

UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO ESCUELA DE POST GRADO MAESTRÍA EN AGRICULTURA ANDINA

"PLANTAS HOSPEDANTES DEL FALSO
NEMATODO DEL NÓDULO DE LA RAÍZ
Nacobbus aberrans (Thorne, 1935; Thorne y
Allen, 1944),BAJO CONDICIONES DE
INVERNADERO"

TESIS

SILVERIO APAZA APAZA

PARA OPTAR EL GRADO ACADÉMICO DE:

MAGÍSTER SCIENTIAE EN AGRICULTURA ANDINA

PERÚ

2006

UNIVERSIDAD NACIONAL DEL ALTIPLANO - PERO

Fecha Ingreso: 0 2 OCT. 2012

UNIVERSIDAD NACIONAL DEL ALTIPLANO

ESCUELA DE POST GRADO MAESTRIA EN AGRICULTURA ANDINA

PLANTAS HOSPEDANTES DEL FALSO NEMATODO DEL NODULO DE LA RAIZ *Nacobbus aberrans* (Thorne, 1935; Thorne y Allen, 1944), BAJO CONDICIONES DE INVERNADERO.

TESIS

Presentado por el Ing^o. Silverio Apaza Apaza a la Escuela de Post Grado, Dirección de la Maestría en Agricultura Andina de la Universidad Nacional del Altiplano-Puno, para optar el Grado de:

MAGISTER SCIENTIAE

En Agricultura Andina

SUSTENTADA Y APROBADA ANTE EL JURADO INTEGRADO POR:				
PRESIDENTE	:	Ing. M.Sc. Rosario Bravo Portocarrero		
PRIMER MIEMBRO	:	Ing. M.Sc. Julio Mayta Quispe		
SEGUNDO MIEMBRO	:	Ing. M.Sc. Alfredo Palao Iturregui		
ASESOR	:	Ing. M.Sc. Jesus Arcos Pineda		

DEDICATORIA

A la memoria	de mi	padre:	JOSE,	amigo	y ejempl	ar
padre.						

A mí querida madre: LUCRECIA, con infinita ternura y eterna gratitud.

A MI FAMILIA

AGRADECIMIENTO

A LA UNIVERSIDAD NACIONAL DEL ALTIPLANO-PUNO, EN ESPECIAL A LA PLANA DE DOCENTES DE LA ESCUELA DE POSTGRADO MAESTRÌA EN AGRICULTURA ANDINA, POR SU APORTE SIGNIFICATIVO EN MI FORMACION.

AL ING. M.Sc. JESUS ARCOS PINEDA POR SU ACERTADA DIRECCION EN EL DESARROLLO DE LA PRESENTE TESIS.

AL DR. ALONSO ASTETE MALDONADO Y AL ING. M.Sc. ALI WILLIAM CANAZA CAYO POR SU VALIOSO ASESORAMIENTO EN LA CONCLUSION DEL PRESENTE TRABAJO.

A TODAS AQUELLAS PERSONAS QUE DIRECTA E INDIRECTAMENTE HAN COLABORADO EN LA CONCRETIZACION DE LA PRESENTE INVESTIGACIÓN.

INDICE DE CONTENIDO

RESUMEN

		Pág.
I.	INTRODUCCION	1
II.	REVISION DE LITERATURA	3
	2.1. MORFOLOGIA DE LOS NEMATODOS	3
	2.2. BIOLOGIA DE <i>Nacobbus aberrans</i>	3
	2.3. UBICACIÓN TAXONOMICA	5
	2.4. DISTRIBUCION GEOGRAFICA	5
	2.5. DISMINUCION DE PRODUCCION	6
	2.6. HOSPEDEROS	6
	2.7. EFICIENCIA COMO HOSPEDANTES	7
	2.8. SINTOMAS	8
	2.9. CONTROL	8
	2.9.1. Rotación de cultivos	9
	2.9.2. Plantas trampa, antagónicas y sintomáticas	11
	2.9.3. Expresiones de la resistencia	12
	2.9.4. Hipersensibilidad	13
	2.9.5. Manejo integrado	13
	2.10. FACTORES QUE INFLUYEN EN EL CONTROL	13
	2.10.1. El ambiente del suelo	13
	2.11. METODOS PARA LA EXTRACCION DE NEMATODOS	15
	2.12. PLANTAS CON POTENCIAL BIOCIDA	17
	2.13. INVERNADERO	17
III.	MATERIALES Y METODOS	20
	3.1. UBICACIÓN DEL CAMPO EXPERIMENTAL	20
	3.2. CARACTERISTICAS DEL INVERNADERO	20
	3.3. INFORMACION METEREOLOGICA	20
	3.4. MATERIAL EXPERIMENTAL	21
	3.4.1. Especies en estudio	21
	3.4.2. Inoculo	23
	3.4.3. Macetas	23
	3.5. CONDUCCION DEL EXPERIMENTO	23

3.5.1. Primera etapa	23
3.5.2. Segunda etapa	24
3.6. DISEÑO EXPERIMENTAL	25
3.7. VARIABLES DE RESPUESTA	26
3.8. ESCALA DE EVALUACION	26
IV. RESULTADOS Y DISCUSION	27
4.1. NUMERO DE INDIVIDUOS (J2) POR GRAMO DE RAIZ	27
4.1.1. Primer momento de evaluación (80 días)	27
4.1.2. Segundo momento de evaluación (100 días)	30
4.2. NUMERO DE INDIVIDUOS (HEM. ADULT.) POR GRAMO DE RAIZ	34
4.2.1. Primer momento de evaluación (80 días)	34
4.2.2. Segundo momento de evaluación (100 días)	37
4.3. NUMERO DE INDIVIDUOS (MACHOS ADUL.) POR GRAMO DE RAIZ	41
4.3.1. Primer momento de evaluación (80 días)	41
4.3.2. Segundo momento de evaluación (100 días)	44
4.4. NUMERO DE NODULOS POR SISTEMA RADICULAR	47
4.4.1. Primer momento de evaluación (80 días)	47
4.4.2. Segundo momento de evaluación (100 días)	50
4.5. COMPORTAMIENTO DE LAS 35 ESPECIES VEGETALES EN ESTUDIO	
A LA INVASION Y DESARROLLO DE <i>N. aberrans</i>	54
V. CONCLUSIONES	59
VI. RECOMENDACIONES	60
VII. BIBLIOGRAFIA	61
ANEXO	

INDICE DE CUADROS

Pág.
CUADRO 1. Potencial de plantas con propiedades biocidas en el Perú17
CUADRO 2. Especies cultivadas evaluadas a <i>Nacobbus aberrans</i> 22
CUADRO 3. Especies espontáneas evaluadas a Nacobbus aberrans22
CUADRO 4. Escala de evaluación
CUADRO 5. ANVA para número de individuos (segundo estadio juvenil) de N. abe-
rrans por gramo de raíz de las 35 especies de plantas (25 especies de
plantas cultivadas y 10 especies de plantas espontáneas) a los 80 dí-
as, datos transformados a $\sqrt{x+1}$ 27
CUADRO 6. Número de individuos (segundo estadio juvenil) de N. aberrans por
gramo de raíz de las 25 especies de plantas cultivadas a los 80 dí-
as28
CUADRO 7. Número de individuos (segundo estadio juvenil) de N. aberrans por
gramo de raíz de las 10 especies de plantas espontáneas a los 80 dí-
as29
CUADRO 8. ANVA para número de individuos (segundo estadio juvenil) de N. abe-
rrans por gramo de raíz de las 35 especies de plantas (25 especies
plantas cultivadas y 10 especies de plantas espontáneas) a los 100 dí-
as, datos transformados a $\sqrt{x+1}$ 30
CUADRO 9. Número de individuos (segundo estadio juvenil) de N. aberrans por
gramo de raíz de las 25 especies de plantas cultivadas a los 100 dí-
as31
CUADRO 10. Número de individuos (segundo estadio juvenil) de N. aberrans por
gramo de raíz de las 10 especies de plantas espontáneas a los 100 dí-
as32
CUADRO 11. ANVA para el número de individuos (hembras adultas) de N. aberrans
por gramo de las 35 especies de plantas (25 especies de plantas culti-
vadas y 10 especies de plantas espontáneas) a los 80 días, datos
transformados a $\sqrt{x+1}$ 34
CUADRO 12. Número de individuos (hembras adultas) de N. aberrans por gramo
de raíz de las 25 especies de plantas cultivadas a los 80 días35

CUADRO 13. Número de individuos (hembras adultas) de <i>N. aberrans</i> por gramo de
raíz de las 10 especies de plantas espontáneas a los 80 dí-
as
por gramo de las 35 especies de plantas (25 especies de plantas culti-
vadas y 10 especies de plantas espontáneas) a los 100 días, datos
transformados a $\sqrt{x+1}$
CUADRO 15. Número de individuos (hembras adultas) de <i>N. aberrans</i> por gramo de raíz de las 25 especies de plantas cultivadas a los 100 dí-as
CUADRO 16. Número de individuos (hembras adultas) de <i>N. aberrans</i> por gramo de
raíz de las 10 especies de plantas espontáneas a los 100 dí-
as39
CUADRO 17. ANVA para número de individuos (machos adultos) de <i>N. aberrans</i> por
gramo de raíz de las 35 especies de plantas (25 especies de plantas
cultivadas y 10 especies de plantas espontáneas) a los 80 días, datos
transformados a $\sqrt{x+1}$ 41
CUADRO 18. Número de individuos (machos adultos) de <i>N. aberrans</i> por gramo de
raíz de las 25 especies de plantas cultivadas a los 80 dí-
as42
CUADRO 19. Número de individuos (machos adultos) de <i>N. aberrans</i> por gramo de
raíz de las 10 especies de plantas espontáneas a los 80 dí-
as43
CUADRO 20. ANVA para número de individuos (machos adultos) de <i>N. aberrans</i> por
gramo de raíz de las 35 especies de plantas (25 especies de plantas
cultivadas y 10 especies de plantas espontáneas) a los 100 días, datos
transformados a $\sqrt{x+1}$ 44
CUADRO 21. Número de individuos (machos adultos) de <i>N. aberrans</i> por gramo de
raíz de las 25 especies de plantas cultivadas a los 100 dí-
as45
CUADRO 22. Número de individuos (machos adultos) de <i>N. aberrans</i> por gramo de
raíz de las 10 especies de plantas espontáneas a los 100 dí-
as46

CUADRO :	23. /	ANVA para el número de nódulos de <i>N. aberrans</i> , por sistema radicu-	
		lar de las 35 especies de plantas (25 especies de plantas cultivadas y	
		10 especies de plantas espontáneas) a los 80 días, datos transfor-	
		mados a $\sqrt{x+1}$ 47	
CUADRO :	24.	Número de nódulos de <i>N. aberrans</i> , por sistema radicular de las 25	
		especies de plantas cultivadas a los 80 días48	
CUADRO :	25.	Número de nódulos de <i>N. aberrans</i> , por sistema radicular de las 10	
		especies de plantas espontáneas a los 80 días49	
CUADRO :	26.	ANVA para número de nódulos de N. aberrans por sistema radicular	
		de las 35 especies de plantas (25 especies de plantas cultivadas y 10	
		especies de plantas espontáneas) a los 100 días, datos transforma-	
		dos a $\sqrt{x+1}$ 50	
CHADDO			
CUADRO .	27.	Número de nódulos de <i>N. aberrans</i> , por sistema radicular de las 25	
CUADRO ,	27.	Número de nódulos de <i>N. aberrans</i> , por sistema radicular de las 25 especies de plantas cultivadas a los 100 días51	
		especies de plantas cultivadas a los 100 días51	
CUADRO :	28.	especies de plantas cultivadas a los 100 días	
CUADRO :	28.	especies de plantas cultivadas a los 100 días	
CUADRO :	28. 29.	especies de plantas cultivadas a los 100 días	
CUADRO :	28. 29.	especies de plantas cultivadas a los 100 días	
CUADRO : CUADRO CUADRO	28. 29. 30.	especies de plantas cultivadas a los 100 días	

INDICE DE GRAFICOS

ray
GRAFICO 1. Temperaturas mensuales (°C) registradas en invernadero año 2002
(segunda etapa de la conducción del trabajo de investigación)21
GRAFICO 2. Número promedio de individuos (segundo estadio juvenil) de <i>N. aberrans</i>
por gramo de raíz de las 35 especies de plantas (25 especies de plantas
cultivadas y 10 especies de plantas espontáneas) a los 80 días, datos
transformados a $\sqrt{x+1}$ 27
GRAFICO 3. Número promedio de individuos (segundo estadio juvenil) de <i>N. aberrans</i>
por gramo de raíz de las 35 especies de plantas (25 especies plantas
cultivadas y 10 especies de plantas espontáneas) a los 100 días, datos
transformados a $\sqrt{x+1}$ 30
GRAFICO 4. Número promedio de individuos (hembras adultas) de <i>N. aberrans</i> por
gramo de las 35 especies de plantas (25 especies de plantas cultivadas
y 10 especies de plantas espontáneas) a los 80 días, datos transforma-
dos a $\sqrt{x+1}$ 34
GRAFICO 5. Número promedio de individuos (hembras adultas) de <i>N. aberrans</i> por
gramo de las 35 especies de plantas (25 especies de plantas cultivadas
y 10 especies de plantas espontáneas) a los 100 días, datos transfor-
mados a $\sqrt{x+1}$ 37
GRAFICO 6. Número promedio de individuos (machos adultos) de <i>N. aberrans</i> por
gramo de raíz de las 35 especies de plantas (25 especies de plantas cul-
tivadas y 10 especies de plantas espontáneas) a los 80 días, datos
transformados a $\sqrt{x+1}$ 41
GRAFICO 7. Número promedio de individuos (machos adultos) de <i>N. aberrans</i> por
gramo de raíz de las 35 especies de plantas (25 especies de plantas cul-
tivadas y 10 especies de plantas espontáneas) a los 100 días, datos
transformados a $\sqrt{x+1}$ 44
GRAFICO 8. Número promedio de nódulos de <i>N. aberrans</i> por sistema radicular de las
35 especies de plantas (25 especies de plantas cultivadas y 10 especies
de plantas espontáneas) a los 80 días, datos transformados a
$\sqrt{r+1}$

INDICE DE FIGURAS

	Pág.
FIGURA 1. Masa de huevo eclosionado de N. aberrans	XLV
FIGURA 2. Juvenil uno (J1) y juvenil dos (J2) de N. aberrans	XLV
FIGURA 3. Primera etapa del trabajo (multiplicación del inoculo)	XLV
FIGURA 4. Primera etapa del trabajo (multiplicación del inoculo)	XLVI
FIGURA 5. Morfología de <i>N. aberrans</i>	XLVI
FIGURA 6. Hembras de <i>N. aberrans</i> en diferentes estados de maduración	XLVII
FIGURA 7. Diferencias morfológicas de las especies N. dorsalis y N. aberrans	XLVII
FIGURA 8. Hembra adulta con masa de huevos	XLVIII
FIGURA 9. Estados de desarrollo del nematodo del nudo de la raíz	XLVIII
FIGURA 10. Equipo necesario para el método de Baermann	XLIX
FIGURA 11. Muestra colocada en el embudo de Baerman	XLIX
FIGURA 12. Muestra a ser procesada	L
FIGURA 13. Cortes de la muestra	L
FIGURA 14. Muestra colocada en tela organza	LI
FIGURA 15. Muestra colocada dentro de un recipiente de PVC	LI
FIGURA 16. Pesada de muestra	LI
FIGURA 17. Agregando agua a la muestra	LII
FIGURA 18. Recojo de la muestra para su conteo	LII
FIGURA 19. Conteo con ayuda de un estereoscopio	LIII
FIGURA 20. Segunda etapa del trabajo (conducción de la investigación)	LIII
FIGURA 21. Segunda etapa del trabajo (conducción de la investigación)	LIV
FIGURA 22. Segunda etapa del trabajo (evaluación)	LIV
FIGURA 23. Primera etapa del trabajo (multiplicación del inoculo)	LV
FIGURA 24. Primera etapa del trabajo (multiplicación del inoculo)	LV
FIGURA 25. Segunda etapa del trabajo (preparación e inoculación)	LVI
FIGURA 26. Segunda etapa del trabajo (evaluación)	LVI
FIGURA 27 Segunda etana del trabajo (evaluación)	I VII

ABREVIATURAS

NN : Numero de nódulos por sistema radicular.

NJ2 : Numero de individuos (segundo estadio) por gramo de raíz.

HA : Numero de individuos (hembras adultas) por gramo de raíz.

MA : Numero de individuos (machos adultos) por gramo de raíz.

NN₁ : Numero de nódulos por sistema radicular primer momento de evalua-

ción (80 días).

J2 : Individuos segundo estadio juvenil

NJ2₁ : Numero de individuos (segundo estadio juvenil) por gramo de raíz

primer momento de evaluación (80 días)

HA₁: Numero de individuos (hembras adultas) por gramo de raíz primer

momento de evaluación (80 días)

MA₁: Numero de individuos (machos adultos) por gramo de raíz primer mo-

mento de evaluación (80 días)

NN₂ : Numero de nódulos por sistema radicular segundo momento de eva-

luación (100 días)

NJ2₂ : Numero de individuos (segundo estadio juvenil) por gramo de raíz se-

gundo momento de evaluación (100 días)

HA₂: Numero de individuos (hembras adultas) por gramo de raíz segundo

momento de evaluación (100 días)

MA₂: Numero de individuos (machos adultos) por gramo de raíz segundo

momento de evaluación (100 días)

T : Tratamiento (especies de cultivares)

E : Especies

R : Repetición

PROINPA : Programa de investigación de la papa

ANVA : Análisis de Variancia

NE : No eficiente

PE : Poco eficiente

ME : Moderadamente eficiente

E : Eficiente

AE : Altamente eficiente

RESUMEN

El presente estudio se realizó en el invernadero y el laboratorio de Fitopatología de la Facultad de Ciencias Agrarias de la Universidad Nacional del Altiplano de Puno-Perú, durante el periodo comprendido entre Junio del 2001 y Setiembre del 2002. Siendo el objetivo: Determinar las plantas hospedantes del falso nematodo del nódulo de la raíz *Nacobbus aberrans* (Thorne, 1935; Thorne y Allen, 1944), bajo condiciones de invernadero, cuyas variables de respuesta fueron: a) Numero de individuos (segundo estadio juvenil) por gramo de raíz, a los 80 y 100 días en las 35 especies de plantas b) Numero de individuos (hembras adultas) por gramo de raíz, a los 80 y 100 días en las 35 especies de plantas c) Numero de individuos (machos adultos) por gramo de raíz, a los 80 y 100 días en las 35 especies de plantas y d) Numero de nódulos por sistema radicular, a los 80 y 100 días en las 35 especies de plantas.

Las variables de respuesta, se analizaron mediante el diseño completamente al azar, con tres repeticiones, para cada momento de evaluación (a los 80 días y a los 100 días) y para cada especie (especies cultivadas y especies espontáneas). La especie *Solanum tuberosum* (var. Andina) se consideró como tratamiento testigo por ser susceptible a este fitoparasito.

Para determinar el comportamiento de las 35 especies vegetales en relación a los estados de desarrollo de *N. aberrans* se tomó en cuenta los resultados obtenidos en las variables: numero de individuos (segundo estadio juvenil), numero de individuos (hembras adultas) por gramo de raíz y numero de nódulos por sistema radicular a los 80 y 100 días, asimismo los trabajos efectuados por Céspedez et al, 1998 y Castiblanco et al, 1998, habiéndo-se calificado el numero de nódulos por sistema radicular con la escala propuesta por Franco (Castiblanco et al, 1998), estableciéndose lo siguiente: especies altamente eficientes (AE), papa (variedad andina, VH-22) y tomate. Especies eficientes (E), papa variedad piñaza y remolacha azucarera. Especies moderadamente eficientes (ME), espinaca, lechuga y acelga. Especies poco eficientes (PE), arveja, cañihua, izaño, olluco, quinua, trigo, zanahoria, aspergula y challamata. Especies no eficientes (NE), dentro de esta calificación se presentaron: especies no hospedantes natos: Maíz, alfalfa, ají, pimiento, chijchipa, kòra y mata conejo. Y especies que poseen el efecto de plantas trampa: Avena, cebada, haba, kiwicha, oca, tarwi, amor seco, auja auja, bolsa de pastor, cebadilla y nabo silvestre.

HOST PLANTS OF FALSE ROOT-KNOT NEMATODE (*Nacobbus aberrans* THORNE, 1935; THORNE AND ALLEN, 1944) UNDER GREENHOUSE ENVIRONMENT.

ABSTRACT

The present study was conducted in the greenhouse and the Plant Pathology Laboratory of the College of Agrarian Science at the "Universidad Nacional del Altiplano, Puno-Peru" between June 2001 – September 2002. The objective was to determine the host plants of false root-knot nematode; *Nacobbus aberrans* (Thorne, 1935; Thorne and Allen, 1944), under greenhouse conditions with the variables under study being: a) Number of individuals (second-stage juveniles) per gram of roots at 80 and 100 days in 35 plant species, b) Number of individuals (mature females) per gram of roots at 80 and 100 days in 35 plant species, c) Number of individuals (adult males) per gram of roots at 80 and 100 days in 35 plant species, and d) Number of galls per root system, at 80 and 100 days in 35 plant species.

The variables were analyzed under completely randomized design with three replicates, for each evaluation date (at 80 and 100 days) and for each species (cultivated species and spontaneous species). The species *Solanum tuberosum* (cv. Andina) was considered as control due to its susceptibility to the false root-knot nematode.

To determine the response of the 35 plat species in relation to the developmental stage of *N. aberrans*, it was taken in account, the results obtained with the variables, number of individuals (the second-stage juveniles), the number of individuals (mature females) per gram of roots, and the number of galls per root system, at 80 and 100 days, as well as the research done by Cespedez et al., 1998 and Castiblanco et al., 1998, and the number of galls per root system evaluated by the scale proposed by Franco (Castiblanco et al., 1998). The following was established: Highly efficient species (HE), potato (cv. Andina, VH 22) and tomato. Efficient species (E): potato cv. Piazza and sugar beet. Moderately efficient species (ME): spinach, lettuce, and celery. Less efficient species (LE): pea, kaniwa, mashua, ulluco, quinoa, wheat, carrot, "aspergula", and "challamata". Non-efficient species (NE), which contained the strictly non-host plants: corn, alfalfa, pepper, "chijchipa", Kiara and "mata conejo"; and trap species: oats, barley, faba beans, kiwicha, oca, lupins, "amor seco", "auja auja", shepherd's purse, "cebadilla" and "nabo silvestre".

I. INTRODUCCION

Los nematodos parásitos de plantas con mas de 1 400 especies descritas constituyen uno de los grupos mas importantes de organismos que habitan en el suelo, y que a menudo se tornan en uno de los problemas fitosanitarios mas difíciles de controlar en desmedro de la producción agrícola y por ende de la economía agraria, ocasionan perdidas cualitativas (desmejoran la calidad de los productos) y cuantitativas (reducción en los rendimientos o aumento de costos de producción) en la casi totalidad de los cultivos alimenticios o industriales que se explotan en las diversas zonas agroecológicas del orbe. (Franco et al, 1993).

Estos nematodos además se comportan como agentes propiciadores para la incidencia de otras enfermedades de tipo fungoso, bacteriano y virósico.

Una de las plagas más difíciles de controlar y que afecta severamente al cultivo de papa en la zona andina son los nematodos. Bolivia es el país mas infestado de nematodos en Latinoamérica. Trabajos realizados en PROINPA, han identificado que en Cochabamba, Potosí, La Paz, Tarija, Chuquisaca y Oruro los nematodos de los Géneros *Nacobbus y Globodera* se hallan distribuidos en un 93% de la superficie total cultivada con papa, provocando pérdidas en los rendimientos del 19% al 73%, por lo que estos terrenos son considerados marginales sin poder ser utilizados para la producción de semilla de papa. En consecuencia, los agricultores buscan nuevos suelos sanos para cultivar, deforestando nuevas áreas provocando la perdida de su flora y fauna nativas, además permitiendo que sus suelos erosionen. (PROINPA, 2001).

Dos de los nematodos mas importantes que afectan el cultivo de la papa en las regiones andinas de Perú y Bolivia son el nematodo de la raíz rosario, *Nacobbus aberrans* (Thorne 1935; Thorne y Allen, 1944) y el nematodo quiste, *Globodera pallida* (Stone, 1973) Behrens, 1975. Estos nematodos ocasionan perdidas en el rendimiento aproximadamente del 10 al 15% pudiendo llegar hasta el 70% en años con escasa precipitación y en terrenos de textura arenosa. (Arcos, 1989).

N. aberrans causante del "rosario de la papa" está considerado como uno de los mayores obstáculos que ocasionan perdidas cuantitativas y cualitativas en el cultivo de papa en la región Andina de Bolivia y Perú. Posee un rango relativamente amplio de hospedantes, ya

que ataca a las especies de plantas de la mayoría de familias, excepto las de las Gramineae. La situación con el falso nematodo del nudo *N. aberrans*, es muy peculiar y hasta la fecha parece ocupar únicamente el interés de los países afectados, es decir, Bolivia, Perú y Argentina, donde en forma aislada se han realizado investigaciones en un esfuerzo por ampliar los conocimientos acerca de este nematodo. (Franco, 1994).

En estudios recientes se ha demostrado las limitaciones de los métodos de control existentes para nematodos parásitos de plantas, por lo cual se hace necesario el empleo adecuado de las medidas que permitan asegurar un buen manejo de los nematodos. (Bowen, 1989).

Una de las practicas efectivas de manejo para el control de nematodos fitoparasitos, es la relacionada con el uso de ciertas practicas culturales como son: la rotación de cultivos y eliminación oportuna de plantas espontáneas hospedantes, métodos que permiten disminuir la población de nematodos, por lo que es necesario conocer que plantas son hospedantes y cuales no, para así recomendar una rotación adecuada y eliminación apropiada de plantas espontáneas.

El presente trabajo de investigación tubo como objetivo:

Determinar las plantas hospedantes del falso nematodo del nódulo de la raíz *Nacobbus aberrans* (Thorne, 1935; Thorne y Allen, 1944), bajo condiciones de invernadero.

II. REVISION DE LITERATURA

2.1.- MORFOLOGIA DE LOS NEMATODOS.

Los nematodos pertenecen al reino animal, son organismos multicelulares, generalmente microscópicos y poseen los principales sistemas fisiológicos, con excepción del respiratorio y circulatorio. En general tienen forma de gusano delgado, son cilíndricos, alargados, algunos segmentados exteriormente, sin que esta segmentación afecte al interior, con diferenciaciones en la cabeza y en la cola. En algunas especies las hembras en su madurez pueden tomar formas distintas al macho, que sigue el patrón general. Las especies fitoparasitas, así como las formas libres del suelo, están comprendidas entre 0.2mm y 2 mm de largo y un diámetro variables entre 10 y 40 micrones (Unión Carbide, 1979).

Los nematodos fitoparasitos de vida libre y agua dulce son delgados, activos, de 0.2 a 10.0 mm de longitud y 0.05 mm de ancho, su cuerpo es cilíndrico, y en ocasiones fusiforme; en algunos fitoparasitos el cuerpo puede ser filiforme, en forma de limón, redonda, reniforme u otra. Anteriormente el cuerpo puede adelgazarse poco, pero puede permanecer casi cilíndrico hasta la región labial; distalmente, puede tener diferentes formas desde una terminación redondeada a filiforme (Cepeda, 1996).

2.2.- BIOLOGIA DE Nacobbus aberrans.

En el ciclo biológico de *Nacobbus aberrans* la primera muda de la cutícula ocurre dentro del huevo, del cual emerge el segundo estadio larval (figuras 1 y2 del anexo) y penetra en las raíces donde llega hasta el cuarto estadio. Algunas larvas salen y entran en las raíces hasta completar su ciclo de vida. Los machos quedan en el suelo, pero la hembra se establece nuevamente en la raíz y produce nódulos (figuras 3 y 4 del anexo). La hembra tiene forma ensanchada (figuras 5, 6, 7 y 8 del anexo) pero más alargada que *Meloidogyne*, la parte posterior de su cuerpo retiene huevos pero también los depositan en una masa gelatinosa secretada por ella (figura 8 del anexo). Las larvas y hembras jóvenes también penetran en los tubérculos pero no forman nodulaciones. El ciclo puede completarse en 25 a 50 días dependiendo de la temperatura. (Canto, "s.f.").

Establece el ciclo de vida de huevo a huevo en 48 días a 25°C. (Inserra 1983).

Dentro del ciclo biológico de *Nacobbus aberrans*, el segundo estadio juvenil (figura 2 del anexo) emerge del huevo invadiendo las raíces iniciando con su alimentación, las células incrementan su tamaño seguido de una necrosis de las células corticales. Después de 2 mudas más puede salir de las raíces como pre-adulto o siguen alimentándose, forman las agallas en las raíces y continúan hasta completar su ciclo biológico en las raíces.

Algunos de los pre-adultos que abandonan las raíces realizan su última muda y se convierten en machos y hembras juveniles activos, la distinción sexual en estados juveniles puede realizarse al final del tercer estadio juvenil las hembras jóvenes se movilizan hacia las raíces más grandes y se establecen en posición apropiada se agrandan y empiezan a desarrollar las agallas, a medida que las agallas desarrollan la parte posterior de las hembras se dirigen hacia la corteza periférica causando una abertura en la superficie de la raíz donde los huevos se localizan dentro de una matriz gelatinosa exudada por el nematodo (figura 8 del anexo), las hembras preadultas e inmaduras también atacan a los tubérculos, penetrando uno a dos milímetros por debajo de la piel del tubérculo, los del segundo estadio juvenil también infestan los tubérculos pero se desarrollan muy poco. (Lázaro, 1990).

La hembra adulta es piriforme o esferoidal, de color blanco brillante y mide aproximadamente un milímetro de diámetro; pudiendo ser vista con una lupa común. Vive dentro del tejido de las raíces, donde se desarrolla y alimenta mediante un fino estilete bucal, con el cual perfora las células de la raíz. Esto provoca una reacción en la zona afectada, formándose así los llamados "nudos, nódulos o agallas radiculares" (figuras 3 y 4 del anexo). Cuando alcanza la madurez sexual pone sus huevos dentro de una maza gelatinosa (figura 8 del anexo), la cual esta generalmente dirigida hacia la parte externa de la raíz, luego de la madurez eclosionan los huevos, salen cientos de larvas que tienen forma de anguilulas pequeñísimas. A estas se les llama "larvas infestantes" ya que de inmediato emigran en busca de nuevos tejidos o raíces que infectar. El macho es vermiforme y mide hasta dos milímetros de largo (figura 9 del anexo) y no penetra al interior de la raíz. Crece y se alimenta desde el exterior de la raíz. (Garmendia, 1994).

2.3.- UBICACIÓN TAXONÓMICA.

Se propuso el género Nacobbus basados principalmente en el pronunciado dimorfismo sexual, superposición de la glándula esofágica dorsal al intestino y por el engrosamiento o hinchazones producidos en las raíces que los alojan. (Thorne y Allen, 1944).

La (Sociedad Española de Fitopatología, 2000), ubica taxonómicamente al "falso nematodo del nódulo de la raíz" o "nematodo del rosario" como sigue:

Phylum:

Nemata

Clase:

Secernentea

Subclase:

Tylenchia

Orden:

Tylenchida

Suborden:

Tylenchina

Superfamilia: Hoplolaimoidea

Familia:

Nacobbidae

Genero:

Nacobbus Thorne & Allen, 1944

Especie:

Nacobbus aberrans (Thorne, 1935) Thorne & Allen, 1944.

2.4.- DISTRIBUCIÓN GEOGRÁFICA.

Nacobbus aberrans, es denominado también como "falso nematodo del nudo", "nematodo rosario de la papa", "thola sapi" ò "kuran kura". (PROINPA, 1993).

Las especies de Nacobbus han sido reportadas en Argentina, Bolivia, Chile, Ecuador, India, México, Perú, Rusia y Estados Unidos, bajo diversas condiciones ecológicas, que permiten sospechar la presencia de razas y en algunos casos únicamente como resultado de investigación, tal como sucedió en Inglaterra y Holanda. (Quimi, 1981).

Este nematodo es aparentemente nativo de la región andina del Perú y Bolivia, donde comúnmente provoca pérdidas en mas del 55% entre 2,000 y 4,200 msnm. También se encuentra presente en Argentina, Chile, Ecuador, EEUU, México, Inglaterra, Holanda, India y la URSS. "El falso nematodo del nudo" tiene un rango de hospedantes relativamente amplio. Ataca a un gran número de cultivos importantes, y muchas especies de malezas en la región andina, causando fuertes daños a algunas solanáceas. (Jatala y Golden, 1977).

En nuestro país, el falso nematodo del nudo se encuentra disperso en el Callejón de Huaylas, Huamachuco, Moquegua, Cajamarca, Puno y algunas partes del Valle del Mantaro. (Untiveros, 1986).

Al realizar un estudio del grado de ataque del "falso nematodo del nudo" *Nacobbus* spp. en la provincia de Chucuito, concluye que en los distritos de Pomata, Juli e Ilave presentan un mayor grado de infestación radicular, mientras que en Yunquyo, Desaguadero y Zepita, la infestación es menor. (Astorga, 1974)

2.5.- DISMINUCIÓN DE PRODUCCIÓN.

Nacobbus aberrans Thorne & Allen, es uno de los nematodos dañino de las plantas, caracterizando por su fuerte estilete, perforando los tejidos de los vegetales con la ayuda de una secreción enzimática denominado saliva, una vez introducido el estilete, el esófago actúa como una bomba, para extraer las sustancias del protoplasma celular del huésped, también indica que las plantas, segregan un agente atractivo y otro repelente, y que el balance entre ambos determinan el que la planta atraiga o rechace a determinado nematodo, el incremento de la sanidad de la población de nematodos tiene lugar cuando la planta hospedera permite un índice de reproducción que excede al de la mortalidad del nematodo. (Yepez, 1970)

Para el caso especifico de *Nacobbus aberrans,* la infección al sistema radicular de la planta se da a través del segundo estadio juvenil así como también por las hembras adultas (Inserra, 1983).

2.6.- HOSPEDEROS.

El nematodo del nudo se encuentra en plantas como papa, tomate, olluco, mashua, nabo silvestre, quinua y malezas. (Untiveros, 1986).

Evaluaron en invernadero y laboratorio la reacción a *Nacobbus aberrans*, de 40 entradas de *Oxalis tuberosa* (oca), 17 de *Ullucus tuberosus* (papalisa) y 8 de *Tropaeo-lum tuberosum* (izaño) existentes en el banco de germoplasma de el Programa de Investigación de la papa. De las entradas de oca, una sola presento nódulos en su sistema radicular y mediante una análisis de laboratorio de las otras 39 (método de la licuadora y recolección en tamices) 38 confirmaron su reacción negativa, sin embargo, una de ellas resulto ser asintomática, ya que presentó invasión de estados vermiformes del nematodo. En la papalisa, 15 presentaron nódulos y dos fueron asintomáticas ya que en laboratorio también presentaron invasión de estados vermiformes. En el isaño, una entrada presento nódulos y de las restantes siete, dos no fueron hospedantes del nematodo y cinco presentaron reacción asintomática. (Balderrama, et al. 1994).

Es originario de la zona andina de América del Sur. En la actualidad se encuentra presente en EEUU atacando remolacha azucarera, brócoli y repollo. En México ataca maíz, poroto, trigo, repollo, girasol, papa, pimiento y tomate. También está presente en Perú, Bolivia, Chile y Ecuador. En Rusia, India, Inglaterra y Holanda ataca las producciones de tomate y pimiento en invernadero. En Argentina se lo citó por primera vez en 1974 en Tafí del Valle, Tucumán. Actualmente se encuentra presente en cultivos comerciales de papa, pimiento y tomate en las provincias de Buenos Aires, Santa Fe, Mendoza, San Juan, Catamarca, Salta, Jujuy, Córdoba y la Rioja. (e.campo.com, 2005)

2.7.- EFICIENCIA COMO HOSPEDANTES.

La resistencia a menudo se basa en el grado de reproducción del nematodo. En la mayoría de los casos, esto es apropiado debido a la alta correlación positiva entre la reproducción del nematodo y el daño de la cosecha. (Christiansen, 1987).

Puede definirse la tolerancia como la cualidad de una planta que la hace un huésped apropiado; la resistencia es aquella cualidad de la planta que la hace un huésped inadecuado. (Christie, 1974).

2.8.- SINTOMAS.

En la parte aérea de la planta no existe ningún síntoma que caracterice el ataque de *Nacobbus*, ya que estos pueden ser confundidos con una falta de turgencia en la planta evidenciada por un marchitamiento, que bien podría deberse a la poca humedad del suelo o en un reducido desarrollo de la planta por una supuesta deficiencia de nutrientes o un crecimiento radicular pobre como respuesta a problemas físicos del suelo. Los síntomas causados por este nematodo en las raíces, son notorios por la presencia de ensanchamientos, nódulos o agallas, cuyo tamaño dependerá tanto del tamaño de la raíz como de la raza de nematodo y su densidad poblacional en el suelo. (Franco, et al. 1992).

2.9.- CONTROL.

Varias especies de nematodos sólo pueden infectar a unos pocos cultivos. Debido a que los nematodos fitopatogenos son parásitos obligados, la falta de hospederos susceptibles en el suelo durante 2 o 3 años produce su erradicación del área debido a que sufren inanición y no son capaces de reproducirse. Este método de control, en realidad, requiere del conocimiento de los tipos de nematodos que hay en el suelo y de qué plantas son resistentes o susceptibles a ellos. (Agrios, 1986).

Para el caso del Género *Nacobbus* el sistema de rotación de cultivos no es tan eficiente por el amplio rango de hospederos que posee este nematodo, incluyendo malezas comunes. (Otazù, et al. 1986).

Debido a la amplia gama de hospedantes de este nematodo, los sistemas de control cultural como la rotación de cultivos, barbechos, descanso, etc., se ven enormemente dificultados. (PROINPA, 1991).

Para el control de los nematodos en la actualidad se dispone de varios métodos eficaces, aunque ciertos factores, tales como los costos y los tipos de cultivo, limitan su aplicabilidad en determinados casos. Se emplean cuatro tipos generales de métodos de control. El control mediante métodos de cultivo, control biológico, control mediante agentes físicos y el control mediante compuestos químicos. Asimismo al referirse a métodos de cultivo incluye la rotación de cultivos con plantas no hospederas para su aplicación, señala también que se requiere del conocimiento de los tipos de nematodos que hay en el suelo y de qué plantas son resistentes o susceptibles a ellos. (Agrios, 1986).

El (Ministerio de Agricultura, 1972), recomiendan para el control de *Nacobbus* lo siguiente.

- Temprana y adecuada preparación del terreno.
- Rotación con cereales y leguminosas que deben estar acompañado con la eliminación o control de plantas huacchas de papa y malezas hospedantes.
- Uso de materia orgánica.
- Uso de cultivares resistentes.
- Uso de semilla sana.
- Uso de Fertilizantes, específicamente fosforados y potásicos.
- Desinfección de tubérculos semilla.
- Uso adecuado de nematicidas.
- Quema de raíces con nódulos.

2.9.1. Rotación de cultivos.

Esta práctica consiste en incluir durante la rotación plantas no susceptibles al nematodo, o que son desfavorables como huéspedes; es muy efectiva y reduce notablemente las poblaciones. Cuando se trata de especies que tienen huéspedes específicos, se pueden seleccionar con facilidad plantas resistentes. Dos cosechas resistentes sembradas entre cosechas susceptibles, pueden dar control regular por tres o cuatro años, en otros casos serán necesarios siete u ocho años para lograr un control efectivo. Las desventajas de este método son:

a. El grado de control se basa en el nivel de resistencia de las plantas en rotación y en el número de años que se dejen pasar para volver a sembrar la planta susceptible.

b. La planta que se alterna puede atraer otras especies de nematodos.

En muchos casos la opción de alternar con un cultivo diferente es limitada y puede ser poco atractiva la ganancia. (Cepeda, 1996).

La mayoría de los nematodos parásitos pueden vivir sobre algunas malezas como hospederos, lo cual hace que las poblaciones de nematodos se mantengan aún en la ausencia de cultivo. El monocultivo tiende a reducir el número de especies de nematodos, conduciendo a una selección favorecida por el hospedante único. Las poblaciones de especies de nematodos que no son parásitos de la planta cultivada pueden mantenerse en presencia de malezas que les sirven de hospedante, haciendo inútil, en este caso, el control por rotación de cultivos. (Unión Carbide, 1979).

La rotación de cultivos es una práctica muy antigua y ampliamente utilizada que consiste en alternar con cultivos conocidos como no hospedantes, es decir en los que no ocurre la multiplicación del nematodo y por lo tanto su densidad poblacional sufre una reducción o declinación natural. La rotación puede ser mas efectiva si se incluyen en cultivos no hospedantes que estimulen ya sea únicamente la eclosión de los nematodos o que, aun cuando permitan la invasión a sus raíces, el ciclo de vida del nematodo sea interrumpido y no ocurra su multiplicación, es decir que posean el efecto de cultivos trampa. De esta forma estas especies o cultivares seleccionados ocasionaran una alta reducción de los niveles de población de los nematodos, que permitirían rendimientos mayores, sin acudir al empleo de otras tácticas que puedan afectar a los organismos benéficos de medio ambiente. (Franco, et al. 1998).

Para el programa de rotación de cultivos es importante conocer el rango de hospedantes, ya que algunos nematodos son muy especializados y atacan pocos cultivos. Así en el caso de *Nacobbus*, las gramíneas y mayoría de lequmbres también son útiles para un programa de rotación. (Canto, 1991).

2.9.2. Plantas trampa, antagónicas y asintomaticas.

Este método se basa en el principio de permitir el ataque del nematodo a plantas susceptibles en campos infestados, para destruir posteriormente el cultivo, sin permitir que el nematodo alcance su madurez sexual. En los nematodos del quiste y nódulo radicular, solo el segundo estado larval es infeccioso, cualquier desarrollo mas allá de dicho estado los inmoviliza y mueren; la planta se destruye antes del estado de madurez. Las desventajas de esta práctica son:

- a. Puede ser efectiva para algunas especies, pero puede propiciar la aparición de otras especies mucho mayores o aumentar la infección original si la reproducción se efectúa.
- b. El productor tiene gastos de siembra para destruir la planta sin obtener un ingreso.
- c. El estado de reproducción del nematodo es variable y no muy conocido.
- d. Hay veces que no es necesario destruir la planta, pero se requiere que esta sea resistente al desarrollo de larvas para que no lleguen al estado adulto. Posteriormente se cosecha o se incorpora al suelo como planta de abono verde.

La especie *crotolaria spectabilis* ha dado resultados satisfactorios en la reducción de poblaciones de ciertas especies de nematodos que forman nódulos radiculares donde las larvas entran a la raíz pero no sobreviven. Otra alternativa consiste en sembrar cultivos como los espárragos y caléndulas, que se cree exudan sustancias químicas toxicas para algunas especies de nematodos. A este principio se le llama plantas antagónicas y requiere de mayor investigación. (Cepeda, 1996).

El efecto de planta trampa probablemente se deba a un mecanismo de restencia o propiedades antagónicas intrínsecas de las raíces y exudados radiculares de plantas que interrumpen el ciclo biológico del nematodo. (Nacional Academy Of Sciences, 1986).

Especies asintomaticas o "posibles" hospedantes son aquellas que no presentan nódulos pero si diversos estados de desarrollo en sus raíces pero que no llegan a multiplicarse (Castiblanco, et al. 1992).

2.9.3. Expresiones de la resistencia.

En algunas ocasiones, las plantas poseen una resistencia natural por medio de sustancias que son repelentes, toxicas o inhibidoras al nematodo. El factor resistencia puede influir en el nematodo para que este penetre a la planta; así, una variedad resistente de alfalfa es menos atacada por *Ditylenchus dipsasi* que una variedad susceptible, posiblemente porque la variedad resistente libera sustancias químicas atractivas en menor cantidad o libera sustancias repelentes como las que se encuentran en el camote. Sustancias especificas tales como:

- a. Terthienils. Son producidas por especies tales como caléndulas y sustancias allelopaticas de preinfección, que tienen efectos tóxicos sobre algunas especies de nematodos.
- b. Cucurbitacinas. Producidas por especies amargas y de la familia de las cucurbitáceas, dichas sustancias son de naturaleza triterpenoide y se acumula como glucósidos o aglicones en las raíces de dichas plantas. Experimentos realizados con *Meloidogyne in*cognita revelan que el efecto de estas sustancias es repelente a la invasión larval y que además puede actuar disminuyendo la taza de reproductiva de los nematodos.

En cuanto a las sustancias que actúan directamente sobre la incubación de los huevos, no se conoce ni su naturaleza ni la forma en que operan. De hecho, son pocos los casos donde sustancias preformadas confieren resistencia a una planta. Por lo tanto, es factible considerar que en la mayoría de los casos, la resistencia es una serie de reacciones fisiológicas en las que numerosos coproductores pueden obtenerse y que estos no necesariamente inhiben al nematodo. (Cepeda, 1996).

El empleo de variedades resistentes a las enfermedades suele ser el medio más eficaz, sencillo y económico para controlar las enfermedades de las plantas, cuando se ha creado variedades resistentes de tipo aceptable. (National Academy of Sciences, 1986).

2.9.4. Hipersensibilidad.

Una respuesta frecuente a la infección, es la rápida coloración parda de las células próximas al nematodo o la hipertrofia de las mismas. Por ejemplo, cuando el quiste *Heterodera* spp y nódulos radiculares *Meloidogyne* spp de nematodos establecen un sitio permanente al alimento en raíces hospederas, inducen la formación de estructuras simplàsticas agrandadas llamadas syncytia y células gigantes. (Cepeda, 1996).

2.9.5. Manejo integrado.

En el manejo integrado del nematodo del rosario de la papa, las rotaciones con especies no susceptibles son de suma importancia. Así las entradas de oca, papalisa, e isaño con características asintomáticas (permiten la invasión del nematodo pero no su desarrollo) son de especial interés. Aquellas entradas con resistencia, también pueden ser consideradas dentro de programas de rotación. (Balderrama, et al. 1994).

2.10.- FACTORES QUE INFLUYEN EN EL CONTROL DE NEMATODOS.

2.10.1. El ambiente del suelo.

Todos los nematodos parásitos de plantas viven en el suelo durante periodos variables de sus ciclos vitales. Por ejemplo, los nematodos ectoparásitos pasan su vida entera en el suelo, en general en la rizosfera de la planta. Los más especializados endoparásitos se introducen en los tejidos de la planta, por lo cual pasan menos tiempo en el suelo y en la rizosfera. Los parásitos de la superficie casi siempre están dentro de los tejidos de la planta, por tanto pasan, muy poco tiempo en el suelo. Debido a los hábitos de vida de los

nematodos de vida de los nematodos en el suelo, es más fácil controlar a los ectoparásitos que la de los endoparásitos. Los principales factores en el medio ambiente de los nematodos son temperatura: humedad, textura y estructura, aireación y la química de la polución del suelo.

TEMPERATURA.- Afecta las actividades de los nematodos, tales como la puesta, reproducción, movimiento, desarrollo y supervivencia, y afecta también a la planta huésped. Casi todos los nematodos parásitos de plantas se tornan inactivos en una gama de temperaturas bajas, entre 5 a 15 °C; la gama óptima es entre 15 y 30 °C y de nuevo se vuelven inactivos a una gama de alta temperatura como de 30 a 40°C. Existe muy poca información sobre el efecto de las temperaturas constantes o alternadas, en las actividades especificas de las diversas especies de nematodos.

HUMEDAD.- Las fluctuaciones de la humedad del suelo debida a la lluvia o al riego es uno de los factores principales que influyen en los aumentos de población de los nematodos. En condiciones de sequía no todos los nematodos mueren pero pueden deprimir su actividad y las poblaciones resultantes. Sobreviven a la sequía los huevos de la mayoría de los nematodos, así como también otros estados de los nematodos. Se cree que los nematodos siempre están activos en suelos que tienen un contenido de humedad de 40 a 60% de su capacidad de campo. El desarrollo y crecimiento de ellos depende del oxigeno disponible, lo cual es importante para determinar los niveles de población; por lo tanto, en general, los altos niveles de poblaciones se encuentran en suelos húmedos, bien aireados.

TEXTURA Y ESTRUCTURA DEL SUELO.- La velocidad del movimiento de los nematodos dentro del suelo esta relacionada con el diámetro de los poros, el tamaño de las partículas, el diámetro del nematodo, su relativa actividad y el grosor de las partículas de agua sobre y entre las partículas de tierra. Un nematodo no se puede mover entre las partículas de tierra cuando los diámetros de los poros son menores que la anchura del cuerpo de nematodo. Están interrelacionadas la estructura del suelo, la humedad y la aireación. Cuando los poros del suelo están llenos de agua, los nematodos se mueven

con dificultad; cuando la aireación es limitada, se hacen inactivos. En suelos muy secos existe buena aireación, pero no agua suficiente para formar películas así que los nematodos no se pueden mover. Solo un suelo de humedad intermedia tiene la suficiente aireación y película de agua para que los nematodos tengan un movimiento eficiente. (National Academy Of. Sciences, 1986).

2.11.- MÉTODOS PARA LA EXTRACCIÓN DE NEMATODOS DE TEJIDOS VEGETALES.

El método de Baermann (1917), es una técnica sencilla, con materiales al alcance de cualquier investigador y que da resultados aceptables (figura 10 del anexo). El material consiste en un embudo de 10 cm. de boca al que se adosa un tubo de goma con una llave de cierre (figura 11 del anexo). El embudo se coloca en un soporte universal y dentro de él se ubica una pequeña rejilla para soportar la muestra (figura 11 del anexo). Esta se obtiene de raíces, hojas o tallos en estudio, bien lavados y cortados en trocitos de 1 cm. aproximadamente (figuras 12, 13,14 y 15 del anexo). Una cantidad determinada de 50 g. (figura 16 del anexo) se coloca dentro de una bolsita de muselina o tejido semejante y ésta dentro del embudo (figuras 10 y 14 del anexo). Se agrega agua por las paredes del mismo hasta que la muestra quede totalmente cubierta (figura 17 del anexo). En vez de la bolsita de tela puede utilizarse también un vaso de precipitados de 100 ml, colocar la muestra en su interior y tapar la boca con una tela o filtro de algodón que se sujeta con una bandita de goma. Luego se coloca el vaso invertido en el embudo y se procede a agregar aqua.

Una vez en contacto la muestra con el agua debe evitar moverse el aparato y luego de 24 horas se recoge el agua por el tubo de goma que sale del embudo (figura 18 del anexo). Se deja precipitar y se concentra o se diluye la suspensión obtenida hasta llevar a un volumen de 100 ml. se homogeniza bien y se toman dos partes alícuotas de 10 cc cada una; se cuentan separadamente (figura 19 del anexo), se promedian y multiplicando por diez el resultado obtenido se tienen los nematodos que hay en 50 gramos (la muestra original) de raíces, hojas o tallos. (Fraga, 1984).

Canto (1988), cita un método para la extracción de juveniles (J2) a partir de raíces o suelo al cual le denomina "método de la bandeja", este viene a ser una modificación del método del embudo de Baermann, el mismo que requiere de los siguientes materiales.

- Bandejas redondas.
- Bandejas con malla o tamiz.
- Papel facial o papel higiénico.
- Beaker de 100 ml o 250 ml.
- Suelo o raíces.
- Balanza.
- Pipeta.
- Tamiz de 400 meses.

Procedimiento:

- a. Colocar 500cc de suelo o 5 g. de raíces (picadas) en la bandeja con malla o tamiz en la que previamente se ha colocado el papel facial. Esta bandeja se coloca sobre la bandeja sin tamiz, a la cual se le hecha agua con una pipeta por un costado al tamiz sin malla, hasta que aparezca una película de agua en la superficie de la muestra de suelo o raíz (picadas) y se deja por 48 horas. La frecuencia de recolección de los nematodos es cada dos días, después de 8 días debe haberse recogido un 80% del total de nematodos.
- b. Cada 48 horas, se retira la bandeja con tamiz. Para recoger la suspensión de la bandeja sin tamiz donde presumiblemente están los nematodos esto pasando a través del tamiz de 400 mesh.
- c. Se recoge los nematodos del tamiz de 400 mesh en un beaker para llevarlo a 100 ml. de suspensión.
- d. Homogenizar y tomar alícuotas de 1 a 5 ml. Para efectuar el contaje de los nematodos (J2) en el estereoscopio o microscopio de disección.

2.12.- PLANTAS CON POTENCIAL BIOCIDA.

La utilización de las plantas con propiedades biocidas es un instrumento tecnológico importante dentro del marco del manejo ecológico de las plagas. La existencia de más de 300 especies de plantas inventariadas en el Perú entre nativas e importadas son potencialmente útiles para ser usadas con fines de manejo de plagas.

CUADRO 1. Potencial de plantas con propiedades biocidas reportadas en el Perú.

PROPIEDAD DE LA PLANTA	Nº DE ESPECIES REPORTADAS
Insecticidas	117
Insecticidas de contacto	12
Inhibidores de la alimentación	46
Reguladores de crecimiento de insectos	11
Repelentes	72
Atrayentes	10
Acaricidas	09
Garrapaticidas	.13
Nematicidas	24
Moluscucidas	02
Raticidas	03
Fungicidas	38
Herbicidas	02
Fumigantes	01
TOTAL	350

FUENTE: Arning, et al. 2000

En el cuadro 1 podemos observar el abanico de posibilidades para que esta alternativa pueda ser desarrollada. Hasta el momento los mayores trabajos han estado orientados a impulsar el rescate y la validación técnica de una serie de estas plantas. (Arning, et al. 2000).

2.13.- INVERNADERO.

Se le define como un recinto cerrado o delimitado por una estructura de madera o metal, recubierta por vidrio o plástico transparente, en cuyo interior se desarrolla un cultivo en condiciones controladas. La principal diferencia entre el cultivo al aire libre

y en invernadero es el control del ambiente que las plantas necesitan para obtener su máximo desarrollo.

Los objetivos que se consiguen con el cultivo bajo invernadero pueden quedar resumidos de la siguiente manera:

- Proteger el cultivo contra las adversidades climáticas como el viento, la lluvia, la helada, la sequía y el granizo.
- Cultivar cuando las condiciones climáticas al aire libre no son suficientes par conseguir un desarrollo, floración y fructificación adecuados. Con ello se consiguen una mayor precocidad en la producción y la obtención de productos extratempranos. Estos se cotizan más en el mercado al aparecer con anterioridad a la apoca normal de recolección y, por tanto, escasear.
- Prolongar las producciones cuando la temperatura empieza a descender, obteniendo con ello productos extratardíos, con los mismos resultados que en el caso anterior.
- Aumentar el volumen de la producción. Este se produce debido a los mejores cuidados del cultivo y a las mejores condiciones del ambiente, así como a la ampliación de la época de producción. Con todo ello se consigue un mayor aprovechamiento comercial y un aumento en el rendimiento de la parcela de cultivo.
- Mejora la calidad de las cosechas para que el producto final pueda competir en el mercado. (Yuste, 1997).

Un invernadero es una instalación cubierta y abrigada artificialmente con materiales transparentes para defender las plantas de la acción de los meteoros exteriores. Esta instalación permite el control de determinados parámetros productivos, como: temperatura ambiental y del suelo, humedad relativa, concentración de anhidro carbónico en el aire, luz, etc., en lo mas cercano posible al optimo para el desarrollo de los cultivos que se establezcan. El volumen interior del recinto permite el desarrollo de los cultivos en todo su ciclo vegetativo.

En hortofloricultura los invernaderos permiten las siguientes ventajas:

- Cultivar fuera de época y conseguir mayor precocidad.
- Realizar cultivos en determinadas zonas climáticas y épocas estaciónales en donde no es posible hacerlos al aire libre.
- Disminuir el tiempo de los ciclos vegetativos de las plantas, permitiendo obtener mayor número de cosechas por año.
- Posibilidad de obtener más de un ciclo de cultivo al año.
- Aumento de producción.
- Obtención de mejor calidad.
- Mejor control de las plagas y enfermedades.
- Ahorro en agua de riego.
- Menos riesgos catastróficos.
- Trabajar con más comodidad y seguridad. (Serrano, 2002).

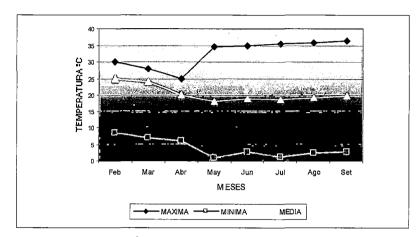
III. MATERIALES Y METODOS

3.1. UBICACION DEL CAMPO EXPERIMENTAL.

El trabajo de investigación se realizó en el periodo comprendido entre Junio del 2001 a Setiembre del 2002 bajo condiciones de invernadero y el laboratorio de Fitopatología de la Facultad de Ciencias Agrarias de la Universidad del Altiplano, ubicado en el distrito, provincia y departamento de Puno, geográficamente ubicado a una altitud de 3, 850 m.s.n.m., a 15°15′51″ de latitud sur y a 70°01′23″ longitud oeste.

3.2. CARACTERISTICAS DEL INVERNADERO.

El invernadero donde se condujo el presente trabajo de investigación fue rustico tipo capilla simple con las paredes construidas de adobe y el techo cubierto con polietileno transparente a dos aguas, con medidas de 6.5 m., de largo por 4.5 m., de ancho con seis ventanas que favorecieron la ventilación natural y una sola puerta de ingreso. (figuras 20 y 25 del anexo).


El presente experimento se llevo a cabo bajo condiciones de invernadero para lograr que la variabilidad presente en los datos se deba únicamente al factor en estudio (especies cultivadas y espontáneas) y no a fuentes extrañas como la temperatura humedad y otros factores que bajo condiciones de ambiente libre no seria posible controlarlos.

3.3. INFORMACION METEREOLOGICA.

Las temperaturas ambientales registradas durante el desarrollo del presente trabajo (grafico 1), favorecieron las funciones vitales de su ciclo biológico de las distintas especies vegetales en estudio así como también de *Nacobbus* ya que las temperaturas máximas y mínimas dentro del invernadero que soportan la mayoría de
las especies vegetales están comprendidas entre 0 y 70 °C; fuera de estos limites
casi todos los vegetales mueren o quedan en estado de vida latente. (Serrano,
2002).

Así mismo casi todos los nematodos parásitos de plantas se tornan inactivos en una gama de temperaturas bajas, entre 5 a 15 °C; siendo la gama óptima entre los 15 y 30 °C. (National Academy of Sciences, 1986).

GRAFICO 1. Temperaturas mensuales (°C) registradas en invernadero año 2002 (segunda etapa de la conducción del trabajo de investigación).

FUENTE: ELABORACIÓN PROPIA

3.4. MATERIAL EXPERIMENTAL.

3.4.1. Especies en estudio.

Los nombres comunes y nombres científicos de las 35 especies evaluadas (figuras 20 y 21 del anexo) se pueden apreciar en los cuadros 2 y 3, las mismas que fueron agrupadas en plantas cultivadas y espontáneas a fin de comparar y conocer su condición de plantas hospedantes o no a una determinada población de *Nacobbus*. Con el propósito de recomendar una rotación adecuada de cultivos y eliminación apropiada de plantas espontáneas, como parte integrante de un manejo integrado de este nematodo.

CUADRO 2. Especies cultivadas evaluadas a Nacobbus aberrans.

CLAVE	NOMBRES COMUNES	NOMBRES CIENTIFICOS
T1	Papa (var. Andina)	Solanum tuberosum
T2	Papa (VH-22)	Solanum tuberosum
T3	Papa (var. Piñaza)	Solanum juzepczukii
T4	Arveja	Pisum sativum
T5	Avena	Avena sativa
T6	Cañihua	Chenopodium pallidicaule
T7	Cebada	Hordeum vulgare
T8	Espinaca	Spinacia oleraceae
Т9	Haba	Vicia faba
T10	Izaño	Tropaeolum tuberosum
T11	Kiwicha	Amarantus sp
T12	Lechuga	Lactuca sativa
T13	Maíz	Zea mays
T14	Oca	Oxalis tuberosa
T15	Olluco	Ullucus tuberosus
T16	Acelga	Beta vulgaris
T17	Alfalfa	Medicago sativa
T18	Ají	Capsicum Nahum
T19	Pimiento	Capsicum Nahum
T20	Quinua	Chenopodium quinoa
T21	Remolacha azucarera	Beta vulgaris
T22	Tarwi	Lupinus mutabilis
T23	Tomate	Lycopersicum sculentum
T24	Trigo	Triticum sp.
T25	Zanahoria	Daucus carota

CUADRO 3. Especies espontáneas evaluadas a *Nacobbus aberrans*.

CLAVE	NOMBRES COMUNES	NOMBRES CIENTIFICOS
T26	Amor seco	Bidens pilosa
T27	Aspergula	Spergula arvensis
T28	Auja auja	Erodium cicutarum
T29	Bolsa de pastor	Capsella bursapastoris
T30	Cebadilla	Bromus unioloides
T31	Challamata	Calandrinia alba
T32	Chijchipa	Tagetes mandonii
T33	K'ora	Malvastrum capitatum
T34	Mata conejo	Lepidium chichicara
T35	Nabo silvestre	Brassica rapa

3.4.2. Inoculo.

Se consideró como inoculo para el presente estudio la masa de huevos del "falso nematodo del nudo de la raíz de la papa" (figuras 1, 2, 3, y 9 del anexo), la misma que se encuentra adherida al nódulo de la raíz.

3.4.3. Macetas.

Como macetas se utilizaron bolsas de polietileno transparentes cubiertos por bolsas de polietileno de color negro, cuyas medidas fueron 32cm de ancho por 40 cm. de alto (figuras 21 y22 del anexo).

3.5. CONDUCCION DEL EXPERIMENTO.

Se efectuó en dos etapas y cada etapa en dos fases del modo siguiente.

3.5.1. Primera etapa.

Se llevo a cabo durante los meses de Julio 2001 a Enero del 2002.

a.- Multiplicación del inoculo.

Para contar con el inoculo se recolectó, suelo infestado y raíces infectadas por *Nacobbus* de la localidad de Ojerani perteneciente al distrito de Puno las que fueron llevadas al invernadero para su correspondiente multiplicación y así poder contar con inoculo al estado puro, para lograr este propósito el suelo infestado se coloco en macetas de polietileno (figuras 23 y 24 del anexo) junto con los nódulos de las raíces infectadas sembrando luego en cada maceta tubérculos-semilla de la variedad Andina (susceptible a este nematodo), dándoles luego a cada maceta las condiciones adecuadas principalmente temperatura y humedad adecuadas para el desarrollo tanto del sistema radicular de la planta así como del nematodo, transcurridos aproximadamente 180 días se procedieron a extraer las raíces de las macetas con mucho cuidado para posteriormente ser procesadas en el laboratorio de Fitopatología.

b.- Obtención del inoculo.

Las raíces obtenidas en el paso anterior (multiplicación del inoculo) se procesaron en el laboratorio de Fitopatología, habiéndose encontrado de 180 a 200
nódulos aproximadamente por raíz por planta (figuras 3 y 4 del anexo), seguidamente se procedió a determinar el numero promedio de huevos que existe
en una masa de huevos del falso nematodo del nódulo de la raíz, habiéndose
determinado como promedio 520 huevos por masa de huevos (figuras 1, 8 y 9
del anexo), procediéndose luego a extraer las masas de huevos junto a sus
nódulos.

3.5.2. Segunda etapa.

Se desarrollo en el periodo comprendido entre los meses de Febrero a Setiembre del 2002.

a.- Preparación e inoculación.

Se prepararon 210 macetas de bolsas de polietileno de color transparente las que fueron cubiertas con bolsas de polietileno de color negro esto para proteger al inoculo, cada una con 4 Kg. de suelo y arena esterilizados en una proporción de 2:1 para darle una textura franco a franco arenosa, textura preferida por los nematodos para su desarrollo, movimiento y traslado (Román, 1978), luego las macetas se colocaron unas junto a otras, de tal manera que formaron un bloque compacto impidiendo la filtración de la luz solar entre una y otra maceta hecho que ayudo a preservar el inoculo. (figuras 24, 25 y 26).

Posteriormente se sembraron (23 de febrero del 2002) las semillas de las 35 especies de plantas en estudio libres de este nematodo. El riego se realizó con una frecuencia tal que permitió mantener la humedad adecuada en el suelo contribuyendo de esta manera el normal desarrollo del fitoparasito así como las plantas en estudio (figura 25 del anexo).

Transcurridos de 45 a 50 días después de haber sembrado las semillas de las

35 especies en las 210 macetas se procedió a la inoculación correspondiente con una misma cantidad de masas de huevo (06 masas de huevo junto a cu correspondiente nódulo por maceta, es decir 3 120 huevos aproximadamente por maceta), removiendo el suelo superficialmente de cada maceta, distribuyéndose las 06 masas de huevo uniformemente alrededor de la plántula a una profundidad aproximada de 10 cm. esto es, para garantizar la infectividad del inoculo.

b.- Evaluación.

Con las raíces obtenidas se procedió a la evaluación correspondiente (figuras 26 Y 27 del anexo) la que consistió en determinar: el número de individuos (segundo estadio juvenil) por gramo de raíz a los 80 y 100 días en las 35 especies de plantas, número de individuos (hembras adultas) por gramo de raíz a los 80 y 100 días en las 35 especies de plantas, número de individuos (machos adultos) por gramo de raíz a los 80 y 100 días en las 35 especies de plantas y número de nódulos por sistema radicular a los 80 y 100 días en las 35 especies de plantas, utilizando para la extracción de nematodos del sistema radicular el método de Baerman 1917 (citado en las paginas 15 y16), recomendado para tal fin así como las correspondientes claves taxonómicas (Thorne, 1961) y descriptivas (Fraga, 1984).

3.6. DISEÑO EXPERIMENTAL.

Para analizar cada una de las cuatro variables de respuesta, en el presente trabajo, se uso el diseño completamente al azar, con tres repeticiones, para cada momento de evaluación (a los 80 días y a los 100 días) y para cada especie (especies cultivadas y especies espontáneas). La especie *Solanum tuberosum* (var. Andina) se consideró como tratamiento testigo por ser susceptible a este fitoparasito.

Dado que los datos registrados para las variables de respuesta en estudio fueron contadas de número de individuos por cultivos, se realizó una transformación de datos empleando la formula $\sqrt{x+1}$, a fin de normalizar los datos y obtener inferencias validas al momento de interpretar los resultados.

El croquis experimental se muestra en el anexo cuadro 21.

3.7. VARIABLES DE RESPUESTA.

- Numero de individuos (segundo estadio juvenil) por gramo de raíz, a los 80
 y 100 días en las 35 especies de plantas.
- Numero de individuos (hembras adultas) por gramo de raíz, a los 80 y 100 días en las 35 especies de plantas.
- Numero de individuos (machos adultos) por gramo de raíz, a los 80 y 100 días en las 35 especies de plantas.
- Numero de nódulos por sistema radicular, a los 80 y 100 días en las 35 especies de plantas.

3.8. ESCALA DE EVALUACION.

CUADRO 4. Escala de evaluación empleada para calificar el comportamiento de los hospedantes en relación al numero de nódulos causados por *N. aberrans* en el sistema radicular.

Escala	Número de nódulos	Resistencia 1	Eficiencia del hospedante ²
0	0	R	NE
1	1-10	PR	PE
2	11-30	PS	ME
3	31-75	S	E
4	>75	AS	AE

FUENTE: Céspedez, et al. 1998.

- ¹ Se utiliza dentro de un cultivo (Resistencia o Susceptibilidad): R=Resistente; PR=Parcialmente resistente; PS= Parcialmente susceptible; S=Susceptible; AS=Altamente susceptible.
- ² Se utiliza entre cultivos y/o especies diferentes (Eficiente o no eficiente): NE= No eficiente; PE=Poco eficiente; ME=Moderadamente eficiente; E=Eficiente; AE=Altamente eficiente.

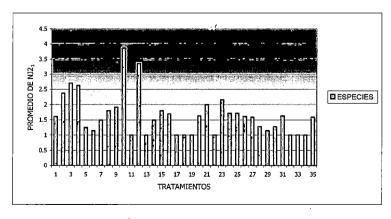
IV. RESULTADOS Y DISCUSION

4.1. NUMERO DE INDIVIDUOS (SEGUNDO ESTADIO JUVENIL) POR GRAMO DE RAIZ.

4.1.1. Primer momento de evaluación (80 días).

CUADRO 5. ANVA para número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

Fuente de Variación	G. L.	s. c.	С. М.
Especies (E).	34	47.287	1.391 **
Especies Cultivadas (EC).	24	40.723	1.697 **
Especies Espontáneas (EE).	9	1.958	0.217 NS
EC VS EE.	1	4.606	4.606 **
Error.	70	5.575	0.080
Total.	104	52.862	


^{**=}Altamente significativo al 1%

NS=No significativo

CV=17.22

Promedio=1.639

GRAFICO 2. Número promedio de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

FUENTE: ELABORACIÓN PROPIA

En el análisis de variancia que se aprecia en el cuadro 5, anexo (cuadros 1a, 1b y 1c) y grafico 2 para las (35 especies, 25 especies cultivadas y especies cultivadas VS especies espontáneas) se observa diferencia estadística altamente significativa, indicándonos que el número de individuos (segundo estadio juvenil) de *Nacobbus aberrans* por gramo de raíz a los 80 días presentó diferencias reales, probablemente porque al emerger del huevo invaden las raíces para iniciar con su alimentación tal como señalan. (Lázaro, 1990 e Inserra 1983), los cuales se encontrarán con plantas hospedantes y no hospedantes.

Para las 10 especies espontáneas se observó que no existe diferencia significativa, indicándonos que todas las repeticiones de los tratamientos en estudio mostraron un comportamiento similar ante el ataque del nematodo, por lo que podemos asumir que estas especies por el hecho de no ser o ser invadidas escasamente sus raíces presenten un tipo de resistencia natural por medio de sustancias que son repelentes, toxicas o inhibidoras a nematodos. (Cepeda, 1996).

El promedio general fue de 1.639 (segundo estadio juvenil) por gramo de raíz, con un coeficiente de variabilidad de (17.22 %) el cual da confiabilidad a los resultados obtenidos en la presente variable por encontrarse dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 6. Número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 80 días.

CLAVE	ESPECIE	DATOS REALES
		$\overline{\mathrm{X}}$ NJ $_{\scriptscriptstyle 1}$
T10	Izaño	13.9653
T12	Lechuga	10.2668
T3	Papa (Var. Piñaza)	6.3257
T4	Arveja	5.9222
T2	Papa (VH-22)	4.6563
T23	Tomate	3.6216
T21	Remolacha azucarera	2.9577
T 9	Haba	2.6508
T15	Olluco	2.2188
T8	Espinaca	2.2080
T25	Zanahoria	1.9426
T24	Trigo	1.9426

T16	Acelga	1.8500
T20	Quinua	1.6442
T1	Papa (Var. Andina)	1.5905
T14	Oca	1.2141
77	Cebada	1.2141
T5	Avena	0.5475
T6	Cañihua	0.2953
T17	Alfalfa	0.0000
T18	Ají	0.0000
T13	Maíz	0.0000
T22	Tarwi	0.0000
T11	Kiwicha	0.0000
T19	Pimiento	0.0000

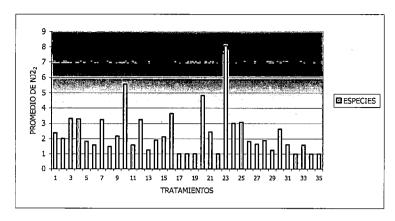
En el cuadro 6 y la prueba de significancia de tukey (cuadro 22 del anexo) se aprecia que las 25 especies cultivadas en estudio difirieron con respecto al número de individuos (segundo estadio juvenil) de *Nacobbus aberrans* por gramo de raíz a los 80 días, apreciándose que el mayor número de individuos corresponde a las especies: Izaño y lechuga. Y las especies que no presentaron individuos (segundo estadio juvenil) fueron: Alfalfa, ají, maíz, tarwi, kiwicha y pimiento. Tales hechos se pueden atribuir a que el *N. aberrans* tiene una gama de hospederos tal como lo indican. (Untiveros, 1986 y Valderrama, et al. 1994).

CUADRO 7. Número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 80 días.

CLAVE	ESPECIE	DATOS REALES
		$\overline{\mathrm{X}}$ NJ2 $_{\mathrm{i}}$
T31	Challamata	1.6442
T26	Amor seco	1.5905
T27	Aspergula	1.4882
T35	Nabo silvestre	1.4882
T28	Auja auja	0.6284
T30	Cebadilla	0.6284
T29	Bolsa de pastor	0.2953
T32	Chijchipa	0.0000
T33	K`ora	0.0000
T34	Mata conejo	0.0000

FUENTE: ELABORACIÓN PROPIA

En el cuadro 7, se observa que las especies challamata, amor seco, aspergula, nabo silvestre, auja auja, cebadilla y bolsa de pastor presentaron individuos segundo estadio juvenil en comparación a las especies: chijchipa, k`ora y mata conejo que no presentaron dichos individuos probablemente debido a lo sostenido por (Untiveros, 1986 y Valderrama, et al. 1994), siendo esta diferencia estadísticamente no significativa.


4.1.2. Segundo momento de evaluación (100 días).

CUADRO 8. ANVA para número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

Fuente de Variación	G. L.	S. C.	С. М.
Especies (E).	34	226.395	6.659 **
Especies Cultivadas (EC).	24	193.214	8.051 **
Especies Espontáneas (EE).	9	7.164	0.796 NS
EC VS EE.	1	26.017	26.017 **
Error.	70	10.716	0.153
Total.	104	237.111	

^{**=}Altamente significativo al 1% NS=No significativo CV=16.79 Promedio=2.330

GRAFICO 3. Número promedio de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

En el análisis de variancia que se aprecia en el cuadro 8, anexo (cuadros 2a, 2b y 2c) y grafico 3 para las (35 especies, 25 especies cultivadas y especies cultivadas VS especies espontáneas) se observa diferencia estadística altamente significativa, indicándonos que el número de individuos segundo estadio juvenil de *Nacobbus aberrans* por gramo de raíz a los 100 días fue variable, debido a los señalado por. (Lázaro, 1990).

Mientras que para las 10 especies espontáneas se observa que no existe diferencia significativa, indicándonos que todas las repeticiones de los tratamientos en estudio tuvieron un comportamiento similar, probablemente debido a lo enunciado por. (Cepeda, 1996).

El promedio general fue de 2.33 (J2) por gramo de raíz, con un coeficiente de variabilidad obtenido de (16.79 %) valor que da confiabilidad a los resultados obtenidos para la presente variable en estudio ya que el valor del coeficiente de variabilidad se encuentra dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 9. Número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 100 días.

CLAVE	ESPECIE	DATOS REALES
		$\overline{\mathbf{X}}$ NJ2 $_2$
T23	Tomate	64.2816
T10	Izaño	29.9948
T20	Quinua	22.2883
T16	Acelga	12.2547
T3	Papa (Var. Piñaza)	9.9846
T4	Arveja	9.9521

77	Cebada	9.6615
T12	Lechuga	9.6289
T25	Zanahoria	8.4661
T24	Trigo	8.1664
T21	Remolacha azucarera	4.9722
T1	Papa (Var. Andina)	4.6292
T9	Haba	3.6544
T15	Olluco	3.5194
T2	Papa (VH-22)	3.0804
T14	Oca	2.6104
T5	Avena	2.3270
T6	Cañihua	1. 4 882
T11	Kiwicha	1.4882
T8	Espinaca	1.1650
T13	Maíz	0.6284
T18	Ají	0.0000
T22	Tarwi	0.0000
T19	Pimiento	0.0000
T17	Alfalfa	0.0000

En el cuadro 9 y la prueba de significancia de tukey (cuadro 23 del anexo), se observa que las 25 especies cultivadas difirieron con respecto al número de individuos segundo estadio juvenil de *Nacobbus aberrans* por gramo de raíz a los 100 días, se puede apreciar que el mayor número de individuos (segundo estadio juvenil) se dieron en las especies: Tomate, izaño y quinua. Y las especies que no presentaron individuos del segundo estadio juvenil al momento de la evaluación fueron: Ají, tarwi, pimiento y alfalfa, tales hechos se pueden atribuir a que el *N. aberrans* tiene una gama de hospederos tal como indica. (Untiveros, 1986 y Valderrama, et al. 1994).

CUADRO 10. Número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 100 días.

CLAVE	ESPECIE	DATOS REALES
		$\overline{\mathbf{X}}$ NJ2 $_2$
T30	Cebadilla	5.9759
T28	Auja auja	2.5471
T26	Amor seco	2.2997
T27	Aspergula	1.7423
T31	Challamata	1.5905

T33	K'ora	1.4882
T29	Bolsa de pastor	0.5475
T32	Chijchipa	0.0000
T34	Mata conejo	0.0000
T35	Nabo silvestre	0.0000

FUENTE: ELABORACIÓN PROPIA

En el cuadro 10, se observa que las especies vegetales: Cebadilla, auja auja, amor seco, aspergula, challamata, k'ora y bolsa de pastor mostraron la presencia de juveniles dos, en cambio las especies: Chijchipa, mata conejo y nabo silvestre no presentaron juveniles dos, sin embargo, ésta diferencia no fue estadísticamente significativa.

De los resultados obtenidos en la presente variable en estudio se puede apreciar que continua la invasión de *N. aberrans* a las raíces del izaño a los 80 y 100 días con la posibilidad de convertirse en un hospedante mas o ser un hospedante asintomático es decir tener juveniles dos y no formar nódulos, por otro lado las especies alfalfa, ají, tarwi y pimiento no presentan individuos (segundo estadio juvenil) a los 80 y 100 días de evaluación, dando a entender que estas especie se comportan como no hospedantes, comportamiento que es abalado por. (Cepeda, 1996).

En las especies espontáneas a los 80 y 100 días de evaluación se observaron que las especies chijchipa y mata conejo no mostraron presencia de juveniles dos dándonos a conocer que su comportamiento es ser no hospedante.

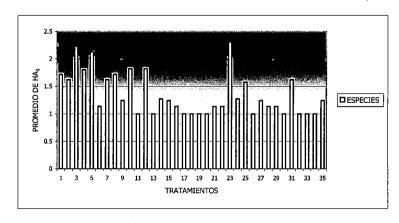
Es notorio el incremento de la población de individuos segundo estadio juvenil en relación a los 100 días, debido a los señalado por (Franco, et al. 1992), quienes sostienen que el numero de individuos segundo estadio juvenil se incrementan en función a la temperatura, tiempo y hospedero, la duración del desarrollo embriogénico desde que el huevo es depositado hasta la emergencia del segundo estadio juvenil es de 9-10 días a 25°C y alrededor de 51 días a 15°C, a esta temperatura solo el 10% de los huevos emergen, los otros huevos retienen al segundo estadio juvenil en un estado de quiescencia. Indican también que temperaturas entre los 20-25°C son los más favorables para la emergencia de individuos segundo estadio juvenil. Cabe señalar que las temperaturas medias registradas para el presente estudio están en el rango de los 20-25°C tal como se pueden apreciar en el grafico 1 y cuadro 33 del anexo.

4.2. NUMERO DE INDIVIDUOS (HEMBRAS ADULTAS) POR GRAMO DE RAIZ.

4.2.1. Primer momento de evaluación (80 días).

CUADRO 11. ANVA para número de individuos (hembras adultas) de *N. aberrans* por gramo de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

Fuente de Variación	G. L.	S. C.	C. M.
Especies (E).	34	15.484	0.455 **
Especies Cultivadas (EC).	24	12.494	0.520 **
Especies Espontáneas (EE).	9	1.068	0.119 NS
EC VS EE.	1	1.922	1.922 **
Error.	70	4.323	0.062
Total.	104	19.807	


^{**=}Altamente significativo al 1%

NS=No significativo

CV=18.37

Promedio=1.353

GRAFICO 4. Número promedio de individuos (hembras adultas) de *N. aberrans* por gramo de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

FUENTE: ELABORACIÓN PROPIA

En el análisis de variancia que se aprecia en el cuadro 11, anexo (cuadros 3a, 3b y 3c) y grafico 4 para las (35 especies, 25 especies cultivadas y especies cultivadas VS especies

espontáneas) se observa diferencia estadística altamente significativa, indicándonos que el número de individuos (hembras adultas) de nematodo *Nacobbus aberrans* por gramo de raíz a los 80 días fue variable, pudiendo ser debido a que la presencia de hembras adultas en las especies de plantas están en función al desarrollo del cultivo (tiempo), densidades del inoculo y la competencia por alimento en el sistema radicular tal como lo manifiesta. (Cusicanqui, 1997).

Para las 10 especies espontáneas se observa que no existe diferencia significativa, indicándonos que las repeticiones de los tratamientos en estudio mostraron un comportamiento similar ante la invasión del nematodo (hembras adultas) a las raíces de las plantas espontáneas en estudio.

El promedio general de individuos fue de 1.353 hembras adultas por gramo de raíz, con un coeficiente de variabilidad de (18.37 %) que da la confiabilidad a los resultados obtenidos en la presente variable en estudio, pues se encuentra dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 12. Número de individuos (hembras adultas) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 80 días.

CLAVE	ESPECIE	DATOS REALES
		$\overline{\mathbf{X}}$ HA ₁
T23	Tomate	4.3232
T3	Papa (Var. Piñaza)	3.9662
T5	Avena	3.5194
T10	Izaño	2.3175
T12	Lechuga	2.3175
T4	Arveja	2.2569
T1	Papa (Var. Andina)	1.9426
T8	Espinaca	1.9426
T2	Papa (VH-22)	1.6442
T7	Cebada	1.6442
T25	Zanahoria	1.4882
T24	Trigo	0.6284
T14	Oca	0.6284
T9	Haba	0.5475
T15	Olluco	0.5475
T6	Cañihua	0.2953

T22	Tarwi	0.2953
T16	Acelga	0.2953
T21	Remolacha azucarera	0.2953
T18	Ají	0.0000
T17	Alfalfa	0.0000
T20	Quinua	0.0000
T13	Maíz	0.0000
T11	Kiwicha	0.0000
T19	Pimiento	0.0000

En el cuadro 12 y la prueba de significancia de tukey (cuadro 24 del anexo) se observa que las 25 especies cultivadas difieren con respecto al número de individuos (hembras adultas) de *Nacobbus aberrans* por gramo de raíz a los 80 días, se puede apreciar también que el mayor número de individuos se obtuvo en las siguientes especies vegetales: Tomate, papa (Var. Piñaza), avena y las especies que luego del análisis correspondiente no presentaron hembras adultas fueron: Ají, alfalfa, quinua, maíz, kiwicha y pimiento. Para el caso de tomate y papa (Var. Piñaza) son considerados como hospedantes por su comportamiento al permitir alcanzar al estado de hembras adultas y respecto a los que no presentaron hembras adultas este comportamiento sea quizás debido a que estén tomando la actitud de ser plantas trampa ya que se aprecio invasión del segundo estadio juvenil pero cualquier desarrollo mas allá de dicho estado los inmoviliza y mueren. (Cepeda, 1996).

CUADRO 13. Número de individuos (hembras adultas) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 80 días.

CLAVE	ESPECIE	DATOS REALES
		$\overline{\mathbf{X}}$ HA ₁
T31	Challamata	1.6442
T27	Aspergula	0.5475
T 35	Nabo silvestre	0.5475
T28	Auja auja	0.2953
T29	Bolsa de pastor	0.2953
T26	Amor seco	0.0000
T30	Cebadilla	0.0000
T32	Chijchipa	0.0000
T33	K'ora	0.0000

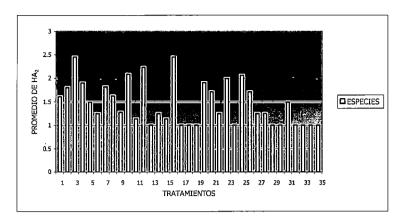
T34	Mata conejo	0.0000

En el cuadro 13, se observa que de las 10 especies espontáneas la: Challamata, aspergula, nabo silvestre, auja auja y bolsa de pastor, obtuvieron hembras adultas. En cambio las especies: Amor seco, cebadilla, chijchipa, k´ora y mata conejo no presentaron hembras adultas. Sin embargo, ésta diferencia no fue estadísticamente significativa.

4.2.2. Segundo momento de evaluación (100 días).

CUADRO 14. ANVA para número de individuos (hembras adultas) de *N. aberrans* por gramo de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

Fuente de Variación	G. L.	S. C.	С. М.
Especies (E).	34	21.540	0.633 **
Especies Cultivadas (EC).	24	16.240	0.677 **
Especies Espontáneas (EE).	9	1.749	0.194 NS
EC VS EE.	1	3.551	3.551 **
Error.	70	4.674	0.067
Total.	104	26.214	


^{**=}Altamente significativo al 1%

NS=No significativo

CV=17.70%

Promedio=1.450

GRAFICO 5. Número promedio de individuos (hembras adultas) de *N. aberrans* por gramo de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

FUENTE: ELABORACIÓN PROPIA

En el análisis de variancia que se aprecia en el cuadro 14, anexo (cuadros 4a, 4b y 4c) y grafico 5, para las (35 especies, 25 especies cultivadas y especies cultivadas VS especies espontáneas) se observa diferencia estadística altamente significativa, indicándonos que el número de individuos (hembras adultas) de *Nacobbus aberrans* por gramo de raíz a los 100 días fue variable, presumiblemente debido a los señalado por. (Cusicanqui, 1997).

Para las 10 especies espontáneas se observa que no existe diferencia significativa, indicándonos que las repeticiones de los tratamientos en estudio mostraron un comportamiento similar frente a la infección de hembras adultas, probablemente este resultado se de al comportamiento de las plantas espontáneas frente *a N. aberran*s ya que se identifico como especies trampa a los pastos *Distichis humilis* (Chiji blanco), *Bromus unioloides* (Cebadilla); a los cereales *Hordeum vulgare* var. Lucha e IBTA-80 y al *Triticosecale* var Renacer, debido a que se detectaron en sus raíces un elevado numero de juveniles dos y otros estadios de desarrollo y no hembras adultas. (Céspedes, 1994).

El promedio general fue de 1.450 hembras adultas por gramo de raíz, con un coeficiente de variabilidad obtenido de (17.70 %) lo que indica buena confiabilidad en los resultados obtenidos para la presente variable en estudio ya que se encuentra dentro de los niveles permisibles para trabajos conducidos bajo invernadero.

CUADRO 15. Número de individuos (hembras adultas) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 100 días.

CLAVE	ESPECIE	DATOS REALES
		HA ₂
T3	Papa (Var. Piñaza)	4.3232
T16	Acelga	3.9662
T12	Lechuga	3.5194
T10	Izaño	2.3175
T25	Zanahoria	2.3175
T23	Tomate	2.2569
T20	Quinua	1.9426
T4	Arveja	1.9426
17	Cebada	1.6442
T2	Papa (VH-22)	1.6442
T21	Remolacha azucarera	1.4882
T8	Espinaca	0.6284
T1	Papa (Var. Andina)	0.6284
T5	Avena	0.5475
T9	Haba	0.5475
T6	Cañihua	0.2953
T14	Oca	0.2953
T22	Tarwi	0.2953
T11	Kiwicha	0.2953
T15	Olluco	0.0000
T13	Maíz	0.0000
T18	Ají	0.0000
T17	Alfalfa	0.0000
T24	Trigo	0.0000
T19	Pimiento	0.0000

En el cuadro 15 y la prueba de significancia de tukey (cuadro 25 del anexo) se observa que las 25 especies cultivadas difieren con respecto al número de individuos (hembras adultas) de *Nacobbus aberrans* por gramo de raíz a los 100 días, se puede apreciar también que el mayor número de individuos se logró con las especies: Papa (Var. Piñaza) y Acelga. Y las especies que no lograron hembras adultas fueron: Olluco, maíz, ají, alfalfa, trigo y pimiento, hecho debido probablemente a lo manifestado por. (Cepeda, 1996).

CUADRO 16. Número de individuos (hembras adultas) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 100 días.

CLAVE	ESPECIE	DATOS REALES
		HA ₂
T26	Amor seco	1.9426
T31	Challamata	1.2141
T27	Aspergula	0.5475
T28	Auja auja	0.5475
T29	Bolsa de pastor	0.0000
T30	Cebadilla	0.0000
T32	Chijchipa	0.0000
T33	K'ora	0.0000
T34	Mata conejo	0.0000
T35	Nabo silvestre	0.0000

En el cuadro 16, se observa que de las 10 especies espontáneas las especies: Amor seco, challamata, aspergula y auja auja mostraron la presencia de hembras adultas, en cambio las especies: Bolsa de pastor, cebadilla, chijchipa, k´ora, mata conejo y nabo silvestre no mostraron la infección de hembras adultas. Sin embargo, ésta diferencia no fue estadísticamente significativa.

Luego de la evaluación hecha a los 80 y 100 días se deduce que las especies cultivadas (papa var. Piñaza y tomate) continúan con la invasión de hembras adultas las que posiblemente mas adelante formen nódulos con sus correspondientes masas de huevo, por otro lado se tienen el comportamiento de no hospederas a las especies ají y alfalfa.

Aquellas especies vegetales que presentan hembras adultas al ser procesados en laboratorio pero que no llegaron a nodular se pueden considerar como no hospedantes eficientes o plantas trampa ya que permitieron la invasión de los nematodos a sus raíces, pero no su multiplicación, este efecto de planta trampa probablemente se deba a un mecanismo de resistencia o propiedades antagónicos intrínsecas de las raíces y exudados radiculares de estas plantas que interrumpen el ciclo biológico del nematodo. (Main, et al. 1999).

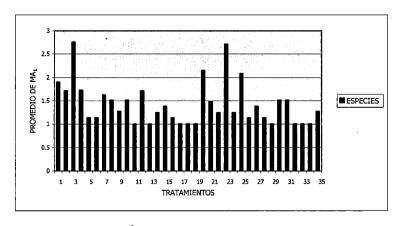
Respecto a las especies 10 espontáneas en la evaluación efectuada a los 80 y 100 días la especie challamata presento hembras adultas en cambio las especies chijchipa, k`ora y mata conejo tuvieron un comportamiento de plantas no hospedantes por no presentar hembras adultas luego del análisis efectuado.

4.3. NUMERO DE INDIVIDUOS (MACHOS ADULTOS) POR GRAMO DE RAIZ.

4.3.1. Primer momento de evaluación (80 días).

CUADRO 17. ANVA para número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

	T		
Fuente de Variación	G. L.	S. C.	С. М.
Especies (E).	34	21.382	0.629 **
Especies Cultivadas (EC).	24	18.073	0.753 **
Especies Espontáneas (EE).	9	1.235	0.137 NS
EC VS EE.	1	2.074	2.074 **
Error.	70	3.972	0.057
Total.	104	25.354	


**=Altamente significativo al 1%

NS=No significativo

CV=16.78%

Promedio=1.420

GRAFICO 6. Número promedio de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

FUENTE: ELABORACIÓN PROPIA

En el análisis de variancia que se aprecia en el cuadro 17, anexo (cuadros 5a, 5b y 5c) y grafico 6 para las (35 especies, 25 especies cultivadas y especies cultivadas VS especies

espontáneas) se observa diferencia estadística altamente significativa, indicándonos que el número de individuos (machos adultos) de *Nacobbus aberrans* por gramo de raíz a los 80 días su comportamiento fue variable respecto al desarrollo y multiplicación del nematodo, presumiblemente porque (Prasad y Webster, 1967) reportaron que los machos tiene preferencias por ciertos cultivos para su desarrollo como ejemplo se tiene al cultivo del tomate en donde lo machos desarrollan mucho mas rápido.

Para las especies espontáneas se observa que no existe diferencia significativa, es decir que las repeticiones de los tratamientos en estudio han mostrado un comportamiento similar.

El promedio general fue de 1.420 machos adultos por gramo de raíz, con un coeficiente de variabilidad obtenido de (16.78 %) con el cual podemos manifestar que hay confiabilidad de los resultados obtenidos para la presente variable en estudio y que el valor del coeficiente de variabilidad se encuentra dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 18. Número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 80 días.

CLAVE	ESPECIE	DATOS REALES
		MA ₁
T3	Papa (Var. Piñaza)	6.6137
T23	Tomate	6.3257
T20	Quinua	3.6216
T25	Zanahoria	3.3210
T1	Papa (Var. Andina)	2.6104
T4	Arveja	2.0002
T2	Papa (VH-22)	1.9426
T12	Lechuga	1.9426
T7	Cebada	1.6442
T10	Izaño	1.3110
T8	Espinaca	1.3110
T21	Remolacha azucarera	1.2141
T15	Olluco	0.9102
Т9	Haba	0.6284
T22	Tarwi	0.5475
T14	Oca	0.5475
T24	Trigo	0.5475

T5	Avena	0.2953
T16	Acelga	0.2953
T6	Cañihua	0.2953
T13	Maíz	0.0000
T17	Alfalfa	0.0000
T18	Ají	0.0000
T11	Kiwicha	0.0000
T19	Pimiento	0.0000

En el cuadro 18 y la prueba de significancia de tukey (cuadro 26 del anexo) se observa que las 25 especies cultivadas difieren con respecto al número de individuos (machos adultos) de *Nacobbus aberrans* por gramo de raíz a los 80 días, se puede apreciar también que el mayor número de machos adultos se observó en las especies: Papa (Var. Piñaza) y tomate. Las especies que no presentaron machos adultos fueron: Maíz, alfalfa, ají, kiwicha y pimiento. Se pueden considerar como no hospedantes o plantas trampa ya que permitieron la invasión de los nematodos a sus raíces, pero no su multiplicación, este efecto de planta trampa probablemente se deba a un mecanismo de resistencia o propiedades antagónicos intrínsecas de las raíces y exudados radiculares de estas plantas que interrumpen el ciclo biológico del nematodo. (Main, et al. 1999).

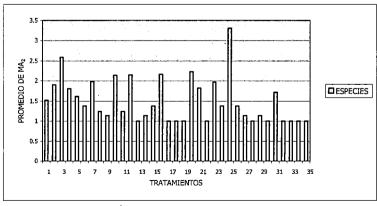
CUADRO 19. Número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 80 días.

CLAVE	ESPECIE	DATOS REALES
		MA ₁
T30	Cebadilla	1.3110
T31	Challamata	1.3110
T27	Aspergula	0.9102
T35	Nabo silvestre	0.6284
T26	Amor seco	0.2953
T28	Auja auja	0.2953
T29	Bolsa de pastor	0.0000
T32	Chijchipa	0.0000
T33	K'ora	0.0000
T34	Mata conejo	0.0000

FUENTE: ELABORACIÓN PROPIA

En el cuadro 19, se observa que de las 10 especies espontáneas las especies: Cebadilla, challamata, aspergula, nabo silvestre, amor seco y auja auja presentaron machos adultos, en cambio las especies: Bolsa de pastor, chijchipa, k´ora y mata conejo no presentaron machos adultos. Sin embargo, ésta diferencia no fue estadísticamente significativa.

4.3.2. Segundo momento de evaluación (100 días).


CUADRO 20. ANVA para número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

	T .		1
Fuente de Variación	G. L.	S. C.	С. М.
Especies (E).	34	31.694	0.932 **
Especies Cultivadas (EC).	24	24.681	1.028 **
Especies Espontáneas (EE).	9	1.522	0.169 **
EC VS EE.	1	5.491	5.491 **
Error.	70	4.388	0.063
Total.	104	36.082	

^{**=}Altamente significativo al 1%

CV=16.70 Promedio=1.499

GRAFICO 7. Número promedio de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

FUENTE: ELABORACIÓN PROPIA

En el análisis de variancia que se aprecia en el cuadro 20, anexo (cuadros 6a, 6b y 6c) y grafico 7 para las (35 especies, 25 especies cultivadas, 10 especies espontáneas y especies cultivadas VS especies espontáneas) se observa diferencia estadística altamente significativa) indicándonos que el número de individuos (machos adultos) evaluados a los 100 días, de *Nacobbus aberrans* por gramo de raíz fue variable, posiblemente debido a lo sostenido por. (Prasad y Webster, 1967).

El promedio general de individuos fue de 1.499 machos adultos por gramo de raíz, con un coeficiente de variabilidad obtenido (16.70 %) valor que da la confiabilidad a los resultados obtenidos en la presente variable en estudio ya que se encuentra dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 21. Número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 100 días.

CLAVE	ESPECIE	DATOS REALES
		MA ₂
T25	Zanahoria	9.9389
T3	Papa (Var. Piñaza)	5.6579
T20	Quinua	3.9662
T16	Acelga	3.6544
T12	Lechuga	3.6216
T10	Izaño	3.5762
T 7	Cebada	2.9577
T23	Tomate	2.8856
T2	Papa (VH-22)	2.6104
T21	Remolacha azucarera	2.3175
T4	Arveja	2.2569
T 5	Avena	1.5905
T1	Papa (Var. Andina)	1.3110
T6	Cañihua	0.9102
T15	Olluco	0.9102
T24	Trigo	0.9102
T11	Kiwicha	0.5475
T8	Espinaca	0.5475
T9	Haba	0.2953
T14	Oca	0.2953
T22	Tarwi	0.0000
T18	Ají	0.0000
T17	Alfalfa	0.0000

T13	Maíz	0.0000
T19	Pimiento	0.0000

FUENTE: ELABORACIÓN PROPIA

En el cuadro 21 y la prueba de significancia de tukey (cuadro 27 del anexo), se observa que las 25 especies cultivadas difieren con respecto al número de individuos (machos adultos) de *Nacobbus aberrans* por gramo de raíz a los 100 días, se puede apreciar también que el mayor número de individuos se logró con las especies: Zanahoria y papa (Var. Piñaza), y las especies que no presentaron machos adultos fueron: Tarwi, ají, alfalfa, maíz y pimiento, comportamiento que es avalado por. (Main, et al. 1999).

CUADRO 22. Número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 100 días.

CLAVE	ESPECIE	DATOS REALES
		MA ₂
T31	Challamata	1.9426
T26	Amor seco	0.9102
T29	Bolsa de pastor	0.2953
T27	Aspergula	0.2953
T28	Auja auja	0.0000
T30	Cebadilla	0.0000
T32	Chijchipa	0.0000
T33	K´ora	0.0000
T34	Mata conejo	0.0000
T35	Nabo silvestre	0.0000

FUENTE: ELABORACIÓN PROPIA

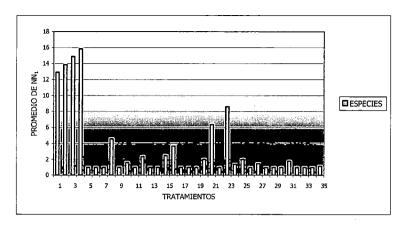
En el cuadro 22 y la prueba de significancia de tukey (cuadro 28 del anexo), se observa que las 10 especies espontáneas difieren con respecto al número de individuos (machos adultos) de *Nacobbus aberrans* por gramo de raíz a los 100 días, se puede apreciar que el mayor número de individuos se logró en las especies: challamata, amor seco, bolsa de pastor y aspergula. Las especies que no presentaron machos adultos fueron: Auja auja, cebadilla,Chijchipa,K'ora, mata conejo y nabo silvestre, comportamiento que se deba probablemente a que en Bolivia, una de las malezas hospedantes mas favorables a *N. aberrans* es *Spergula arvensis*, con esta información se hace aun mas compleja al haberse detectado poblaciones de *N. aberrans* con preferencias importantes en cuanto a hospedantes. (Caero, 1985).

De las evaluaciones efectuadas en las especies cultivadas a los 80 y 100 días se desprende que la especie papa variedad piñaza presentan machos adultos y aquellas especies que no presentan machos adultos en estas dos evaluaciones son ají, maíz, pimiento y alfalfa constituyéndose como especies no hospederas.

En las especies espontáneas a los 80 y 100 días de evaluación los que presentan machos adultos son challamata, aspergula y amor seco, mientras las que no presentan son la chijchipa, kòra y mata conejo.

4.4. NUMERO DE NODULOS POR SISTEMA RADICULAR.

4.4.1. Primer momento de evaluación (80 días).


CUADRO 23. ANVA para número de nódulos de *N. aberrans*, por sistema radicular de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$.

Fuente de Variación	G. L.	S. C.	С. М.
Especies (E).	34	1344.100	39.532 **
Especies Cultivadas (EC).	24	1226.167	51.090 **
Especies Espontáneas (EE).	9	2.067	0.230 **
EC VS EE.	1	115.666	115.666 **
Error.	70	6.309	0.090
Total.	104	1350.409	

^{**=}Altamente significativo al 1%

CV=10.70 Promedio=2.80

GRAFICO 8. Número promedio de nódulos de *N. aberrans*, por sistema radicular de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 80 días, datos transformados a $\sqrt{x+1}$

FUENTE: ELABORACIÓN PROPIA

En el análisis de variancia del cuadro 23, anexo (cuadros 7a, 7b y 7c) y grafico 8 para las (35 especies, 25 especies cultivadas, 10 especies espontáneas y especies cultivadas VS especies espontáneas) se observa diferencia estadística altamente significativa, indicándonos que el numero de nódulos de *N. aberrans* por sistema radicular a los 80 días fue variable.

El promedio general fue de 2.80 (nódulos por sistema radicular), con un coeficiente de variabilidad de (10.70%) valor que da confiabilidad a los resultados obtenidos en la presente variable en estudio ya que se encuentra dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 24. Número de nódulos de *Nacobbus aberrans*, por sistema radicular de las 25 especies de plantas cultivadas a los 80 días.

CLAVE	ESPECIE	DATOS REALES	EFICIENCIA DEL
		NN1	HOSPEDANTE
T2	Papa (VH-22)	189.7437	AE
T 3	Papa (Var. Piñaza)	166.5368	AE
T1	Papa (Var. Andina)	164.9743	AE
T23	Tomate	72.5135	E
T21	Remolacha	39.4903	Е
T8	Espinaca	20.1747	ME
T16	Acelga	12.5557	ME
T15	Olluco	5.2470	PE
T12	Lechuga	4.6292	PE
T20	Quinua	2.9578	PE
T25	Zanahoria	2.9577	PE
T10	Izaño	1.4882	PE

T24	Trigo	0.9102	NE
T6	Cañihua	0.0000	NE
T14	Oca	0.0000	NE
T13	Maíz	0.0000	NE
T18	Ají	0.0000	NE
T17	Alfalfa	0.0000	NE
T22	Tarwi	0.0000	NE
T5	Avena	0.0000	NE
T4	Arveja	0.0000	NE
T9	Haba	0.0000	NE
T11	Kiwicha	0.0000	NE
T7	Cebada	0.0000	NE
T19	Pimiento	0.0000	NE

En el cuadro 24, observamos el comportamiento de las 25 especies cultivadas en estudio en relación al numero de nódulos de *Nacobbus aberrans* en el sistema radicular a los 80 días y aplicando la escala de evaluación (cuadro 4), se aprecio lo siguiente: el cultivo de papa (VH-22, variedades piñaza y andina) se comportaron como altamente eficientes (AE), las especies vegetales tomate y remolacha se comportaron como eficientes (E), las especies espinaca y acelga se comportaron como moderadamente eficientes (ME), las especies olluco, lechuga, quinua, zanahoria e izaño se comportaron como poco eficientes (PE), las especies trigo, cañihua, oca, maíz, ají, alfalfa, tarwi, avena, arveja, haba, kiwicha, cebada y pimiento se comportaron como no eficientes (NE).

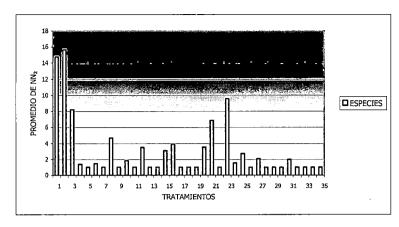
CUADRO 25. Número de nódulos de *Nacobbus aberrans*, por sistema radicular de las 10 especies de plantas espontáneas a los 80 días.

CLAVE	ESPECIE	DATOS REALES	EFICIENCIA DEL
		NN1	HOSPEDANTE
T31	Challamata	2.2569	PE
T27	Aspergula	1.1650	PE
T35	Nabo silvestre	0.2953	NE
T26	Amor seco	0.0000	NE
T28	Auja auja	0.0000	· NE
T29	Bolsa de pastor	0.0000	NE
T30	Cebadilla	0.0000	NE
T32	Chijchipa	0.0000	NE
T33	K`ora	0.0000	NE
T34	Mata conejo	0.0000	NE

FUENTE: ELABORACION PROPIA

En el cuadro 25, observamos el comportamiento de las 10 especies espontáneas en estudio en relación al numero de nódulos de *Nacobbus aberrans* en el sistema radicular a los 80 días y aplicando la escala de calificación (cuadro 4), se pudo apreciar lo siguiente: las especies challamata y aspergula se comportaron como poco eficientes (PE), las especies nabo silvestre, amor seco, auja auja, bolsa de pastor, cebadilla, chijchipa, k`ora y mata conejo se comportaron como no eficientes (NE).

4.4.2. Segundo momento de evaluación (100 días).


CUADRO 26. ANVA para número de nódulos de *N. aberrans* por sistema radicular de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

Fuente de Variación	G. L.	s. c.	С. М.
Especies (E).	34	1407.108	41.386 **
Especies Cultivadas (EC).	24	1268.173	52.841 **
Especies Espontáneas (EE).	9	5.050	0.561 **
EC VS EE.	1	133.885	133.885 **
Error.	70	9.924	0.145
Total.	104	1417.032	

^{**=}Altamente significativo al 1%

CV=12.59% Promedio=2.99

GRAFICO 9. Número promedio de nódulos de *N. aberrans* por sistema radicular de las 35 especies de plantas (25 cultivadas y 10 espontáneas) a los 100 días, datos transformados a $\sqrt{x+1}$.

En el análisis de variancia que se aprecia en el cuadro 26, anexo (cuadros 8a, 8b y 8c) y grafico 9 para las (35 especies, 25 especies cultivadas, 10 especies espontáneas y especies cultivadas VS especies espontáneas) se observó diferencia estadística altamente significativa, indicándonos que la formación de nódulos en las especies vegetales fue totalmente variable.

El promedio general fue de 2.99 (nódulos por sistema radicular), con un coeficiente de variabilidad de (12.59 %) valor que da confiabilidad a los resultados obtenidos en la presente variable en estudio ya que se encuentra dentro de los niveles permisibles, para trabajos conducidos bajo invernadero.

CUADRO 27. Número de nódulos de *Nacobbus aberrans*, por sistema radicular de las 25 especies de plantas cultivadas a los 100 días.

CLAVE	ESPECIE	DATOS REALES	EFICIENCIA DEL
		NN2	HOSPEDANTE
T2	Papa (VH-22)	243.1750	AE
T1	Papa (Var. Andina)	216.5654	AE
T23	Tomate	90.4223	AE
T3	Papa (Var. Piñaza)	66.3516	Е
T21	Remolacha azucarera	45.8978	E
T8	Espinaca	20.7259	ME
T16	Acelga	14.1851	ME
T20	Quinua	11.4976	ME
T12	Lechuga	11.2010	ME
T15	Olluco	8.6441	PE
T25	Zanahoria	6.3013	PE
T10	Izaño	2.3175	PE

T24	Trigo	1.4028	PE
T6	Cañihua	1.1650	PE
T4	Arveja	0.9102	NE
T13	Maíz	0.0000	NE
T17	Alfalfa	0.0000	NE
T14	Oca	0.0000	NE
T5	Avena	0.0000	NE
T18	Ají	0.0000	NE
T19	Pimiento	0.0000	NE
T22	Tarwi	0.0000	NE
T9	Haba	0.0000	NE
T11	Kiwicha	0.0000	NE .
77	Cebada	0.0000	NE

En el cuadro 27, observamos el comportamiento de las 25 especies cultivadas en estudio en relación al numero de nódulos de *Nacobbus aberrans* en el sistema radicular a los 100 días y aplicando la escala de calificación (cuadro 4), se pudo apreciar lo siguiente: el cultivo de papa (VH-22 y variedad andina) y el cultivo de tomate se comportaron como especies altamente eficientes (AE), las especies vegetales papa variedad piñaza y remolacha azucarera se comportaron como eficientes (E), las especies espinaca, acelga, quinua y lechuga se comportaron como moderadamente eficientes (ME), las especies olluco, zanahoria, izaño, trigo y cañihua se comportaron como poco eficientes (PE), las especies arveja, maíz, alfalfa, oca, avena, ají, pimiento, tarwi, haba, kiwicha y cebada se comportaron como no eficientes (NE).

CUADRO 28. Número de nódulos de *Nacobbus aberrans*, por sistema radicular de las 10 especies de plantas espontáneas a los 100 días.

CLAVE	ESPECIE	DATOS REALES	EFICIENCIA DEL
		NN2	HOSPEDANTE
T27	Aspergula	3.2457	PE
T31	Challamata	2.9577	PE
T26	Amor seco	0.0000	NE
T28	Auja auja	0.0000	NE
T29	Bolsa de pastor	0.0000	NE
T30	Cebadilla	0.0000	NE
T32	Chijchipa	0.0000	NE
T33	K'ora	0.0000	NE
T34	Mata conejo	0.0000	NE

135 Nado silvestre 0.0000 NE	T35	Nabo silvestre	0.0000	NE
----------------------------------	-----	----------------	--------	----

En el cuadro 28, observamos el comportamiento de las 10 especies espontáneas en estudio en relación al numero de nódulos de *Nacobbus aberrans* en el sistema radicular a los 100 días y aplicando la escala de evaluación (cuadro 4), se pudo apreciar lo siguiente: las especies aspergula y challamata se comportaron como poco eficientes (PE), las especies amor seco, auja auja, bolsa de pastor, cebadilla, chijchipa, k`ora, mata conejo y nabo silvestre se comportaron como no eficientes (NE).

Con los resultados obtenidos en la variable número de nódulos por sistema radicular a los 80 y 100 días de evaluación y la aplicación de la escala de calificación (cuadro 4) modificada por Franco (Castiblanco et al, 1998), se determino que las especies cultivadas papa var. Andina, papa VH-22 y tomate tienen un comportamiento de altamente eficientes (AE) por presentar un alto número de nódulos y como plantas cultivadas no eficientes (NE) se tuvo a la avena, cebada, haba, kiwicha, maiz, alfalfa, aji, pimiento y tarwi, debido a que estas especies no presentaron nódulos.

Por otro lado se identificaron especies asintomaticas o "posibles" hospedantes es decir sin presencia de nódulos pero con diversos estados de desarrollo en sus raíces pero que no llegan a multiplicarse (Castiblanco et al, 1992), como posibles plantas asintomaticas en las especies cultivadas se tiene: Arbeja, haba, oca, cebada, avena, kiwicha, cañihua y tarwi. En las especies espontáneas se tiene: Amor seco, auja auja, bolsa de pastor y nabno silvestre, estas especies asintomaticas jugarían un rol importante para la disminución de las poblaciones de *N. aberrans* en los campos de cultivo, conjuntamente con las especies no eficientes y poco eficientes.

Por otro lado de acuerdo a los resultados obtenidos para la variable en estudio: Numero de nódulos por sistema radicular, a los 80 y 100 días en las 35 especies de plantas podemos aseverar que *Nacobbus aberrans* tiene un amplio rango de hospederos tal como señala (Untiveros, 1986): El nematodo del nudo se encuentra en plantas como papa, tomate, ulluco, mashua, nabo silvestre, quinua y ciertas malezas y también señalar que el incremento de la población y el daño causado por los nematodos, depende de varios factores o quizás el mas importante es el hospedero. (Christiansen, 1987).

4.5. COMPORTAMIENTO DE LAS 35 ESPECIES VEGETALES EN ESTUDIO A LA INVASION Y DESARROLLO DE *Nacobbus aberrans.*

Tomando en consideración principalmente los resultados obtenidos en las variables de respuesta: numero de individuos (segundo estadio juvenil) y numero de individuos (hembras adultas) por gramo de raíz a los 80 y 100 días en las 35 especies de plantas, (cuadros 27 y 28) en razón a que la principal invasión de *Nacobbus aberrans* a su huéspedes es a través de estos dos estados de desarrollo (segundo estadio juvenil y hembras adultas) característica única de este nematodo (Inserra, 1983) y los resultados obtenidos en la variable numero de nódulos por sistema radicular, a los 80 y 100 días en las 35 especies de plantas los mismos que fueron calificados (cuadro 29) con la escala modificada propuesta por Franco (Castiblanco et al, 1998), la que considera por un lado las reacciones de resistencia y susceptibilidad de las plantas como comportamientos dentro de un cultivo (ej. papa) y por otro la reacción de diferentes especies de plantas en relación a su comportamiento como hospedante o no al nematodo (Cuadro 4), asimismo tomando como referencia los trabajos efectuados por Céspedez et al, 1998 y Castiblanco et al, 1998, habiendose determinado las siguientes categorías:

- Especies altamente eficientes (AE): papa (variedad andina, VH-22) y tomate, ya que mostraron un alto número de nódulos, presencia de los demás estados de desarrollo de *N. aberrans* que indican haber tenido un normal desarrollo.
- Especies eficientes (E): papa variedad piñaza y remolacha azucarera, debido a que presentaron un menor número de nódulos y de los demás estados de desarrollo.
- Moderadamente eficientes (ME): Se consideran a las especies espinaca, lechuga y acelga, debido a que permitieron el desarrollo de este nematodo pero con menor intensidad que los anteriores.
- Poco eficientes (PE): Las especies arveja, cañihua, izaño,
 olluco, quinua, trigo, zanahoria, aspergula y challamata, de-

bido a que permitieron una reducida invasión en algunos casos presentando su ciclo de desarrollo incompleto y reducido numero de nódulos.

No eficientes (NE): Se tuvieron a las siguientes especies avena, cebada, haba, kiwicha, maíz, oca, alfalfa, ají, pimiento, tarwi, amor seco, auja auja, bolsa de pastor, cebadilla, chijchipa, k`ora, mata conejo y nabo silvestre, debido a que no hay presencia de nódulos.

Dentro de esta calificación (NE), existen algunas especies vegetales donde el inoculo no ha tenido la oportunidad de multiplicarse es decir no encontrándose ningún estado de desarrollo, hecho que nos indicaría que los nematodos presentes en el suelo fueron muriendo por falta de alimentación, ya que no estimularon la actividad de *N. aberrans* y por lo tanto su invasión. Entre estas plantas se identificaron al: maíz, alfalfa, ají, pimiento, chijchipa, k`ora y mata conejo, asignándoles la categoría de **especies no hospedantes natos**. (Céspedes, et al. 1998).

En cambio a las especies vegetales avena, cebada, haba, kiwicha, oca, tarwi, amor seco, auja auja, bolsa de pastor, cebadilla y nabo silvestre, debido a que permitieron la invasión de estados juveniles infectivos a sus raíces y después inhibieron su posterior desarrollo y multiplicación sin alcanzar el desarrollo de nódulos por ende sin la formación de masas de huevos de este nematodo por tal hecho se les asigno la categoría de **especies que poseen el efecto de plantas trampa**. (Céspedes, et al. 1998).

CUADRO 29. Resumen de datos reales obtenidos en cada variable en estudio.

CLAVE	ESPECIE	NJ2		HA		MA		NN	
		NJ2 ₁	NJ2 ₂	HA ₁	HA ₂	MA ₁	MA ₂	NN ₁	NN ₂
T1	Papa (var. Andina)	1.5905	4.6292	1.9426	0.6284	2.6104	1.3110	164.9743	216.5654
T2	Papa (VH-22)	4.6563	3.0804	1.6442	1.6442	1.9426	2.6104	189.7437	243.1750
T3	Papa (var. Piñaza)	6.3257	9.9846	3.9662	4.3232	6.6137	5.6579	166.5368	66.3516
T4	Arveja	5.9222	9.9521	2.2569	1.9426	2.0002	2.2569		0.9102
T5	Avena	0.5475	2.3270	3.5194	0.5475	0.2953	1.5905		
T6	Cañihua	0.2953	1.4882	0.2953	0.2953	0.2953	0.9102		1.1650
77	Cebada	1.2141	9.6615	1.6442	1.6442	1.6442	2.9577		
T8	Espinaca	2.2080	1.1650	1.9426	0.6284	1.3110	0.5475	20.1747	20.7259
T9	Haba	21.6508	3.6544	0.5475	0.5475	0.6284	0.2953		
T10	Izaño	13.9654	29.9948	2.3175	2.3175	1.3110	3.5762	1.4882	2.3175
T11	Kiwicha		1.4882		0.2953		0.5475		
T12	Lechuga	10.2668	9.6289	2.3175	3.5194	1.9426	3.6216	4.6292	11.2010
T13	Maíz		0.6284						
T14	Oca	1.2141	2.6104	0.6284	0.2953	0.5475	0.2953		
T15	Olluco	2.2188	3.5194	0.5475		0.9102	0.9102	5.2470	8.6441
T16	Acelga	1.8500	12.2547	0.2953	3.9662	0.2953	3.6544	12.5557	14.1851
T17	Alfalfa								
T18	Ají								-
T19	Pimiento							_	-
T20	Quinua	1.6442	22.2883		1.9426	3.6216	3.9662	2.9578	11.4976
T21	Remolacha azucarera	2.9577	4.9722	0.2953	1.4882	1.2141	2.3175	39.4903	45.8978
T22	Tarwi			0.2953	0.2953	0.5475			-
T23	Tomate	3.6216	64.2816	4.3232	2.2569	6.3257	2.8856	72.5135	90.4223
T24	Trigo	1.9426	8.1664	0.6284		0.5475	0.9102	0.9102	1.4028
T25	Zanahoria	1.9426	8.4661	1.4882	2.3175	3.3210	9.9389	2.9577	6.3013
T26	Amor seco	1.5905	2.2997	-	1.9426	0.2953	0.9102		
T27	Aspergula	1.4882	1.7423	0.5475	0.5475	0.9102	0.2953	1.1650	3.2457
T28	Auja auja	0.6284	2.5471	0.2953	0.5475	0.2953			-
T29	Bolsa de pastor	0.2953	0.5475	0.2953			0.2953		
T30	Cebadilla	0.6284	5.9759			1.3110			
T31	Challamata	1.6442	1.5905	1.6442	1.2141	1.3110	1.9426	2.2569	2.9577
T32	Chijchipa						_		
T33	K`ora		1.4882						-
T34	Mata conejo			<u> </u>		-			
T35	Nabo silvestre	1.4882		0.5475		0.6284		0.2953	

CUADRO 30. Datos reales obtenidos en número de individuos (segundo estadio, hembras adultas por gramo de raíz y número de nódulos por sistema radicular) a los 80 y 100 días en las 35 especies de plantas.

CLAVE	ESPECIE	NJ2		НА		NN	
	-00	NJ2 ₁	NJ2 ₂	HA ₁	HA ₂	NN ₁	NN ₂
T1	Papa (var. Andina)	1.5905	4.6292	1.9426	0.6284	164.9743	216.5654
T2	Papa (VH-22)	4.6563	3.0804	1.6442	1.6442	189.7437	243.1750
T3	Papa (var. Piñaza)	6.3257	9.9846	3.9662	4.3232	166.5368	66.3516
T4	Arveja	5.9222	9.9521	2.2569	1.9426		0.9102
T5	Avena	0.5475	2.3270	3.5194	0.5475		_
T6	Cañihua	0.2953	1.4882	0.2953	0.2953		1.1650
T7	Cebada	1.2141	9.6615	1.6442	1.6442		
T8	Espinaca	2.2080	1.1650	1.9426	0.6284	20.1747	20.7259
T9	Haba	21.6508	3.6544	0.5475	0.5475		
T10	Izaño	13.9654	29.9948	2.3175	2.3175	1.4882	2.3175
T11	Kiwicha		1.4882		0.2953	-	
T12	Lechuga	10.2668	9.6289	2.3175	3.5194	4.6292	11.2010
T13	Maíz		0.6284	-			
T14	Oca	1.2141	2.6104	0.6284	0.2953		
T15	Olluco	2.2188	3.5194	0.5475		5.2470	8.6441
T16	Acelga	1.8500	12.2547	0.2953	3.9662	12.5557	14.1851
T17	Alfalfa						
T18	Ají	-					
T19	Pimiento	_					
T20	Quinua	1.6442	22.2883		1.9426	2.9578	11.4976
T21 ·	Remolacha azucarera	2.9577	4.9722	0.2953	1.4882	39.4903	45.8978
T22	Tarwi			0.2953	0.2953		
T23	Tomate	3.6216	64.2816	4.3232	2.2569	72.5135	90.4223
T24	Trigo	1.9426	8.1664	0.6284		0.9102	1.4028
T25	Zanahoria	1.9426	8.4661	1.4882	2.3175	2.9577	6.3013
T26	Amor seco	1.5905	2.2997		1.9426		
T27	Aspergula	1.4882	1.7423	0.5475	0.5475	1.1650	3.2457
T28	Auja auja	0.6284	2.5471	0.2953	0.5475		
T29	Bolsa de pastor	0.2953	0.5475	0.2953			
T30	Cebadilla	0.6284	5.9759	-			
T31	Challamata	1.6442	1.5905	1.6442	1.2141	2.2569	2.9577
T32	Chijchipa	_	-				
T33	K`ora		1.4882				
T34	Mata conejo		-			-	
T35	Nabo silvestre	1.4882		0.5475		0.2953	

FUENTE: ELABORACION PROPIA

CUADRO 31. Calificación del comportamiento de las 35 especies vegetales en relación al número de nódulos radiculares de *N. aberrans* en el sistema radical de acuerdo a la escala de evaluación (cuadro 4).

CLAVE	ESPECIE	NN		EFICIENCIA
		NN_1	NN ₂	HOSPEDANTE
T1	Papa (var. Andina)	164.9743	216.5654	AE
T2	Papa (VH-22)	189.7437	243.1750	AE
T3	Papa (var. Piñaza)	166.5368	66.3516	E
T4	Arveja		0.9102	PE
T5	Avena			NE
T6	Cañihua		1.1650	PE
T7	Cebada	,		NE
T8	Espinaca	20.1747	20.7259	ME
T9	Haba			NE
T10	Izaño	1.4882	2.3175	PE
T11	Kiwicha			NE
T12	Lechuga	4.6292	11.2010	ME
T13	Maíz			NE
T14	Oca			NE
T15	Olluco	5.2470	8.6441	PE
T16	Acelga	12.5557	14.1851	ME
T17	Alfalfa			NE
T18	Ají			NE
T19	Pimiento			NE
T20	Quinua	2.9578	11.4976	PE
T21	Remolacha azucarera	39.4903	45.8978	Е
T22	Tarwi			NE
T23	Tomate	72.5135	90.4223	AE
T24	Trigo	0.9102	1.4028	PE
T25	Zanahoria	2.9577	6.3013	PE
T26	Amor seco			NE
T27	Aspergula	1.1650	3.2457	PE
T28	Auja auja			NE
T29	Bolsa de pastor			NE
T30	Cebadilla			NE
T31	Challamata	2.2569	2.9577	PE
T32	Chijchipa			NE
T33	K`ora			NE
T34	Mata conejo			NE
T35	Nabo silvestre	0.2953		NE

FUENTE: ELABORACIÓN PROPIA

V. CONCLUSIONES.

De los resultados obtenidos y los análisis realizados se concluye en lo siguiente:

- 1. Especies altamente eficientes (AE): papa (variedad andina, VH-22) y tomate.
- 2. Especies eficientes (E): papa variedad piñaza y remolacha azucarera.
- 3. Especies moderadamente eficientes (ME): espinaca, lechuga y acelga.
- 4. Especies poco eficientes (PE): arveja, cañihua, izaño, ollco, quinua, trigo, zanahoria, aspergula y challamata.
- 5. Especies no Eficientes (NE) , dentro de esta calificación se presentaron:
 - Especies no hospedantes natos: Maíz, alfalfa, ají, pimiento, chijchipa, kòra y mata conejo.
 - Especies que poseen el efecto de plantas trampa: Avena, cebada, haba, kiwicha, oca, tarwi, amor seco, auja auja, bolsa de pastor, cebadilla y nabo silvestre.

VI. RECOMENDACIONES.

- 1. Realizar trabajos de investigación en condiciones ambientales naturales como una manera de validar los resultados obtenidos en el presente estudio.
- 2. Para futuros trabajos de investigación de esta naturaleza evitar usar como macetas bolsas de polietileno, sino emplear platabandas o camas con suelo infestado en las cuales se sembraran las especies vegetales en estudio.
- 3. Efectuar estudios mucho más profundos en las especies que resultaron ser altamente eficientes y no eficientes para determinar que sustancias químicas (repelentes, tóxicas o inhibidoras) son las que hacen que tengan este comportamiento frente a *N. aberrans*.
- 4. Realizar evaluaciones de raíces en el campo de aquellas plantas que se comportaron como altamente eficientes y no eficientes por el hecho de tener nódulos en cantidades significativas o no tener, pues representan una alternativa importante como cultivo de rotación.
- 5. Plantear un programa de manejo integrado del nematodo "rosario de la papa" para cultivos instalados en invernadero, considerando rotaciones con especies no hospedantes y a nivel de campo soportar la presencia de las plantas espontáneas no hospedantes y la eliminación de las posibles hospedantes permitiendo una reducción efectiva de las poblaciones de N. aberrans a niveles que no afecten los rendimientos de los cultivos.
- 6. Realizar estudios referidos a las plantas trampa ya que muchas de estas plantas son cultivos y representan una alternativa importante como cultivos de rotación, los que pueden ser incorporados dentro de un programa de manejo integrado.
- 7. Realizar estudios de mapeo referido a *Nacobbus aberrans* en la región Puno.

VII. BIBLIOGRAFIA.

- AGRIOS, G. 1986. Fitopatología. Editorial Limusa. México.
- ASTORGA, L. V. 1974. Mapeo del falso nematodo del nudo *Nacobbus* spp. y correlación con el pH del suelo de la provincia de Chucuito. Tesis Ing. Agr. Universidad Nacional Técnica del Altiplano. Puno-Perú.
- ARCOS, J. 1989. *Nacobbus aberrans*, Métodos de extracción e inoculación. Interacción con *Globodera pallida*. Tesis Magíster Of. Scientiae. Escuela de Post-grado. Universidad Nacional Agraria La Molina. Lima-Perú.
- ARNING, I y VELASQUEZ, H. 2000. Plantas con potencial biocida. Red de Acción en Alternativas al uso de Agroquímicos. Editorial Gráfica Sttefany S.R. Ltda. Lima-Perú.
- BALDERRAMA, F y FRANCO, J. 1994. Evaluación de cultivos andinos al ataque de *Nacobbus aberrans*. VIII Congreso Internacional de Sistemas Agropecuarios Andinos. Universidad Austral de Chile-Chile.
- BOWEN, J. 1989. Fumigación del suelo. Agricultura de las Américas.
- CAERO, G. 1985. Estudios realizados y actividades dentro de la investigación nematològica en Bolivia. Investigaciones Nematològicas en Programas Latinoamericanos de Papa. J. Franco y H. Rincón (eds.) Centro Internacional de la papa. Lima-Perú.
- CAHUANA, MAYER y JATALA "sf". Reconocimiento de los nematodos en el cultivo de la papa. Ministerio de Agricultura. Lima-Perú.
- CANTO, S. M. 1991. Los nematodos y la producción de papa. Curso nacional sobre producción de papa. Cusco-Perú.
- CANTO, S. M. "sf". Nematodos que atacan la papa. Universidad Nacional Agraria-La

Molina. Lima-Perú.

- CASTIBLANCO, O., FRANCO, J. y MONTECINOS, R. 1998. Razas y gama de hospedantes en diferentes poblaciones de *Nacobbus aberrans*. (Thorne, 1935), Thorne y Allen ,1944. Revista de la Asociación Latino Americana de la papa (ALAP).
- CCAMA, F. 1990. La estructura y Evaluación de la Producción Agropecuaria en el Departamento de Puno: Periodo 1970-1988, Estudio Técnico Nº 1, INIAA-PISA.

 Puno-Perú.
- CEPEDA, S. M. 1996. Nematología agrícola. 1ª Edic. Editorial Trillas. México.
- CESPEDEZ, L., FRANCO, J. y MONTALVO, R. 1998. Comportamiento de diferentes especies vegetales a la invasión y desarrollo de *NACOBBUS ABERRANS* (THORNE, 1935), THORNE AND ALLEN, 1944. Nematrópica 28.
- CESPEDEZ, L. 1994. Comportamiento de diferentes especies vegetales a la invasión y desarrollo de *Nacobbus aberrans*. Tesina Tec. Sup. Agrónomo UMSS. Escuela Técnica Superior de Agronomía. Cochabamba-Bolivia.
- CHRISTIE, J. 1974. Nematodos de los vegetales, su ecología y su control. Edit. Limusa, México.
- CHRISTIANSEN, N. M. 1987. Mejoramiento de plantas en ambientes poco favorables. Ed. Limusa. México.
- CUSICANQUI, D. 1997. Respuesta Fisiológica del cultivo de papa cultivar Waych`a (*Solanum tuberosum* spp. *andigena*) a Diferentes Densidades de población de *Nacobbus aberrans*. Tesis Ing. Agr. Universidad Mayor de San Simón. Cochabamba-Bolivia.
- E.CAMPO.COM. 2005. Malargüe, área semillero de papa. Disponible en: http://www.e-campo.com/sections/news/display.php/uuid.18DA7896-373E-11D4-A5390006292E2740/

- FRAGA, P. 1984. Introducción a la Nematología Agrícola. Ed. Hemisferio Sur S.A. Buenos Aires-Argentina.
- FRANCO, J. 1994. Problemas de nematodos en la producción de papa en climas templados en la región andina. Nematrópica Nº 24.
- FRANCO, J., MONTECINOS, R. 1993. Nematologia. Revista de Agricultura Nº 22. Cochabamba-Bolivia.
- FRANCO, J., MONTECINOS, R y ORTUÑO, N. 1992. *Nacobbus aberrans*, nematodo fitoparasito del cultivo de papa en Bolivia; Desarrollo de una estrategia para su manejo integrado. Revista de Agricultura Nº 12. Cochabamba-Bolivia.
- FRANCO, J., OROS, R. y MAIN, G. 1998. Trap crops: An effective component for Integrated Management of potato nematodes in the Andean region.
- GARMENDIA, A. 1994. Fitopatología general. Ed. Universidad Nacional San Antonio Abad del Cusco-Perú.
- JATALA, P. AND GOLDEN, A. M. 1977. Taxonomic Status of *Nacobbus* species attacking potatoes in South America. Nematropica.
- LAZARO, M. S. 1990. Los Nematodos y su Incidencia en la producción del Cultivo de Papa.

 INIA SEINPA. Cajamarca Huanuco.
- MAIN, G., FRANCO, J y ORTUÑO, N. 1999. Los cultivos trampa como alternativa para reducir las poblaciones de *Nacobbus aberrans* y *Globodera* spp en papa. Programa de Investigación de la Papa (PROIMPA). Cochabamba-Bolivia.
- MINISTERIO DE AGRICULTURA, 1972. Enfermedades de la papa en el Perú. Estación Experimental la Molina. Lima Perú.
- MINISTERIO DE AGRICULTURA, 2000. Calendario Agrícola Nacional. Proyecto Asesoría en Política Agraria. Lima-Perú.

- NATIONAL ACADEMY OF SCIENCES. 1986. Control de Nematodos Parásitos de Plantas. Primera reimpresión. Edit. Limusa. México.
- OTAZU, V., FRANCO, J. y E. FERNANDEZ. 1986. Enfoques de control a nematodos y enfermedades más importantes de la papa en la sierra de Perú y Bolivia. V Congreso Internacional sobre Agricultura Andina. Puno-Perú.
- PRASAD, S. K. and J. M. WEBSTER. 1967. Effect of temperature on the rate of development of *Nacobbus serendipiticus* in excised tomato roots. Nematologica 3.
- PROINPA. 2001. Nematodos: La desgracia del Agricultor. Programa de Investigación de la papa. Cochabamba-Bolivia.
- PROINPA. 1993. Diagnostico de los principales nematodos del cultivo de la papa. Programa de Investigación de la papa. Cochabamba-Bolivia.
- PROINPA. 1991. Informe Anual (1990-1991). Programa de Investigación de la papa. Cochabamba-Bolivia.
- QUIMI, V. H. 1981. Ciclo biológico y comportamiento de *Nacobbus aberrans*. Nematrópica Nº 11.
- ROMAN, J. 1978. Fitonematología tropical. Universidad de Puerto Rico. Puerto Rico.
- SERRANO, C. Z. 2002. Construcción de invernaderos. 2ª Edic. Ediciones Mundi-Prensa. Madrid-España.
- SMILEY 1996. Introducción a la Nematología. Editorial Hemisferio Sur S.A. Buenos Aires-Argentina.
- SOCIEDAD ESPAÑOLA DE FITOPATOLOGIA. 2000. Patología Vegetal. 2ª edic. Edit. PHYTOMA-España.

- INSERRA, R. N., VOVLAS N., GRIFFIN, G. D., and ANDERSON, J. L. 1983. Development of the root-knot nematode *Nacobbus aberrans*, on sugarbeet. J. Nematology. 02.
- THORNE, G. and M. W. ALLEN. 1944. *Nacobbus dorsalis*. Nov.gen. nov. Spec. (Nematoda: Tylenchidae), alfileria, Erodium Cicutarum (L) L' Her. Proc. Helminth. Soc. Wash.
- UNION CARBIDE. 1979. Los nematodos y su control. Unión Carbide Inter-América, INC. Lima-Perú.
- UNTIVEROS, D. O. 1986. Principales plagas y enfermedades de la papa en el Perú.

 Manual técnico. INIPA. Lima-Perú.
- YÉPEZ, G. 1970. "Nematologia" Facultad de Agronomía. Caracas Venezuela.
- YUSTE, P. P. 1997. Biblioteca de la Agricultura. Edit. DEA BOOKS. Barcelona-España.

ANEXO

PRIMER MOMENTO DE EVALUACION

CUADRO 1. Datos del primer momento de evaluación (80 dícs).

Cuadro 1a. Datos transformados utilizados para el ANVA tomando en cuenta los 35 tratamientos.

Variable de respuesta: NJ2₁,

Rep															Esp	ecies														_					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	1.41	2.45	2.83	2.83	1.73	1.41	1.73	2.24	2.00	4.00	1.00	3.00	1.00	1.73	1.41	2.24	1.00	1.00	1.00	1.41	2.24	1.00	2.45	2.00	1.41	1.41	1.73	1.41	1.41	1.41	1.41	1.00	1.00	1.00	2.00
2	2.00	2.45	2.65	2.83	1.00	1.00	1.73	1.41	1.73	3.61	1.00	3.46	1.00	1.00	2.24	1.41	1.00	1.00	1.00	1.73	1.73	1.00	2.00	1.73	2.00	1.41	1.00	1.41	1.00	1.00	1.73	1.00	1.00	1.00	1.00
3	1.41	2.24	2.65	2.24	1.00	1.00	1.00	1.73	2.00	4.00	1.00	3.61	1.00	1.73	1.73	1.41	1.00	1.00	1.00	1.73	2.00	1.00	2.00	1.41	1.73	2.00	2.00	1.00	1.00	1.41	1.73	1.00	1.00	1.00	1.73

Cuadro 1b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos del 1 al 25.

Variable de respuesta: NJ2₁

Rep				•		Е	specie	es																	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	1.41	2.45	2.83	2.83	1.73	1.41	1.73	2.24	2.00	4.00	1.00	3.00	1.00	1.73	1.41	2.24	1.00	1.00	1.00	1.41	2.24	1.00	2.45	2.00	1.41
2	2.00	2.45	2.65	2.83	1.00	1.00	1.73	1.41	1.73	3.61	1.00	3.46	1.00	1.00	2.24	1.41	1.00	1.00	1.00	1.73	1.73	1.00	2.00	1.73	2.00
3	1.41	2.24	2.65	2.24	1.00	1.00	1.00	1.73	2.00	4.00	1.00	3.61	1.00	1.73	1.73	1.41	1.00	1.00	1.00	1.73	2.00	1.00	2.00	1.41	1.73

Cuadro 1c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35.

Variable de respuesta: NJ2₁.

·[Rep				Е	specie	es				
		26	27	28	29	30	31	32	33	34	35
ľ	1	1.41	1.73	1.41	1.41	1.41	1.41	1.00	1.00	1.00	2.00
ľ	2	1.41	1.00	1.41	1.00	1.00	1.73	1.00	1.00	1.00	1.00
	3	2.00	2.00	1.00	1.00	1.41	1.73	1.00	1.00	1.00	1.73

SEGUNDO MOMENTO DE EVALUACION

CUADRO 2. Datos del segundo momento de evaluación (100 días).

Cuadro 2a. Datos transformados utilizados para el ANVA tomando en cuenta los 35 tratamientos.

Variable de respuesta: NJ22.

Rep																	Espe	cies	-			-													
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	2.24	1.41	3.46	3.46	2.24	1.00	3.32	2.00	2.00	5.66	1.00	3.00	1.41	1.73	1.73	4.00	1.00	1.00	1.00	4.58	2.65	1.00	8.06	3.32	3.46	2.00	2.24	2.65	1.00	2.65	1.41	1.00	2.00	1.00	1.00
2	2.24	2.00	3.16	3.46	2.24	2.00	3.32	1.00	2.24	5.48	1.73	3.32	1.00	1.73	2.65	3.32	1.00	1.00	1.00	4.80	2.45	1.00	7.81	3.32	3.32	2.45	1.73	2.00	1.73	2.45	2.00	1.00	1.73	1.00	1.00
3	2.65	2.65	3.32	3.00	1.00	1.73	3.16	1.41	2.24	5.57	2.00	3.46	1.41	2.24	2.00	3.61	1.00	1.00	1.00	5.10	2.24	1.00	8.37	2.45	2.45	1.00	1.00	1.00	1.00	2.83	1.41	1.00	1.00	1.00	1.00

Cuadro 2b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos del 1 al 25.

Variable de respuesta: NJ22.

Rep			_								-		Esp	ecies				-							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	2.24	1.41	3.46	3.46	2.24	1.00	3.32	2.00	2.00	5.66	1.00	3.00	1.41	1.73	1.73	4.00	1.00	1.00	1.00	4.58	2.65	1.00	8.06	3.32	3.46
2	2.24	2.00	3.16	3.46	2.24	2.00	3.32	1.00	2.24	5.48	1.73	3.32	1.00	1.73	2.65	3.32	1.00	1.00	1.00	4.80	2.45	1.00	7.81	3.32	3.32
3	2.65	2.65	3.32	3.00	1.00	1.73	3.16	1.41	2.24	5.57	2.00	3.46	1.41	2.24	2.00	3.61	1.00	1.00	1.00	5.10	2.24	1.00	8.37	2.45	2.45

Cuadro 2c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35.

Variable de respuesta: NJ2₂.

Rep			Е	specie	es					
	26	27	28	29	30.	31	32	33	34	35
1	2.00	2.24	2.65	1.00	2.65	1.41	1.00	2.00	1.00	1.00
2	2.45	1.73	2.00	1.73	2.45	2.00	1.00	1.73	1.00	1.00
3	1.00	1.00	1.00	1.00	2.83	1.41	1.00	1.00	1.00	1.00

PRIMER MOMENTO DE EVALUACION

CUADRO 3. Datos del primer momento de evaluación (80 días).

Cuadro 3a. Datos transformados utilizados para el ANVA tomando en cuenta los 35 tratamientos .

Variable de respuesta: HA₁.

Rep																		Esp	ecies							_									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	1.41	1.73	2.45	2.00	2.65	1.41	1.73	1.73	1.73	1.73	1.00	2.00	1.00	1.00	1.00	1.41	1.00	1.00	1.00	1.00	1.00	1.41	2.24	1.41	1.00	1.00	1.00	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00
2	2.00	1.41	2.00	2.00	1.73	1.00	1.41	2.00	1.00	2.00	1.00	1.73	1.00	1.41	1.73	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.24	1.41	1.73	1.00	1.00	1.41	1.41	1.00	1.41	1.00	1.00	1.00	1.73
3	1.73	1.73	2.24	1.41	2.00	1.00	1.73	1.41	1.00	1.73	1.00	1.73	1.00	1.41	1.00	1.00	1.00	1.00	1.00	1.00	1.41	1.00	2.45	1.00	2.00	1.00	1.73	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00

Cuadro 3b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos del 1 al 25.

Variable de respuesta: HA₁,

Rep		Espe	ecies																				•		
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	1.41	1.73	2.45	2.00	2.65	1.41	1.73	1.73	1.73	1.73	1.00	2.00	1.00	1.00	1.00	1.41	1.00	1.00	1.00	1.00	1.00	1.41	2.24	1.41	1.00
2	2.00	1.41	2.00	2.00	1.73	1.00	1.41	2.00	1.00	2.00	1.00	1.73	1.00	1.41	1.73	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.24	1.41	1.73
3	1.73	1.73	2.24	1.41	2.00	1.00	1.73	1.41	1.00	1.73	1.00	1.73	1.00	1.41	1.00	1.00	1.00	1.00	1.00	1.00	1.41	1.00	2.45	1.00	2.00

Cuadro 3c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35.

Variable de respuesta: HA₁,

Rep					Esp	ecies				
	26	27	28	29	30	31	32	33	34	35
1	1.00	1.00	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00
2	1.00	1.00	1.41	1.41	1.00	1.41	1.00	1.00	1.00	1.73
3	1.00	1.73	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00

SEGUNDO MOMENTO DE EVALUACION

CUADRO 4. Datos del segundo momento de evaluación (100 días).

Cuadro 4a. Datos transformados utilizados para el ANVA tomando en cuenta los 35 tratamientos .

Variable de respuesta: HA2.

Rep																	-		Esp	ecies															
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	2.00	2.00	2.45	1.73	1.73	1.00	2.00	1.73	1.00	2.00	1.00	2.24	1.00	1.00	1.00	2.65	1.00	1.00	1.00	1.73	1.73	1.00	1.73	1.00	2.45	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2	1.41	1.41	2.65	2.24	1.73	1.00	1.73	1.41	1.41	2.00	1.41	2.00	1.00	1.73	1.41	2.45	1.00	1.00	1.00	2.00	1.41	1.73	2.24	1.00	1.73	1.73	1.00	1.73	1.00	1.00	1.73	1.00	1.00	1.00	1.00
3	1.41	2.00	2.24	1.73	1.00	1.73	1.73	1.73	1.41	2.24	1.00	2.45	1.00	1.00	1.00	2.24	1.00	1.00	1.00	2.00	2.00	1.00	2.00	1.00	2.00	1.41	1.73	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00

Cuadro 4b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos del 1 al 25.

Variable de respuesta: HA₂.

Rep		Espe	ecies																					-	
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	2.00	2.00	2.45	1.73	1.73	1.00	2.00	1.73	1.00	2.00	1.00	2.24	1.00	1.00	1.00	2.65	1.00	1.00	1.00	1.73	1.73	1.00	1.73	1.00	2.45
2	1.41	1.41	2.65	2.24	1.73	1.00	1.73	1.41	1.41	2.00	1.41	2.00	1.00	1.73	1.41	2.45	1.00	1.00	1.00	2.00	1.41	1.73	2.24	1.00	1.73
3	1.41	2.00	2.24	1.73	1.00	1.73	1.73	1.73	1.41	2.24	1.00	2.45	1.00	1.00	1.00	2.24	1.00	1.00	1.00	2.00	2.00	1.00	2.00	1.00	2.00

Cuadro 4c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35.

Variable de respuesta: HA2.

Rep	Espe	ecies								
	26	27	28	29	30	31	32	33	34	35
1.00	2.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2.00	1.73	1.00	1.73	1.00	1.00	1.73	1.00	1.00	1.00	1.00
3.00	1.41	1.73	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00

PRIMER MOMENTO DE EVALUACION

CUADRO 5. Datos del primer momento de evaluación (80 días).

Cuadro 5a. Datos transformados utilizados para el ANVA tomando en cuenta los 35 tratamientos .

Variable de respuesta: MA₁ .

Rep		Espe	ecies																							_									
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	1.73	2.00	2.83	1.73	1.41	1.41	1.73	1.41	1.41	1.41	1.00	1.73	1.00	1.73	1.41	1.41	1.00	1.00	1.00	2.00	1.73	1.73	2.65	1.73	2.00	1.41	1.73	1.41	1.00	1.41	1.73	1.00	1.00	1.00	1.00
2	2.24	1.41	2.45	1.73	1.00	1.00	1.41	1.73	1.41	1.73	1.00	2.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00	2.00	1.73	1.00	2.65	1.00	2.00	1.00	1.41	1.00	1.00	1.73	1.41	1.00	1.00	1.00	1.41
3	1.73	1.73	3.00	1.73	1.00	1.00	1.73	1.41	1.00	1.41	1.00	1.41	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.45	1.00	1.00	2.83	1.00	2.24	1.00	1.00	1.00	1.00	1.41	1.41	1.00	1.00	1.00	1.41

Cuadro 5b. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 1 al 25.

Variable de respuesta: MA₁,

Rep		-									1	Especi	ies												
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	1.73	2.00	2.83	1.73	1.41	1.41	1.73	1.41	1.41	1.41	1.00	1.73	1.00	1.73	1.41	1.41	1.00	1.00	1.00	2.00	1.73	1.73	2.65	1.73	2.00
2	2.24	1.41	2.45	1.73	1.00	1.00	1.41	1.73	1.41	1.73	1.00	2.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00	2.00	1.73	1.00	2.65	1.00	2.00
3	1.73	1.73	3.00	1.73	1.00	1.00	1.73	1.41	1.00	1.41	1.00	1.41	1.00	1.00	1.00	1.00	1.00	1.00	1.00	2.45	1.00	1.00	2.83	1.00	2.24

Cuadro 5c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35

Variable de respuesta: MA₁.

Rep	Espe	ecies								
	26	27	28	29	30	31	32	33	34	35
1	1.41	1.73	1.41	1.00	1.41	1.73	1.00	1.00	1.00	1.00
2	1.00	1.41	1.00	1.00	1.73	1.41	1.00	1.00	1.00	1.41
3	1.00	1.00	1.00	1.00	1.41	1.41	1.00	1.00	1.00	1.41

SEGUNDO MOMENTO DE EVALUACION

CUADRO 6. Datos del segundo momento de evaluación (100 días)

Variable de respuesta: MA₂.

Rep		Espe	cies																																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	1.73	2.24	2.65	2.00	2.00	1.00	1.73	1.00	1.00	1.73	1.00	2.00	1.00	1.00	1.73	2.24	1.00	1.00	1.00	2.00	1.73	1.00	1.73	1.41	3.00	1.73	1.41	1.00	1.41	1.00	1.73	1.00	1.00	1.00	1.00
2	1.41	1.73	2.65	2.00	1.41	1.73	2.24	1.73	1.41	2.24	1.00	2.45	1.00	1.41	1.00	2.00	1.00	1.00	1.00	2.45	2.00	1.00	2.45	1.73	3.61	1.41	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00
3	3 1.41	1.73	2.45	1.41	1.41	1.41	2.00	1.00	1.00	2.45	1.73	2.00	1.00	1.00	1.41	2.24	1.00	1.00	1.00	2.24	1.73	1.00	1.73	1.00	3.32	1.00	1.00	1.00	1.00	1.00	1.41	1.00	1.00	1.00	1.00

Cuadro 6b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos del 1 al 25.

Variable de respuesta: MA₂

Re	o 📗		Espe	ecies																						
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	1.	.73	2.24	2.65	2.00	2.00	1.00	1.73	1.00	1.00	1.73	1.00	2.00	1.00	1.00	1.73	2.24	1.00	1.00	1.00	2.00	1.73	1.00	1.73	1.41	3.00
2	1.	.41	1.73	2.65	2.00	1.41	1.73	2.24	1.73	1.41	2.24	1.00	2.45	1.00	1.41	1.00	2.00	1.00	1.00	1.00	2.45	2.00	1.00	2.45	1.73	3.61
3	1.	.41	1.73	2.45	1.41	1.41	1.41	2.00	1.00	1.00	2.45	1.73	2.00	1.00	1.00	1.41	2.24	1.00	1.00	1.00	2.24	1.73	1.00	1.73	1.00	3.32

Cuadro 6c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al35

Variable de respuesta: MA₂.

Rep	Espe	ecies								
	26	27	28	29	30	31	32	33	34	35
1.00	1.73	1.41	1.00	1.41	1.00	1.73	1.00	1.00	1.00	1.00
2.00	1.41	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00
3.00	1.00	1.00	1.00	1.00	1.00	1.41	1.00	1.00	1.00	1.00

PRIMER MOMENTO DE EVALUACION

CUADRO 7. Datos del primer momento de evaluación (80 días).

Cuadro 7a. Datos transformados utilizados para el ANVA tomando en cuenta los 35

Tratamientos.

Variable de respuesta: NN₁.

Rep		Espe	cies																																
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	13.1	13.5	14.5	15.5	1.00	1.00	1.00	4.12	1.00	1.73	1.00	2.65	1.00	1.00	2.45	3.32	1.00	1.00	1.00	1.73	6.40	1.00	9.11	1.00	1.73	1.00	2.00	1.00	1.00	1.00	1.41	1.00	1.00	1.00	1.00
2	12.9	14.5	15.5	16.5	1.00	1.00	1.00	5.10	1.00	1.00	1.00	2.24	1.00	1.00	1.73	3.61	1.00	1.00	1.00	2.00	6.86	1.00	8.43	1.73	2.00	1.00	1.41	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00
3	12.7	13.5	14.5	15.5	1.00	1.00	1.00	4.58	1.00	2.00	1.00	2.24	1.00	1.00	3.32	4.12	1.00	1.00	1.00	2.24	5.83	1.00	8.19	1.41	2.24	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.41

Cuadro 7b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos

del 1 al 25.

Variable de respuesta: NN₁.

Rep		Espe	ecies		-																_	-			
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	13.1	13.5	14.5	15.5	1.00	1.00	1.00	4.12	1.00	1.73	1.00	2.65	1.00	1.00	2.45	3.32	1.00	1.00	1.00	1.73	6.40	1.00	9.11	1.00	1.73
2	12.9	14.5	15.5	16.5	1.00	1.00	1.00	5.10	1.00	1.00	1.00	2.24	1.00	1.00	1.73	3.61	1.00	1.00	1.00	2.00	6.86	1.00	8.43	1.73	2.00
3	12.7	13.5	14.5	15.5	1.00	1.00	1.00	4.58	1.00	2.00	1.00	2.24	1.00	1.00	3.32	4.12	1.00	1.00	1.00	2.24	5.83	1.00	8.19	1.41	2.24

Cuadro 7c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35.

Variable de respuesta: NN₁,

Rep	Espe	ecies								
	26	27	28	29	30	31	32	33	34	35
1	1.00	2.00	1.00	1.00	1.00	1.41	1.00	1.00	1.00	1.00
2	1.00	1.41	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00
3	1.00	1.00	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.41

SEGUNDO MOMENTO DE EVALUACION

Cuadro 8. Datos del segundo momento de evaluación (100 días).

Cuadro 8a. Datos transformados utilizados para el ANVA tomando en cuenta los 35 tratamientos.

Variable de respuesta: NN₂

Rep		Espe	cies																																
-	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
1	14.5	15.5	7.81	1.41	1.00	2.00	1.00	5.10	1.00	2.00	1.00	3.32	1.00	1.00	3.32	4.69	1.00	1.00	1.00	3.00	7.14	1.00	9.64	1.41	2.45	1.00	2.00	1.00	1.00	1.00	2.24	1.00	1.00	1.00	1.00
2	15.2	16.2	7.81	1.00	1.00	1.41	1.00	5.57	1.00	1.73	1.00	3.16	1.00	1.00	3.00	4.00	1.00	1.00	1.00	4.00	7.00	1.00	10.05	2.24	2.83	1.00	1.73	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00
3	14.5	15.2	9.00	1.73	1.00	1.00	1.00	3.32	1.00	1.73	1.00	4.00	1.00	1.00	3.00	3.00	1.00	1.00	1.00	3.61	6.40	1.00	9.00	1.00	2.83	1.00	2.45	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00

Cuadro 8b. Datos transformados utilizados para el ANVA tomando en cuenta tratamientos del 1 al 25.

Variable de respuesta: NN₂.

Rep		Especies																							
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
1	14.5	15.5	7.81	1.41	1.00	2.00	1.00	5.10	1.00	2.00	1.00	3.32	1.00	1.00	3.32	4.69	1.00	1.00	1.00	3.00	7.14	1.00	9.64	1.41	2.45
2	15.2	16.2	7.81	1.00	1.00	1.41	1.00	5.57	1.00	1.73	1.00	3.16	1.00	1.00	3.00	4.00	1.00	1.00	1.00	4.00	7.00	1.00	10.05	2.24	2.83
3	14.5	15.2	9.00	1.73	1.00	1.00	1.00	3.32	1.00	1.73	1.00	4.00	1.00	1.00	3.00	3.00	1.00	1.00	1.00	3.61	6.40	1.00	9.00	1.00	2.83

Cuadro 8c. Datos transformados utilizados para el ANVA tomando en cuenta los tratamientos del 26 al 35.

Variable de respuesta: NN₂.

Rep	Especies										
	26	27	28	29	30	31	32	33	34	35	
1.00	1.00	2.00	1.00	1.00	1.00	2.24	1.00	1.00	1.00	1.00	
2.00	1.00	1.73	1.00	1.00	1.00	1.73	1.00	1.00	1.00	1.00	
3.00	1.00	2.45	1.00	1.00	1.00	2.00	1.00	1.00	1.00	1.00	

1er. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 09.** Datos reales de las 35 especies en estudio.

E	Т	R	NN ₁	NJ2 ₁	HA ₁	MA ₁
1	1	1	170	1	1	2
1	1	2	165	3	3	4
1	1	3	160	1	2	2
1	2	1	180	5	2	3
1	2	2	210	5	1	1
1	2	3	180	4	2	2
1	3	1	160	7	5	7
1	3	2	160	6	3	5
1	3	3	180	6	4	8
1	4	1	0	7	3	2
1	4	2	0	7	3	2
1	4	3	0	4	1	2
1	. 5	1	0	2	6	1_
1	5	2	0	0	2	0
11	5	3	0	0	3	0
1_	6_	1	0	1	1_	1
1	6	2	0	0	0	0
1	6	3	0	0	0	0
1	7	1	0	2	2	2
<u>1</u> \	7	2	0	2	1	1
11	7	3	0	0	2	2
1	8	1	16	4	2	1
1	8	2	25	1	_3	2
1	8	3_	20	2	11_	1
1	9	11_	0	3	2	1
1	. 9	2	0	2	0	1
1	9	3	0	3	0	0
1	10	1	2	15	2	1
1	10	2	3	12	2	2
1	10 11	3	0	15 0	0	1
1	11	2	0	0	0	0
1	11	3	0	0	0	0
1	12	1	6	8	3	2
1	12	2	4	11	2	3
1	12	3	4	12	2	1
<u>-</u> 1	13	1	0	0	0	0
1	13	2	0	0	0	0
<u>-</u> _1	13	3	0-	0	0	0
<u>-</u> 1	14	1	0	2	0	2
1	14	2	0	0	1	0
1	14	3	0	2	1	0
1	15	1	5	1	0	1
1	15	2	_ 2	4	2	2
1	15	3	10	2	0	0
1	16	1	10	4	1	1

1 .	ا م		ا	1 .		1 .
1	16	2	12	1	0	0
1	16	3	16	1	0	0
1	17	1	0	0	0	0
11	17	2	0	0	0	0
1	17	3	0	0	0	0
1	18	1	0	0	0	0
1	18	2	0	0	0	0
1	18	3	0	0	0	0
1	19	1	0	0	0	0
1	19	2	0	0	0	0
1	19	3	0	0	0	0
1	20	1	2	1	0	3
1	20	2	3	2	0	3
1	20	3	4	2	0	5
1	21	1	40	4	0	2
1	21	2	46	2_	0	2
1	21	3	33	3	1	0
1	22	1	0	0	1	2
1	22	2	0	0	0	0
1	22	3	0	0	0	0
1	23	1	82	5	4	6
11	23	2	70	3	4	6
1	23	3	66	3	. 5	7
1	24	1	0	3	1	2
1	24	2	2	2	1	0
1_	24	3	1	1	0	0
1	25_	1	2	1	0	3
1	25	2	3	3	2	3
1	25	3	4	2	3	4
1	26	1	0	1	0	1
11_	26	2	0	1	0_	0
1	26	3	0	3	0	0
1	27	1	3	2	0	2
1	27	2	1	0	0	1
111	27	3	0	3	2	0
11	28	1	0	1	0	1
11_	28	2	0	1	1	0
1	28	3	0	0	0	0
1	29	1	0	1	0	_0
1	29	2	0_	0	1_	0
1	29	3	0	0	0	0
1	30	1	0	1	0	1
1	30	2	0	0	0	2
11	30	3	0	1	0	1
1_	31	1	1	1	2	2
1	31_	2	3	2	1	1
11	31	3	3	2	2	1
1	32	1	0	0	0	0
1	32	2	0	0	0	0
1	32	3	0	0	0	0
1	33	1	0	0	0	0
1	33	2	0	0	0	0

1	33	3	0	0	0	0
1	34	1	0	0	0	0
1	34	2	0	0	0	0
1	34	3	0	0	0	0
1	35	1	0	3	0	0
1	35	2	0	0	2	1
1	35	3	1	2	0	1

1er. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS

CUADRO 10. Datos transformados de las 35 especies en estudio.

	ADKO	<u> 10.</u>	Datos transformacios	de las 33 especies en e	estudio.	
E	T	R	NN ₁	NJ2 ₁	HA ₁	MA ₁
1	1	1	13.0767	1.414214	1.414214	1.732051
1	1	2	12.8841	2	2	2.236068
1	1	3	12.68858	1.414214	1.732051	1.732051
1	2	1	13.45362	2.44949	1.732051	2
1	2	2	14.52584	2.44949	1.414214	1.414214
1	2	3	13.45362	2.236068	1.732051	1.732051
1	3_	1	12.68858	2.828427	2.44949	2.828427
1	3	2	12.68858	2.645751	2	2.44949
1	3_	3	13.45362	2.645751	2.236068	3
1	4	1	11_	2.828427	2	1.732051
1	4	2	1	2.828427	2	1.732051
1	4	3	1	2.236068	1.414214	1.732051
1	5_	1	1	1.732051	2.645751	1.414214
1	5	2	1	1	1.732051	1
1	5	3	1_	1	2	1
1	6	1	1	1.414214	1.414214	1.414214
1	6	2	1_	1	1	1
1	6	3	1	1	1	1
1	7	1	1	1.732051	1.732051	1.732051
1	7	2	1	1.732051	1.414214	1.414214
1	7	3	1	1	1.732051	1.732051
1	8	1	4.123106	2.236068	1.732051	1.414214
1	8	2	5.09902	1.414214	2	1.732051
1	8	3	4. <u>582576</u>	1.732051	1.414214	1.414214
1	9	1	1_	2	1.732051	1.414214
1	9	2	11_	1.732051	1	1.414214
1	9	3	1_	2	1	1
1	10	1	1.732051	4	1.732051	1.414214
1	10	2	1	3.605551	2	1.732051
1	10	3	2	4	1.732051	1.414214
1	11	1	1	1	1	1
1	11	2	1	1	1	1
1	11	3	1	1	1	1
1	12	1	2,645751	3	2	1.732051
1	12	2	2.236068	3,464102	1.732051	2
_1	12	3	2.236068	3.605551	1.732051	1.414214
1	13	1	1	1	1	1
1	13	2	1	1	1	1
1	13	3	1	1	1	1
1	14	1_	11_	1.732051	1	1.732051
1	14	2	1_	1	1.414214	1

1 . 1	امد	_	ار	4 700054		
1	14	3	1	1.732051	1.414214	1 41 421 4
1	15	1	2.44949	1.414214	1 700054	1.414214
1	15	2	1.732051	2.236068	1.732051	1.732051
1	15	3	3.316625	1.732051	1 11 121 1	1 44 424 4
1	16	1	3.316625	2.236068	1.414214	1.414214
1	16	2	3.605551	1,414214	1	1
1	16	3	4.123106	1.414214	1	1
1	17	1	1	1	1	1
1	17	2	11	1	1	1
1	17_	3	1	1	1	1
1	18	1	1	1	1	1
1	18	2	1	1	1	1
1	18	3	1	1	1	1
1	19	1	1	1	1	1
1	19	2 3	1	1	1	1
1	19 20		1.732051	1.414214	1	1
1	20	1 2	1./32031	1.732051	1	2
1	20	3	2.236068	1.732051	1	2.44949
1	21	1	6.403124	2.236068	1	1.732051
1	21	2	6.855655	1.732051	1	1.732051
1	21	3	5.830952	2	1.414214	1./32031
1	22	1	3.030932	1	1.414214	1.732051
1	22	2	1	1	1.717217	1./32031
1	22	3	1	1	1	1
1	23	1	9.110434	2.44949	2.236068	2.645751
1	23	2	8.42615	2.11373	2.236068	2.645751
1	23	3	8.185353	2	2.44949	2.828427
1	24	1	1	2	1.414214	1.732051
1	24	2	1.732051	1.732051	1.414214	1
1	24	3	1.414214	1.414214	1	1
1	25	1	1.732051	1.414214	1	2
1	25	2	2	2	1.732051	2
1	25	3	2.236068	1.732051	2	2.236068
1	26	1	1	1.414214	1	1.414214
1	26	2	1	1.414214	1	1
1	26	3	1	2	1	1
1	27	1	2	1.732051	1	1.732051
1	27	2	1.414214	1	1	1.414214
1	27	3	1	2	1.732051	1
1	28	1	1	1.414214	1	1.414214
1	28	2	1	1.414214	1.414214	1
1	28	3	1	1	1	_ 1
1	29	_ 1	1	1.414214	1	1
1	29	2	1	1	1.414214	1
1	29	3	1	1	1	1
1	30	1	1	1.414214	1	1.414214
1	30	2	1	1	1	1.732051
1	30	α	1	1.414214	1	1.414214
1	31	1	1.414214	1.414214	1.732051	1.732051
1	31	2	2	1.732051	1.414214	1.414214
1	31	3	2	1.732051	1.732051	1.414214

1	32	_ 1	1	1	1	1
1	32	2	1	1	1	1
1	32	3	1	1	1	1
1	33	1	. 1	1	1	1
1	33	2	1,	1	1	1
1	33	3	1	1	1	1
1	34	1	1	1	1	1
1	34	2	1	1	1	1
1	34	3	1	1	1	1
1	35	1	1	2	1	1
1	35	2	1	1	1.732051	1.414214
1	35	3	1.414214	1.732051	1	1.414214

2do. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 11.** Datos reales de las 35 especies en estudio.

E	Т	R	NN ₂	NJ2 ₂	HA ₂	MA ₂
2	1	1	210	4	3	2
2	1	2	230	4	1	1
2	1	3	210	6	1	1
2	2	1	240	1	3	4
2	2	2	260	3	1	2
2	2	3	230	6	3	2
2	3	1	60	11	5	6
2	3	2	60	9	6	. 6
2	3	3	80	10	4	5
2	4	1	1	11	2	3
2	4	2	0	11	4	3
2	4	3	2	8	2	1
2	5	1	0	4	2	3
2	5	2	0	4	2	1
2	5	3	0	0	0	1
2	6	1	3	0	0	0
2	6	2	1	3	0	2
2	6	3	0	2	2	1
2	7	1	0	10	3	2
2	7	2	0	10	2	4
2	7	3	0	9	2	3
2	8	1	25	3	2	0
2	8	2	30	0	1	2
2	8	3	10	1	2	0
2	9	1	0	3	0	0
2	9	2	0	4	1	1
2	9	3	0	4	1	0
2	10	1	3	31	3	2
2	10	2	2	29	3	4
2	10	3	2	30	4	5
2	11	1	0	0	0	0
2	11	2	0	2	1	0
2	11	3	0	3	0	2
2	12	1	10	8	4	3
2	12	2	9	10	3	5
2	12	3	15	11	5	3

_		1 .		1	1 -	ا ـ ا
2	13	1	0	1	0	_0
2	13	2	0	0	0	0
2	13	3	0	1	0_	0
2	14	1	0	2	0_	0
2	14	2	0	2	2	1
2	14	3	0	4	0	0
2	15	1	10	2	0	2
2	15	2	8	6	1	0
2	15	3	8	3	0	1
2	16	1	21	15	6	4
2	16	2	15	10	5	3
2	16	3	8	12	4	4
2	17	1	0	0	0	0
2	17	2	0	0	0	0
2	17	3	. 0	0	0	0
2	18	1	0	0	0	0
2	18	2	0	0	0	0
2	18	3	0	0	0	0
2	19	1	0	0	0	0
2	19	2	0	0	0	0
2	19	3	0	0	0	0
2	20	1	8	20	2	3
					3	
2	20	2	15	22_	3	5
2	20	3	12	25		4
2	21	1	50	6	2	2
2	21	2	48	5	1	3
2	21	3	40	4	3_	2
2	22	1	0	0	0	0
2	22	2	0	0	2	0
2	22	3	0	0	0	0
2	23	1	92	. 64	2	2
2	23	2	100	60	4_	5
2	23	3	80	69	3	2
2	24	1	1	10	0	1
2	24	2	4	10	0	2
2	24	3	0	5	0	0
2	25	1	5	<u>11</u>	5	8
2	25	2		10	2	12
2	25	3		5	3	10
2	26	1	0	3	3	2
2	26	2	0	5	2	1
2	26	. 3	0	0	1	0
2	27	1	3	4	. 0	1
2	27	2	2	2	0	0
2	27	3	5	0	2	0
2	28	1	0	6	. 0	0
2	28	2	0	3	2	0
2	28	3	0	0	0	0
2	29	1	0	0	0	1
2	29	2	0	2	0	0
2	29	3	0	0	0	0
2	30	1	0	6	0	0
		T			<u> </u>	

,	1	1		1	1	
2	30	2	0	5	_0	0
2	30	3	0	7	0	0
2	31	1	4	1	0	2
2	31	2	2	3	2	3
2	31	3	3	1	2	1
2	32	1	0	0	0	0
2	32	2	0	0	0	0
2	32	3	0	0	0	0
2	33	1	0	3	0	0
2	33	2	0	2	0	0
2	33	3	_ 0	_ 0	0	0
2	34	1	0	0	0	0
2	34	2	0	0	0	0
2	34	3	0	0	0	. 0
2	35	1	0	0	.0	0 .
2	35	2	0	0	0	0
2	35	3	0	0	0	0

2do. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 12.** Datos transformados de las 35 especies en estudio.

Е	Ţ	R	NN ₂	NJ2 ₂	HA ₂	MA ₂
2	1	1	14.52584	2.236068	2	1.732051
2	1	2	15.19868	2.236068	1.414214	1.414214
2	1	3	14.52584	2.645751	1.414214	1.414214
2	2	1	15.52417	1.414214	2	2.236068
2	2	2	16.15549	2	1.414214	1.732051
2	2	3	15.19868	2.645751	2	1.732051
2	3	1	7.81025	3.464102	2.44949	2.645751
2	3	2	7.81025	3.162278	2.645751	2.645751
2	3	3	9	3,316625	2.236068	2.44949
2	4	1	1.414214	3.464102	1.732051	2
2	4	2	1	3.464102	2.236068	2
2	4	3	1.732051	3	1.732051	1.414214
2	5	1	1	2.236068	1.732051	2
2	5	2	1	2.23 <u>6</u> 068	1.732051	1.414214
2	5	3	1	1	1	1.414214
2	6	1	2	1	1	1
2	6	2	1.414214	2	_1	1.732051
2	6	3	1	1.732051	1.732051	1.414214
2	7	1	1	3.316625	2	1.732051
2	7	2	1	3.316625	1.732051	2.236068
2	7	_3	1	3.162278	1.732051	2
2	8	1	5.09902	2	1.732051	1
2	8	2	5.567764	1	1.414214	1.732051
2	8	3	3.316625	1.414214	1.7320 <u>51</u>	1
2	9	1	1	2	1	1
2	9	2	1	2.236068	1.414214	1.414214
2	9	3	1	2,236068	1.414214	1
2	10	1	2	5.656854	2	1.732051
2	10	2	1.732051	5.477226	2	2.236068
2	10	3	1.732051	5.567764	2.236068	2.44949
2	11	_1	1	1	1	1

1 -1	1	_		4 700054	المعميد	
2	11	2	1	1.732051	1.414214	1 700051
2	11	3	1	2	1	1.732051
2	12	1	3.316625	3	2.236068	2
2	12	2	3.162278	3.316625	2	2.44949
2	12	3	4	3.464102	2.44949	2
2	13	1	1	1.414214	1	1
2	13	2	1	1	1	1
2	13	3	1	1.414214	1	1
2	14	1	1	1.732051	1	1
2	14	2	1	1.732051	1.732051	1.414214
2	14	3	1	2.236068	1	1
2	15	1	3.316625	1.732051	1	1.732051
_ 2	15	2	3	2.645751	1.414214	1
2	15	_3	3	2	1	1.414214
2	16	1	4.690416	4	2.645751	2.236068
2	16	2	4	3.316625	2.44949	2
2	16	3	3	3.605551	2.236068	2.236068
2	17	1	1	1	1	1
2	17	2	1	1	1	1
2	17	3	1	1	1	1
2	18	1	1	1	1	1
2	18	2	1	1	1	1
2	18	3	1	1	1	1
2	19	1	1	1	1	1
2	19	2	1	1	1	1
2	19	3	1	1	1	1
2	20	1	3	4.582576	1.732051	2
2	20	2	4	4.795832	2	2.44949
2	20	3	3.605551	5.09902	2	2.236068
2	21	1	7.141428	2.645751	1.732051	1.732051
2	21	2	7	2.44949	1.414214	2
2	21	3	6.403124	2.236068	2	1.732051
2	22	1	1	1	1	1
2	22	2	1	1	1.732051	1
2	22	3	1	1	1	1
2	23	1	9.643651	8.062258	1.732051	1.732051
2	23	2	10.04988	7.81025	2.236068	2.44949
2	23	3	9	8.3666	2	1.732051
2	24	1	1.414214	3.316625	1	1.414214
2	24	2	2.236068	3.316625	1	1.732051
2	24	3	1	2.44949	1	1
2	25	1	2.44949	3.464102	2.44949	3
2	25	2	2.828427	3.316625	1.732051	3.605551
2	25	3	2.828427	2.44949	2	3.316625
2	26	1	1	2.77979	2	1.732051
2	26	2	1	2.44949	1.732051	1.414214
2	26	3	1	2.77979	1.414214	1.717217
2	27	1	2	2.236068	1.414214	1.414214
2	27	2	1.732051	1.732051	1	1.414214
2	27	3	2.44949	1./32051	1.732051	1
					1./32051	1
2	28	2	1	2.645751	1.732051	
2	28	2	1	2	1./32051	1

2	28	3	1	1	1	1
2	29	1	1	1	1	1.414214
2	29	2	1	1.732051	1	1
2	29	3	1	1	_1	1
2	30	1	1	2.645751	1	1
2	30	2	1	2.44949	1	1
2	30	3	1	2.828427	1	1
2	31	1	2.236068	1.414214	1	1.732051
2	31	2	1.732051	2	1.732051	2
2	31	3	2	1.414214	1.732051	1.414214
2	32	1	1	1	1	1
2	32	2	1	1	1	1
2	32	3	1	1	1	1
2	33	1	1	2	_1	1
2	33	2	1	1.732051	1	1
2	33	3	1	1	1	1
2	34	1	1	1	1	1
2	34	2	1	1	1	1
2	34	3	1	1	1	1
_2	35	1	1	1	1	1
_2	35	2	1	1	1	1
2	35	3	1	1	1	1

1er. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 13.** Datos reales de las especies del 1 al 25.

E	Т	R	NN ₁	NJ2 ₁	HA ₁	MA ₁
1	1	2	165	3	3	4
1	1	3	160	1	2	2
1	2	1	180	5	2	3
1	2	2	210	5	1	1
1	2	3	180	4	2	2
1	3	1	160	7	5	7
1	3	2	160	6	3_	5
1	3	3	180	6_	4	8
1	4	1	0	7	3	2
1	4	2	0	7	3	2
1	4	3	0	4	1	2
1	5	1	0	2	6	1
1	5	2	0	0	2	0
1	5	3	0	0	3	0
1	6	1	0	1	1	1
_1	6	2	0	_0	0	0
1	6	3	0	0	0	0
1	7	1	0	2	2	2
1	7	2	0	2	1	1
1	7	3	0	0	2	2
1	8	1	16	4	2	1
1	8	2	25	1	3	2
1	8	3	20	2	1	1
1	9	1	0	3	2	1
1	9	2	0	2	0	1
1	9	3	0	3	0	0

1	10	1	2	15	2	1
1	10	2	0	12	3	2
1	10	3	3	15	2	1
1	11	1	0	0	0	0
1	11	2	0	0	0	0
1	11	3	0	0	0	0
1	12		6	8	3	2
1		1 2	4		2	3
1	12 12	3	4	11		1
1	13	1	0	0	2 0	0
1	13	2	0	0	0	0
1	13	3	0	0	0	0
1	14	1	0	2	0	2
1	14	2	0	0	1	0
		3			1	
1 1	14 15	1	5	1	0	0
1	15	2	2	4	2	2
1	15	3		2	0	0
1	16	1	10	4	1	1
1	16	2	12	1	0	0
1	16	3	16	1	0	0
1	17	1	0	0	0	0
1	17		0	0	0	0
1	17	3	0	0	0	0
1		1		0		0
1	18 18	2	0		0	0
1	18	3	. 0	0	0	0
1	18	1	0	0	0	0
1	19	2	0	0	0	0
1	19	3	0	0	0	0
1	20	1	2	1	0	3
1		2	3		0	3_
1	20 20	3	4	2	0	<u> </u>
1	20		40	4	0	2
1	21	1	40_	2	0	2
1	21	3	33	3	1	0
1	22	1		0	1	2
1	22	2	0	0	0	0
1	22	3	0	0	0	0
1	23	1	82	5	4	6
1	23	2	70	3	4	6
1	23	3	66	3	5	7
1	23	1	0	3	1	
1	24	2	2	2	1	0
1	24		1	1	0	0
1	24 25	1	2	1	0	3
1			3	3	2	3
1	25 25	2 3	4		3	4
Τ]	25		4	2	3	4

1er. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 14.** Datos transformados de las especies del 1 al 25.

E	Т	R	NN ₁	NJ2 ₁	HA ₁	MA ₁
1	1	2	12.8841	2	2	2.236068
1	1	3	12.68858	1.414214	1.732051	1.732051
1	2	1	13.45362	2,44949	1.732051	2
1	2	2	14.52584	2,44949	1.414214	1.414214
1	2	3	13.45362	2.236068	1.732051	1.732051
1	3	1	12.68858	2.828427	2.44949	2.828427
1	3	2	12.68858	2.645751	2.77979	2.44949
1	3	3	13.45362	2.645751	2.236068	3
1	4	1	13.45362	2.828427		1.732051
1	4	2	1		2	
1	4	3	1	2.828427	1.414214	1.732051
1	5	1	1	2.236068 1.732051	2.645751	1.732051 1.414214
1		2	1			
1	5	3	1	1	1.732051	1
				1 414214	2	1 41 4214
1	6	1	1	1.414214	1.414214	1.414214
1	6	2	1	1	1	1
1	6	3	1	1 722054	1 722051	1 772254
1	7	1	1	1.732051	1.732051	1.732051
1	7	2	1	1.732051	1.414214	1.414214
1	7	3	1	· 1	1.732051	1.732051
1	8	1	4.123106	2.236068	1.732051	1.414214
1	8	2	5.09902	1.414214	2	1.732051
1	8	3	4.582576	1.732051	1.414214	1.414214
1	9	1	1	2	1.732051	1.414214
1	9	2	1	1.732051	1_	1.414214
1	9	3	1	2	1	1
1	10	1	1.732051	4	1.732051	1.414214
1	10	2	1	3.605551	2	1.732051
1	10	3	2	4	1.732051	1.414214
_ 1	11_	1	1	1	1	1
1	11_	2	1	1	1	1
1	11	3	1	1	1_	1
1	12	1	2.645751	3	2	1.732051
1	12	2	2.236068	3.464102	1.732051	2
1	12	3	2.236068	3.605551	1.732051	1.414214
1	13	1	1	1	1	1
1	13	2	1	1	1	1
1	13	3	1	1	1	1
1	14	1	1	1.732051	1	1.732051
1	14	2	1	1	1.414214	1
1	14	3	1	1.732051	1.414214	1
1	15	1	2.44949	1.414214	1	1.414214
1	15	2	1.732051	2.236068	1.732051	1.732051
1	15	3	3.316625	1.732051	1	1
1	16	1	3.316625	2.236068	1.414214	1.414214
1	16	2	3.605551	1.414214	1	1
1	16	3	4.123106	1.414214	1	1
1	17	1	1	1	1	1

	,	,	ı	,	1	
1_	17	2	1	1_	1	1
_1	17	3	1	1	1	1
1	18	1	1	1	1	1
1	18	2	1	1	1	1
1	18	3	1	1	1	1
1	19	1	1	1	1	1
1	19	2	1	1	1	1
1	19	3	1	1	1	1
1	20	1	1.732051	1.414214	1	2
1	20	2	2	1.732051	1	2
1	20	3	2.236068	1.732051	1	2.44949
1	21	1	6.403124	2.236068	1	1.732051
1	21	2	6.855655	1.732051	1	1.732051
1	21	3	5.830952	2	1.414214	1
1	22	1	1	1	1.414214	1.732051
1	22	2	1	1	1	1
1	22	3	1	1	1	1_
1	23	1	9.110434	2.44949	2.236068	2.645751
1	23	2	8.42615		2.236068	2.645751
1	23	3	8.185353	2	2.44949	2.828427
1	24	1	1	2	1.414214	1.732051
1	24	2	1.732051	1.732051	1.414214	1
1	24	3	1.414214	1.414214	1	1
1	25	1	1.732051	1.414214	1	2
1	25	2	2	2	1.732051	2
1	25	3	2.236068	1.732051	2	2.236068

1er. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 15.** Datos reales de las especies del 26 al 35.

E	Т	R	NN ₁	NJ2 ₁	HA ₁	MA ₁
1	26	1	0	1	0	1
1	26	2	0	1	0	0
1	26	3	0	3	0	0
1	27	1	3	2	0	2
1	27	2	1	0	0	1
1	27	3	0	3	2	0
1	28	1	0	1	0	1
1	28	2	0	1	1	0
1	28	3	0	0	0	0
1	29	1	0	1	0	0
1	29	2	0	0	1	0
1	29	3	0	0	0	0
1	_ 30	1	0	1	0	_1
1	30	2	0	0	0	2
1	30	3	0	1	0	1
1	31	1	1	1	2	2
1	31	2	3	2	1	1
1	31	3	3	2	2	1
1	32	1	0	0	0	_ 0
1	32	2	0	0	0	0
1	32	3	0	0	0	0
1	33	1	0	0	0	0

1	33	2	0	0	0	0
1	33	3	0	0	0	0
1	34	1	0	0	0	0
1	34	2	0	0	0	0
1	34	3	0	0	0	0
1	35	1	0	3	0	0
1	35	2	0	0	2	1
_1	35	3	1	2	0	1

1er. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 16.** Datos transformados de las especies del 26 al 35.

E	T	R	NN ₁	NJ2 ₁	HA ₁	MA ₁
1	26	1	1	1.414214	1	1.414214
1	26	2	1	1.414214	1	1
1	26	3	1	2	1	1
1	27	1	2	1.732051	1	1.732051
1	27	2	1.414214	1	1	1.414214
1	27	3	1	2	1.732051	1
1	28	1	1	1.414214	1	1.414214
1	28	2	1	1.414214	1.414214	1
1	28	თ	1	1	1	_1_
1	29	1	1	1.414214	1	1
1	29	2	1	1	1.414214	1
1	29	3	1	1	1	1
1	30	1	1	1.414214	1	1.414214
1	30	2	1	1	1	1.732051
1	30	3	1	1.414214	1	1.414214
1	31	1	1.414214	1.414214	1.732051	1.732051
1	31	2	2	1.732051	1.414214	1.414214
1	31	3	2	1.732051	1.732051	1.414214
1.	32	1	1	1	1	1
1	32	2	1	1	1	1
1	32	3	1	1	1	1
1	33	1	1	1	1	1
1	33	2	1	1	1	1
1	33	3	1	1	1	1
1	34	1	1	1	1	1
1	34	2	1	1	1	1
1	34	3	1	1	1	1
1	35	1	1	2	1	1
1	35	2	1	1	1.732051	1.414214
1	35	3	1.414214	1.732051	1	1.414214

2do. MOMENTO DE EVALUACION NO DE NODULOS E INDIVIDUOS **CUADRO 17.** Datos reales de las especies del 1 al 25.

E	Т	R	NN ₂	NJ2 ₂	HA ₂	MA ₂
2	1	1	210	4	3	2
2	1	2	230	4	1	1
2	1	3	210	6	1	1
2	2	1	240	1	3	4
2	2	2	260	3	1	2

2	2	3	230	6	3	2
2	3	. 1	60	11	5	6
2	3	2	60	9	6	6
2	3	3	80	10	4	5
2	4	1	1	11	2	3
2	4	2	0	11	4	3
2	, 4	3	2	8	2	1
2	5	1	_ 0	4	2	3
2	5	2	0	4	2	1
2	5	3	0	0	. 0	1
2	6	1	3	0	0	0
2	6	2	1	3	0	
2	6	3	0	2	2	
2	7	1	0	10	3	2
2	7	2	0	10	2	4
2	7	3	0	9	2	3
2	8	1	25	3	2	0
2	8	2	30	0	1	2
2	8	3	10	1	2	0
2	9	1	0	3	0	0
2	9	2	0	4	1	1
2	9	3	0	4	1	0
2	10	1_	3	31	3	
2	10	2	2	29	3	_ 4
2	10	3	2	30	4	5
2	11	1_	0	0	0	0
2	11	2	0	2	1	0
2	11	3	0	3	0	2
2	12	1	10	8	4	_ 3
2	12	2	9	10	3	5
2	12	3	15	11	5	3
2	13	1	0	1	0	0
2	13	2	0	0	0	0
2	13	3	0	1	0	0
2	14	1	0	2	0	0
2	14	2	0	2	2	1
2	14	3	0	4	0	0
2	15	1	10	2	0	2
2	15	2	8	6	1	0
2	15	3		3	0	1
2	16	1	21	15	6	4
2	16	2	15	10	5	3
2	16	3	8	12	4	4
2	17	1	0	0	0	0
2	17	2	0	0	0	0
2	17	3_	0	0	0	0
2	18	1	0	0	0	0
2	18	2	0	0	0	0
2	18	3	0	0	0	0
2	19	1	0	0	0	0
	19	2	0	0	0	0
2	19	3	0	0	0	0

2	20	1	8	20	2	3
2	20	2	15	22	3	5
2	20	3	12	25	3	4
2	21	1	50	6	2	2
2	21	2	48	5	1	3
2	21	3	40	4	3	2
2	22	1	0	0	0	0
2	22	2	0	0	2	0
2	22	3	0	.0_	0	0
2	23	1	92	64	2	2
2	23	. 2	100	60	4	5
2	23	3	80	69	3	2
2	24	1	1	10	0	1
2	24	2	4	10	0	2
2	24	3	0	5	0	0
2	25	1	5	11	5	8
2	25	2	7	10	2	12
2	25	3	7	5	3	10

2do. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 18.** Datos transformados de las especies del 1 al 25.

Е	Т	R	NN ₂	NJ2 ₂	HA ₂	MA ₂
2	1	1	14.52584	2.236068	2	1.732051
2	1	2	15.19868	2.236068	1.414214	1.414214
2	1	3	14.52584	2.645751	1.414214	1.414214
2	2	1	15.52417	1.414214	2	2.236068
2	2	2	16.15549	2	1.414214	1.732051
_ 2	2	3	15.19868	2.645751	2	1.732051
2	3	_ 1	7.81025	3.464102	2.44949	2.645751
2	3	2	7.81025	3.162278	2.645751	2.645751
2	3	3	9	3.316625	2.236068	2.44949
2	4	1	1.414214	3.464102	1.732051	2
2	4	2	1	3.464102	2.236068	2
2	4	3	1.732051	3	1.732051	1.414214
2	5	1	1	2.236068	1.732051	2
2	5	2	1	2.236068	1.732051	1.414214
2	5	3	1	1	1	1.414214
2	6	1	2	1	1	. 1
2	6	2	1.414214	2	1	1.732051
2	6	3	1	1.732051	1.732051	1.414214
2	7	1	1	3.316625	2	1.732051
_ 2	7	2	1	3.316625	1.732051	2.236068
2	7	3	1	3.162278	1.732051	2
2	8	1	5.09902	2	1.732051	1
2	8	2	5.567764	1	1.414214	1.732051
2	8	3	3.316625	1.414214	1.732051	1
2	9	1	1	2	1	1
2	9	2	1	2.236068	1.414214	1.414214
2	9	3	1	2.236068	1.414214	1
2	10	1	2	5.656854	2	1.732051
2	10	2	1.732051	5.477226	_2	2.236068
2	10	3	1.732051	5.567764	2.236068	2.44949

2	11	1	1	1	1	1
2	11	2	1	1.732051	1.414214	1
2	11	3	1	2	1	1.732051
2	12	1	3.316625	3	2.236068	2
2	12	2	3.162278	3,316625	2	2.44949
2	12	3	4	3.464102	2.44949	2
2	13	1	1	1,414214	1	1
2	13	2	1	1	1	1
2	13	3	1	1.414214	1	1
2	14	1	1	1.732051	1	1
2	14	2	1	1.732051	1.732051	1.414214
2	14	3	1	2.236068	1	1
2	15	1	3.316625	1.732051	1	1.732051
2	15	2	3	2.645751	1.414214	1
2	15	3	3	2	1	1.414214
2	16	1	4.690416	4	2.645751	2.236068
2	16	2	4	3.316625	2.44949	2
2	16	3	3	3.605551	2.236068	2.236068
2	17	1.	1	1	1	1
2	17	2	1	1	1	1
2	17	3	1	1	1	1
2	18	1	1	1	1	1
_2	18	2	1	1	1	1
2	18	3	1	1	1	1
2	19	1	1	1	1_	1
2	19	2	1	1	1	1
2	19	3	1	1	1	1
2	20	_1	3	4.582576	1.732051	2
2	20	2	4	4.795832	2	2.44949
2	20	3	3.605551	5.09902	2	2.236068
2	21	1_	7.141428	2.645751	1.732051	1.732051
2	21	2	7	2.44949	1.414214	2
2	21	3	6.403124	2.236068	2	1.732051
2	22	1	1	1	1	1
2	22	2	1	1	1.732051	1
2	22	3	1	1	1	1
2	23	1	9.643651	8.062258	1.732051	1.732051
2	23	2	10.04988	7.81025	2.236068	2.44949
2	23	3	9		2	1.732051
2	24	1	1.414214	3.316625	1	1.414214
2	24	2	2.236068	3.316625	1	1.732051
2	24	3	1	2.44949	1	1
2	25	_ 1	2.44949	3.464102	2.44949	3
2	25	2	2.828427	3.316625	1.732051	3.605551
2	25	3	2.828427	2.44949	2	3.316625

2do. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 19.** Datos reales de las especies del 26 al 35.

E		Т		R	NN ₂		NJ2 ₂		HA ₂	MA ₂
	2		26	1		0		_ 3	3	2
	2		26	2		0		5	2	1
	2		26	3				0	1	0

1 1			1	1	1	ı
2	27	1	3	4	0	1
2	27	2	2	2	0	0
2	27	. 3	5	0	2	0
2	28	1	0	6	0	0
2	28	2	0	3	2	0
2	28	3	0	0	0	0
2	29	1	0	0	0	1
2	29	2	0	2	0	0
2	29	3	0	0	0	0
2	30	1	0	6	0	0
2	30	2	0	5	0	0
2	30	3	0	7	0	0
2	31	1	4	1	0	2
2	31	2	2	3	2	3
2	31	3	3	1	2	1
2	32	1	0	0	0	0
2	32	2	00	0	0.	0
2	32	3	0	0	0	0
2	33	1	0	3	0	0
2	33	2	0	2	0	0
2	33	3	0	0	0	0
2	34	1	0	0	0	0
2	34	2	0	0	0	0
2	34	3	0	0	0	0
2	35	1	0	0_	0	0
2	35	2	0	0	0	0
2	35	3	0	0	0	0

2do. MOMENTO DE EVALUACION No DE NODULOS E INDIVIDUOS **CUADRO 20.** Datos transformados de las especies del 26 al 35.

Е	Т	R	NN ₂	NJ2 ₂	HA ₂	MA ₂
2	26	1	1	2	2	1.732051
2	26	2	1		1.732051	1.414214
2	26	3	1	1	1.414214	1
2	27	1	2	2.236068	1	1.414214
2	27	2	1.732051	1.732051	1	1
2	27	3	2.44949	1	1.732051	1
2	28	1	11_	2.645751	1	1
2	28	2	1	2	1.732051	1
2	28	3	1	1	1	1
2	29	1	_1_	1	1	1.414214
2	29	2	1	1.732051	1	1
2	29	3	1	1	1	1
2	30	1	1	2.645751	1	1
2	30	2	1	2.44949	1	1
2	30	3	1	2.828427	1	1
_2	31	1	2.236068	1.414214	1	1.732051
2	31	2	1.732051	2	1.732051	2
2	31	3	2	1.414214	1.732051	1.414214
2	32	1	1	1	1	1
2	32	2	1	1	1	1
2	32	3	1	1	1	1

2	33	1	1	2	_1	1
2	33	2	1	1.732051	1	1
2	33	3	1	1	1	1
2	34	1	1	1	1	1
2	34	2	1	1	1	1
2	34	თ	1	1	1	1
2	35	1	1	1	_1	1
2	35	2	1	1	1	1
2	35	3	1	1	1	1

CUADRO 21. CROQUIS EXPERIMENTAL.

El presente experimento consideró el factor especie con t=35 niveles (tratamientos) y r = 3 repeticiones para cada nivel, con lo cual se tuvo un número total de t \times r = 35 \times 3 = 105 unidades experimentales (macetas) por cada momento de evaluación, haciendo un total de 210 unidades experimentales. Las (t \times r) macetas fueron aleatorizadas sin restricciones, con lo cual el croquis experimental fue de la siguiente forma:

Primer Momento de Evaluación (80 días).

31	14	11	28	3	1	27	20	16	23	4	29	2	8	9	30	17	15	22	10	21	19	5	26	7	18	34	24	32	33	13	6	35	25	12
30	12	20	26	11	10	3	4	32	16	29	19	31	35	7	22	15	1	21	8	24	25	27	28	18	33	17	23	5	9	2	14	34	13	6
18	6	13	2	23	34	31	4	11	22	27	33	28	3	20	7	12	24	10	15	8	35	17	16	21	29	26	5	25	9	1	19	32	14	30

Segundo Momento de Evaluación (100 días).

20	26	32	12	10	2	7	17	13	8	18	5	24	14	35	15	19	1	29	33	4	28	11	9	16	31	3	23	6	21	30	25	27	22	34
22	32	9	2	7	4	11	19	18	21	26	20	6	8	23	10	17	25	29	31	28	15	33	35	16	27	3	24	12	14	5	34	30	13	1
34	31	13	6	20	30	16	35	17	28	25	21	12	29	23	26	5	1	24	33	18	15	19	11	4	7	10	2	9	32	3	22	14	27	8

CUADRO 22. Prueba de significancia de Tukey al (0.01) de significación para número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 80 días.

ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
	$\overline{\mathbf{X}}$ NJ2 $_{\mathtt{1}}$	$\overline{\mathbf{X}}$ NJ2 $_{\scriptscriptstyle 1}$	
Izaño	3.8685	13.9653	Α
Lechuga	3.3566	10.2668	AB
Papa (Var. Piñaza)	2.7066	6.3257	BC
Arveja	2.6310	5.9222	BCD
Papa (VH-22)	2.3783	4.6563	BCDE
Tomate	2.1498	3.6216	CDEF
Remolacha azucarera	1.9894	2.9577	CDEFG
Haba	1.9107	2.6508	CDEFG
Olluco	1.7941	2.2188	CDEFG
Espinaca	1.7911	2.2080	CDEFG
Zanahoria	1.7154	1.9426	CDEFG
Trigo	1.7154	1.9426	CDEFG
Acelga	1.6882	1.8500	DEFG

Quinua	1.6261	1.6442	DEFG
Papa (Var. Andina)	1.6095	1.5905	EFG
Oca	1.4880	1.2141	EFG
Cebada	1.4880	1.2141	EFG
Avena	1.2440	0.5475	FG
Cañihua	1.1381	0.2953	G
Alfalfa	1.0000	0.0000	G
Ají	1.0000	0.0000	G
Maíz	1.0000	0.0000	G
Tarwi	1.0000	0.0000	G
Kiwicha	1.0000	0.0000	G
Pimiento	1.0000	0.0000	G

CUADRO 23. Prueba de significancia de Tukey al (0.01) de significación para número de individuos (segundo estadio juvenil) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 100 días.

ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
	$\overline{\mathbf{X}}$ NJ2 $_2$		
Tomate	8.0797	64.2816	Α
Izaño	5.5673	29.9948	В
Quinua	4.8258	22.2883	BC
Acelga	3.6407	12.2547	CD
Papa (Var. Piñaza)	3.3143	9.9846	DE
Arveja	3.3094	9.9521	DE
Cebada	3.2652	9.6615	DEF
Lechuga	3.2602	9.6289	DEF
Zanahoria	3.0767	8.4661	DEFG
Trigo	3.0276	8.1664	DEFG
Remolacha azucarera	2.4438	4.9722	DEFGH
Papa (Var. Andina)	2.3726	4.6292	DEFGH
Haba	2.1574	3.6544	EFGHI
Olluco	2.1259	3.5194	EFGHI
Papa (VH-22)	2.0200	3.0804	FGHI
Oca	1.9001	2.6104	GHI
Avena	1.8240	2.3270	GHI
Cañihua	1.5774	1.4882	HI
Kiwicha	1.5774	1.4882	HI
Espinaca	1.4714	1.1650	HI
Maíz	1.2761	0.6284	HI
Ají	1.0000	0.0000	I
Tarwi	1.0000	0.0000	I

Pimiento	1.0000	0.0000	I
Alfalfa	1.0000	0.0000	I

CUADRO 24. Prueba de significancia de Tukey al (0.01) de significación para número de individuos (hembras adultas) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 80 días.

ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
	$\overline{\mathbf{X}}$ HA ₁	\overline{X} HA ₁	
Tomate	2.3072	4.3232	Α
Papa (Var. Piñaza)	2.2285	3.9662	Α
Avena	2.1259	3.5194	AB
Izaño	1.8214	2.3175	ABC
Lechuga	1.8214	2.3175	ABC
Arveja	1.8047	2.2569	ABC
Papa (Var. Andina)	1.7154	1.9426	ABC
Espinaca	1.7154	1.9426	ABC
Papa (VH-22)	1.6261	1.6442	ABC
Cebada	1.6261	1.6442	ABC
Zanahoria	1.5774	1.4882	ABC
Trigo	1,2761	0.6284	BC
Oca	1.2761	0.6284	BC
Haba	1.2440	0.5475	BC
Olluco	1.2440	0.5475	BC
Cañihua	1.1381	0.2953	С
Tarwi	1.1381	0.2953	С
Acelga	1.1381	0.2953	С
Remolacha azucarera	1.1381	0.2953	С
Ají	1.0000	0.0000	С
Alfalfa	1.0000	0.0000	С
Quinua	1.0000	0.0000	С
Maíz	1.0000	0.0000	С
Kiwicha	1.0000	0.0000	С
Pimiento	1.0000	0.0000	С

CUADRO 25. Prueba de significancia de Tukey al (0.01) de significación para número de individuos (hembras adultas) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 100 días.

ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
	HA₂	HA₂	

Papa (Var. Piñaza)	2.4438	4.3232	Α
Acelga	2.4438	3.9662	A
Lechuga	2.2285	3.5194	AB
Izaño	2.0787	2.3175	ABC
Zanahoria	2.0605	2.3175	ABC
Tomate	1.9894	2.2569	ABC
Quinua	1.9107	1.9426	ABCD
Arveja	1.9001	1.9426	ABCD
Cebada	1.8214	1.6442	ABCD
Papa (VH-22)	1.8047	1.6442	ABCD
Remolacha azucarera	1.7154	1.4882	ABCD
Espinaca	1.6261	0.6284	ABCD
Papa (Var. Andina)	1.6095	0.6284	ABCD
Avena	1.4880	0.5475	BCD
Haba	1.2761	0.5475	CD
Cañihua	1.2440	0.2953	CD
Oca	1.2440	0.2953	CD
Tarwi	1.2440	0.2953	CD
Kiwicha	1.1381	0.2953	CD
Olluco	1.1381	0.0000	CD
Maíz	1.0000	0.0000	D
Ají	1.0000	0.0000	D
Alfalfa	1.0000	0.0000	D
Trigo	1.0000	0.0000	D
Pimiento	1.0000	0.0000	D

CUADRO 26. Prueba de significancia de Tukey al (0.01) de significación para el número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 80 días.

ESPECIE.	DATOS TRANSFORMADOS MA ₁	DATOS REALES MA ₁	AGRUPACION
Papa (Var. Piñaza)	2.7593	6.6137	Α
Tomate	2.7066	6.3257	Α
Quinua	2.1498	3.6216	AB
Zanahoria	2.0787	3.3210	AB
Papa (Var. Andina)	1.9001	2.6104	ABC
Arveja	1.7321	2.0002	BC
Papa (VH-22)	1.7154	1.9426	BC
Lechuga	1.7154	1.9426	ВС
Cebada	1.6261	1.6442	BC
Izaño	1.5202	1.3110	BC

Espinaca	1.5202	1.3110	BC
Remolacha azucarera	1.4880	1.2141	BC
Olluco	1.3821	0.9102	BC
Haba	1.2761	0.6284	BC
Tarwi	1.2440	0.5475	BC
Oca	1.2440	0.5475	BC
Trigo	1.2440	0.5475	BC
Avena	1.1381	0.2953	С
Acelga	1.1381	0.2953	С
Cañihua	1.1381	0.2953	С
Maíz	1.0000	0.0000	С
Alfalfa	1.0000	0.0000	С
Ají	1.0000	0.0000	С
Kiwicha	1.0000	0.0000	С
Pimiento	1.0000	0.0000	С

CUADRO 27. Prueba de significancia de Tukey al (0.01) de significación para número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 25 especies de plantas cultivadas a los 100 días.

			-
ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
	MA ₂	MA ₂	
Zanahoria	3.3074	9.9389	A
Papa (Var. Piñaza)	2.5803	5.6579	AB
Quinua	2.2285	3.9662	BC
Acelga	2.1574	3.6544	BC
Lechuga	2.1498	3.6216	BC
Izaño	2.1392	3.5762	BC
Cebada	1.9894	2.9577	BCD
Tomate	1.9712	2.8856	BCDE
Papa (VH-22)	1.9001	2.6104	BCDE
Remolacha azucarera	1.8214	2.3175	BCDE
Arveja	1.8047	2.2569	BCDE
Avena	1.6095	1.5905	BCDE
Papa (Var. Andina)	1.5202	1.3110	CDE
Cañihua	1.3821	0.9102	CDE
Olluco	1.3821	0.9102	CDE
Trigo	1.3821	0.9102	CDE
Kiwicha	1.2440	0.5475	CDE
Espinaca	1.2440	0.5475	CDE
Haba	1.1381	0.2953	DE
Oca	1.1381	0.2953	DE

Tarwi	1.0000	0.0000	E
Ají	1.0000	0.0000	E
Alfalfa	1.0000	0.0000	Е
Maíz	1.0000	0.0000	E
Pimiento	1.0000	0.0000	Е

CUADRO 28. Prueba de significancia de Tukey al (0.01) de significación para número de individuos (machos adultos) de *N. aberrans* por gramo de raíz de las 10 especies de plantas espontáneas a los 100 días.

ESPECIE.	DATOS TRANSFORMADOS MA₂	DATOS REALES MA ₂	AGRUPACION
Challamata	1.7154	1.9426	Α
Amor seco	1.3821	0.9102	AB
Bolsa de pastor	1.1381	0.2953	AB
Aspergula	1.1381	0.2953	AB
Auja auja	1.0000	0.0000	В
Cebadilla	1.0000	0.0000	В
Chijchipa	1.0000	0.0000	В
K´ora	1.0000	0.0000	В
Mata conejo	1.0000	0.0000	В
Nabo silvestre	1.0000	0.0000	В

CUADRO 29. Prueba de significancia de Tukey al (0.01) de significación para número de nódulos de *N. aberrans*, por sistema radicular de las 25 especies de plantas cultivadas a los 80 días.

ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
	NN ₁	NN ₁	
Papa (VH-22)	13.8110	189.7437	A
Papa (Var. Piñaza)	12.9436	166.5368	A
Papa (Var. Andina)	12.8831	164.9743	A
Tomate	8.5740	72.5135	В
Remolacha	6.3632	39.4903	С
Espinaca	4.6016	20.1747	D
Acelga	3.6818	12.5557	DE
Olluco	2.4994	5.2470	EF
Lechuga	2.3726	4.6292	F
Quinua	1.9894	2.9578	FG
Zanahoria	1.9894	2.9577	FG
Izaño	1.5774	1.4882	FG
Trigo	1.3821	0.9102	FG

Cañihua	1.0000	0.0000	G
Oca	1.0000	0.0000	G
Maíz	1.0000	0.0000	G
Ají	1.0000	0.0000	G
Alfalfa	1.0000	0.0000	G
Tarwi	1.0000	0.0000	G
Avena	1.0000	0.0000	G
Arveja	1.0000	0.0000	G
Haba	1.0000	0.0000	G
Kiwicha	1.0000	0.0000	G
Cebada	1.0000	0.0000	G
Pimiento	1.0000	0.0000	G

CUADRO 30. Prueba de significancia de Tukey al (0.01) de significación para número de nódulos de *N. aberrans*, por sistema radicular de las 10 especies de plantas espontáneas a los 80 días.

ESPECIE.	DATOS TRANSFORMADOS	DATOS REALES	AGRUPACION
Challamata	1.8047	2.2569	A
Aspergula	1.4714	1.1650	AB
Nabo silvestre	1.1381	0.2953	AB
Amor seco	1.0000	0.0000	В
Auja auja	1.0000	0.0000	В
Bolsa de pastor	1.0000	0.0000	В
Cebadilla	1.0000	0.0000	В
Chijchipa	1.0000	0.0000	В
K`ora	1.0000	0.0000	В
Mata conejo	1.0000	0.0000	В

CUADRO 31. Prueba de significancia de Tukey al (0.01) de significación para número de nódulos de *N. aberrans*, por sistema radicular de las 25 especies de plantas cultivadas a los 100 días.

ESPECIE.	DATOS TRANSFORMADOS NN₂	DATOS REALES NN₂	AGRUPACION
Papa (VH-22)	15.6261	243.1750	A
Papa (Var. Andina)	14.7501	216.5654	A
Tomate	9.5615	90.4223	В
Papa (Var. Piñaza)	8.2068	66.3516	BC
Remolacha azucarera	6.8482	45.8978	С
Espinaca	4.6611	20.7259	D

Acelga	3.8968	14.1851	DE
Quinua	3.5352	11.4976	DE
Lechuga	3.4930	11.2010	DE
Olluco	3.1055	8.6441	DEF
Zanahoria	2.7021	6.3013	DEF
Izaño	1.8214	2.3175	DEF
Trigo	1.5501	1.4028	DEF
Cañihua	1.4714	1.1650	GH
Arveja	1.3821	0.9102	GH
Maíz	1.0000	0.0000	Н
Alfalfa	1.0000	0.0000	Н
Oca	1.0000	0.0000	Н
Avena	1.0000	0.0000	Н
Ají	1.0000	0.0000	Н
Pimiento	1.0000	0.0000	Н
Tarwi	1.0000	0.0000	Н
Haba	1.0000	0.0000	Н
Kiwicha	1.0000	0.0000	Н
Cebada	1.0000	0.0000	Н

CUADRO 32. Prueba de significancia de Tukey al (0.01) de significación para número de nódulos de *N. aberrans*, por sistema radicular de las 10 especies de plantas espontáneas a los 100 días.

ESPECIE.	DATOS TRANSFORMADOS NN ₂	DATOS REALES	AGRUPACION
Aspergula	2.0605	3.2457	A
Challamata	1.9894	2.9577	A
Amor seco	1.0000	0.0000	В
Auja auja	1.0000	0.0000	В
Bolsa de pastor	1.0000	0.0000	В
Cebadilla	1.0000	0.0000	В
Chijchipa	1.0000	0.0000	В
K'ora	1.0000	0.0000	В
Mata conejo	1.0000	0.0000	В
Nabo silvestre	1.0000	0.0000	В

CUADRO 33. Temperaturas mensuales (°c) registradas en invernadero año 2002 (Segunda etapa de la conducción del trabajo de investigación).

MESES	MAXIMA	MINIMA	MEDIA
Febrero	30.00	8.50	25.00
Marzo	28.00	7.00	24.00
Abril	25.00	6.00	20.00
Mayo	34.50	1.00	17.75
Junio	35.00	2.75	18.88
Julio	35.45	1.28	18.37
Agosto	35.64	2.56	19.10
Septiembre	36.46	2.65	19.56

SALIDA DE RESULTADOS SAS

_		_	cla	ss Level	Informa	ition			
class		Vaļues							
E T 27 28	1 35	1 1 2 3 4 5	6 7 8	9 10 11 1	.2 13 14	15 16	17 18 19	20 21 22	23 24 25 26
27 20		29 30 31	32 33 3						
R	3	1 2 3			Number	of obse	rvations	105	
		4							
			CON D	ATOS DE L	A EVALU	JACION 1			
Depen	dent Variable: N	N1							
				Su	m of				
	Source		DF		ares		Square	F Value	Pr > F
	T Error		34 70	1344.10 6.30	9556		532362 090137	438.58	<.0001
	Corrected Total		104	1350.40		•			
		R-Square		ff Var		MSE	NN1 M		
		0.995328	10	.71337	0.30	0227	2.802	363	
Depen	dent Variable: N	J 21							
				Su	m of				
	Source T		DF 34	Squ 47.2869	ares	Mean 1	Square 079337	F Value 17.46	Pr > F <.0001
	Error		70	5.5753	2082		964744	17.40	<.000T
	Corrected Total		104	52.8622	9550				
		R-Square		ff Var		MSE	NJ21		
	•	0.894531	17	.21670	0.28	2219	1.639	215	
Depen	dent Variable: H	A1							
	6				m of			- 7	
	Source T		DF 34	5qu 15.4837	ares 7133	меап : 0.45	Square 540504	F Value 7.37	Pr > F <.0001
	Error		70	4.3232			176015		
	Corrected Total		104	19.8069	8192				
		R-Square 0.781733		ff Var .36877		MSE 8516	HA1 M 1.352		
_			10	. 50077	0.24	0310	1.332	320	
Depen	dent Variable: M	A1							
	Course				m of	Manu		e val	D
	Source T		DF 34	21.3825	ares 5581	0.62	Square 889870	F Value 11.08	Pr > F <.0001
	Error		70	3.9715	8673		673695	,	
	Corrected Total		104	25.3541	4254				
		R-Square		ff Var		MSE	MA1 M		
		0.843356	ТО	.77733	0.23	8195	1.419	/43	

CON DATOS DE LA EVALUACION 2

Dependent Variable: NN	12							
Source T Error Corrected Total		DF 34 70 104		1061	41.	Square 385527 141772	F Value 291.92	Pr > F <.0001
	R-Square 0.992997		ff Var .59114		MSE 6527	NN1 M 2.990		
Dependent Variable: NJ	22							
Source T Error Corrected Total		DF 34 70 104		9547	6.6	Square 586915 530851	F Value 43.50	Pr > F <.0001
	R-Square 0.954806		ff Var .79446		MSE 1261	NJ22 2.329		
Dependent Variable: HA	.2							
Source T Error Corrected Total		DF 34 70 104		7432	0.633	Square 352596 677392	F Value 9.49	Pr > F <.0001
	R-Square 0.821692		ff Var .70034		MSE 8406	HA1 M 1.459		
Dependent Variable: MA	.2							
Source T Error Corrected Total		DF 34 70 104		0086	0.932	Square 217260 268573	F Value 14.87	Pr > F <.0001
	R-Square 0.878388		ff Var .70315		MSE 0371	MA1 M 1.498		
						.		
	DATOS DE	LA EVAL	UACION 1 `	Y DEL T	RATAMIE	וא ד חדוו		
Dependent Variable: NN						NIO I AL	. 23	
	11		Stir			NO I AL	. 23	
Source T Error Corrected Total	1	DF 24 50 74		n of ares 7070 1504	Mean 5 51.0	Square 090295 109230	F Value 467.73	Pr > F <.0001
T Error	11 R-Square 0.995566	24 50 74 Coe	Squa 1226.167 5.46	n of ares 7070 1504 3574 Root	Mean 5 51.0	Square 090295	F Value 467.73	
T Error Corrected Total	R-Square 0.995566	24 50 74 Coe	Squa 1226.167 5.461 1231.628 ff Var	n of ares 7070 1504 3574 Root	Mean 5 51.(0.2	Square 090295 109230 NN1 M	F Value 467.73	
T Error	R-Square 0.995566	24 50 74 Coe	Squa 1226.16: 5.46: 1231.628 ff Var 533445	n of ares 7070 1504 3574 Root 0.33	Mean 5 51.(0.2	Square 090295 109230 NN1 M	F Value 467.73	
T Error Corrected Total	R-Square 0.995566	24 50 74 Coe	Squa 1226.16: 5.46: 1231.628 ff Var 533445	n of ares 7070 1504 3574 Root 0.33 n of ares 3072 5746	Mean S 51.0 0.2 MSE 0500 Mean S 1.696	Square 090295 109230 NN1 M	F Value 467.73	
T Error Corrected Total Dependent Variable: NJ Source T Error	R-Square 0.995566	24 50 74 Coe 9. DF 24 50 74	Squa 1226.167 5.467 1231.628 ff Var 533445 Sur Squa 40.72318 3.86426	n of ares 7070 1504 3574 Root 0.33 n of ares 8072 5746 4818	Mean S 51.0 0.2 MSE 0500 Mean S 1.696	Square 090295 109230 NN1 M 3.466 Square 579920	F Value 467.73 ean 740 F Value 21.95	<.0001 Pr > F
T Error Corrected Total Dependent Variable: NJ Source T Error	R-Square 0.995566 21 R-Square 0.913333	24 50 74 Coe 9. DF 24 50 74	Squa 1226.16: 5.46: 1231.628 ff Var 533445 Sur \$qua 40.72318 3.86426 44.58744	n of ares 7070 1504 3574 Root 0.33 n of ares 8072 5746 4818	Mean S 51.0 0.2 MSE 0500 Mean S 1.696 0.077	Square 090295 109230 NN1 M 3.466 Square 579920 728535	F Value 467.73 ean 740 F Value 21.95	<.0001 Pr > F
T Error Corrected Total Dependent Variable: NJ Source T Error Corrected Total	R-Square 0.995566 21 R-Square 0.913333	24 50 74 Coe 9. DF 24 50 74	Squa 1226.16: 5.46: 1231.628 ff Var 533445 Sur 40.72318 3.86426 44.58744 ff Var .69150	n of ares 7070 L504 8574 Root 0.33 n of ares 8072 6746 4818 Root 0.27 n of ares 6308 6857	Mean 5 0.500 Mean 5 0.500 MsE 8002	Square 090295 109230 NN1 M 3.466 Square 579920 728535	F Value 467.73 ean 740 F Value 21.95	<.0001 Pr > F

Dependent Variable: MA1

Source T Error Corrected Total		DF 24 50 74	Sum Squa 18.07279 3.22424 21.29704	529 970	Mean Sq 0.7530 0.0644	3314	F Value 11.68	Pr > F <.0001
	R-Square 0.848606		ff Var .83214	Root 0.253		MA1 Mea 1.50865		

Tukey's Studentized Range (HSD) Test for NN1 Means with the same letter are not significantly different.

Tukey's Studentized Range (HSD) Test for NJ21 Means with the same letter are not significantly different.

Tukey Grouping A A C C D D D D D D D D D D D D D D D D	Mean 3.8685 3.3566 2.7066 2.6310 2.3783 2.1498 1.9894 1.9107 1.7941 1.7154 1.6095 1.4880 1.4880 1.4880 1.2440 1.1381 1.0000 1.0000 1.0000 1.0000	Zmmmmmmmmmmmmmmmmmmmm	T 10 12 3 4 2 23 21 9 15 8 25 24 16 20 17 14 5 6 11 13 18 19 22 17
--	--	-----------------------	---

Tukey's Studentized Range (HSD) Test for HA1 Means with the same letter are not significantly different.

Tukey	Group	ing	Mean	N	Т
	Α		2.3072	3	23
	Α		2.2285	3	3
В	Α		2.1259	3	5
В	Α	С	1.8214	3	10
В	Α	C	1.8214	3	12
В	Α	С	1.8047	3	4
В	Α	C	1.7154	3	1
В	Α	C	1.7154	3	8
R	Δ	_	1 6261	3	7

B B B B B	A	0000000000000	1.6261 1.5774 1.2761 1.2761 1.2440 1.2440 1.1381 1.1381 1.1381 1.0000	MMMMMMMMMM	2 24 14 9 15 6 21 22 16 11 13 19 20
		C	1,0000	3	16 11
		c c	1.0000	3	13
		C	1.0000 1.0000	3	18 19
		C	1.0000	3 3 3	20
		С	1.0000	3	17

Tukey's Studentized Range (HSD) Test for MA1 Means with the same letter are not significantly different.

CON DATOS DE LA EVALUACION 1 Y DEL TRATAMIENTO 26 AL 35

Dependent Variable: NN1

Source T Error Corrected Total		DF 9 20 29		5196	0.22	Square 962963 240260	F Value 5.42	Pr > F 0.0008
	R-Square 0.709045		f Var 04057		MSE 15919	NN1 M 1.141		
Dependent Variable: NJ	21							
Source T Error Corrected Total		DF 9 20 29		5336	0.21	Square 755838 555267	F Value 2.54	Pr > F 0.0394
	R-Square 0.533656		f Var 36083		MSE 12494	NJ21 1.308		

Dependent Variable: HA1

Source T Error Corrected Total	DF 9 20 29	Sum of Squares 1.06780551 1.01064202 2.07844753	Mean Square 0.11864506 0.05053210	F Value 2.35	Pr > F 0.0537
corrected rotar	29	2.07644733			

R-Square Coeff Var Root MSE HA1 Mean 0.513751 19.73555 0.224793 1.139028

Dependent Variable: MA1

Source DF Squares Mean Square F Value Pr > F
T 9 1.23469205 0.13718801 3.67 0.0074
Error 20 0.74733703 0.03736685
Corrected Total 29 1.98202908

R-Square Coeff Var Root MSE MA1 Mean 0.622943 16.14280 0.193305 1.197469

Tukey's Studentized Range (HSD) Test for NN1 Means with the same letter are not significantly different.

Tukey Grouping	Mean	N	Т
Ã	1.8047	3	31
в А	1.4714	3	27
в а	1.1381	3	35
В	1.0000	3	26
В	1.0000	3	28
В	1.0000	3	30
В	1.0000	3	32
В	1.0000	3	29
В	1.0000	3	34
B	1.0000	3	33

Tukey's Studentized Range (HSD) Test for NJ21 Means with the same letter are not significantly different.

Tukev	Grouping	Mean	N	Т
	Ä	1.6261	3	31
	Α	1.6095	3	26
	Α	1.5774	3	27
	Α	1.5774	3	35
	Α	1.2761	3	28
	Α	1.2761	3	30
	Α	1.1381	3	29
	Α	1.0000	3	32
	Α	1.0000	3	34
	Α	1.0000	3	33

Tukey's Studentized Range (HSD) Test for HA1 Means with the same letter are not significantly different.

Means with the same	letter are i	not sigr	17 T7 C
Tukey Grouping	Mean	N	Т
, , A	1.6261	3	31
Α	1.2440	3	27
Ä	1.2440	3	35
Ä	1.1381	3	28
Ä	1.1381	3	29
Ä	1.0000	3	26
Ä	1.0000	ž	30
Δ	1.0000	รั	32
Δ	1.0000	รั	34
Δ	1.0000	รั	33

Tukey's Studentized Range (HSD) Test for MA1 Means with the same letter are not significantly different.

Tukey	Grouping	Mean	N	T
	Α	1.5202	3	30
	Α	1.5202	3	31
	Α	1.3821	3	27
	Α	1.2761	3	35
	Α	1.1381	3	28
	Α	1.1381	3	26
	Α	1.0000	3	32
	Α	1.0000	3	29
	Α	1.0000	3	34
	Α	1.0000	3	33

CON DATOS DE LA EVALUACION 2 Y DEL TRATAMIENTO 1 AL 25

Dependent Variable: NN2

R-Square Coeff Var Root MSE NN1 Mean 0.992538 11.78730 0.436670 3.704579

Dependent Variable: NJ22

Source T Error Corrected Total		DF 24 50 74	193.2 6.2	Sum of Squares 2145064 2734162 4879226		quare 06044 54683	F Value 64.16	Pr > F <.0001
	R-Square 0.968552		ff Var .39430		MSE 4215		2 Mean 14522	
Dependent Variable: HA	.2							
Source T Error Corrected Total		DF 24 50 74	16.24 3.43	Sum of Squares 4053426 3038987 7092412	Mean S 0.676 0.068	68893	F Value 9.86	Pr > F <.0001
	R-Square 0.825611		ff Var .61793		MSE 1931		Mean 76194	
Dependent Variable: MA	. 2							
Source T Error Corrected Total		DF 24 50 74	24.68 3.7	Sum of Squares 3099391 1775209 9874601	Mean S 1.028 0.074	37475	F Value 13.83	Pr > F <.0001
	R-Square 0.869087	Coe 16	ff Var .59070		MSE 2681		Mean 13578	
Mea	Tukey's	s Stude same	ntized letter	Range (HS	D) Test ignifica	for NN ntly (N1 Jifferent.	
	Tukey Gr C C E E E E H H H H H H H H H H H H H H	AABB DDDDGGGGG		Mean 15.6261 14.7501 9.5645 8.2068 6.8482 4.6611 3.8968 3.5352 3.4930 3.1055 2.7021 1.8214 1.5501 1.4714 1.3821 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	N 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	T2123 21816 2125 10215 11719 11719 11729 11729	122	
Ме	ans with the Tukey (ne same	lette	r are not				
	C C E E E E E H E E H E H H H H H H H H	G D D D D D D D D D D D D D D D D D D D	F F F F F	8.0 4.86 3.33 3.22 3.00 2.4 2.11 2.09 1.5	1797 673 258 4407 1143 1094 652 6767 1276 438 7726 438 1726 1250 1200 1210 1774	ะ ตกดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดดด	23 10 20 16 3 4 7 12 25 24 21 1 9 15 2 14 5 6 11 8	

ы	т	1.2761	2	12
П	<u>.</u>	1.2/01	2	1.0
	I	1.0000	3	18
	I	1.0000	3	19
	I	1.0000	3	22
	т	1 0000	3	17

Tukey's Studentized Range (HSD) Test for HA1 Means with the same letter are not significantly different.

Τu	ıkey G		ng	Mean	N	T
		A A A A A		2.4438 2.4438	Z M M M M M M M M M M M M M M M M M M M	T 3 6 122 10 25 230 4 7 2 21 15 9 6 14 22 11 15 13 18 194 17
В		Â		2.4438 2.2285 2.0787 2.0605 1.9894 1.9107 1.9001 1.8214 1.8047 1.7154 1.6261 1.6095 1.4880 1.2761	3	12
В		Α	C	2.0787	3	10
В		Ą	C	2.0605	3	25
B B	D	Α Δ	Č	1.9094	3	20
В	Ď	Â	č	1.9001	3	4
В	D	Α	C	1.8214	3	7
В	D	A A A A	C	1.8047	3	2
B B	D D	Α Λ	<u>_</u>	1.7154	3	8
В	Ď	Â	č	1.6095	3	ĭ
В	D		Ċ	1.4880	3	5
	D		C	1.2761	3	9
	D D		000000000000000000000000000000000000000	1.2440	3	1 <u>4</u>
	Ď		č	1.2440	3	22
	D		C	1.2440 1.1381 1.1381	3	11
	D		С	1.1381 1.1381 1.0000 1.0000	3	15
	D D			1.0000	3	13 18
	Ď			1.0000	3	19
	Ď			1.0000 1.0000	3	24
	D			1.0000	3	17

Tukey's Studentized Range (HSD) Test for MA1

Means	With Tuk B B B B B B B B B B B B B B B B B B	key G	same Froupi A A C C C C C C C C C C C C C C C C C	D D D D D D	are	not signime Mean 3.3074 2.5803 2.2285 2.1574 2.1498 2.1392 1.9894 1.9712 1.9001 1.8214 1.8047 1.6095	N 3	y different. T 25 3 20 16 12 10 7 23 2 21 4 5
		ппппппппппппппппп	с с с	D D D D D		1.3821 1.3821 1.2440 1.2440 1.1381 1.0000 1.0000 1.0000 1.0000 1.0000	м мммммммммммммммммммммм	15 24 11 8 9 14 13 18 19 22

CON DATOS DE LA EVALUACION 2 Y DEL TRATAMIENTO 26 AL 35

Dependent Variable: NN2

Source T Error Corrected Total		DF 9 20 29	9 5.05003280 0.56111476 20 0.39003820 0.01950191		1476	F Value 28.77	Pr > F <.0001	
	R-Square 0.928303		ff Var .58926	Root 0.139		NN1 Mea		
Dependent Variable: NJ	22							
Source T Error Corrected Total		DF 9 20 29	Sum Squa 7.16421 4.44253 11.60675	res 573 848	Mean Sq 0.7960 0.2221	2397	F Value 3.58	Pr > F 0.0084

	R-Square 0.617245		f Var 55151	Root 0.471		NJ22 1.542		
Dependent Variable: H	IA2							
Source T Error Corrected Total		DF 9 20 29	Sum Squa 1.74893 1.24378 2.99272	964 445	Mean S 0.194 0.062	32663	F Value 3.12	Pr > F 0.0162
	R-Square 0.584397		f Var 32985	Root 0.249		HA1 M 1.169		
Dependent Variable: M	IA2							
Source Model Error Corrected Total		DF 9 20 29	Sum Squa 1.52176 0.67024 2.19201	359 877	Mean S 0.169 0.033	08484	F Value 5.05	Pr > F 0.0013
	R-Square 0.694231	Coef1	f Var 9545	Root 8		MA1 M 1.1373		
	Tukey's	Student	tized Ran	ge (HSD) Test	for NN1		
Me	ans with the	e same le	etter are	not si	gnifica	ntly di	fferent.	
ד	ukey Groupir	_	Mean	N	T			
		A A B B B B B B B B B B B B B B B B B B	2.0605 1.9894 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	~~~~~~~~~~~	27 31 26 28 30 29 32 33 34 35			
	Tukey's Stud	dentized	Range (H	SD) Tes	t for N	ງ22		
Me	ans with the	e same le	etter are	not si	gnifica	ntly di	fferent.	
Ţ	ukey Groupir	ng A A A A A A A A A	Mean 2.6412 1.8819 1.8165 1.6560 1.6095 1.5774 1.2440 1.0000 1.0000		T 30 28 26 27 31 33 29 32 34 35			
	Tukey's S	tudentiz	ed Range	(HSD) T	Test fo	HA1		
Me	ans with the	e same le	etter are	not si	gnifica	ntly di	fferent.	
Т	ukey Groupir	ng	Mean	N	Т			
		A A A A A A A A A A A A A A A A A A A	1.7154 1.4880 1.2440 1.0000 1.0000 1.0000 1.0000 1.0000	~~~~~~~~~	26 31 28 27 30 29 32 33 34 35			
	Tukey's	Student	tized Ran	ge (HSD) Test	for MA1		

Means with the same letter are not significantly different.

Mean

Т

Tukey Grouping

В	Α	1.1381	2	29
_	^		2	
В	Α	1.1381	3	27
В		1.0000	2	28
_			=	
В		1.0000	3	30
В		1.0000	3	32
			=	
В		1.0000	3	33
В		1.0000	3	34
			ž	27
R		1 0000		- 2

ANALISIS COMBINADO DE LOS DOS MOMENTOS DE EVALUACION

Dependent Variable:	: NN1
---------------------	-------

Dependent Variable: NN	11							
Source E R(E) T E*T Error Corrected Total		DF 1 4 34 34 136 209	Sum Squa 1.856 0.444 2699.275 51.932 15.788 2769.298	486 709 415 802 908	Mean Sq 1.85 0.11 79.39 1.52 0.11	6486 1177 0453 7435	Value 15.99 0.96 683.84 13.16	Pr > F 0.0001 0.4330 <.0001 <.0001
	R-Square 0.994299	Coei	ff Var .76387	Root 0.34		NN1 Mear 2.896387		
Dependent Variable: NJ	21							
Source E R(E) T E*T Error Corrected Total		DF 1 4 34 34 136 209	Sum Squa 25.0305 0.8653 201.3171 72.3653 15.4259 315.0042	227 524 501 353 231	Mean Sq 25.030 0.216 5.921 2.128 0.113	5227 3381 0926 3922	value 220.68 1.91 52.20 18.76	Pr > F <.0001 0.1127 <.0001 <.0001
	R-Square 0.951029		ff Var .97126	Root 0.33		NJ21 Mea 1.984458		
Dependent Variable: HA	1							
Source Model E R(E) T E*T		DF 73 1 4 34 34	Sum Squa 37.72799 0.60072 0.10361 30.51837 6.50527	502 533 582 836	Mean Sq 0.5168 0.6007 0.0259 0.8975 0.1913	2185 2533 0396 9936	7.90 9.19 0.40 13.73 2.93	Pr > F <.0001 0.0029 0.8112 <.0001 <.0001
Error Corrected Total		136 209	8.89376 46.62176		0.0653	9536		
	R-Square 0.809236		ff Var .18282	Root 0.25		HA1 Mear 1.406411		
Dependent Variable: MA	1							
Source E R(E) T E*T Error Corrected Total		DF 1 4 34 34 136 209	Sum Squa 0.32932 0.88131 45.61306 7.46335 7.47827 61.76533	558 469 431 983 290	Mean Sq 0.3293 0.2203 1.3415 0.2195 0.0549	2558 2867 6071 1058	Value 5.99 4.01 24.40 3.99	Pr > F 0.0157 0.0042 <.0001 <.0001
	R-Square 0.878924		ff Var .06842	Root 0.23		MA1 Mear 1.459345		

Tukey's Studentized Range (HSD) Test for NN1 Means with the same letter are not significantly different.

Tukey Grouping	Mean	N	Т
A B C D E F F H H	14.7186 13.8166 10.5752 9.0692 6.6057 4.6314 3.7893 2.9328 2.8025	666666666	2 1 3 23 21 8 16 12 15

I I I	H H J J J J	**********	2.7623 2.3457 1.8971 1.7660 1.6994 1.4661 1.2357 1.1910 1.0690 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	666666666666666666666666666666666666666	20 25 31 210 24 4 35 314 17 8 29 6 4 128 230 7 334 19
		K	1.0000	6	9
		K K	1.0000	6	26 11
		K	1.0000	6	28
		K K	1.0000	6	30
		K	1.0000	6	7
		K K	1.0000	6 6	32 33
		K	1.0000	6	34
		K	1.0000	6	19

Tukey's Studentized Range (HSD) Test for NJ21 $\label{eq:means} \mbox{Means with the same letter are not significantly different.}$

	Tu	key G	roupi	ng	Mean	N	Т	
0000000000000		и и и и и и и и и и и и и и и и и и и	A A B B B B B F F F F F F F F F F F F F			5.1148 4.7179 3.3084 3.2260 3.0105 2.9702 2.6644 2.3961 2.3766 2.3715 2.2166 2.1992 2.0340 1.9911 1.9600 1.9587 1.7130 1.6940 1.6328 1.6167 1.5790 1.5370 1.3577 1.2887 1.2887 1.2887 1.1910 1.1381 1.0000 1.0000 1.0000 1.0000	666666666666666666666666666666666666666	230 210 230 20 341 257 241 221 321 832 225 6335 121 321 349

Tukey's Studentized Range (HSD) Test for HA1 $\begin{tabular}{ll} \begin{tabular}{ll} \begin{tabular}{ll$

Tukey Grouping								Mean	N	Т
E E E E E E E	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	D D D D D D D D	H H	444444	G G G	00000000	F F F F F	2.3361 2.1483 2.0249 1.9500 1.8524 1.8189 1.8070 1.7909 1.7237 1.7154 1.6708	66666666666	3 23 12 10 4 25 16 7 28

医医肝医医医肝	BB	D D D D D		00000000000000	CCCC	F F F F F F F F F F	1.6624 1.5571 1.4553 1.4267 1.3577 1.2601 1.2440 1.1910 1.1910 1.1910 1.1920 1.0690 1.0690 1.0690 1.0000 1.0000 1.0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1 31 20 21 29 147 6 228 124 329 118 17 313 313
			I				$1.0000 \\ 1.0000$	6	34 19

Tukey's Studentized Range (HSD) Test for MA1
Means with the same letter are not significantly different.

Tu	key G	roupi	ng	Mean	N	T
ввававооооооооооооо		A A A A D D D D D D D D D D D D	ССССССССНИНИНИНИНИНИНИНИНИНИНИНИНИНИНИН	 2.6930 2.6698 2.3389 2.1892 1.9326 1.8297 1.8077 1.7684 1.7101 1.6547 1.6477 1.6477 1.6321 1.3821 1.3738 1.3131 1.2601 1.2601 1.2601 1.2601 1.2601 1.2601 1.2601 1.2601 1.2601 1.2071 1.1910 1.1381 1.1220 1.0690 1.0690 1.0000 1.0000 1.0000 1.0000	666666666666666666666666666666666666666	25 320 10 72 41 216 13 815 26 27 326 14 51 229 13 13 23 34 19

ANALISIS COMBINADO CON LOS TRATAMIENTOS 1 A 25

Dependent Variable: NN1

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
E	1	2.121273	2.121273	14.36	0.0003
R(E)	4	0.813863	0.203466	1.38	0.2476
T	24	2443.272589	101.803025	689.14	<.0001
E*T	24	51.067711	2.127821	14.40	<.0001
Error	96	14.181664	0.147726		
Corrected Total	149	2511.457100			

R-Square Coeff Var Root MSE NN1 Mean 0.994353 10.71912 0.384351 3.585659

Dependent Variable: N	121							
Source E R(E) T E*T Error Corrected Total		DF 1 4 24 24 96 149		5718 0274 6598 1118	28.5 0.0 7.0 2.6	Square 6697612 0846430 0645011 0829025 020741	F Value 279.89 0.83 69.21 26.28	Pr > F <.0001 0.5098 <.0001 <.0001
	R-Square 0.964059		eff Var 1.46903		MSE 19490	NJ21 2.208		
Dependent Variable: HA	A1		5	e				
Source E R(E) T E*T Error Corrected Total		DF 1 4 24 24 96 149		0241 1770 7963 5602	0.71 0.02 0.96 0.22	Square 113531 1967560 1962990 1765748 1900267	F Value 10.31 0.43 14.05 3.30	Pr > F 0.0018 0.7866 <.0001 <.0001
	R-Square 0.816954		eff Var .42697		MSE 2684	HA1 M 1.507		
Dependent Variable: MA	\1							
Source E R(E) T E*T Error Corrected Total		DF 1 4 24 24 96 149		8714 1313 7607 1466	0.68 0.20 1.51 0.26	Square 3266415 0594678 904221 0236567 0373140	F Value 10.71 3.23 23.84 4.12	Pr > F 0.0015 0.0156 <.0001 <.0001
	R-Square 0.878555		eff Var 5.01727		MSE 52451	MA1 M 1.576		
	ANALISIS	COMBINA	ADO DE CON	LOS TE	RATAMIEN	ITOS 26 A	35	
Dependent Variable: N	N1							
Source E R(E) T E*T Error Corrected Total		DF 1 4 9 9 36 59		4902 0671 9276 4113	0.06 0.01 0.73 0.05	Square 6061200 .343726 6077852 6996586 6289836	F Value 1.84 0.41 22.21 1.82	Pr > F 0.1831 0.8013 <.0001 0.0977
	R-Square 0.859265		eff Var .46013	Root 0.18	MSE 31379	NN1 N 1.173		
Dependent Variable: N	J 21							
Source E R(E) T E*T Error Corrected Total		DF 1 4 9 9 36 59		5324 7818 6299 3860	0.82 0.46 0.61 0.40	Square 2547413 3716331 236424 0121811 902607	F Value 6.94 3.92 5.14 3.37	Pr > F 0.0124 0.0096 0.0002 0.0043
	R-Square 0.733876		eff Var .20456		MSE 15002	NJ21 1.425		
Dependent Variable: H	N 1							
Source Model E R(E) T E*T		DF 23 1 4 9		0893 9983 6818	0.12 0.01 0.03 0.21	Square 1978930 1360893 1869996 102980	F Value 2.23 0.23 0.66 3.62 1.75	Pr > F 0.0153 0.6320 0.6214 0.0027 0.1136
Error		36	2.0996			832296	1.73	0.1130

Corrected Total

. 59 5.08478055

R-Square Coeff Var Root MSE 0.587076 20.92573 0.241501

HA1 Mean 1.154089

Dependent Variable: MA1

		Sum of			
Source	DF	Squares	Mean Square	F Value	Pr > F
E	1	0.05418728	0.05418728	1.72	0.1979
R(E)	4	0.28382986	0.07095746	2.25	0.0825
T	9	1.99739773	0.22193308	7.05	<.0001
E*T	9	0.75905791	0.08433977	2.68	0.0171
Error	36	1.13375594	0.03149322		
Corrected Total	59	4.22822872			

R-Square 0.731860

Coeff Var 15.20136

Root MSE 0.177463

MA1 Mean 1.167417

PANEL FOTOGRAFICO

FIGURA 1. MASA DE HUEVO ECLOCIONADO N. aberrans

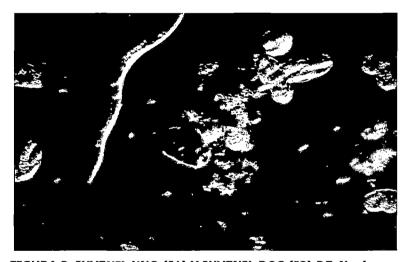


FIGURA 2. JUVENIL UNO (J1) Y JUVENIL DOS (J2) DE N. aberrans

FIGURA 3. PRIMERA ETAPA DEL TRABAJO (MULTIPLICACION DEL INOCULO)

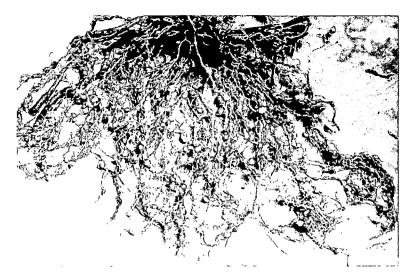


FIGURA 4. PRIMERA ETAPA DEL TRABAJO (MULTIPLICACION DEL INCULO)

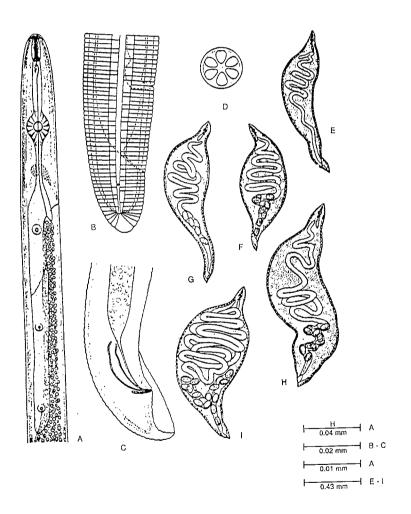


FIGURA 5. MORFOLOGIA DE *N. aberrans*: A. Región anterior de una hembra vermiforme o inmadura; B. Región posterior de una hembra vermiforme; C. Región posterior del macho; D. Vista frontal del macho; E. Estado inicial de una hembra madura; Fe I. Estados finales de desarrollo de una hembra madura.

FIGURA 6. HEMBRAS DE *Nacobbus aberrans* EN DIFERENTES ESTADOS DE MADURACION EN UN NODULO GRANDE OCURRIDO A DENSIDADES ALTAS DE INOCULO.

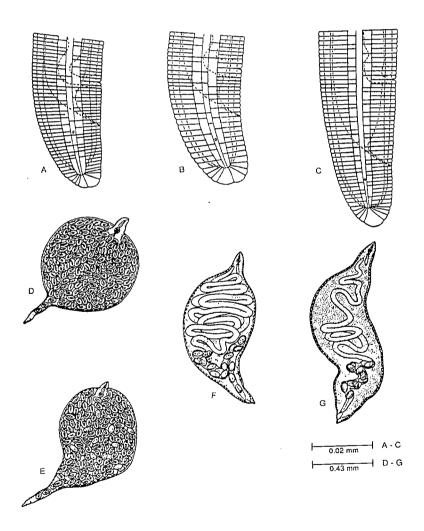


FIGURA 7. DIFERENCIA MORFOLOGICA EN LA COLA DE HEMBRAS VERMI-FORMES Y DE HEMBRAS MADURAS DE LAS ESPECIES *N. dorsalis* ((A,B,D,E) Y DE *N. aberrans* (C,F,G)

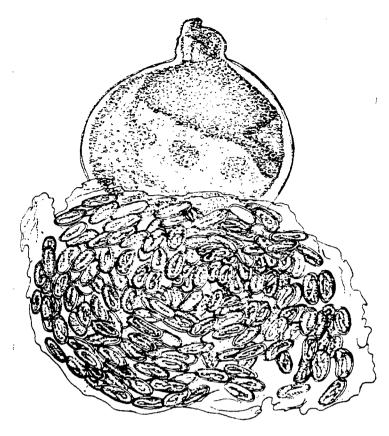


FIGURA 8. HEMBRA ADULTA DEL NEMATODO DEL NUDO, CON MASA DE HUEVOS EMBEBIDOS DENTRO DE UNA MASA GELATINOSA.

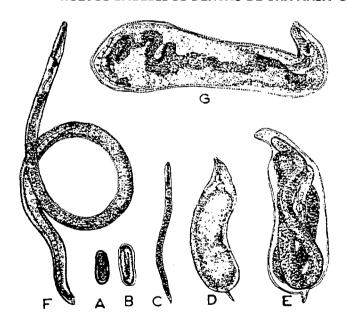


FIGURA 9. ESTADOS DE DESARROLLO DEL NEMATODO DEL NUDO DE LA RAIZ: A. Huevo no segmentado; B. Huevo conteniendo una larva; C. Larva migratoria libre en el suelo; D. Larva en forma de salchicha que vive dentro de la raiz en forma sedentaria; E. Muda larval conteniendo al macho completamente desarrollado; F. Macho adulto; G. Hembra joven.

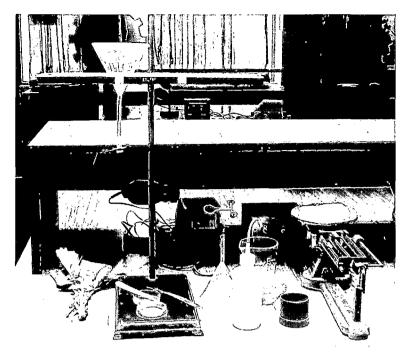


FIGURA 10. EQUIPO NECESARIO PARA EL METODO DE BAERMANN

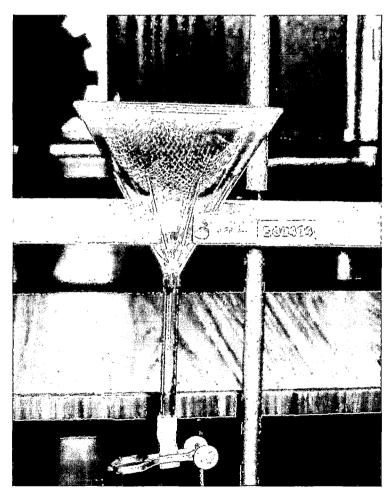


FIGURA 11. MUESTRA COLOCADA EN EL EMBUDO DE BAERMANN



FIGURA 12. MUESTRA A SER PROCESADA

FIGURA 13. CORTES EN TROCITOS DE APROXIMADAMENTE 1 cm.

FIGURA 14. MUESTRA COLOCADA SOBRE ORGANZA

FIGURA 15. MUESTRA COLOCADA DENTRO DEL RECIPIENTE DE PVC

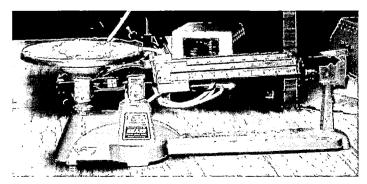


FIGURA 16. PESADA DE LA MUESTRA



FIGURA 17. AGREGANDO AGUA A LA MUESTRA

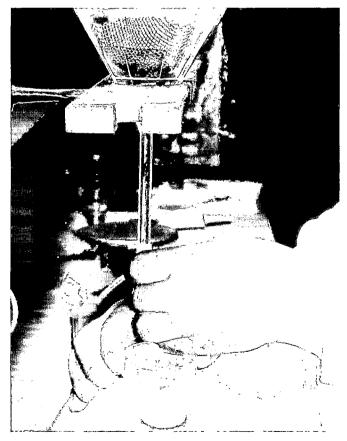


FIGURA 18. RECOJO DE LA MUESTRA PARA PROCEDER AL CONTEO

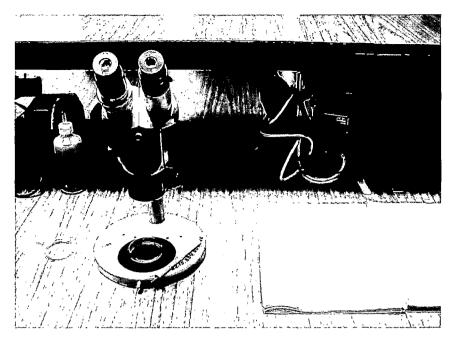


FIGURA 19. CONTEO CON AYUDA DEL ESTEREOSCOPIO

FIGURA 20. SEGUNDA ETAPA DEL TRABAJO (CONDUCCION DE LA IN VESTIGA CION)

FIGURA 21. SEGUNDA ETAPA DEL TRABAJO (CONDUCCION DE LA INVESTIGA CION)

FIGURA 22. SEGUNDA ETAPA DEL TRABAJO(EVALUACION)

FIGURA 23. PRIMERA ETAPA DEL TRABAJO (MULTIPLICACION DEL INOCULO)

FIGURA 24. PRIMERA ETAPA DEL TRABAJO (MULTIPLICACION DEL INCOCULO)

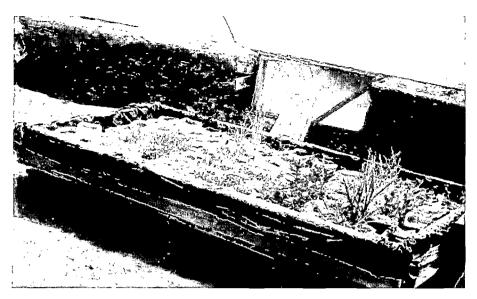


FIGURA 25. SEGUNDA ETAPA DEL TRABAJO (PREPARACION E INOCULACION)

FIGURA 26. SEGUNDA ETAPA DEL TRABAJO (EVALUACION)

FIGURA 27. SEGUNDA ETAPA DEL TRABAJO (EVALUACION)