fallas normales y paralelas al esfuerzo principal máximo (σ1), en la figura N° 25, se observa estos lineamientos con dirección E-W.

Se concluye que el prospecto Potrero Regionalmente se encuentra dentro de una zona de cizalla con desplazamiento sinestral, presentando los principales esfuerzos con direcciones aproximadas de la siguiente manera: σ 1 E-W, σ 3 N-S y σ 2 es vertical. Estos sistemas de fallas controlan las estructuras y emplazamientos de cuerpos mineralizados que existen en la zona. Este movimiento originado por las fallas maestras con desplazamiento sinestral ha generado zonas de tensión por donde se emplazó el pórfido Granodiorítico.

Ahora describiremos el aspecto estructural local de la zona que permitieron el emplazamiento de las vetas posteriores al pórfido Granodiorítico.

4.1.2. SISTEMA DE PLIEGUES

En el Prospecto Potrero se conoce la existencia de un anticlinorio conformado por anticlinales y sinclinales que siguen un rumbo N50°W aproximadamente y que es paralela al rumbo andino. La formación de este anticlinorio se debe a un sistema de deformación compresional afectando a rocas mesozoicas que corresponderían a la orogenia en su fase quechua I, que a su vez formaron fallas inversas y de rumbo ocasionando zonas de debilidad y favoreciendo el emplazamiento del intrusivo Granodiorítico, principalmente en núcleos y flancos de anticlinales.

Figura N° 26: diagrama de polos de planos de estratificación, mostrando distribución de los pliegues producidos por deformación compresiva, los puntos representan la dirección de buzamiento y el buzamiento de los datos tomados en campo de planos de estratificación, la línea roja representa la dirección o rumbo del anticlinorio (eje del plegamiento).

4.1.3. SISTEMA DE FALLAS

Con los datos obtenidos del mapeo en campo, se elaboró un **mapa estructural local** (ver en anexo IV), en el cual se analizó los diferentes sistemas de fallas para llegar a la siguiente descripción:

4.1.3.1. Sistemas de Fallas S45°E

Es el sistema principal en el Prospecto Potrero, teniendo algunas de estas fallas desplazamiento sinestral y dextral ocasionada por reactivación. Paralelo a este sistema se tiene el stock de granodiorita en forma elongada siguiendo el

mismo rumbo de estos sistemas de fallas, a la cual se le atribuye su emplazamiento.

Este sistema de fallas presenta una dirección promedio de S45°E con buzamiento subvertical hacia el SW (70°-80°), en el mapeo estas fallas se encuentran hacia los contactos de granodiorita con sedimentos. También se observa cortando al pórfido granodiorítico lo que nos indicaría la persistencia de los esfuerzos en este sistema o probablemente siendo reactivadas.

En el diagrama de rosas se observa la orientación principal de esta falla y que varían de S40°-50°E y en menor proporción S50°-60°E, probablemente por inflexión de este sistema de fallas, las cuales corresponden al sistema del rumbo andino.

Según el diagrama de planos, el rumbo preferente para este sistema de fallas corresponde a S45°E / 73°SW.

4.1.3.2. Sistemas de Fallas N10°W a N30°W

Probablemente este sistema de fallas sea contemporáneo al sistema de fallas S45°E al emplazamiento del pórfido, se presenta cortando al intrusivo y parte

de la roca encajonante, además también se observó que están cortando al sistema de fallas S45°E. Se presenta con rumbos variables entre N10°-30°W y buzamientos comprendidos entre 70°-80° hacia el NE.

En el diagrama de rosas y planos se observan tres rumbos preferentes con altos buzamientos, que caracterizan a este sistema de fallas, estas orientaciones en promedio se resumen de la siguiente manera:1) N25°W / 78°NE, 2) S15°E / 81°SW y 3) N65°W / 86°NE. Probablemente la familia 3 sea parte de sus fallas conjugadas; las familias de fallas 1 y 3 forman un ángulo cercano a 30°.

orientación principal.

4.1.3.3. Sistemas de Fallas S35°W

Sistema de fallas que controla el modelo actual del relieve de la zona, este tercer sistema de fallas probablemente esté relacionado con el esfuerzo distensional asociado al emplazamiento del batolito de la Cordillera Blanca, se presenta cortando a todas las estructuras preexistentes.

Presenta un rumbo promedio entre S30°W a S40°W con buzamiento subvertical hacia el NW (80°-88°), en campo también se pudo apreciar que este sistema de fallas cortan a las areniscas-limolitas e intrusivos en forma sinestral

y algunas con desplazamiento normal, por otro lado este sistema de fallas en algunas zonas cercanas al pórfido presentan óxidos de fierro como relleno, lo cual nos indicaría que también sirvieron como conductos para la movilización de fluidos hidrotermales.

En el diagrama de planos se observa un rumbo preferente para este sistema de fallas con S35°W / 82°NW.

4.1.4. ANÁLISIS ESTRUCTURAL

Para el análisis estructural del prospecto Potrero se ha recopilado toda la información de la zona, que incluyen fallas, fracturas, vetas y vetillas con las cuales se realizó su respectivo análisis utilizando el programa DIPS.

Cabe mencionar que los datos estructurales fueron tomados en zonas del intrusivo, vetas, roca caja cubriendo casi toda el área del plano geológico.

4.1.4.1. Distribución de Datos de Vetas (S04°W)

Para este análisis se ha tomado datos estructurales de las vetas como son buzamientos (DIP) y dirección de buzamiento (DIP DIR), para plotearlas en la red estereográfica en el programa DIPS.

En la figura N° 30 (a), la distribución de polos se concentra principalmente en los cuadrantes II y I, (b) se observa el promedio en su dirección principal de S04°W con buzamiento de 40°NW, (c) se puede ver las diferentes direcciones de este sistema de fallas ocasionados por el esfuerzo principal máximo teniendo como dirección principal entre S0°W a S15°W. Este sistema de vetas fueron originados por eventos de tensión (apertura) para favorecer el ascenso de los fluidos mineralizantes posterior a los demás sistemas de fallas antes mencionados. En color naranja se tiene el sistema de fallas N10°-30°W y en color verde se puede ver el sistema de fallas S35°W, ambos sistemas de fallas tuvieron que ser anteriores al sistema de apertura, para que circulen fluidos mineralizantes y precipiten.

4.1.4.2. Distribución de Datos de Vetillas

En el prospecto Potrero la distribución de polos de vetillas se encuentran muy variables ya que aprovecharon las fracturas preexistentes formando parte del sistema de vetas; también el pórfido Granodiorítico generó su vetilleo (Stockwork) con vetillas de qz hialino, py, mo, cpy (vtlls tipo B principalmente) y vetillas con Ox.Fe en superficie.

En la figura N° 31 (a) se observa que la distribución máxima de polos se concentra principalmente en los cuadrantes I, II y en menor proporción en el cuadrante IV, (b) se observa las diferentes familias de vetillas con direcciones de S16°E/71°SW, S26°W/67°NW y S11°W/77°NW, (c) representación gráfica de las direcciones principales del sistema de vetillas.

4.1.4.3. Distribución de Datos (Fallas, Fracturas, Vetas y Vetillas)

Para este análisis se ha tomado todos los datos estructurales que se levantó en el Prospecto Potrero, que incluye fallas, fracturas, vetas y vetillas, las cuales las ploteamos en el DIPS para su interpretación teniendo los siguientes resultados.

Figura N° 32: Distribución de polos clasificados por tipo de estructura.

Se observa que la distribución de polos tiene máximas concentraciones en los cuadrantes I, II y III.

Figura N° 33: Diagrama de planos y roseta representando dirección de las diferentes estructuras que evidencian 4 principales sistemas de fracturamiento.

De la figura N° 33, se tiene la representación estereográfica de planos de diferentes sistemas de fallas, fracturas, vetas y vtlls. En color azul se representa el sistema de fallas S45°E / 75°SW, en naranja se tiene el sistema de fallas S20°E / 70°SW - N25°W / 75°SW, en color verde el sistema de fallas S35°W / 85°NW y en color magenta se tiene el sistema de vetas S04°W / 40°NW; las vetillas se han incorporado como parte del sistema de vetas.

Resumen

Sistema I => S45°E Sistema II => S20°E, N25°W Sistema III => S35°W Sistema IV => S04°W (Vetas)

Según el criterio de Riedel, los planos de los sistemas I, II, III y IV dibujados en la red estereográfica, deben interceptar en un punto tal como se observa en la figura N° 33 lado izquierdo; estos planos de los principales sistemas de fallas, fracturas, vetas y vetillas tienden a interceptar en un punto, lo cual nos permite definir el sistema de Riedel y el cálculo de los esfuerzos interactuaron en la zona.

4.1.5. DIAGRAMA DE ROSAS Y ANÁLISIS RIEDEL

En la figura N° 34, se muestra el diagrama de rosas, en el cual se pueden observar las direcciones principales de las distintas familias de las estructuras ploteadas.

Figura N° 34: a) diagrama de rosas representando dirección de estructuras ploteadas, b) Diagrama de rosas con sistemas de fallas y sistema de vetas descritas anteriormente.

De acuerdo a los datos ploteados en el DIPS se tiene que el sistema I (S45°E) corresponderían al sistema principal (Falla Maestra tipo "Y"), ya que este sistema de fallas tienen desplazamiento dextral en la mayoría de estructuras y también algunas fallas relictas con desplazamiento sinestral ocasionadas por el comportamiento sinestral del primer evento; El sistema II (S20°E, N25°W) formaría parte de la cizalla sintética (R), algunas de estas fallas presentan movimiento dextral; por su parte el sistema III (S35°W) tiene similar dirección y comportamiento con la cizalla antitética (R'), este sistema presenta sentido contrario a la falla maestra, en este caso sinestral con altos buzamientos que controlan el relieve actual de la zona; y el sistema IV (S04°W) corresponden a las Vetas necesariamente tienen que ser de apertura siendo equivalente al sistema de fallas normales tipo (T) como lo sugiere Riedel, (1929).

Figura N° 35: Sistemas de cizalla frágil Riedel derecho (Riedel, 1929).

Con todo este análisis del sistema estructural del prospecto Potrero, cumple con la teoría de Riedel y se toma como modelo el sistema de cizalla Riedel derecho.

Mediante el diagrama de rosas podemos comparar el criterio de Riedel; en la figura N° 36 (a), se muestra el diagrama de rosas con los desplazamientos principales de cada familia de fallas, fracturas, vetas y vtlls. (b) comparación con el modelo de cizalla frágil Riedel derecho.

Figura N° 36: a) representacion grafica de los diferentes sistemas estruturales, b) sistema de cizalla Riedel derecho.

Como se observó en la figura anterior, se cumple con la teoría de Riedel, por lo que podemos interpretar las direcciones de los esfuerzos que acontecieron en la zona.

Esfuerzos (Paleoesfuerzos)

 σ 1 tiene una dirección de N04°E σ 3 tiene una dirección de S86°E σ 2 es vertical

4.1.6. CRONOLOGÍA DE EVENTOS

En el Prospecto Potrero se han desarrollado dos eventos que controlan el emplazamiento del pórfido granodiorítico y la posterior formación de los filones.

El Primer evento corresponde a un régimen de esfuerzos compresivos con movimiento regional sinestral, las cuales han favorecido el emplazamiento de diferentes intrusivos andesíticos en forma de sills y también el emplazamiento del pórfido Granodiorítico en la zona de estudio, probablemente por una inflexión de las fallas maestras o fallas sintéticas generando zonas de tensión; este evento lo podemos asociar a la orogenia en su fase quechua II entre 10 a 7 Ma aproximadamente, coincidiendo con el desarrollo de pórfidos de Cu-Mo, estos controlados por sistemas transpresivos con desplazamiento sinestral.

El segundo evento es posterior al emplazamiento del pórfido Granodiorítico del Mioceno superior, ya que se tienen fallas reaperturadas como el caso del sistema I y otras cortando al intrusivo; además se ha generado una zona de tensión que ha favorecido el ascenso de soluciones hidrotermales formando filones en las areniscas-limolitas de la formación Chicama y también cortando al pórfido. Estas vetas por su mineralización probablemente se asocien al emplazamiento del batolito de la cordillera blanca y a los depósitos de Cobre - Wolframio relacionados con intrusivos del Mioceno Superior a plioceno inferior con edades aproximadas entre 7 a 5 Ma.

4.2. RESULTADOS DE EXPLORACIÓN

4.2.1. ESPECTROMETRÍA (TERRASPEC)

Para el análisis se utilizó los softwares SpecMin y SpecWin donde se analizaron 145 muestras recolectadas en las salidas a la zona de estudio.

Las muestras deben estar debidamente codificadas para evitar posibles confusiones; se procede con la lectura registrando los valores y espectros de la muestra, luego se corrigen las lecturas por el salto detectado entre el espectro visible y el infrarrojo cercano. Con las lecturas listas para su interpretación se procede a revisar la forma del espectro revisando el número de rangos de absorción apreciables en el espectro, tomando muy en cuenta los picos, las ondulaciones y se observa si estos tienen partes curvilíneas o rectas. La muestra representa el punto de una roca con varios minerales lo que se traduce en la lectura con un espectro compuesto la cual siempre tendrá ligeras variaciones respecto a los espectros de la biblioteca de los programas de análisis utilizados. Las arcillas siempre tienen muchos elementos huésped por sus características físicas, por lo que se tendrán algunos espectros aún más confusos y discordantes con nuestros espectros de la base de datos del software Specmin.

Además las muestras tienen que estar secas ya que el agua puede hacer variar los espectros "suavizando" los picos y dando lecturas erróneas.

Los resultados de este análisis presentaron principalmente: illita, muscovita (sericita), cloritas, esmectitas, andalucita, silicificación, goethitas, hematitas. (Ver datos espectrales en anexo I).

4.2.1.1 Análisis de Firmas Espectrales

Con los datos y espectros obtenidos en el software Specmin, se analizaron los espectros de arcillas de las muestras seleccionadas aleatoriamente del Prospecto Potrero, con el fin de cuantificar los valores en porcentaje de cada mineral y realizar mapas de isovalores para cada mineral de arcilla; el procesamiento de estos datos se realizó con el software Geosoft; a continuación los describiremos en orden de abundancia:

a) Illita

Es el mineral de arcilla más representativo y de mayor importancia en la zona de estudio ya que está asociada a la alteración fílica principalmente, a consecuencia de descenso de la temperatura (200-250°C aproximadamente),

se asocia prácticamente a todos los afloramientos rocosos del prospecto, principalmente a los sedimentos bordeando al intrusivo.

En la figura N° 37, se muestra el espectro de la muestra 99 (ver anexo I), la cual es la más representativa y se asemeja al espectro ideal de illita; según el análisis de Terraspec contiene valores de: (illita 83.17% y muscovita 16.83%).

Figura N° 37: Espectro de la illita; comparación de espectros; en rojo, espectro de illita analizado del prospecto Potrero. En azul espectro ideal para la illita (fuente, Specmin – ASD Database).

El espectro de la illita del área de estudio en color rojo, presenta contaminación de minerales de muscovita; las cuales elevan la reflactancia hasta en un 5% aproximadamente en diferentes longitudes de onda, principalmente en el rango de 1800-2500nm.

En la figura N° 37, se observa en color azul el espectro ideal para la illita; que según su descripción de la base de datos del Specmin proviene del desierto de gobi, Mongolia explorando pórfidos de Cu; la illita se presenta con óxidos (goethita) y pirita. En el prospecto Potrero también las muestras analizadas presentaban óxidos de fierro y algunos granos de pirita en una matriz silícea asociado a la alteración fílica y potásica.

Con la base de datos espectrales se ha elaborado un mapa de contornos isovalóricos, resaltando valores elevados de concentración de illita, la cual se asocia tanto a la alteración Fílica como también a la Potásica.

Figura N° 38: Concentración de illita; se observa fuertes concentraciones hacia los bordes del pórfido granodiorítico en la zona central y ligado a la zona fílica principalmente.

b) Muscovita

Es el segundo mineral de arcilla se presenta en el intrusivo Granodiorítico y en contactos con sedimentos metamorfizados (hornfels), se asocia a la alteración potásica debido a que corresponde a una intrusión félsica y también se presenta en menor porcentaje en la zona fílica alterándose a sericita.

Aunque es sabido que el límite superior de estabilidad termal, a 1000 bares de presión de agua para la muscovita es de 620° C (Burnham, 1962), las temperaturas determinadas históricamente en inclusiones fluidas en depósitos de tipo pórfido cuprífero para esta asociación mineral varían en el rango de 180° - 400°C (Creasey, 1966).

Se toma el espectro de la muestra 11 (ver anexo I), la cual se asemeja al espectro ideal de la muscovita, lógicamente la muestra no presenta muscovita al 100% debido a variedad de minerales que contienen la muestra, en este

caso se observa valores de reflactancia menores al espectro ideal de la muscovita de color negro; lo que nos indicaría que también tiene contenidos de illita.

Figura N° 39: Espectro de la **muscovita**; la línea roja representa a una muestra del área de estudio, en color negro se tiene el espectro ideal de la muscovita con eventual contaminación de illita. (Fuente, Specmin – ASD Database)

Figura N° 40: Concentración de muscovita; este mineral está asociado principalmente al pórfido granodiorítico dentro de la alteración potásica y en los hornfels desarrollado hacia el contacto con e intrusivo.

En la figura N° 39, el espectro en color negro representa al espectro ideal para la muscovita tomado de la base de datos del Specmin, la cual contiene valores de Fierro-Clorita. Esta asociación también se presenta en el Prospecto Potrero ya que tenemos minerales con contenidos variables de óxidos (goe>jar>hem) y cloritas dentro de la alteración potásica. Se observa las concentraciones elevadas de este mineral, encontrándose principalmente en el centro del intrusivo granodiorítico y hacia sus contactos; asociándose a la alteración potásica:

c) Cloritas

Las cloritas en el Prospecto Potrero se encuentra dentro de la zona potásica y hacia la periferia del pórfido reemplazando biotitas por cloritas, probablemente por disminución de la temperatura y estas a su vez sobreimpuestas por fases sericíticas; este mineral se presenta principalmente en el intrusivo granodiorítico, como también de manera puntual en las cajas de vetas acompañado con illita.

Se toma la muestra 203 la cual es la más representativa de la base de datos espectrales (ver anexo I); esta muestra presenta contenidos de illita de 35.43%; pero predomina o se asemeja al espectro de la clorita, en la figura N° 41, se observa que desde la longitud de onda 1800-2500nm se tiene picos de reflectancia típicos de la illita.

Figura N° 41: Espectro de las **cloritas**; comparación de espectros: color rojo espectro analizado en el prospecto Potrero, color negro espectro de clorita al 64.57% e illita 35.43% (fuente, Specmin – ASD Database).

Se ha elaborado un mapa de contornos isovalóricos de las cloritas, las cuales tienen una alta concentración hacia la zona Este del Intrusivo granodiorítico, formando el borde del sistema y como también en las cajas de las vetas.

Figura N° 42: Concentración de cloritas; se encuentran asociadas a la alteración potásica del pórfido y extendiéndose hacia la zona SE afectado por la alteración fílica.

d) Otros Espectros Reconocidos

Se han identificado variedades de minerales del grupo de las esmectitas; principalmente la montmorillonita, las cuales se encuentran en zonas de fallas y fracturas, originándose principalmente por alteración supérgena; estas montmorillonitas se encuentran en combinación con illita, cloritas y algunas veces con muscovita, en zonas de alteración argílica y menor grado fílica.

Figura N° 43: Espectro del grupo de las esmectitas: en color rojo se tiene el espectro analizado del Prospecto Potrero, en color negro el espectro ideal de la montmorillonita (fuente, Specmin – ASD Database).

Figura N° 44: Concentración de esmectitas; se presenta en las cajas de vetas de manera puntual y en el pórfido por acción supérgena.

También se ha identificado la andalucita, este mineral se asocia a los bordes en zonas de contactos del intrusivo con sedimentos pelíticos, que como se observa en el prospecto potrero la roca sedimentaria metamorfizaron a

hornfels. La andalucita se forma en aureolas de contactos de intrusivos ígneos con rocas arcillosas, en nuestro caso se tiene el contacto del intrusivo granodiorítico con sedimentos pelíticos de la formación Chicama.

Figura N° 45: Espectro de la andalucita: comparación de espectros; en color rojo se tiene el espectro analizado del Prospecto Potrero, en color azul el espectro ideal de la Andalucita (fuente, Specmin – ASD Database).

Figura N° 46: Concentración de andalucita; este mineral se encuentra en los hornfels producto del metamorfismo de contacto en zonas de contacto con el pórfido.

Universidad Nacional del Altiplano

En mucha menor frecuencia se tiene algunas muestras con contenidos de caolinita con mezclas de illita principalmente, asociadas a zonas de silicificación hacia el contacto con el intrusivo y en cajas de vetas, como también los óxidos de fierro principalmente (Goethita, hematita y jarosita) en mismo orden de abundancia.

4.2.2. GEOLOGÍA ECONÓMICA

4.2.2.1. Alteraciones Hidrotermales

En el área de estudio se ha diferenciado alteraciones hidrotermales relacionadas a la fase intrusiva principal y eventos hidrotermales, Teniendo dos eventos principales; uno temprano de tipo potásico y uno más tardío dominado por silicificación, como alteración principal la fase potásica desarrollándose también cloritas reemplazando a biotitas con sobreimposición de fases cuarzo sericíticas (ver mapa de alteraciones en anexo IV).

a) Alteración Potásica Temprana (bio sec ± mag)

Este tipo de alteración se encuentra afectando a los cuerpos de granodiorita aflorantes, en la zona de estudio la biotita secundaria se manifiesta de manera pervasiva y selectiva de acuerdo a la zona en que se encuentre, esta alteración se presenta en el estado primario de la formación del depósito bajo soluciones con pH neutro a alcalino y a altas temperaturas entre 350° a 550°C.

La biotita secundaria es el mineral principal de esta alteración, se encuentra reemplazando principalmente a los ferromagnesianos, en algunos casos su manifestación es tan intensa que produce una biotización de la roca la cual se encuentra asociada a magnetita; esta alteración está afectada por eventos hidrotermales posteriores los cuales dieron lugar a un reemplazamiento parcial de la biotita por cloritas ± sericita, probablemente por disminución de la temperatura; con la ayuda del Terraspec se identificó la muscovita que se encuentra asociada a esta alteración ya que nos encontramos en el núcleo del pórfido.

La magnetita está caracterizada por reemplazar a los minerales máficos (piroxenos, hornblendas y en algunos casos biotitas primarias) de la roca original, también se presenta de manera diseminada.

En general esta fase es pervasiva muchas veces llega a borrar parcialmente la textura de la roca, otras veces es débil y las biotitas secundarias aparecen en forma diseminada, en vetillas discontinuas y en matriz.

No se ha identificado una fase de alteración potásica principal con ensambles de feldespato potásico y biotita, esto se explicaría por el alto grado de erosión que presenta la zona de estudio.

Figura N° 47: a) Alteración potásica pervasiva, nótese las hornblendas y biotitas primarias reemplazadas por biotitas secundarias y magnetita, la coloración oscura indica también la presencia de biotita secundaria en matriz; b) y c) Alteración Potásica selectiva, la biotita secundaria reemplazando principalmente a ferromagnesianos en matriz y vtlls discontinuas.

b) Alteración Fílica (qz-ser-py)

Esta alteración se caracteriza por el desarrollo de la sericita y cuarzo secundario como producto de una hidrólisis moderada de los feldespatos, se desarrollan en un pH 5 a 6, en un rango de temperatura entre 300° a 350°C.

Esta alteración se ha identificado en el pórfido granodiorítico y también en las rocas hospedantes, afectando principalmente a la matriz de forma selectiva y pervasiva en ciertas zonas. Se presenta principalmente bordeando a la zona potásica y también en la caja de las vetas.

Esta alteración se encuentra sobreimpuesta a la alteración potásica que afecta a la fase intrusiva principal, con un control selectivo en este caso se puede apreciar un reemplazamiento parcial de biotita ± plagioclasas por sericita.

Figura N° 48: Alteración fílica; a) se puede observar sericita selectiva en matriz y reemplazando a cristales de biotita-ferromagnesianos, b) alteración fílica pervasiva en matriz de pórfido granodiorítico con presencia de vtlls tipo B y mineralización de Mo.

c) Silicificación

La silicificación se trata de la adición de sílice a la roca, esta alteración se observó de manera puntual hacia el contacto de arenisca limosa con el pórfido granodiorítico afectando a las limolitas con un halo no mayor a 5m de manera moderada. También esta alteración afecto a la roca caja de las vetas siendo afectada la veta Potrero principalmente.

Figura N° 49: Silicificación, nótese la mineralización de mo-py diseminado y en vtlla; esta muestra se encuentra hacia el contacto con el pórfido.

d) Alteración Argílica

Su presencia es bastante restringida generalmente relacionada a las rocas hospedantes que albergan estructuras, también fue identificada en la zona de intrusivos adyacente a la alteración fílica, en este caso se presenta asociada a fracturamiento con limonitas por acción supérgena.

Figura N° 50: a) alteración argílica en el intrusivo producto de la interacción supérgena. b) se observa roca hospedante de veta con alteración argílica en sedimentos.

4.2.2.2. Vetillas

a) Vetillas Tipo EB (EarlyBiotite)

Estas vetillas se observaron en la zona potásica compuesta por un alineamiento de biotitas tempranas, se manifiestan con dimensiones milimétricas sinuosas y discontinuas, lo que nos indica que se formó en un ambiente dúctil; estas están cortadas por todas las vetillas observadas en la zona de estudio

Figura N° 51: Se observan vtlls tipo EB (líneas color negro) cortada por una vetilla tipo A (vtlla de qz sinuoso, con Mo en los bordes por posible reapertura).

b) Vetillas Tipo A

Las vetillas tipo A (cuarzo sinuoso), presenta potencias milimétricas con porcentaje por debajo del 1%, al igual que las vetillas tipo EB las vetillas A se observaron en la zona potásica en algunos casos cortando a las EB y cortadas por las B.

c) Vetillas Tipo B

Las vetillas tipo B se encuentran en la zona potásica y parte también dentro de la zona fílica, en la zona potásica se observó vetillas de cuarzo con sutura de sulfuros (mo-py±cpy), mientras en la zona fílica las suturas son principalmente óxidos de fierro (goethita). Presentan potencias variables que van desde unos milímetros hasta 2cm con un porcentaje estimado de 2-4%.

Figura N° 52: Vetillas tipo B con sutura de Ox.Fe, goethita principalmente, nótese un fuerte stockwork en el pórfido granodiorítico.

d) Vetillas Tipo D

Estas vetillas se presentan en casi toda el área del Prospecto, son vetillas de cuarzo lechoso tardías ocasionalmente con py y marcasita; se presentan en forma continua y discontinua en algunos casos como relleno de fracturas con espesores variables desde milimétricos hasta centimétricos y un porcentaje estimado entre 10-15%. La mayor incidencia de estas vetillas al igual que todas es hacia la zona potásica del intrusivo granodiorítico.

Universidad Nacional del Altiplano

Figura N° 53: Stockwork de vetillas tipo D cortadas unas con otras.

4.2.2.3. Estructuras Mineralizadas

En el prospecto Potrero se han identificado 3 vetas, 2 vetas emplazadas en rocas sedimentarias de la formación Chicama y una cortando al intrusivo y rocas sedimentarias; estas vetas se formaron por relleno de fracturas en una etapa tensional del sistema. Para su mejor comprensión se las denominó veta Potrero, veta Freddy y veta Nilo; también se han mapeado otras vetas con menor importancia en su extensión, espesor e interés económico.

Se observaron labores artesanales explotadas en la época colonial (principalmente veta Freddy), donde recuperaban el cobre; la veta Potrero, actualmente se viene explotando por pequeños mineros recuperando también el cobre con altas leyes.

a) Veta Potrero

La veta Potrero se caracteriza por estar emplazado dentro de las capas sedimentarias de la formación Chicama y también cortando al intrusivo, por lo que se entiende que la mineralización de esta estructura es posterior al pórfido. Dentro del pórfido presenta una dirección N10°W en promedio pero cambia de dirección N55°W al pasar una falla premineral que coincide con el control litológico, aprovecha las capas sedimentarias y se emplaza tipo manto;

presenta buzamientos variables en promedio 30° y tiene una extensión de 350m con potencias en promedio de 30cm.

Presenta una textura masiva a brechada conformada por cuarzo lechoso, sulfuros y óxidos de fierro, también los fluidos mineralizantes se depositaron tanto en el techo y piso de la roca caja con buenas leyes de cobre.

La mineralogía de ganga está conformada por cuarzo lechoso, pirita y óxidos de fierro y como minerales de mena tenemos calcopirita, calcosina, calcantita y bornita.

En el reporte de laboratorio se pueden ver valores entre 6-8% de cobre, existiendo una máxima 19.5%; esta veta es considerada la principal por presentar altas leyes de Cu.

Figura N° 54: Veta Potrero, nótese el tipo de relleno de fracturas en la roca caja silicificada influenciado por la veta que se emplaza tipo manto y de textura brechada con mineralización de calcantita.

b) Veta Freddy

Esta estructura mineralizada se ubica hacia el NE de la zona de estudio según el plano estructural, considerada Veta Freddy ya que fue la primera veta en ser mapeada según el avance del mapeo; presenta una dirección promedio de S10°W con buzamientos comprendidos entre 40°-45°; tiene una longitud de 400 metros considerando su proyección bajo cobertura y una potencia promedio de 30-40cm.

Se presenta cortando secuencias sedimentarias de la formación Chicama, constituido por cuarzo con textura masiva, teniendo como minerales de mena calcopirita, calcosina y minerales de ganga cuarzo lechoso, arsenopirita, pirita y óxidos de fierro (hematita, goethita, jarosita).

Los fluidos mineralizantes también se emplazaron en parte de la roca caja con potencias comprendidas entre 1-5 cm formado por fallamiento normal premineral; también hacia los bordes de la veta se observa ligeramente una textura brechada, probablemente por reactivación de los esfuerzos de tensión en la etapa sinmineral.

Las muestras preparadas para geoquímica reportaron valores de cobre que varían entre 1 - 2.19%.

Figura N° 55: Veta Freddy emplazado en sedimentos de la formación Chicama, nótese el aspecto brechado hacia los bordes.

c) Veta Nilo

La veta Nilo es una estructura con menor dimensión y extensión en comparación con la anterior, se encuentra emplazada en secuencias sedimentarias de la formación Chicama, según el plano estructural se encuentra ubicado hacia la zona central-oeste.

Presenta una dirección de S25°E y buzamientos de 40° en promedio, con una extensión de 80m y potencias variables de 25-30cm, se encuentra cortadas por fallas de rumbo post minerales las cuales controlan y restringen su extensión. La mineralización que presenta primordialmente es de ganga con cuarzo, arsenopirita y pirita, con valores mínimos de calcopirita.

4.2.2.4. Mineralización

El prospecto Potrero tiene como minerales de mena dentro de las vetas: a la calcopirita principalmente, calcosina, calcantita y bornita asociados a minerales de ganga como son el cuarzo, pirita, arsenopirita y óxidos de fierro.

Dentro del sistema de mineralización tipo pórfido la mineralización se manifiesta en forma diseminada y en vetillas, como minerales de mena principalmente a la molibdenita con valores promedios de 87.6 ppm de molibdeno, en menor cantidad calcopirita, calcosina y minerales de wolframio que no son visibles a simple vista pero se reportaron valores; como ganga se tiene pirita y marcasita.

La mineralización en el prospecto Potrero se manifiesta en diferentes formas, como son: diseminación, vetillas y vetas:

a) Diseminación

La diseminación en el prospecto Potrero se encuentra principalmente en el pórfido y roca caja de las vetas. En el pórfido en la zona central (zona potásica), se observa diseminación de sulfuros: pirita-calcopirita principalmente en un porcentaje promedio visual estimado de: mo 0.2-0.3%, py 1-1.5% y tz de cpy y calcosina, lógicamente que en superficie la diseminación de sulfuros esta lixiviada y en algunas zonas predominan los óxidos de fierro

(goethita>hematita). La diseminación de sulfuros en esta zona, se encuentra en algunos casos reemplazando a los ferromagnesianos.

Hacia la zona SE, alejándonos del centro potásico, la diseminación de sulfuros disminuye y aumenta la presencia de pirita con relación a la calcopirita; la estimación de sulfuros en promedio es: py 1% y tz de cpy, mo y cc. Y en algunas zonas la pirita se encuentra junto con las cloritas.

En las rocas cajas de las vetas en sedimentos, la diseminación de sulfuros incrementa notablemente por influencia de las vetas, teniendo una estimación promedio de: cpy 0.5%, py 1-1.5% y tz de cc; en este ambiente no se observa diseminación de molibdeno ya que es propio del pórfido, y no se encontraron en las vetas.

b) Vetillas

La mineralización de sulfuros, también se encuentran en vetillas que van de 2-10mm, se identificaron vtlls de qz-Ox.Fe-molibdenita y otras de qz-Ox.Fe, en algunos casos la calcopirita se presenta con mucha más frecuencia en vtlls tipo B; en la zona central se han observado sulfuros en suturas de las vetillas tipo B, predominando (mo-cpy-py) con un porcentaje estimado de vetillas de 3% en promedio, alejándonos del centro hacia la zona SE la frecuencia de vetillas disminuye hasta un 2% en promedio, predominando en este caso la py y tz de marcasita.

Figura N° 56: Stockwork de vetillas: a) vetillas tipo B de qz-py-mo en pórfido granodiorítico, b) stockwork de vtlls tipo B en hornfels, cortadas por falla ligada al sistema de fallas de apertura S04°W (Vetas), con relleno de Ox.Fe.

c) Vetas

Las vetas indudablemente tienen la mayor concentración de minerales con interés económico, ya que resaltan notablemente los sulfuros en forma masiva como son: calcopirita, calcosina y también la bornita y calcantita como minerales de mena, los minerales de ganga son cuarzo, pirita y óxidos de fierro. Cabe señalar nuevamente, que en estas vetas no se observó molibdeno ya que es propio del pórfido y estas vetas son posteriores a la mineralización del pórfido.

4.2.2.5. Mineralogía

La mineralogía de mena está representada principalmente por la calcopirita, seguido de diferentes minerales de cobre por enriquecimiento secundario: como la calcosina, bornita y calcantita; estos minerales están relacionados estrictamente a las estructuras mineralizadas (vetas). Los minerales de mena están asociados a los minerales de ganga como son: cuarzo, pirita, arsenopirita y óxidos de fierro como son goetita y jarosita principalmente producto de la acción supérgena.

a) Minerales de Mena

• Calcopirita

Este mineral es el más representativo del prospecto Potrero ya que se encuentra en gran cantidad principalmente en las estructuras mineralizadas y en vetillas, se observa en cristales anhedrales de hasta 2mm y se asocia a todos los sulfuros existentes. La veta potrero presenta valores de cobre por encima del 2%, teniendo como valor máximo en una muestra de 19%. Este mineral también se presenta de manera puntual en algunas vetillas relacionadas al pórfido acompañado de la molibdenita, principalmente en vetillas tipo B.

Calcosina

Este mineral es de origen secundario, por lo que se encuentra reemplazando a la calcopirita, está asociada a cuarzo, calcopirita y pirita; en algunas ocasiones

la calcosina se encuentra como patinas de la pirita por su cercanía a la zona de oxidación por acción supérgena.

• Bornita

La bornita al igual que la calcosina se encuentra en zonas de oxidación por acción supérgena, este mineral aparece como mineral secundario principalmente en la veta Potrero ya que esta veta tiene altos valores de cobre, siendo la mineralización de mena principal la calcopirita.

• Molibdenita

La molibdenita está directamente relacionada con el estilo de mineralización del pórfido granodiorítico, presentándose principalmente en vetillas tipo B, asociada a pirita, calcopirita y cuarzo, también se encuentran en fracturas con óxidos de fierro, las cuales anteriormente fueron vetillas.

b) Mineralogía de Ganga

Cuarzo

Es el mineral ampliamente distribuido en el prospecto, ya que se presentan como vetas y vetillas; en las vetas se presenta con textura craqueladabrechada. En las vetas se presenta como cuarzo lechoso, con mineralización de calcopirita. En algunas vetillas se presenta como cuarzo hialino con mineralización de molibdenita-pirita-calcopirita. En las cajas adyacentes a las vetas y al pórfido se presenta fuerte stockwork rellenado principalmente con cuarzo lechoso.

• Pirita

La pirita se encuentra tanto en vetas, vetillas y en cajas adyacentes a cuerpos y estructuras mineralizadas asociados a minerales de mena; se presenta en cristales euhedrales menores a 2 mm.

• Arsenopirita

Este mineral de ganga se presenta principalmente en las vetas ocurriendo en la veta Freddy principalmente, se asocia a la calcopirita, pirita y se presenta en algunas ocasiones de manera masiva.

Universidad Nacional del Altiplano

4.2.2.6. Controles de Mineralización

Los controles de mineralización son un conjunto de factores geológicos que favorecieron y sirvieron de base para la formación de cuerpos mineralizados y el ascenso de fluidos mineralizantes de una posible mineralización económica.

a) Control Estructural

Definitivamente el control estructural, es muy importante para el emplazamiento del pórfido y posterior ascenso de fluidos mineralizantes formando filones. El evento compresional correspondiente a la Fase quechua, regionalmente originó fallas S45°E que son inversas, transpresivas y probablemente por una inflexión de estas se generaron zonas de tensión por el cual se emplazó el pórfido Granodiorítico y también sills andesíticos que predominan en la zona.

Producto de un sistema de deformación compresional, localmente se originaron anticlinorios con rumbo N50°W aproximadamente en rocas sedimentarias del jurásico (Fm. Chicama). En el prospecto Potrero se han identificado diferentes sistemas de fallas como son S45°E como principal, que son inversas con desplazamiento dextral, cortando a estas se tienen las fallas con rumbo N24°W

en algunos casos con ligero desplazamiento dextral, y la última que corta a todas las anteriores con rumbo S35°W que son fallas relacionadas a esfuerzos distensionales por una posterior relajación del sistema.

El sistema compresional continuó y se generaron nuevas fallas de tensión que se ajustan al modelo de Riedel, como se explicó en el capítulo estructural, estas fallas de apertura por lo general son fallas normales, las cuales permitieron el ascenso de fluidos mineralizantes con interés económico depositándose en espacios abiertos. Estas vetas presentan un rumbo promedio de S04°W y también en superficie se observa como rellenos de fracturas emplazándose en el intrusivo y roca sedimentaria, rellenando todos los espacios, como es el caso de la veta potrero que aprovecha las capas sedimentarias para seguir su rumbo.

b) Control Litológico

Está controlado por el intrusivo granodiorítico, la cual presenta anomalías de Mo, Wolframio y menor proporción Cu, la mineralización se presenta como sulfuros en forma diseminada reemplazando principalmente a los ferromagnesianos y en vetillas de cuarzo; cabe destacar que nos encontramos en la parte profunda del pórfido, por lo que se presenta como granodiorita y con una alteración potásica, lo que nos hace suponer que la mineralización más propagada se encontraba en las partes superiores de este sistema la cual ya no se encuentra a consecuencia de la erosión.

El segundo evento de mineralización, como se dijo anteriormente se debió a eventos distensionales, los cuales permitieron el ascenso de fluidos mineralizantes formando las vetas y brechas; estas estructuras mineralizadas se encuentran en las rocas sedimentarias de la formación Chicama, que consiste en areniscas limosas, las cuales no son buenas receptoras de mineralización por su baja permeabilidad.

4.2.2.7. Génesis y Tipo de Yacimiento

El Prospecto Potrero metalogenéticamente se encuentra en el límite de las franjas de pórfidos de Cu-Mo (Au) relacionadas a intrusivo del Mioceno y

depósitos de Wolframio-Cu relacionados con intrusivos del Mioceno superior, formando así parte de la franja denominada cinturón metalogenético del Mioceno del centro y norte del Perú (Noble y McKee, 1999). Estructuralmente está ubicado dentro del corredor estructural regional con rumbo NW-SE. Esta franja alberga proyectos de gran envergadura como son: El Águila, Magistral, Melchora, Santa Rosa, La Descubridora, Racaycocha, Pucajirca, etc. Que son sistemas de pórfido de Cu-Mo más conocidos y también minas antiguas como: Purísima, Santa Rosa, Señor de la Soledad, Pasto bueno, Tamboras, etc.

El prospecto Potrero, está relacionado a una fase compresiva correspondiente a la tectónica andina en su fase quechua II (±15Ma) (Noble y McKee, 1999), produciéndose esfuerzos compresivos en dirección NE-SW y estas originando plegamientos y fallas inversas con rumbo NW-SE, esta etapa compresiva origino también movimientos transversales denominados como "fallas transpresivas" las cuales plegaron y fallaron a las rocas preexistentes (Formación Chicama), se tiene este concepto por lo descrito en el capítulo de geología estructural, ya que regionalmente los lineamientos se ajustan al modelo de cizalla de Riedel izquierdo, teniendo el esfuerzo principal σ 1 en dirección E-W aproximadamente, y probablemente por una inflexión de fallas se generaron zonas de tensión que permitieron el emplazamiento del pórfido o en zonas de debilidad, principalmente en núcleos de anticlinales locales.

En el momento del emplazamiento del pórfido, se generó la mineralización en la roca caja en forma diseminada, esta mineralización no fue de gran extensión, debido a que las limolitas no son buenos receptores de mineralización por su baja permeabilidad, limitando así la extensión del sistema porfirítico, al final de la etapa compresiva, vino la relajación del sistema generando stockwork de vetillas tipo B con mineralización de qz-py-mo±cpy y posteriormente las vetillas de py.

Como segundo evento, en este caso local; se tiene un cambio de σ 1 que es el esfuerzo principal con dirección N04°E, este cambio se sigma corresponde al modelo de cizalla de Riedel derecho por los datos tomados y la distribución de fallas y fracturas en el prospecto, las cuales generaron zonas de tensión en esa misma dirección, formando así fallas normales sin mucho desplazamiento y posterior relleno de fluidos mineralizantes. Este evento de mineralización es

Universidad Nacional del Altiplano

posterior al pórfido ya que estas vetas se encuentran también cortando al intrusivo.

Basándonos en las características litológicas, alteraciones y en el estilo de mineralización que presenta el prospecto Potrero, primero; el intrusivo granodiorítico corresponde a un sistema de mineralización tipo Pórfido de Molibdeno, la cual probablemente se ha formado por la subducción de la placa de nazca en los márgenes continentales activos y/o arcos de islas ligado a la subducción, este evento tectónico permitió el emplazamiento de magmas calcoalcalinos-félsicas a profundidades que varían entre 4 y 2 km con alta presión, temperaturas aproximadas entre 400°C a 600°C y un pH cercano al neutro; los pórfidos de molibdeno se asocian a intrusiones félsicas derivadas de magmas con una importante componente de corteza continental re-fundida (Maksaev, 2004), Posteriormente cuando el sistema entro en relajación se produjo la tensión la cual permitió el ascenso de fluidos mineralizantes, formando así filones con cuarzo lechoso y sulfuros masivos, estas vetas aprovecharon las fallas y fracturas abiertas que cortan al pórfido y roca caja.

A partir de estos antecedentes se deduce la presencia de un sistema de tipo pórfido Mo±(Wolframio - Cu), que probablemente se ha erosionado toda la parte superior del sistema, por lo que nos encontraríamos en la parte central (zona potásica), que a su vez este depósito tuvo un segundo evento que corta al pórfido, por lo que se interpreta que se trata de filones rellenando la zonas de tensión con cuarzo y sulfuros principalmente, siendo el elemento de interés el cobre. Por la ocurrencia mineralógica se considera a los filones como el estilo de mineralización de interés.

4.2.2.8. Geoquímica

La prospección geoquímica realizada en el área tuvo como objetivo principal delimitar las áreas de mayor concentración de mineralización, se recolectaron muestras de diferentes afloramientos rocosos en total 153 muestras de rock chips mediante el método de muestreo sistemático e irregular.

El análisis de elementos se realizó mediante el método de fluorescencia de rayos x (XRF), el muestro se realizó en forma detallada a los largo del área de

estudio tomando en consideración las áreas de mayor interés según descripciones de litología y de alteraciones.

El procesamiento de datos se ha realizado mediante el software Oasis Montaj (Geosoft), en la cual se elaboraron los mapas por rangos de anomalías, mediante el método geoestadístico Kriging.

a) Análisis de Muestras

Todas las muestras son de superficie, las cuales son muestras chips de afloramientos rocosos (ver mapa de muestreo en anexo IV), según la tabla de (anexo II), se elaboró los mapas de isovalores para cada elemento de interés.

Seguidamente realizamos el tratamiento geoestadístico de las muestras chips, pero solamente trabajaremos con las muestras de rocas sedimentarias e intrusivas, separando las muestras de vetas por sus altos valores contenidos. Para este cálculo trabajaremos con 130 muestras que corresponden a los afloramientos rocosos, con el fin de determinar los parámetros geoestadísticos tales como el mínimo, máximo, media, mediana, varianza y desviación estándar; así mismo para determinar el valor de fondo regional (Background) y los rangos de anomalías de cada elemento, que son parámetros básicos para la elaboración de mapas temáticos por rangos de anomalías de las mismas. En el siguiente cuadro se detallan los parámetros obtenidos:

PARAMETROS GEOESTADISTICOS Y CALCULO DE ANOMALIAS DE MUESTRAS SUPERFICIALES										
SIN VETAS										
	Ag ppm	Cu ppm	Mo ppm	Pb ppm	Zn ppm	W ppm	As ppm	Mn ppm		
Número de valores	130.0	130.0	130.0	130.0	130.0	130.0	130.0	130.0		
Mínimo	0.2	12.0	0.8	4.0	4.0	7.0	5.0	5.0		
Máximo	24.0	9420.0	1356.0	1135.0	476.1	1023.0	10358.0	531.0		
Media	0.6	237.5	87.6	67.0	38.7	56.0	222.3	67.0		
Mediana	0.2	37.4	26.0	17.0	23.0	29.0	34.0	20.0		
Varianza	8.1	1268998.5	52013.8	24886.2	2780.4	13813.8	952531.1	9366.8		
Desviación Promedio	0.8	344.3	108.0	81.4	30.6	52.4	307.5	61.7		
Desviación estándar	2.8	1126.5	228.1	157.8	52.7	117.5	976.0	96.8		
			ANOMAL	ÍAS						
Fondo Regional	0.4	137.5	56.8	42.0	30.9	42.5	128.2	43.5		
Anomalía Débil	3.3	1264.0	284.9	199.7	83.6	160.0	1104.1	140.3		
Anomalía Moderada	6.1	2390.5	512.9	357.5	136.3	277.6	2080.1	237.1		
Anomalía Fuerte	8.9	3517.0	741.0	515.2	189.1	395.1	3056.1	333.9		

Cuadro N° 3: Calculos Geoestadisticos de los resultados de Geooquimica de muestras superficiales de roca.

Conociendo la distribución y los parámetros geoestadísticos de las muestras obtenidas, se realizó mapas isovalóricos de elementos relacionados con posible mineralización económica, en los mapas se representa los valores de los elementos según colores que gradan de azul a magenta. El color azul representa valores que se encuentran cercanos al Background, el color amarillo representa anomalías débiles, el naranja representa anomalías moderadas y el magenta representa a anomalías fuertes.

Geoquímica Superficial del Cobre

Figura N° 58: Isovalores de Cobre en ppm.

La concentración de cobre queda claramente marcada en las vetas con fuerte anomalía, presenta anomalía débil en el pórfido granodiorítico, esto probablemente debido a que nos encontramos en el centro del depósito con alteración potásica, y como se sabe esta zona presenta concentraciones bajas de cobre, lo cual ya habíamos explicado anteriormente. Se observa que las

Universidad Nacional del Altiplano

vetas presentan claramente una tendencia Norte – Sur, teniendo valores altos de cobre bien marcados, dicha tendencia nos ayudaría para la ubicación de nuevos blancos de exploración.

Geoquímica Superficial del Molibdeno

Figura N° 59: Isovalores de Molibdeno en ppm.

La concentración de molibdeno se presenta con moderada a fuerte anomalía en la parte central del área de interés, se puede observar claramente que las concentraciones altas de molibdeno se alojan en la roca encajonante bordeando al pórfido granodiorítico, la cual también presenta concentraciones moderadas. Nótese que el molibdeno solo se encuentra ligado al estilo de mineralización tipo pórfido (primer evento de mineralización), y concentraciones débiles cercanos al Background en las vetas, las cuales corresponden al segundo evento de mineralización. Con este mapa de isovalores se demuestra

que se ha desarrollado una mineralización tipo pórfido, pero con bajas concentraciones de minerales con valor económico.

Geoquímica Superficial del Plomo

Figura N° 60: Isovalores de Plomo en ppm.

Se puede observar altas anomalías de plomo concentrado principalmente en las estructuras mineralizadas (vetas), se tienen también moderados a débiles concentraciones de plomo de manera puntual en algunas vetillas dentro del intrusivo granodiorítico como en la roca encajonante, esto a consecuencia del segundo evento de mineralización en la cual los fluidos mineralizantes se movilizaron por las fracturas preexistente formando vtlls.

Geoquímica Superficial del Zinc

Figura N° 61: Isovalores de Zinc en ppm.

El Zinc se presenta con moderadas a altas concentraciones distribuidas a lo largo de la zona de interés en forma aleatoria por encima de los 80 ppm, también se observa mayor concentración de zinc en las vetas, las cuales han podido enriquecer el deposito nuevamente con este elemento.

Geoquímica Superficial del Wolframio

Figura N° 62: Isovalores de wolframio en ppm.

Se tienen de moderada a altas concentraciones de Wolframio en la zona central del área de interés, las cuales se encuentran en el intrusivo y en vetillas en la roca encajonante, se puede observar la concentración de wolframio dentro del intrusivo y en los hornfels bordeando al pórfido, también en las vetas se presentan elevadas concentraciones de wolframio por encima de los 250 ppm.

CONCLUSIONES

- Según las características geológicas: litológicamente existen dos intrusivos: el primero es un pórfido granodiorítico (Mo-Wolframio) de edad Mioceno medio a superior, el segundo es posterior y de composición diorítica; ambos cortando a la Fm. Chicama. El pórfido granodiorítico presenta alteración potásica (bio sec-mag) sobreimpuesta por una alteración fílica (qz-ser-py), además de silicificación principalmente en la caja de vetas. Existen dos eventos de mineralización: el primero corresponde al pórfido de Mo, con valores de Cu muy bajos por consecuencia del alto grado de erosión; la mineralización de Mo probablemente se deba por la cercanía del batolito de la cordillera blanca, derivado de magmas con contaminación cortical; el segundo evento de mineralización se presenta en filones con altos valores de Cu pero en estructuras con potencias relativamente menores (<30cm).</p>
- Estructuralmente se desarrollaron dos eventos: el primero relacionado a esfuerzos compresivos generando fallamiento regional sinestral, permitiendo el emplazamiento del pórfido por zonas de debilidad o en inflexiones de fallas; según la imagen satelital los lineamientos se ajustan al modelo de Riedel sinestral; teniendo los esfuerzos principales los siguientes rumbos: σ1 es E-W, σ3 es N-S y σ2 vertical; el segundo evento fue local y se originó por relajación, según los datos de campo, las fallas y fracturas se ajustan al modelo de Riedel dextral, teniendo los fracturamientos típicos: Y (S45°E), R (S20°E, N25°W), R' (S35°W) y T (S04°W); siendo T fracturas de apertura que permitieron el ascenso de fluidos mineralizantes, formando filones; Según el análisis estructural realizado, los paleoesfuerzos principales en la zona tienen los siguientes rumbos: σ1 es N04°E, σ3 es S86°E y σ2 vertical.
- La geoquímica muestra claramente que la mayor concentración de cobre se encuentra restringida a los filones, y la concentración de molibdeno se encuentra estrictamente ligada al sistema de mineralización tipo pórfido.
- Mediante la espectrometría asociamos a las muscovitas-cloritas con la alteración potásica, las illitas con la alteración fílica y las esmectitas están relacionadas a muestras alteradas por acción supérgena.

RECOMENDACIONES

- Para determinar la paragénesis de ambos sistemas de mineralización se recomienda realizar un estudio mineralógico (secciones pulidas) de muestras mineralizadas del pórfido granodiorítico y de las vetas.
- Se recomienda realizar un estudio petrográfico (secciones delgadas) de los cuerpos intrusivos para determinar su composición.
- En zonas de mayor concentración de mineralización se recomienda perforación exploratoria, como en las coordenadas 195613E, 9046598N con azimut e inclinación de (N208°/-70°) y en 195617E, 9046485N (N300°/-65°), con el objetivo de cortar filones y el pórfido comprobando potencia de vetas y persistencia de mineralización, para evaluación del prospecto.

BIBLIOGRAFÍA

Alemán A. y Marksteiner R., (1997). Petroleum systems along the Fold belt Associated to the Marañon-Oriente-Putumayo (MOP) Foreland Basin. *In* VI Simposio Bolivariano *Exploración Petrolera en las Cuencas Subandinas*', Memorias Tomo II: 63-74.

Allen, C.C., Morris, R.V. and McKay, D.S. (1996). Oxygen extraction from lunar soils and pyroclastic glass. Journal of Geophysical Research 101

Anderson, E. M. (1951). The dynamics of faulting and dyke formation with application to Britain. Üliver & Boyd Ed. Reprinted of the revised second edition (1963), 206 págs.

Beane, R.E. y Titley, S.R. (1981) Porphyry Copper Deposits: Part II. Hydrothermal Alteration and Mineralization. Society of Economic Geologists, USA, Vol. 75, 235-269.

Benavides V. (1956) Cretaceous Systems in Northern Peru, Amer. Mus. Nat. Hist. Bull, vol. 108 art. 4, pp. 353 - 494.

Burnham, W. (1962). A method for determining the solubility of water in silicate melts. American Journal of Science , 721-745.

Camus, F., (2003). Geología de los sistemas porfíricos en los Andes de Chile. Servicio Nacional de Geología y Minería, 267 p. Santiago de Chile.

Carlotto, V., (2008): Mapa metalogenético del Perú, Boletín SGP, Vol. 103. (INGEMMET).

Creasey, S., (1966). Hydrothermal alteration in Titley, S.R. y Hicks, C.L. eds, Geology of the porphyry copper deposits. Tucson: University of Arizona.

Davies, C. (2002) Tectonic, magmatic and metallogenic evolution of the Cajamarca mining district, northern Peru. Unpub PhD. Thesis, james Cook University, Australia.

Farber, D., Hancock, G., Finkel, R., Gallagher, S. and Palacios, O. (2000). The Kinematics of Continental Detachment Faulting: Slip rates along the Cordillera Blanca Detachment fault deduced from in situ produced Cosmogenic Radionuclides 10Be and 26AI. Eos, Transactions, American Geophysical Union 81 (48) F35.

Fontboté, L., (1998). La geoquímica isotópica del plomo en las mineralizaciones de la zona de Ossa Morena (ZOM): implicaciones metalogenéticas y geotectónicas.

Garcés, P.H., (2000). Metodologías de Investigación Científica.

García R.M., (2012), Geología estructural. Esfuerzos y deformaciones de las rocas. Deformación dúctil: los pliegues y sus tipos. Mecanismos de plegamiento. Deformaciones frágiles: diaclasas fallas. Características y tipos. Asociaciones de pliegues y fallas.

Georges H. Davis, Stephen J. Reynolds, (1996), Structural Geology of Rocks and Regions. Relates the physical and geometric elegance of geologic structures within the Earth's crust and the ways in which these structures reflect the nature and origin of crystal deformation through time.

Gustafson, L.B., and Hunt, J.P., (1975), The porphyry copper deposit at El Salvador, Chile: Economic Geology, v.70, p. 857-912.

Hartman H., (1987), Introductory mining engineering

Harvey, B. A., Myers, S.A. y Klein, T., (1999). Yanacocha gold district, northern Peru. Pacrim 99, Bali Indonesia, 10-13 octubre: 445-449.

Hedenquist, J.W., (1987), Mineralization associated with volcanic-related hydrothermal systems in the Circum-Pacific Basin, in Transactions of the 4th Circum Pacific Energy and Mineral Resources Conference, Singapore, 1986, Oklahoma, Circum Pacific Council for Energy and Mineral Resources, 1-26.

Hedenquist, J.W. y Richards, J.P., (1987). The Influence of Geochemical Techniques on the Development of Genetic Models for Porphyry Copper Deposits. In: Richards, J.P. and Larson, P.B. (eds.) Techniques in Hydrothermal Ore Deposits Geology. Society of Economic Geologists, Reviews in Economic Geology, V. 10, p. 235-256.

Hunt, J.P., (1991): Porphyry copper deposits: Economic geology Monographs-8, p. 192-206.

Inca Pacific Resources, "Mapa geológico de Ancash" 2007.

Ingemmet, (1995). Geología de los cuadrángulos de Pallasca, Tayabamba, Corongo, Pomabamba, Carhuaz y Huari. (Boletín N° 60)

Kreiter V.M., (1968). Geological Prospecting and Exploration. Revised and Translated from the 1964 Russian edition by Alexander Gurevich. 383 p., 117 figs. Mir Publishers, Moscow (Central Books Ltd., London).

Lowell, J.D. y Guilbert, J.M. (1970), Lateral and vertical alteration-mineralization zoning in porphyry ore deposits: Economic Geology, v. 65, p. 373-408.

Maksaev, V., (2004), Porfidos cupríferos (Universidad de Chile)

McNulty, B. and Farber, D. (2002). Active detachment faulting above the Peruvian flat slab. Geology 30: 567-570.

Mégard, F. (1984). The Andean orogenic period and its major structures in central and northern Peru. J. Geol. Soc. London 141: 893-900.

Mégard, F., Noble, D., McKee, E. & Cuénod, Y. (1985). «Tectonic significance of silicic dikes contemporeaneous with latest miocene quechua III tectonism in the Rimac Valley, western cordillera of Central Perú». Journual of Geology, Vol. 93, pp. 373-376.

Melendez, F., (2008). Geomorfología y peligros de la subcuenca del río Auqui (Calcayhuanca), Huaraz, Áncash

Noble, D., Sébrier, M., Mégard, F. & MCKee, E. (1985). Demostration of two pulses of paleogene Deformation in the Andes of Perú: Earth and Planetary Sciencie Letters, Vol. 73, p. 345-349.

Noble, D. & McKee (1999). «The Miocene matallogenic belt of central and northern Perú». In Skinner, B. J., ed., Geology and mineral deposits of the Central Andes. Society of Economic Geologists Especial, pp. 155-193.

Oyarzún, J. y Frutos, J. (1974). Porphyry copper and tin-bearing porphyries. A discussion of genetic models. Physics of the Earth and Planetary.

Oyarzun, J., y Oyarzun, R. (1991). Prospección geoquímica: III) Geoquímica de suelos, sedimentos fluviales, aguas, biogeoquímica y geobotánica. En: Yacimientos Minerales, Lunar, R. & Oyarzun, R. (eds.) 1991. Editorial Centro de Estudios Ramón Areces, Madrid, 837-856.

Pardo-Cassas, F. & Molnar, P. (1987) Relative motion of the Nazca (Farallón) y South American plate since late Cretaceous time. Tectonic, vol. 6.

Perelló, J. y Cabello, J. (1989): Pórfidos cupríferos ricos en Oro; una revisión. Revista geológica de chile, Vol.16, No.1, p.73-92.

Quispe, J., Carlotto, V., Macharé, J., Chirif, H. (2007) Nuevo mapa metalogenético del Perú. Reporte interno INGEMMET, pp. 6.

Riedel, W. (1929): Zur Mechanik geologischer Brucherscheinungen. -Zentralblatt fuer Mineralogie, Geologie und Palaeontologie p.354-368 Stuttgart.

Santalla L. y Schwartz M. (1978). Reconocimiento de las minas de Tarica, departamento de Ancash. (INGEMMET).

Sawkins. J. (1984). Metal Deposits in Relation to Plate Tectonics. Minerals and Rocks Series, Volume 17. xiv + 325 pp. Berlin, Heidelberg, New York, Tokyo: Springer-Verlag.

Schwartz, D.P. (1988). Paleoseismicity and Neotectonics of the Cordillera Blanca Fault Zone, Northern Peruvian Andes. Journal of Geophysical Research 93 (B5): 4712-4730.

Sebrier, M. & Soler, P. (1991). Tectonics and magmatism in the peruvian andes from late oligocene time to the present. Geological Society of America, Special Paper, Vol. 265, pp. 259-278.

Sheppard and Gustafson, (1976). Oxygen and hydrogen isotopes in the porphyry copper deposit at El Salvador, Chile. Economic Geology, V. 71, pp. 1549-1559).

Sillitoe, R., y Gappe, I.M.Jr., (1984): Philippine porphyry copper deposits: Geologic settings and characteristics: Bangkok, Thailand, United Nations. ESCAP, CCOP Technical Publication 14, 89 p.

Sillitoe, R., (1996), Granites and metal deposits: Episodes, v. 19, p. 126-133.

Sillitoe R., (2000), Gold Rich Porphyry Deposits: Descriptive and Genetic Models and Their Role in Exploration and Discovery.

Skewes, M.A., and W. Atkinson Jr., (1985). Petrology of the early formed hydrothermal veins within the central potassic alteration zone of the Los Pelambres porphyry copper deposit, Chile. Revista Geológica de Chile, v. 25-26, p. 39-56.

Soulas, J. P. (1977) - Las fases Tectónicas del Terciario superior en el Perú, corte Ayacucho Pisco. Boletín de la Sociedad Geológica del Perú, Lima.

Specmin – ASD Database. Reference mineral spectral library and mineral spectral identification system.

Steinmann G. (1927). Der ophiolitischen Zonen in der Mediterranischen Kettengebirge. 14th. Internat. Geol. Congr., Madrid, 2: 638-667.

Sylvester A.G. (1988). Strike-slip faults. Geological Society of America Bulletin 100 (11), 1666-1703.

Townley B., (2001). Metalogénesis: Hidrotermalismo y modelos de yacimientos. Geología Económica. Departamento de Geología, U de Chile.

Vila, T. & Sillitoe, R., (1991): Gold-rich porphyry systems in the Maricunga belt, northern Chile. Economic Geology, Vol. 86. Canada.

Zappettini, E., Miranda-Angles, V., Rodríguez, C., Palacios, O., Cocking, R. (2001). Mapa metalogénico de la región fronteriza entre Argentina, Bolivia, Chile y Perú (14°S y 28°S).

WEBGRAFÍA

Análisis estructural mediante diagramas de contornos. http://eprints.ucm.es/10027/1/142-288-1-PB.pdf

Fallas y Zonas de Cizalla (Parte I y II): http://www.uclm.es/users/higueras/yymm/fallas/FallasPrimeraParte.htm http://www.uclm.es/users/higueras/yymm/fallas/FallasSegundaParte.htm

Formulación de un modelo geológico-estructural, en el sistema de vetas de la franja oeste del yacimiento minero de Parcoy, Consorcio Minero Horizonte. http://cybertesis.unmsm.edu.pe/bitstream/cybertesis/765/1/tapia_cm.pdf

Geología Estructural. https://es.scribd.com/doc/71025813/Geologia-1

Geología y metalogénesis de los yacimientos de wolframio del sector centro-este del Sistema de Famatina, Argentina.

http://www.scielo.cl/scielo.php?pid=S0716-02082005000100001&script=sci_arttext

Glosario de términos geológicos. http://proteccioncivil.guanajuato.gob.mx/atlas/geologico/glosario.pdf

Los métodos de análisis de paleoesfuerzos a partir de poblaciones de fallas: sistemática y técnicas de aplicación.

http://estudiosgeol.revistas.csic.es/index.php/estudiosgeol/article/view/469/490

Maksaev V., 2001, Apuntes de Metalogénesis: http://www.cec.uchile.cl/~vmaksaev/metalogenesis.html

Metalogenia del Perú norte-centro-sur.

http://www.proexplo.com.pe/2013/programa/cursos_cortos/Yacimientos%20y%20Metal ogenia/MAPA%20METALOGENETICO.pdf

Reseña metalogénica de chile y de los procesos que determinan la metalogénesis andina.

http://www.cec.uchile.cl/~vmaksaev/METALOGENESIS%20DE%20CHILE.pdf

Reología, Esfuerzo y deformación. http://www.ingeodav.fcen.uba.ar/Curso/estructural/01-Introduccion-Cortes.pdf

Uso de la geoquímica para caracterizar provincias metalogenéticas. <u>http://www.slideshare.net/INGEMMET/el-uso-de-la-geoqumica-regional-para-</u> <u>caracterizar-provincias-metalogenticas-una-visin-para-la-exploracin</u>

Wikipedia

http://es.wikipedia.org/wiki/Categor%C3%ADa:Geolog%C3%ADa

ANEXOS

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

Universidad Nacional del Altiplano

ANEXO I DATOS ESPECTRALES ESPECTROMETRÍA

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

N°	Codigo	Este	Norte	Andalusite %	Kaolinita %	Muscovita %	Illita %	Motmorillonita %	Smectita %	Chlorita %	Silicif	OxFe %	Sillimanita %	Otros	Total%
1	1	195597	9046755	0.00	18.84	0.00	47.22	0.00	0.00	0.00	0.00	33.94	0.00	0.00	100.00
2	2	195590	9046545	0.00	23.73	0.00	0.00	0.00	0.00	72.37	0.00	0.00	0.00	3.90	100.00
3	3	195595	9046431	80.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	19.76	100.00
4	4	195675	9046870	80.00	0.00	20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
5	5	195620	9046800	0.00	0.00	17.00	3.00	0.00	80.00	0.00	0.00	0.00	0.00	0.00	100.00
6	/	195583	9046719	0.00	0.00	11.04	79.46	0.00	0.00	9.50	0.00	0.00	0.00	0.00	100.00
8	0	195602	9046579	0.00	0.00	0.00	0.00	0.00	0.00	0.00	10.00	22.65	0.00	67.35	100.00
9	10	195588	9046544	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	62.00	0.00	38.00	100.00
10	11	195597	9046757	0.00	0.00	80.00	20.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
11	12	195592	9046481	0.00	6.00	21.00	30.00	0.00	43.00	0.00	0.00	0.00	0.00	0.00	100.00
12	13	195596	9046437	0.00	0.00	26.92	48.97	0.00	0.00	0.00	0.00	24.11	0.00	0.00	100.00
13	14	195626	9046350	0.00	0.00	2.00	95.00	0.00	3.00	0.00	0.00	0.00	0.00	0.00	100.00
14	15	195622	9046314	10.01	0.00	10.19	79.80	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
15	16	195660	9046360	0.00	49.44	0.00	0.00	0.00	4.17	0.00	46.39	0.00	0.00	0.00	100.00
16	17	195686	9046295	0.00	0.00	0.00	5.84	0.00	0.00	63.51	0.00	0.00	30.65	0.00	100.00
17	18	196108	9046820	0.00	0.00	0.00	19.16	0.00	0.00	37.66	0.00	34.93	0.00	8.25	100.00
10	20	196150	9046846	0.00	0.00	26.96	90.00 73.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
20	20	195497	9046381	0.00	0.00	45.43	54.57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
21	22	196007	9046698	0.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	90.00	0.00	0.00	100.00
22	23	196092	9046751	0.00	0.00	0.00	35.78	0.00	0.00	0.00	1.58	62.64	0.00	0.00	100.00
23	24	195481	9046313	0.00	0.00	71.18	28.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
24	25	195536	9046365	0.00	0.00	57.21	42.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
25	26	195693	9046444	0.00	0.00	5.00	95.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
26	27	195736	9046471	0.00	0.00	0.00	53.11	46.57	0.00	0.00	0.00	0.32	0.00	0.00	100.00
27	28	195955	9046620	0.00	0.00	50.00	50.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
28	29	195981	9046643	0.00	0.00	15.00	55.00	20.00	0.00	0.00	0.00	10.00	0.00	0.00	100.00
29	30	195110	9046731	40.00	0.00	60.00	40.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
31	32	195574	9046306	44.35	0.00	0.00	5.95	0.00	0.00	0.00	0.00	35.83	13.87	0.00	100.00
32	33	195592	9046323	0.00	0.00	0.00	15.19	0.00	0.00	0.00	0.00	19.00	0.00	65.81	100.00
33	34	195635	9046349	0.00	0.00	0.00	55.10	0.00	0.00	0.00	0.00	35.30	9.60	0.00	100.00
34	35	195720	9046402	0.00	0.00	0.00	90.00	0.00	0.00	0.00	0.00	10.00	0.00	0.00	100.00
35	36	195762	9046428	53.62	0.00	0.00	46.38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
36	37	195813	9046477	0.00	0.00	5.00	95.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
37	38	195979	9046527	0.00	0.00	58.63	41.37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
38	39	196148	9046687	53.90	0.00	0.00	46.10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
39	41	196236	9046692	90.00	0.00	0.00	10.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
40	42	195576	9046258	0.00	0.00	55.04	44.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
42	44	195661	9046307	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	14.79	0.00	85.21	100.00
43	45	195789	9046386	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
44	46	196107	9046572	87.08	0.00	0.00	12.92	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
45	47	196136	9046655	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	100.00
46	49	195571	9046175	0.00	0.00	3.00	97.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
47	50	195601	9046228	0.00	0.00	52.80	29.36	0.00	0.00	0.00	0.00	0.00	17.84	0.00	100.00
48	51	195602	9046228	0.00	0.00	0.00	40.40	0.00	0.00	59.60	0.00	0.00	0.00	0.00	100.00
49	52	195687	9046264	0.00	0.00	28.61	58.61	0.00	0.00	12.78	0.00	0.00	0.00	0.00	100.00
50	53	195730	9046291	0.00	0.00	0.00	27.83	0.00	0.00	35.19	0.00	30.98	0.00	0.00	100.00
52	55	195877	9046376	0.00	0.00	0.00	36.40	0.00	0.00	63.31	0.00	03.00	0.00	0.00	100.00
53	56	196197	9046581	0.00	0.00	0.00	0.00	0.00	0.00	0.00	65.43	34,57	0.00	0.00	100.00
54	57	195586	9046143	0.00	0.00	52.92	47.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
55	58	195671	9046195	0.00	0.00	0.00	50.00	0.00	0.00	50.00	0.00	0.00	0.00	0.00	100.00
56	59	195726	9046233	0.00	0.00	7.03	18.77	0.00	16.24	57.96	0.00	0.00	0.00	0.00	100.00
57	60	195756	9046248	0.00	0.00	49.68	41.43	0.00	0.00	0.00	0.00	0.00	8.89	0.00	100.00
58	61	195799	9046275	0.00	0.00	57.54	42.46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
59	62	195884	9046327	0.00	0.00	10.00	80.00	0.00	0.00	0.00	0.00	0.00	10.00	0.00	100.00
60	63	195613	9046100	0.00	0.00	52.17	47.83	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
62	65 65	195609	9046152	0.00	0.00	0.00	65 55	0.00	0.00	47.33	0.00	34 45	0.00	0.00	100.00
63	66	195754	9046181	0.00	0.00	48.68	51.32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
64	67	195763	9046212	0.00	0.00	0.00	59.11	0.00	0.00	24.63	0.00	16.26	0.00	0.00	100.00
65	68	195875	9046283	0.00	0.00	50.00	50.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
66	69	195910	9046285	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	100.00
67	70	195639	9046058	0.00	0.00	0.00	60.30	0.00	0.00	12.66	0.00	27.04	0.00	0.00	100.00
68	71	195682	9046084	19.06	0.00	22.54	58.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
69	72	195767	9046137	0.00	0.00	0.00	29.63	0.00	0.00	0.00	66.07	4.30	0.00	0.00	100.00
70	73	195826	9046163	0.00	10.00	0.00	40.00	0.00	50.00	0.00	0.00	0.00	0.00	0.00	100.00
71	74	195852	9046190	0.00	0.00	0.00	84.43	15.57	0.00	0.00	0.00	0.00	0.00	0.00	100.00
72	75	195894	9040216	0.00	0.00	0.00	10.10	0.00	30.93	0.00	0.00	0.00	0.00	0.00	100.00
74	77	195770	9046101	0.00	0.00	00.90	0.00	0.00	0.00	0.00	83.02	16 98	0.00	0.00	100.00
75	78	195836	9046121	0.00	0.00	0.00	93.31	0.00	6.69	0.00	0.00	0.00	0.00	0.00	100.00
76	79	195878	9046147	63.25	0.00	11.64	25.11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
77	80	195777	9046026	0.00	0.00	53.18	46.82	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
78	81	195813	9046077	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00

				Andalusite	Kaolinita	Muscovita	1	Motmorillonita	Smoctita	Chlorita	Silicif	ΟνΕο	Sillimanita		
N°	Codigo	Este	Norte	%	<u>%</u>	%	Illita %	%	%	%	%	%	%	Otros	Total%
79	82	195934	9046482	0.00	0.00	20.00	67.28	0.00	0.00	0.00	0.00	4.22	0.00	8.50	100.00
80	83	196000	9046686	0.00	0.00	0.00	0.00	39.86	0.00	0.00	0.00	0.00	0.00	60.14	100.00
81	84	196144	9046730	0.00	0.00	0.00	53.19	0.00	0.00	0.00	0.00	0.00	0.00	46.81	100.00
82	85	196154	9046600	0.00	0.00	0.00	13.18	0.00	0.00	0.00	0.00	86.82	0.00	0.00	100.00
83	86	196122	9046601	0.00	0.00	2.88	97.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
84	87	196083	9046578	0.00	20.29	0.00	10.06	0.00	0.00	16.23	0.00	34.23	0.00	39.48	100.00
86	00	196073	9046617	0.00	0.00	0.00	100.00	0.00	0.00	0.00	09.72	0.00	0.00	0.00	100.00
87	90	195891	9046353	0.00	0.00	56.42	43.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
88	91	195835	9046103	0.00	0.00	81.28	18.72	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
89	92	195834	9046105	0.00	10.98	0.00	60.73	0.00	28.29	0.00	0.00	0.00	0.00	0.00	100.00
90	93	195842	9045970	0.00	0.00	0.00	0.00	0.00	0.00	0.00	12.10	63.04	0.00	24.86	100.00
91	94	195844	9045973	0.00	0.00	0.00	0.00	0.00	0.00	0.00	20.79	43.87	0.00	35.34	100.00
92	95	195839	9045972	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	34.34	0.00	65.66	100.00
93	97	195738	9046088	0.00	0.00	0.00	32.62	0.00	0.00	0.00	0.00	67.38	0.00	0.00	100.00
94	98	195734	9046088	0.00	0.00	55.92	44.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
95	99	195766	9046326	0.00	0.00	16.83	83.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
96	100	195734	9046333	0.00	0.00	17.32	61.12	0.00	0.00	0.00	0.00	0.00	0.00	21.56	100.00
97	101	195713	9046334	0.00	12.50	0.00	37.56	0.00	12.51	0.00	0.00	37.43	0.00	0.00	100.00
98	102	195706	9046383	0.00	12.00	0.00	40.17	14.43	20.01	17.52	0.00	0.00	0.00	0.00	100.00
100	103	195551	9046149	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	100.00
101	105	195549	9046149	0.00	0.00	0.00	47.19	0.00	0.00	0.00	0.00	0.00	0.00	52.81	100.00
102	106	195552	9046150	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
103	107	195637	9046074	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	100.00
104	108	195730	9046115	50.68	0.00	0.00	21.61	0.00	0.00	27.71	0.00	0.00	0.00	0.00	100.00
105	109	195708	9046226	0.00	0.00	7.53	76.95	0.00	0.00	0.00	0.00	15.52	0.00	0.00	100.00
106	110	195706	9046232	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
107	111	195710	9046241	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
108	112	195707	9046241	0.00	0.00	69.31	30.69	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
109	113	195688	9046394	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	31.26	68.74	0.00	100.00
110	114	195612	9046363	0.00	0.00	0.00	51.90	0.00	0.00	24.53	0.00	24.40	9.50	0.00	100.00
112	115	195601	9046344	0.00	0.00	50.72	49.28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
113	118	195615	9046417	0.00	0.00	39.92	60.08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
114	119	195595	9046412	0.00	0.00	37.99	62.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
115	120	195491	9046408	0.00	9.79	0.00	47.29	33.12	9.80	0.00	0.00	0.00	0.00	0.00	100.00
116	121	195489	9046408	0.00	0.00	16.85	39.95	0.00	0.00	43.20	0.00	0.00	0.00	0.00	100.00
117	122	195502	9046454	0.00	0.00	44.77	5.49	0.00	0.00	49.74	0.00	0.00	0.00	0.00	100.00
118	123	195637	9046868	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
119	124	195644	9046875	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	85.56	0.00	14.44	100.00
120	125	195637	9046822	24.08	0.00	43.76	32.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
121	127	195598	9046764	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	100.00
122	128	195600	9046761	0.00	0.00	76.82	23.18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
123	129	195596	9046766	0.00	0.00	70.20	0.00	0.00	29.80	0.00	0.00	0.00	0.00	0.00	100.00
124	130	195590	9046676	0.00	0.00	0.00	51 73	0.00	0.00	48.27	0.00	0.00	0.00	0.00	100.00
126	132	195607	9046577	0.00	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
127	133	195585	9046549	0.00	0.00	0.00	0.00	0.00	60.45	39.55	0.00	0.00	0.00	0.00	100.00
128	134	195587	9046540	0.00	0.00	63.42	36.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
129	136	195594	9046542	0.00	0.00	0.00	0.00	0.00	0.00	0.00	53.48	46.52	0.00	0.00	100.00
130	137	195591	9046541	0.00	0.00	0.00	3.59	0.00	0.00	28.52	0.00	0.00	0.00	67.89	100.00
131	138	195595	9046539	0.00	0.00	52.83	47.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
132	139	195595	9046481	59.98	0.00	0.00	40.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
133	140	195582	9046427	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00	0.00	0.00	100.00
134	202	195647	9046841	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
135	203	195730	9046262	0.00	0.00	0.00	35.43	0.00	0.00	64.57	0.00	0.00	0.00	0.00	100.00
130	205	195189	9046708	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	39.21	0.00	60.79	100.00
13/	200	195622	9046822	0.00	0.00	93.15	0.00 43 71	0.00	0.00	0.00	0.00	0.00	56 20	0.00	100.00
139	207	195628	9046813	0.00	0.00	0.00	64.87	0.00	0.00	0.00	0.00	0.00	0.00	35.13	100.00
140	209	195623	9046802	0.00	0.00	8.89	54.85	0.00	0.00	0.00	0.00	36.26	0.00	0.00	100.00
141	210	195619	9046793	0.00	0.00	89.60	10.40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
142	211	195624	9046789	0.00	0.00	41.52	58.48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
143	212	195621	9046800	0.00	0.00	51.14	48.86	0.00	0.00	0.00	0.00	0.00	0.00	0.00	100.00
144	213	195589	9046677	0.00	4.04	0.00	22.21	0.00	4.03	0.00	0.00	69.72	0.00	0.00	100.00
145	214	195641	9046342	0.00	12.84	0.00	0.00	0.00	12.85	7/ 31	0.00	0.00	0.00	0.00	100.00

ANEXO II RESULTADOS DE GEOQUÍMICA

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

MUESTRAS SUPERFICIALES DE ROCA

N°	Muestra	Este	Norte	As ppm	Cu ppm	Cu %	Mn ppm	Mo ppm	Pb ppm	W ppm	Zn ppm
1	992	195699	9047093	95	70.4		81	1	8	10	7.5
2	993	195724	9047203	15	75.1		93	0.8	4	26	23.1
3	994	195545	9047310	40	111.3		363	0.8	7	10	25.1
4	996	196664	9047209	685	36.9		66	3	279	10	13.3
5	999	196632	9047140	3320	237.4		127	0.8	48	347	476.1
6	1001	195597	9046755	216	9420	0.942	20	23	8	63	38
7	1002	195590	9046545	10	286	0.0286	15	242	15	10	25
8	1004	195675	9046870	17	25		20	24	33	31	6
9	1005	195620	9046800	6	51.1		133	26	27	10	77
10	1007	195583	9046719	53	15		20	56	18	30	8
11	1008	195602	9046579	13	18.7		102	175	11	33	17
12	1009	195587	9046559	21	64.7		99	42	8	19	16
13	1011	195597	9046757	162	14.6		15	188	21	1023	5
14	1012	195592	9046481	5	289	0.0289	93	28	11	26	72
15	1013	195596	9046437	210	8162	0.8162	10	145	12	65	105
16	1014	195626	9046350	19	35.8		39	35	29	19	46
17	1015	195622	9046314	92	76.2		20	28	25	42	13
18	1016	195660	9046360	10	25		191	21	6	10	19
19	1017	195686	9046295	12	46.7		56	29	27	10	17
20	1018	196108	9046820	157	67.2		20	30	810	76	101
21	1019	196150	9046846	51	58.3		15	26	31	10	23
22	1020	195455	9046355	21	70.9		82	63	23	37	69
23	1021	195497	9046381	21	100.6		10	30	13	26	14
24	1022	196007	9046698	18	329	0.0329	161	25	19	10	19
25	1023	196092	9046751	440	45.8		20	25	20	10	13
26	1024	195481	9046313	16	34.6		83	29	9	38	27
27	1025	195536	9046365	12	69.3		20	24	8	27	29
28	1026	195693	9046444	27	23.6		20	30	9	35	55
29	1027	195736	9046471	54	36.9		15	59	18	37	8
30	1028	195955	9046620	41	56.8		20	25	6	37	7
31	1029	195981	9046643	35	68.3		55	29	4	20	9
32	1030	196118	9046731	24	54.8		103	38	4	10	23
33	1031	195511	9046269	17	101.7		20	30	15	45	62
34	1032	195574	9046306	15	65.8		15	27	14	32	5
35	1033	195592	9046323	12	12.6		15	26	10	36	38
36	1034	195635	9046349	136	190	0.019	10	161	282	422	44
37	1035	195720	9046402	17	24.6		20	30	50	26	11
38	1036	195762	9046428	47	46.3		20	71	254	39	27
39	1037	195813	9046477	156	65.5		45	24	137	33	10
40	1038	195979	9046527	17	98.5		20	23	8	91	14
41	1039	196148	9046687	82	43.8		15	19	7	10	7
42	1041	196236	9046692	36	43.5		15	21	4	25	5
43	1042	195534	9046228	40	34.2		20	21	28	21	10
44	1043	195576	9046258	30	76.4		20	23	11	28	24
45	1044	195661	9046307	28	68.9		85	27	9	10	38
46	1045	195789	9046386	10358	75.2		15	29	1135	10	57
47	1046	196107	9046572	88	23.4		20	22	9	10	8
48	1047	196136	9046655	407	611	0.0611	92	27	12	30	98
49	1049	195571	9046175	24	181	0.0181	20	24	13	55	26

N°	Muestra	Este	Norte	As ppm	Cu ppm	Cu %	Mn ppm	Mo ppm	Pb ppm	W ppm	Zn ppm
50	1051	195602	9046228	79	25		20	29	12	35	8
51	1052	195687	9046264	518	35.4		59	41	17	10	27
52	1053	195730	9046291	13	20		15	23	17	21	71
53	1054	195779	9046347	40	23		15	29	40	39	11
54	1055	195877	9046376	487	32.9		49	25	15	55	15
55	1056	196197	9046581	110	24.6		499	31	4	10	59
56	1057	195586	9046143	13	370	0.037	55	25	82	34	150
57	1058	195671	9046195	116	15.6		102	27	63	10	27
58	1059	195726	9046233	52	18.5		89	39	9	10	20
59	1060	195756	9046248	285	32.7		15	34	39	10	146
60	1061	195799	9046275	88	41.5		20	28	32	162	62
61	1062	195884	9046327	2129	36.9		15	28	588	10	21
62	1063	195613	9046100	24	144	0.0144	15	46	8	39	10
63	1064	195655	9046127	90	43.8		20	29	47	78	10
64	1065	195698	9046153	7	35.8		20	1184	20	49	20
65	1066	195754	9046181	22	54.2		20	44	19	71	12
66	1067	195763	9046212	14	15.3		156	22	11	10	74
67	1068	195875	9046283	598	23.5		64	16	16	10	24
68	1069	195910	9046285	55	32.1		49	30	14	499	14
69	1070	195639	9046058	41	21.7		445	30	102	40	104
70	1071	195682	9046084	95	24.6		5	26	80	29	6
71	1072	195767	9046137	44	20.3		15	46	7	54	5
72	1073	195826	9046163	30	16		10	27	59	66	19
73	1074	195852	9046190	74	18.5		20	25	18	10	68
74	1075	195894	9046216	28	34.7		45	25	33	38	52
75	1076	195751	9046068	19	26.4		20	30	13	55	9
76	1077	195779	9046101	28	32.9		20	25	4	10	4
77	1078	195836	9046121	36	12.5		47	27	27	10	22
78	1079	195878	9046147	125	23.6		20	25	96	29	18
79	1080	195777	9046026	172	32.8		15	34	41	30	15
80	1081	195813	9046077	42	54.8		20	128	148	63	16
81	1082	195934	9046482	33	24.7		15	19	15	27	8
82	1083	196000	9046686	24	13.4		303	17	9	10	30
83	1084	196144	9046730	17	38	0.0038	15	17	6	7	15
84	1085	196154	9046600	640	45.8		15	16	17	48	16
85	1086	196122	9046601	113	25.8		15	18	4	36	11
86	1087	196083	9046578	30	14.8		71	26	8	8	23
87	1088	196073	9046617	16	17.6		422	18	8	24	24
88	1089	195913	9046384	44	21.8		15	11	29	70	20
89	1090	195891	9046353	186	32.7		44	20	19	36	15
90	1091	195835	9046103	24	22.8		15	17	32	37	14
91	1092	195834	9046105	47	23.7		15	17	15	106	16
92	1094	195844	9045973	636	76.9		15	20	19	8	15
93	1095	195839	9045972	1531	56.9		15	23	46	8	14
94	1097	195722	9046081	43	68.6		15	13	4	8	11
95	1098	195718	9046084	113	74.3		15	15	33	58	13
96	1099	195766	9046326	19	25.1		15	31	23	332	23
97	1100	195734	9046333	23	26.7		121	19	129	10	58
98	1101	195713	9046334	24	35.7		139	17	14	70	29
99	1102	195706	9046361	9	17.6		147	16	26	10	29

Universidad Nacional del Altiplano

N°	Muestra	Este	Norte	As ppm	Cu ppm	Cu %	Mn ppm	Mo ppm	Pb ppm	W ppm	Zn ppm
100	1103	195685	9046383	28	20.7		88	18	31	35	27
101	1105	195549	9046149	27	628	0.0628	15	16	5	15	18
102	1106	195552	9046150	19	46.9		15	11	8	29	33
103	1108	195730	9046115	11	25.8		231	19	9	10	69
104	1109	195708	9046226	81	17.9		15	18	16	169	29
105	1110	195706	9046232	166	37.4		15	35	15	24	30
106	1111	195710	9046241	119	27.1		15	31	63	339	29
107	1112	195707	9046241	30	25.8		15	88	596	39	20
108	1113	195688	9046394	5	124	0.0124	262	17	165	10	133
109	1114	195617	9046363	25	37.4		121	28	10	39	22
110	1115	195613	9046344	32	40.2		531	22	80	10	181
111	1117	195601	9046389	14	259	0.0259	291	17	15	10	107
112	1118	195615	9046417	11	31.7		110	20	13	28	41
113	1119	195595	9046412	10	21.9		131	56	19	10	47
114	1121	195489	9046408	22	27.4		44	118	483	63	75
115	1122	195502	9046454	10	39.5		15	1356	7	36	38
116	1123	195637	9046868	16	30.6		15	14	15	18	8
117	1124	195647	9046841	20	39.5		56	18	4	33	115
118	1125	195644	9046875	924	441	0.0441	15	47	64	10	110
119	1126	195637	9046822	24	63.6		59	25	12	35	16
120	1129	195600	9046761	365	43.8		67	26	587	42	30
121	1130	195596	9046766	35	74.6		90	19	15	29	23
122	1131	195582	9046725	59	54.2		15	1135	9	37	8
123	1132	195590	9046676	36	43.8		15	386	24	29	26
124	1133	195607	9046577	14	12		15	1092	253	62	9
125	1134	195585	9046549	5	382	0.0382	83	345	10	7	175
126	1135	195587	9046540	13	108	0.0108	51	888	19	50	31
127	1138	195591	9046541	174	648	0.0648	15	792	32	399	15
128	1139	195595	9046539	46	3643	0.3643	58	43	301	10	101
129	1140	195675	9046333	5	13.2		173	24	7	20	48
130	1143	195614	9046775	80	23.8		15	27	111	36	28

MUESTRAS SUPERFICIALES DE VETAS

N°	Muestra	x_este	y_norte	Ag ppm	As ppm	Cu ppm	Cu %	Mo ppm	Pb ppm	W ppm	Zn ppm
1	987	195191	9046706	0.2	61	769.2		0.8	27	11	119.5
2	988	195189	9046709	0.2	124	774.2		0.8	8	23	68.6
3	989	195193	9046690	0.6	335	4389.7		1	24	100	62.1
4	990	195196	9046688	0.2	5	222.4		0.8	9	12	18.5
5	991	195171	9046620	0.9	33	2156.9		9	8	608	17.5
6	995	196661	9047206	30.8	10000	10000	2.19	5	901	221	90
7	997	196658	9047188	100	10000	10000	1.83	6	6115	168	79.5
8	998	196646	9047154	14.8	10000	9670		11	1721	3290	106.5
9	1000	196636	9047114	14	10000	10000	1.4	6	28	1050	62.1
10	1003	195595	9046424	151	152	195600	19.56	135	106	8	1447
11	1006	195596	9046754	0.2	33	22191	2.2191	25	4	33	44
12	1010	195588	9046544	60	672	42882	4.2882	49	111	4984	1059
13	1048	195570	9046175	50	1445	29663	2.9663	31	25	1323	227
14	1050	195601	9046228	0.2	101	10		37	28	46	10
15	1093	195842	9045970	43	2985	885	0.0885	155	1237	14	5
16	1104	195551	9046149	71	748	91200	9.12	88	58	14	714
17	1107	195637	9046074	379	183800	2577	0.2577	77	4	2940	198
18	1120	195491	9046408	30	7919	602	0.0602	220	5654	10	115
19	1128	195598	9046764	209	223	2953	0.2953	18	44	586	40
20	1136	195593	9046542	46	120	33467	3.3467	31	16	43	301
21	1141	195595	9046481	55	156	86200	8.62	64	28	371	597
22	1142	195597	9046424	100	134	166300	16.63	143	150	10	1176
23	1144	195188	9046688	65	74	20222	2.0222	118	87	10	5

Universidad Nacional del Altiplano

ANEXO III DATOS ESTRUCTURALES

Repositorio Institucional UNA-PUNO

No olvide citar esta tesis

ltem	x-este	v-norte	Estructura	Azimuth	Buzamiento	Direccion Buzamiento
1	196657	9047240	Veta	33	48	123
2	196661	9047206	Veta	20	51	110
2	196658	9047200	Veta	220	45	310
4	196646	9047154	Veta	215	48	305
5	196641	9047150	Veta	200	40	290
6	196632	9047130	Estratificacion	130	20	230
7	1065/1	00/71/2	Estratificacion	120	20	220
/ 8	196584	9047142	Estratificacion	110	20	210
0 0	196594	9047196	Fallas	15	80	105
10	106502	0047103	Fracturamiento	115	22	205
10	190392	9047193	Estratificacion	120	22	203
12	106627	0047126	Voto	100	12	210
12	190027	9047130	Veta	190	43	285
14	106636	0047114	Veta	105	45	205
14	190030	9047114	Fetratificacion	190	30	200
10	106621	9047003	Estratificacion	122	22	100
10	190031	9040931	Voto	200	42	200
1/	190005	9040970	Vela	200	43	290
10	190555	9047020	Estratificación	120	20	215
19	190745	9047292	Estratificación	0	 67	200
20	195750	9047034	Fallas	00 55	15	170
21	190027	9047996	Estratificación	55 70	10	140
22	195057	9046046	Estratificación	70	33 25	165
23	193043	9046074	Estratificación	75	25	100
24	190004	9048028	Fallas Fie de Antioline	285	80	10
25	190020	9047900	Eje de Anticlinal	20	26	115
20	190020	9047903	Estratificación	110	20	205
27	195584	9047601	Estratificación	160	22	200
28	190018	9047946	Estratificación	105	30	195
29	190027	9047934	Estratificación	50	12	200
30	190007	9047964	Fallas	50	75	200
21	190001	9046010	Estratificación	110	20	200
32	195500	9047904	Estratificación	00		203
24	195600	9047962	Fallas	00 220	75	50
25	195569	9047940	Estratificación	205	70	25
36	105580	0047946	Estratificacion	115	76	205
27	195560	9041040 90/17860	Estratificacion	115	25 85	200
2/	105500	00/7950	Estratificación	105	95	105
20	105755	00476002	Estratificacion	130	15	220
10	105/70	0047956	Estratificacion	115	75	220
40	105/60	00/7926	Estratificacion	105	73	105
41	105/09	00/17920	Estratificacion	120	10	210
42	105552	0047704	Estratificacion	05	40	195
43	105726	0047770	Estratificacion	125	20	225
44 75	105677	00/7/50	Fracturamionto	210	20	220
43 76	105725	00/7202	Fracturamiento	5	<u> </u>	<u>۵۶</u>
40	10/01/	0046041	Estratificacion	307	35	37
47	10/265	00/6020	Estratificacion	102	50	102
40	194003	9046100	Fallas	340	50	70
50	194906	9046179	Fallas	22	86	112
00	10-1000	001010	i uliuo		00	114

ltem	x-este	v-norte	Estructura	Azimuth	Buzamiento	Direccion Buzamiento
51	195104	9046232	Fracturamiento	33	89	123
52	195110	9046391	Fallas	48	55	138
53	195154	9046757	Veta	165	38	255
54	195138	9046701	Fallas	150	76	240
55	195184	9046722	Estratificacion	301	35	31
56	195183	9046709	Veta	149	35	239
57	195192	9046706	Fallas	46	78	136
58	195193	9046679	Veta	153	54	243
59	195211	9046631	Fallas	167	80	257
60	195639	9046129	Fallas	9	88	99
61	195597	9046298	Fracturamiento	167	52	257
62	195596	9046319	Estratificacion	305	32	35
63	195722	9046348	Fallas	117	75	207
64	195719	9046371	Fallas	113	80	203
65	195690	9046401	Fallas	119	79	209
66	195673	9046359	Fallas	124	78	214
67	195639	9046410	Fracturamiento	207	60	297
68	195608	9046368	Fallas	155	78	245
69	195588	9046394	Fallas	339	85	69
70	195589	9046411	Fracturamiento	252	30	342
71	195601	9046444	Fallas	334	73	64
72	195592	9046484	Fallas	157	47	247
73	195598	9046483	Fracturamiento	301	20	31
74	195607	9046549	Veta	238	20	328
75	195688	9046446	Fracturamiento	116	77	206
76	195579	9046668	Fallas	134	85	224
77	195612	9046703	Estratificacion	300	30	30
78	195568	9046723	Fracturamiento	138	85	228
79	195587	9046729	Fallas	244	82	334
80	195571	9046745	Fallas	328	88	58
81	195637	9046733	Fracturamiento	290	88	20
82	195614	9046747	Estratificacion	289	22	19
83	195595	9046754	Fallas	219	89	309
84	195612	9046760	Veta	294	45	24
85	195587	9046771	Fallas	300	70	30
86	195556	9046792	Estratificación	296	30	26
8/	195626	9046785		320	55	50
88	195601	9046827	Estratificacion	309	29	39
89	195663	9046791	Fracturamiento	293	90	23
90	195746	9046806	Fracturamiento	79	84	169
91	195662	9046808	Estratificacion	285	30	15
92	195633	9046834	Fallas	228	70	318
93	195651	9040836	Estrauticación	231	39	JZ1
94	195682	9046866	Fallas	240	65	330
95	190041	9040870		352	40	ŏ∠
96	195486	9046773	Fallas	44	85	134
97	195995	9046530	Estrauticación	325	39	202
98	196044	9040519		212	88	302
99	195995	9046578		180	60	270
100	195992	9046638	vetillas	130	70	220

ltem	x-este	v-norte	Estructura	Azimuth	Buzamiento	Direccion Buzamiento
101	105002	9046638	Votillas	105	76	285
101	106133	9046834	Estratificacion	300	30	30
102	196194	9046872	Fracturamiento	15	70	105
104	196208	9046790	Fracturamiento	80	80	170
104	196143	9046730	Estratificacion	105	40	195
105	196136	9046770	Fracturamiento	180	80	270
100	196124	9046707	Fracturamiento	263	70	353
108	196140	9046641	Estratificacion	314	47	44
109	196166	9046675	Fracturamiento	147	35	237
110	195136	9046637	Fracturamiento	45	27	135
111	196107	9046571	Estratificacion	340	40	70
112	196119	9046609	Fracturamiento	232	70	322
113	196104	9046513	Fracturamiento	180	70	270
114	196071	9046585	Fracturamiento	55	85	145
115	196087	9046582	Fracturamiento	15	75	105
116	195913	9046384	Estratificacion	340	70	70
117	195899	9046292	Fallas	135	65	225
118	195829	9046125	Vetillas	335	80	65
119	195829	9046125	Vetillas	210	60	300
120	195810	9046065	Fallas	328	70	58
121	195830	9046051	Estratificacion	325	35	55
122	195842	9045970	Veta	210	65	300
123	195858	9045989	Estratificacion	260	38	350
124	195731	9046087	Veta	240	35	330
125	195736	9046092	Fallas	18	82	108
126	195713	9046334	Fallas	160	85	250
127	195861	9046251	Fracturamiento	210	48	300
128	195711	9046365	Fallas	340	72	70
129	195685	9046383	Vetillas	125	82	215
130	195681	9046373	Fracturamiento	208	62	298
131	195470	9046361	Estratificacion	305	26	35
132	195436	9046305	Fracturamiento	228	84	318
133	195477	9046296	Fracturamiento	170	85	260
134	195492	9046334	Vetillas	210	80	300
135	195492	9046334	Vetillas	50	70	140
136	195492	9046334	Vetillas	165	70	255
137	195510	9046267	Fallas	195	48	285
138	195515	9046269	Fallas	150	88	240
139	195574	9046306	Fallas	335	83	65
140	195579	9046309	Fallas	165	75	255
141	195570	9046300	Estratificacion	320	33	50
142	195560	9046237	Fracturamiento	25	76	115
143	195606	9046235	Fallas	300	78	30
144	195570	9046175	Veta	220	44	310
145	195575	9046178	Fallas	30	67	120
146	195551	9046149	Veta	210	36	300
147	195537	9046186	Estratificacion	335	60	65
148	195574	9046119	Estratificacion	310	34	40
149	195590	9046152	Fracturamiento	165	67	255
150	195520	9046091	Fracturamiento	55	36	145

					-	
Item	x-este	y-norte	Estructura	Azimuth	Buzamiento	Direccion Buzamiento
151	195597	9046024	Estratificacion	313	35	43
152	195616	9046105	Fallas	40	72	130
153	195615	9046040	Fracturamiento	285	85	15
154	195637	9046074	Veta	212	70	302
155	195688	9046087	Estratificacion	310	40	40
156	195705	9046125	Fallas	218	63	308
157	195677	9046168	Fracturamiento	313	88	43
158	195721	9046239	Fracturamiento	343	80	73
159	195665	9046385	Fallas	0	53	90
160	195646	9046326	Fracturamiento	358	52	88
161	195615	9046417	Fallas	41	63	131
162	195492	9046400	Veta	340	40	70
163	195491	9046408	Veta	20	45	110
164	195487	9046403	Fallas	0	75	90
165	195460	9046455	Fracturamiento	345	75	75
166	195462	9046412	Fracturamiento	40	90	130
167	195497	9046450	Estratificacion	328	29	58
168	195598	9046764	Veta	290	30	20
169	195593	9046542	Veta	285	30	15
170	195582	9046427	Veta	260	22	350
171	195636	9046353	Fallas	295	30	25
172	196000	9046477	Fallas	190	75	280
173	195641	9046126	Fallas	190	85	280
174	195645	9046126	Estratificacion	305	35	35
175	195644	9046120	Fallas	33	72	123
176	196169	9047032	Estratificacion	120	15	210
177	196105	9047059	Fracturamiento	13	75	103
178	196231	9046983	Estratificacion	125	10	215
179	196219	9046724	Fracturamiento	182	81	272
180	196058	9046392	Estratificacion	325	35	55
181	195838	9046225	Fracturamiento	340	78	70
182	195766	9046462	Estratificacion	305	40	35
183	195846	9046363	Estratificacion	304	45	34
184	195810	9046413	Fracturamiento	5	80	95
185	195680	9046534	Estratificacion	310	55	40
186	195723	9046624	Estratificacion	315	53	45
187	195685	9046658	Fracturamiento	10	80	100
188	195817	9046640	Estratificacion	305	45	35
189	195833	9046694	Estratificacion	300	45	30
190	195900	9046704	Estratificacion	275	40	5
191	195701	9046759	Fracturamiento	10	85	100
192	195780	9046982	Estratificacion	10	15	100
193	195800	9046954	Fracturamiento	290	87	20
194	195885	9047023	Fracturamiento	10	80	100
195	195872	9047093	Estratificacion	85	20	175
196	196009	9047106	Estratificacion	105	20	195
197	195561	9045978	Fracturamiento	20	75	110
198	195384	9045968	Fracturamiento	120	50	210
199	195530	9045878	Fracturamiento	20	80	110
200	195590	9045930	Fracturamiento	345	70	75

Itom	v-osto	v-norto	Estructura	Azimuth	Buzamiento	Direccion Buzamiento
201	104025	9045992	Estratificacion	110	40	200
201	195143	9045820	Estratificacion	110	40	200
202	195196	9045857	Fracturamiento	15	75	105
203	105052	0046018	Estratificacion	108	52	109
204	195052	0045080	Estratilicación	100	80	190
205	10/8/0	0046266	Fallas	338	60 60	68
200	104501	0046115	Estratificacion	280	40	10
207	194591	9040113	Estratificacion	125	40	215
200	194392	9040230	Estratilicación	125	40	120
209	194027	9040200	Estratificacion	40	60 65	210
210	194027	9040414	Estratificación	270	05 70	210
211	194031	9040516	Estratificación	270	70 60	0
212	194737	9046591	Estratificación	175	60	265
213	194450	9046297	Fracturamiento	40	78	130
214	194448	9046440	Fracturamiento	70	70	160
215	194540	9046645	Estratificacion	178	65	268
216	195584	9046676	Estratificacion	270	70	0
217	194648	9046708	Estratificacion	125	55	215
218	194599	9046662	Fracturamiento	65	78	155
219	194713	9046363	Fracturamiento	5	82	95
220	195215	9046558	Estratificacion	300	45	30
221	195139	9046590	Fracturamiento	260	40	350
222	195120	9047050	Estratificacion	315	25	45
223	195253	9047134	Estratificacion	320	30	50
224	195476	9047311	Estratificacion	300	15	30
225	195458	9047646	Estratificacion	117	20	207
226	195544	9047449	Fracturamiento	10	80	100
227	195445	9047224	Fracturamiento	15	82	105
228	195253	9047078	Fracturamiento	0	75	90
229	195478	9047429	Fracturamiento	280	88	10

ANEXO IV MAPAS GEOLÓGICOS

- MAPA GEOLÓGICO REGIONAL
- MAPA DE DOMINIOS TECTÓNICOS
- MAPA DE UBICACIÓN Y ACCESOS
- MAPA GEOMORFOLÓGICO
- MAPA GEOLÓGICO LOCAL
- MAPA DE LINEAMIENTOS REGIONALES
- MAPA ESTRUCTURAL LOCAL
- MAPA DE ALTERACIONES
- MAPA DE MUESTREO