

UNIVERSIDAD NACIONAL DEL ALTIPLANO ESCUELA DE POSGRADO PROGRAMA DE MAESTRÍA MAESTRÍA EN ECOLOGÍA

TESIS

SELECCIÓN DE LÍNEAS A PARTIR DE AUTOFECUNDACIONES S5 DE SEIS CRUZAS SIMPLES, GENÉTICAMENTE DISTANTES Y CERCANAS DE QUINUA (Chenopodium quinoa Willd.) BAJO CONDICIONES AMBIENTALES DE PUNO.

PRESENTADA POR: JOSE DAVID APAZA CALCINA

PARA OPTAR EL GRADO ACADÉMICO DE:

MAGISTER SCIENTIAE EN ECOLOGÍA

MENCIÓN EN ECOLOGÍA Y GESTIÓN AMBIENTAL

PUNO, PERÚ. 2017

UNIVERSIDAD NACIONAL DEL ALTIPLANO

ESCUELA DE POSGRADO PROGRAMA DE MAESTRÍA MAESTRÍA EN ECOLOGÍA

TESIS

SELECCIÓN DE LÍNEAS A PARTIR DE AUTOFECUNDACIONES S5 DE SEIS CRUZAS SIMPLES, GENÉTICAMENTE DISTANTES Y CERCANAS, DE QUINUA (Chenopodium quinoa Willd.), BAJO CONDICIONES AMBIENTALES EN PUNO.

PRESENTADA POR:

JOSE DAVID APAZA CALCINA

PARA OPTAR EL GRADO ACADÉMICO DE:

MAGISTER SCIENTIAE EN ECOLOGÍA

MENCIÓN EN ECOLOGÍA Y GESTIÓN AMBIENTAL

APROBADA POR EL SIGUIENTE JURADO:

PRESIDENTE

Dr. ANGEL MUJICA SANCHEZ

PRIMER MIEMBRO

Dr. ISRAEL HMA MEDINA

SEGUNDO MIEMBRO

Mg. DANTE MAMANI SAIRITUPAC

ASESOR DE TESIS

Puno, 08 de noviembre de 2017.

DE ERNESTO JAVIER CHURA YUPANQUI

ÁREA: Ecología.

TEMA: Mejoramiento genético de la quinua (Chenopodium quinoa Willd).

LÍNEA: Ecología de los recursos naturales.

DEDICATORIA

"A Dios por darme la vida, sabiduria
y las fuerzas para seguir cumpliendo
mis sueños y anhelos"

"A mis amados padres fsteban y Hermelinda agradezco infinitamente por el apoyo brindado a lo largo de todos estos años de estudio y durante la realización de este trabajo, sus consejos y aliento son los que me permitieron seguir adelante y culminar un objetivo más en mi vida"

"A mi amor Rosan por su invalorable
estímulo, amor y apoyo que alentó cada
instante mis estudios en alegrías y
tristezas y a mi tesoro Joseph Jeremy
Apaza Bustinza mi motor y motivo"

AGRADECIMIENTOS

- Al supremo Dios, por regalarme la vida y permitirme disfrutar de ella cada día que pasa.
- A la Maestría en Ecología y Gestión Ambiental de la Universidad Nacional del Altiplano Puno, por haberme formado profesionalmente.
- Al Dr. Ángel Mujica Sánchez, Coordinador General del Proyecto KWS UNA-Puno mejoramiento genético de quinua, por su apoyo integro en la realización de este trabajo de investigación.
- A Dra. Bettina Haussmann y Dr. Karl Schmid de la Universidad Hohenheim de Alemania, y a la empresa KWS; por su apoyo absoluto al proyecto de quinua.
- A mis padres, por cuidarme y apoyarme en todos los momentos que pase para la elaboración de esta tesis, gracias por todo el esfuerzo, paciencia y amor que me brindaron.
- A mis hermanos amados Edwin Apaza, Edilson Apaza y Yenny Yana, por apoyarme y alentarme para que este sueño se haga realidad en mi vida.
- A mi asesor Dr. Ernesto Javier Chura Yupanqui, por la amistad brindad y sabios consejos para le elaboración de este trabajo.
- A mis jurados Dr. Israel Lima Medina y M.Sc. Dante Mamani Sairitupac, por su apoyo para el enriquecimiento del presente estudio y el fortalecimiento de mis capacidades.
- A M.Sc. Flavio Lozano Isla compañero del proyecto quinua por su apoyo en la culminación del presente trabajo.
- A Dr. Alonso Astete por su apoyo en el análisis de datos de esta investigación
- A mis amigos(as) de la universidad, Ronald Mamani y Isaac Pari, por su apoyo incondicional.
- A todo el personal del programa mejoramiento genético de quinua, por haberme tratado como un colega más y hacer mi estancia muy grata.

ÍNDICE GENERAL

		Pág.
DEDICATO	ORIA	i
AGRADEC	CIMIENTOS	ii
ÍNDICE GI	ENERAL	iii
ÍNDICE DE	E CUADROS	vi
	E FIGURAS	
ÍNDICE DE	E ANEXOS	viii
		х
ABSTRAC'	Т	xi
INTRODU	CCIÓN	1
	CAPÍTULO I	
	REVISIÓN DE LITERATURA	
1.1. M	ARCO TEÓRICO	3
1.1.1.	Origen	
1.1.2.	Generalidades	
1.1.3.	Importancia	
1.1.4.		4
1.1.5.		5
1.1.6.	Genoma y citotaxonomía	
1.1.7.	Descripción botánica	6
1.1.8.	Fenología de la quinua	8
1.1.9.	Variedades de quinua	
1.1.10.	Genética de la quinua	14
1.2. AN	NTECEDENTES	22
	CAPÍTULO II	
	PLANTEAMIENTO DEL PROBLEMA	
	ENTIFICACIÓN DEL PROBLEMA	
	ISTIFICACIÓN	
2.3. OE	BJETIVOS DE ESTUDIO	
2.3.1.	Objetivo general	
2.3.2.	Objetivos específicos	
2 / HI	DÁTESIS DE TRARAIO	20

CAPÍTULO III

MATERIALES Y METODOS

3.1. LUG	GAR DE ESTUDIO	30
3.1.1.	Características demográficas	30
3.1.2.	Análisis de suelo	31
3.1.3.	Características ambientales	33
3.2. MA	TERIALES	36
3.2.1.	Material genético	36
3.2.2.	Materiales de campo	
3.3. POE	BLACIÓN	38
3.4. MU	ESTRA	38
	RACTERÍSTICAS DEL EXPERIMENTO	
3.6. MÉ	TODO DE INVESTIGACIÓN	39
3.6.1.	Manejo agronómico del experimento	39
3.6.2.	Evaluación de variables	
3.7. ANA	ÁLISIS ESTADÍSTICO	45
3.7.1.	Diseño experimental	45
3.7.2.	Análisis de varianza	45
3.7.3.	Análisis funcional	
3.7.4.	Selección de líneas superiores	46
	CAPÍTULO IV	
	RESULTADOS Y DISCUSIÓN	
4.1. EVALU	ACIÓN DEL COMPORTAMIENTO AGRONÓMICO	
4.1.1.	Altura de planta	48
4.1.2.	Diámetro de tallo	60
4.1.3.	Longitud de panoja	
4.1.4.	Diámetro de panoja	
4.1.5.	Floración	95
4.1.6.	Madurez fisiológica	106
4.1.7.	Rendimiento	117
4.2. SEL	ECCIÓN DE LAS LÍNEAS PROMISORIAS	131
4.2.1.	Huariponcho x Kcancolla	132
4.2.2.	Salcedo INIA x Huariponcho	134
4.2.3.	Pasankalla x Kcancolla	136
4.2.4.	Salcedo INIA x Pandela rosada	138
4.2.5.	Negra collana x Kcancolla	140

	4.2.6.	Salcedo INIA x Negra collana	142
CO	NCLUSIO	NES	146
RE	COMEND	ACIONES	147
BIE	BLIOGRAI	FÍA	148
AN	EXOS		157

ÍNDICE DE CUADROS

Pág.
1. Análisis físico químico del suelo del CIP Camacani e Illpa. Puno, Perú-2017 32
2. Datos meteorológicos de Camacani e Illpa. Puno, Perú-2017
3. Cruzas simples genéticamente distantes y cercanas. Puno, Perú-2017
4. Esquema del ANOVA de las líneas para cada cruza simple. Puno, Perú-201746
5. Análisis de varianza para altura de planta de las seis cruzas. Puno, Perú-2017
6. Prueba de Tukey al 5% para altura de planta de las seis cruzas. Puno, Perú-201754
7. Análisis de varianza para diámetro de tallo de las seis cruzas. Puno, Perú-2017
8. Prueba de Tukey al 5% para diámetro de tallo de las seis cruzas. Puno, Perú-2017
9. Análisis de varianza para longitud de panoja de las seis cruzas. Puno, Perú-2017
10. Prueba de Tukey al 5% para longitud de panoja de las seis cruzas. Puno, Perú-2017 77
11. Análisis de varianza para diámetro de panoja de las seis cruzas. Puno, Perú-2017 84
12. Prueba de Tukey al 5% para diámetro de panoja de las seis cruzas simples. Puno, Perú-
201789
13. Análisis de varianza para días a floración de las seis cruzas simples. Puno, Perú-2017 95
14. Prueba de Tukey al 5% para días a floración de cruzas simples de quinua. Puno, Perú-2017.
100
15. Análisis de varianza para madurez fisiológica de las seis cruzas simples de quinua. Puno,
Perú-2017
16. Prueba de Tukey al 5% para madurez fisiológica de las seis cruzas simples de quinua. Puno,
Perú-2017111
17. Análisis de varianza para rendimiento por panoja de las seis cruzas simples de quinua.
Puno, Perú-2017
18. Prueba de Tukey al 5% para rendimiento por panoja de las seis cruzas simples de quinua.
Puno, Perú-2017
19. Selección de las líneas promisorias de HUAxKCA. Puno, Perú-2017
20. Selección de las líneas promisorias de SALxHUA. Puno, Perú-2017
21. Selección de las líneas promisorias de PASxKCA. Puno, Perú-2017
22. Selección de las líneas promisorias de SALxPAN. Puno, Perú-2017
23. Selección de las líneas promisorias de COLxKCA. Puno, Perú-2017141
24. Selección de las líneas promisorias de SALxCOL. Puno, Perú-2017

ÍNDICE DE FIGURAS

Pág	3.
1.Temperaturas máximos y mínimos de Camacani e Illpa. Puno, Perú-2017 3-	4
2. Precipitación y humedad relativa de las dos localidades. Puno, Perú-20173	5
3. Preparación de terreno agrícola para la instalación de la investigación de cruzas simples de	
quinua. Puno, Perú-20173	9
4. Siembra por surco de la investigación de cruzas simples de quinua. Puno, Perú-2017 4	
5. Desahijé de los surcos del campo experimental de cruzas simples de quinua. Puno, Perú-	
20174	1
6. Deshierbo del campo experimental de cruzas simples de quinua. Puno, Perú-2017 4	
7. Cosecha de las líneas de cruzas simples en el campo experimental. Puno, Perú-2017 4.	
8. Evaluaciones de las líneas de cruzas simples. Puno, Perú-2017 4	
9. Fase fenológica de días a floración de las líneas en el campo experimental de cruzas simples	
Puno, Perú-2017	
10. Fase fenológica de madurez fisiológica de las líneas en el campo experimental de cruzas	
simples. Puno, Perú-20174	5
11. Comparación de altura de planta entre las cruzas y los testigos. Puno, Perú-2017 5	0
12. Comparación del diámetro de tallo entre las cruzas y los testigos. Puno, Perú-2017 6	2
13. Comparación de la longitud de panoja entre las cruzas y los testigos. Puno, Perú-2017 7	3
14. Comparación del diámetro de panoja entre las cruzas y los testigos. Puno, Perú-2017 8.	5
15. Comparación de la floración entre las cruzas y los testigos. Puno, Perú-20179	6
16. Comparación de la madurez fisiológica entre las cruzas y los testigos. Puno, Perú-2017. 10	7
17. Comparación del rendimiento entre las seis cruzas y los testigos. Puno, Perú-2017 11	9

ÍNDICE DE ANEXOS

_		
D	ń	Œ
1	а	ĸ

Líneas seleccionadas de la cruza simples Huariponcho x Kcancolla de quinua. Puno-Perú 2017
2. Líneas seleccionadas de la cruza simples Salcedo INIA x Huariponcho de quinua. Puno-Perú 2017
Líneas seleccionadas de la cruza simples Pasankalla x Kcancolla de quinua. Puno-Perú 2017. 162
4. Líneas seleccionadas de la cruza simples Salcedo INIA x Pandela rosada de quinua. Puno- Perú 2017
5. Líneas seleccionadas de la cruza simples Negra collana x Kcancolla de quinua. Puno-Perú 2017
6. Líneas seleccionadas de la cruza simples Salcedo INIA x Negra collana de quinua. Puno- Perú 2017
7. Marcado de parcelas para la instalación de la investigación de cruzas simples de quinua. Puno, Perú-2017
8. Siembra a chorro continuo de la investigación de cruzas simples de quinua. Puno, Perú-2017
11. Fase fenológica de ramificación de las plantas en el campo experimental de cruzas simples. Puno, Perú-2017
12. Fase fenológica de panojamiento de las plantas en el campo experimental de cruzas simples. Puno, Perú-2017
14. Vista de los supervisores del proyecto KWS al campo experimental de CIP Camcani, Puno, Perú-2017
15. Libro de campo de las evaluaciones de las líneas de cruzas simples. Puno, Perú-2017 174 16. Etiquetado de las plantas en evaluación en el campo experimental. Puno, Perú-2017 174 17. Etiquetado de los sobres de manila para la cosecha de las líneas de cruzas simples. Puno, Perú-2017 175
18. Medias de las variables evaluadas en cruzas y sus genitores. Puno, Perú-2017
19. Rendimiento por hectárea de las cruzas simples y los genitores. Puno, Perú-2017 176
20. Correlación de Pearson para las variables agronómicas en evaluación. Puno, Perú-2017. 176
21. Comportamiento agronómico de las cruzas simples en Camacani e Illpa. Puno, Perú-2017.
22. Comportamiento de rendimiento de genotipos en Camacani e Illpa. Puno, Perú-2017 177
23. Biplot de las variables agronómicas en las cruzas simples de quinua. Puno, Perú-2017 178
24. Agrupamiento de las seis cruzas respecto a las variables. Puno, Perú-2017
25. Croquis experimental en el Centro de Investigación y Producción - Camacani. Puno, Perú- 2017
26. Croquis experimental en el Centro de Investigación y Producción Illpa. Puno, Perú-2017.
20. Croquis experimental en el centro de investigación y Froducción inpa. 1 dilo, i eru-2017.
27. Datos del análisis físico-químico del suelo del CIP-Camacani. Puno, Perú-2017 181
28. Datos del análisis físico-químico del suelo del CIP-Illpa. Puno, Perú-2017

29. Datos meteorológicos obtenidos del Senamhi para Camacani. Desde setiembre de 20	15 a
abril de 2016	183
30. Datos meteorológicos obtenidos del Senamhi para Illpa. Desde setiembre de 2015 a a	abril de
2016	184

RESUMEN

En la actualidad la producción de quinua está limitada principalmente por falta de variedades que tengan alto rendimiento con granos grandes, que posean madurez uniforme y sean precoces bajo las condiciones edafoclimáticas del altiplano. La investigación selección de líneas obtenidos por hibridación, se realizó durante la campaña agrícola 2015-2016 en el CIP-Camacani e Illpa. Con el objetivo de seleccionar las líneas promisorias a partir de las autofecundaciones S5 de cruzas simples con una presión genética del 20 %, en base a las características agronómicas. Se utilizó el diseño de bloques completamente al azar (DBCA) con 1188 tratamientos y dos repeticiones, la toma de datos consistió en la evaluación de líneas con observación directa, los datos de la investigación se analizaron en los softwares R y PAST. En cuanto al comportamiento agronómico muestra alta significancia para la mayoría de las características evaluadas de las líneas; para rendimiento SALxHUA presento mayor rendimiento con 4266.60 kg.ha⁻¹, seguido por HUAxKCA y PASxKCA con 4128.90 y 4060.20 kg.ha⁻¹ respectivamente que son genéticamente distantes y las cercanas presentaron menor rendimiento COLxKCA con 2545.80 kg.ha⁻¹, seguido por SALxCOL y SALxPAN con 3319.20 y 3529.20 kg.ha⁻¹ respectivamente; y los genitores: Pasankalla (PAS) con 3651 kg.ha-1, Huariponcho (HUA)con 3497.70 kg.ha⁻¹, Pandela rosada (PAN) con 3186.00 kg.ha⁻¹, Salcedo INIA (SAL) con 3150.60 kg.ha⁻¹, Kcancolla (KCA) 3114.30 kg.ha⁻¹ y Negra collana (COL) con 2508.90 kg.ha⁻¹, las lineas presentaron rendimientos por encima de sus genitores; se seleccionó 40 líneas promisorias por cruzas simples distantes y cercanas (1) HUAxKCA 48, 97, 102, 173, 3, 112, 62, 95, 6 y 10; (2) SALxHUA 19, 34, 33, 12, 116, 174, 48, 27, 102 y 162; (3) PASxKCA 161, 188, 46, 7, 177, 35, 130, 166, 97 y 157; (4) SALxPAN 163, 39, 158, 150, 57, 12, 36, 44, 171 y 159; (5) COLxKCA 4, 123, 8, 125, 78, 152, 44, 129, 47 y 73; y la cruza (6) SALxCOL 72, 93, 181, 145, 174, 86, 135, 175, 94 y 51. Se concluye que existe ganancia genética de las progenies respecto a sus progenitores.

Palabras clave: Agronómico, índice de Elston, genitores, genotipos y progenies.

ABSTRACT

At present the production of quinoa is limited mainly by lack of varieties that have high yield with large grains, that have uniform maturity and are early under edaphoclimatic conditions of the highlands. The research selection of lines obtained by hybridization was carried out during the 2015-2016 agricultural campaign in the CIP-Camacani and Illpa. With the objective of selecting the promising lines from the S5 self-fertilization of simple crosses with a genetic pressure of 20%, based on the agronomic characteristics. The completely randomized block design (DBCA) was used with 1188 treatments and two repetitions, the data collection consisted in the evaluation of lines with direct observation, the research data were analyzed in R and PAST software. Regarding the agronomic behavior, it shows high significance for most of the evaluated characteristics of the lines; for SALxHUA performance I present higher yield with 4266.60 kg.ha-1, followed by HUAxKCA and PASxKCA with 4128.90 and 4060.20 kg.ha-1 respectively that are genetically distant and the near ones showed lower performance COLxKCA with 2545.80 kg.ha-1, followed by SALxCOL and SALxPAN with 3319.20 and 3529.20 kg.ha-1 respectively; and the parents: Pasankalla (PAS) with 3651 kg.ha-1, Huariponcho (HUA) with 3497.70 kg.ha-1, Pandela rosada (PAN) with 3186.00 kg.ha-1, Salcedo INIA (SAL) with 3150.60 kg. ha-1, Kcancolla (KCA) 3114.30 kg.ha-1 and Negra collana (COL) with 2508.90 kg.ha-1, the lines presented yields above their parents; 40 promising lines were selected by distant and near single crosses (1) HUAxKCA 48, 97, 102, 173, 3, 112, 62, 95, 6 and 10; (2) SALxHUA 19, 34, 33, 12, 116, 174, 48, 27, 102 and 162; (3) PASxKCA 161, 188, 46, 7, 177, 35, 130, 166, 97 and 157; (4) SALxPAN 163, 39, 158, 150, 57, 12, 36, 44, 171 and 159; (5) COLxKCA 4, 123, 8, 125, 78, 152, 44, 129, 47 and 73; and crosses it (6) SALxCOL 72, 93, 181, 145, 174, 86, 135, 175, 94 and 51. It is concluded that there is genetic gain of the progenies with respect to their parents.

Key words: Agronomic, Elston index, genitors, genotypes and progenies.

INTRODUCCIÓN

La quinua es un grano nativo originario de América del Sur, de las áreas andinas de Perú y Bolivia, ha sido domesticada y cultivada en condiciones adversas de clima y suelo por miles de años y las especies que evolucionan en ambientes pobres en determinados recursos tienden a desarrollar mecanismos para maximizar su utilización (Zurita *et al.*, 2014). Siendo una de las pocas especies que está adaptada a condiciones extremas de temperatura y aridez. Su valor nutricional es mayor en comparación con los cereales, su grano contiene aproximadamente 48% de almidón, 18% de proteínas, con un balance ideal de los 20 aminoácidos esenciales, 4-9% de grasas insaturadas y una buena cantidad de calcio, fósforo y hierro (Ramírez *et al.*, 2016).

Estudios previos muestran que el Perú posee, junto con Bolivia, la mayor diversidad genética en variedades nativas de quinua. A pesar de que su cultivo ha ido menguando desde su apogeo en el imperio incaico, actualmente se están haciendo trabajos para prevenir la erosión genética de esta especie en ambos países (Kole, 2007). El cambio climático y el crecimiento de la población y el uso de áreas marginales para producir mayor cantidad de alimentos hacen imprescindible obtener nuevas variedades capaces de emplear mejor los recursos del suelo para lograr altos rendimientos y de calidad en condiciones sub óptimas en términos de evolución, estos genes son los que tienden a prevalecer y a perdurar en el tiempo (Glenn *et al.*, 2008).

Se ha estimado que la necesidad de alimentos se duplicará en los próximos 30 años el Perú, como muchos países de América Latina enfrentan graves problemas nutricionales como consecuencia del incremento de la población en forma permanente; este crecimiento demográfico, exige un incremento de la producción de alimentos para poder satisfacer las necesidades mínimas de nutrición. La población aprecia este cultivo y cada día aumenta la demanda y exige una mayor producción de quinua, pero las condiciones medioambientales de las zonas agroecológicas del altiplano se caracterizan por su gran variabilidad climática espacial y temporal, la presencia de factores abióticos como precipitaciones y variación de temperaturas, etc. influye en el crecimiento y desarrollo de las plantas, los niveles de producción y productividad de la quinua son variables dentro y entre las campañas agrícolas. Por otro lado, la quinua es una de las especies cultivadas que todavía no ha sufrido manipuleo genético importante, muchas de las variedades son tradicionales con rendimientos muy bajos que oscilan por lo general de 600 a 1200 kg.ha-

¹, queda pues como un reto grande para los investigadores actuales, superar estos antecedentes (Mujica *et al.*, 2013).

En general, el cultivo de quinua bajo sistemas tradicionales y sin utilización de variedades mejoradas representa un riesgo permanente para la humanidad. En la producción ecológica uno de los primeros pasos que se debe dar, es la búsqueda de genes promisorios de rendimiento y precocidad a fin de poder transferirlos a las actuales variedades locales que se vienen produciendo en forma extensiva. En este contexto la resistencia genética de las plantas se constituye en la mejor opción para elevar los rendimientos, asegurar alimentación para la población, generar ingresos económicos y mejorar el nivel de vida del productor de quinua.

Con este trabajo de investigación se pretende obtener este recurso genético valioso con estas características deseables, a través de la hibridación de variedades genéticamente distantes y cercanas de quinua dentro del programa mejoramiento genético, en la investigación se precisa evaluar el comportamiento agronómico de las líneas F7 obtenidos de autofecundaciones hasta la sexta generación y posteriormente reducir las líneas sobresalientes en cuanto al comportamiento agronómico; para lo cual se ha planteado como objetivo general seleccionar las líneas a partir de las autofecundaciones S5 de seis cruzas simples con una presión genética del 20 %, en base a altura de planta, diámetro de tallo, longitud de panoja, diámetro de panoja; principalmente a la precocidad y rendimiento; y como objetivos específicos evaluar el comportamiento agronómico de las líneas de quinua procedente de cruzamientos simples, comparar los rendimientos preliminares de las líneas y sus respectivos genitores, seleccionar 40 líneas promisorias de las 196 líneas obtenidos en todas las cruzas simples de quinua que se vienen trabajando; finalmente se tendrá material genético élite que un futuro no muy lejano puedan obtenerse nuevas variedades de quinua con genes de calidad en cuanto a la arquitectura de planta, precocidad y sobre todo con alto rendimiento que pueda mejorar la productividad del cultivo de quinua en la región del altiplano y el país.

CAPÍTULO I

REVISIÓN DE LITERATURA

1.1. MARCO TEÓRICO

1.1.1. **Origen**

La quinua (*Chenopodium quinoa* Willd.), es uno de los cultivos ancestrales, cuyo centro de origen se encuentra en la zona andina, donde muestra la mayor diversidad de genotipos y de progenitores silvestres, en los alrededores del lago Titicaca entre Perú y Bolivia, encontrándose la mayor diversidad entre Potosí-Bolivia y Sicuani (Cusco) Perú (Tapia, 2000).

1.1.2. Generalidades

La biodiversidad presente en los ecosistemas de América del Sur está determinada por una amplia riqueza de plantas adaptadas a las diferentes condiciones climáticas. Esta biodiversidad está asociada también a la existencia de centros de origen y diversidad de especies cultivadas, representando un papel fundamental para la seguridad alimentaria. La región andina forma parte de las américas, cuatro regiones del continente americano en donde ocurrieron eventos de domesticación independientes. Está conformada por un conjunto de montañas, mesetas y valles que se extiende sobre el oeste de América del Sur y presenta una amplia variabilidad ambiental. En la región andina la agricultura se inició probablemente en los valles interandinos extendiéndose hacia las tierras más altas (Tapia y Fries, 2007). Según registros arqueológicos el uso de especies cultivadas data desde hace 7000 años, sin embargo, restos de *Chenopodium quinoa* Willd. (Quínoa) aparecen entre 4000 y 5000 años antes del presente (Pickersgill, 2007).

1.1.3. Importancia

La quinua es muy importante por sus características agronómicas y de adaptabilidad ecológica a las condiciones ambientales adversas de la zona andina. Sin embargo, actualmente la quinua a más de la zona andina se cultiva también en países como: Estados Unidos, Alemania, Francia, China, Tailandia, Polonia, Lituania, Hungría, Holanda, Canadá, Bélgica, India, Republica Checa, Palestina, España, Eslovaquia, Malí, Italia, Austria, Portugal, Ucrania, Vietam, Luxemburgo, Dinamarca, Tanzania, Sudáfrica, Etiopía y otros (Bohórquez y Riofrio, 2009).

Otra característica que vuelve importantísimo a este cultivo es su alto valor nutritivo (18 % de proteína), además de la composición de aminoácidos, por esto y más los granos andinos no solo tienen importancia económica sino también tienen gran importancia social, ecológica, nutricional y funcional (real y potencial). Uno de los principales factores para su consumo es que puede prepararse de diferentes maneras, ofreciendo una gran diversidad culinaria la cual está asociada a su amplia diversidad genética. (Rojas *et al.*, 2010).

1.1.4. Distribución del cultivo

La distribución del cultivo, se inicia con las culturas preincas y su expansión se consolida con el imperio incaico, extendiéndose desde Pasto-Colombia hasta el río Maule en Chile y Catamarca en Argentina, aunque su uso como verdura, estuvo extendido en toda la zona andina muy anteriormente; en Perú se ha generalizado su cultivo, en las diferentes zonas agroclimáticas, pudiendo distinguirse seis tipos de quinuas de acuerdo a su forma de cultivo, ubicación geográfica y destino de la producción: altiplano, valles interandinos abrigados, zonas altas y frías por encima de los 4000 msnm, zonas salinas, costa y en la ceja de selva, estas últimas áreas no tradicionales para este cultivo. En el pasado no se podía observar cultivos en costa ni en ceja de selva, su cultivo ahora está distribuido desde Piura (Huancabamba) hasta Tacna (Torata) (Zurita *et al.*, 2014).

Desde principios de los noventa la quinua es conocida y cultivada en Europa, Asia y África, inicialmente por los programas de investigación en diversificación de cultivos de diferentes universidades donde numerosos estudiantes sudamericanos han efectuado estudios de posgrado, cuyos resultados han sido acogidos por

investigadores europeos, empresas interesadas en la distribución de productos vegetarianos y naturales (Jacobsen, 2000). Las pruebas de los Estados Unidos y Europa en la producción de quinua han tenido buenos resultados y han demostrado que la quinua tiene un buen potencial como grano y cultivo alimenticio (Mujica *et al.*, 2001; Casini, 2002; Jacobsen, 2003).

1.1.5. Clasificación taxonómica

La quinua es una planta de la familia *Chenopodiacea*, género *Chenopodium*, sección *Chenopodia* y subsección *Cellulata* de la que forma parte junto con la cañihua (*Chenopodium pallidicaule* Aellen), la espinaca (*Spinacea oleracea* L.) y la remolacha (*Beta vulgaris* L.) (Mujica y Jacobsen, 2006).

Dentro del género *Chenopodium* existen cinco especies cultivadas como plantas alimenticias: como productoras de grano, *C. quinoa* Willd. y *C. pallidicaule* Aellen, en Sudamérica; como verdura *C. nuttalliae* Safford y *C. ambrosioides* L. en México; *C. carnoslolum* L. y *C. ambrosioides* L. en Sudamérica; el número cromosómico básico del género es nueve, siendo una planta alotetraploide con 36 cromosomas somáticos. Este género también incluye especies silvestres de amplia distribución mundial: *C. álbum* L., *C. hircinum* Schrad., *C. murale* L., *C. graveolens* Willd., *C. petiolare* Kunth entre otros (FAO, 2001).

Reino: Vegetal

División: Fanerógamas

Clase: Dicotiledóneas

Sub clase: Angiospermas

Orden: Centrospermales

Familia: *Chenopodiáceas*

Género: Chenopodium

Sección: Chenopodia

Especie: Chenopodium quinoa Willdenow.

1.1.6. Genoma y citotaxonomía

La quinua es una especie alotetraploide con número cromosómico 2n=36, por lo que la herencia de la mayoría de sus características cualitativas es disómica. Está constituido por 4 genomios, con un número básico de 9 cromosomas (4n = 4 x 9 = 36). Su genoma haploide consta de aproximadamente 967 millones de pares de bases siendo relativamente pequeño en comparación con otras especies vegetales (Kole, 2007).

Por ello el pariente más cercano de la quinua cultivada seria *C. hircinum* Schrad. (tetraploide), el escape del cultivo sería *C. quinoa* Willd. *var. melanospermun* (tertraploide), llamado comunmente aspha quinua y que los progenitores ancestrales serian *C. carnosolum* L., *C. pallidicaule* Aellen y *C. petiolare* Kunth todos ellos diploides. En los últimos años detallados estudios cariotípicos se han realizado en muchos taxones silvestres y cultivadas de *Chenopodium spp*. (Bhargava *et al.*, 2005). El índice de simetría (TF%) de la quinua varía desde 43,9 hasta 47,4%. y sólo un simple par satélite se ha observado en todas las accesiones de quinua estudiadas, lo cual ha sido corroborado por estudios de hibridación fluorescentes *in situ* (Kolano *et al.*, 2001). Según los estudios realizados por Bhargava *et al.*, 2006, se muestran una gran similitud cariotípica entre *C. quinoa* Willd. y *C. berlandieri ssp. Nuttaltiae* (Saff.) H. D. Wilson y Heiser; que es evidente a partir de las fórmulas cariotípica, índice de simetría y un par de satélite de morfología similar (Bhargava *et al.*, 2005).

1.1.7. Descripción botánica

1.1.7.1. Planta

La quinua es una planta anual, dicotiledónea, usualmente herbácea, que alcanza una altura de 1 a 3 m. Las plantas pueden presentar diversos colores que van desde verde, morado a rojo y colores intermedios entre estos. El tallo principal puede ser ramificado o no; esto depende del ecotipo, raza, densidad de siembra y de las condiciones del medio en que se cultiven, es de sección circular en la zona cercana a la raíz, transformándose en angular a la altura de las ramas y hojas. Es más frecuente el hábito ramificado en las razas cultivadas en los valles interandinos del sur del Perú y Bolivia, en cambio el hábito simple se

observa en pocas razas cultivadas en el altiplano y en una buena parte de las razas del centro y norte del Perú y Ecuador (FAO, 2001).

1.1.7.2. Hojas

Las hojas son de carácter polimórfico en una sola planta; las basales son grandes y pueden ser romboidales o triangulares, mientras que las hojas superiores generalmente alrededor de la panoja son lanceoladas. Su color va desde el verde hasta el rojo, pasando por el amarillo y el violeta, según la naturaleza y la importancia de los pigmentos. Son dentadas en el borde pudiendo tener hasta 43 dientes. Contienen además gránulos en su superficie dándoles la apariencia de estar cubiertas de arenilla-estos gránulos contienen células ricas en oxalato de calcio y son capaces de retener una película de agua, lo que aumenta la humedad relativa de la atmósfera que rodea a la hoja y consecuentemente disminuye la transpiración (Rojas, 2003).

1.1.7.3. Inflorescencia

La inflorescencia es racimosa y se denomina panoja por tener un eje principal más desarrollado, del cual se originan los ejes secundarios y en algunos casos terciarios. Fue FAO (2001), quien agrupó por primera vez a la quinua por su forma de panoja, en amarantiforme, glomerulada e intermedia, y designó el nombre amarantiforme por el parecido que tiene con la inflorescencia del género Amaranthus. La forma de panoja está determinada genéticamente por un par de genes, siendo totalmente dominante la forma glomerulada sobre la amarantiforme, razón por la cual parece dudoso clasificar panojas intermedias. La panoja terminal puede ser definida (totalmente diferenciada del resto de la planta) o ramificada, cuando no existe una diferenciación clara a causa de que el eje principal tiene ramas relativamente largas que le dan a la panoja una forma cónica peculiar; asimismo, la panoja puede ser suelta o compacta, lo que está determinado por la longitud de los ejes secundarios y pedicelos, siendo compactos cuando ambos son cortos (Gandarillas, 1984).

Las flores son muy pequeñas y densas, lo cual hacen difícil la emasculación, se ubican en grupos formando glomérulos sésiles, de la misma coloración que los sépalos y, pueden ser hermafroditas, pistiladas o androestériles. Los estambres, que son cinco, poseen filamentos cortos que sostienen anteras basifijas y se encuentran rodeando el ovario, cuyo estilo se caracteriza por tener 2 ó 3 estigmas plumosos. Las flores permanecen abiertas por un período que varía de 5 a 7 días y como no se abren simultáneamente, se determinó que el tiempo de duración de la floración está entre 12 a 15 días (Lescano, 1994).

1.1.7.4. Fruto

El fruto es un aquenio indehiscente que contiene un grano que puede alcanzar hasta 2.66 mm de diámetro de acuerdo a la variedad (Rojas, 2003). Según Tapia y Fries (2007), el perigonio cubre a la semilla y se desprende con facilidad al frotarlo. El episperma que envuelve al grano está compuesto por cuatro capas: la externa determina el color de la semilla, es de superficie rugosa, quebradiza, se desprende fácilmente con agua, y contiene a la saponina.

1.1.8. Fenología de la quinua

Según Mujica *et al.* (2013), la fenología mide los diferentes estados o fases de desarrollo de la planta, mediante una apreciación visual en la que se determina los distintos eventos de cambio o transformación fenotípica de la planta, relacionadas con la variación climática, dando rangos comprendidos entre una y otra etapa.

La quinua presenta fases fenológicas bien marcadas y diferenciables, las cuales permiten identificar los cambios que ocurren durante el desarrollo de la planta, se han determinado catorce fases fenológicas (Mujica y Canahua, 1989).

1.1.8.1. Emergencia

Según Mujica *et al.* (2013), la emergencia es cuando los cotiledones aun unidos, emergen del suelo a manera de una cabeza de fósforo y es distinguible solo cuando uno se pone al nivel del suelo, en esta etapa es muy susceptible de ser consumido por las aves por su suculencia y

exposición de la semilla encima del talluelo, ello ocurre de los seis días después de la siembra, en condiciones adecuadas de humedad.

1.1.8.2. Dos hojas verdaderas

Según Mujica *et al.* (2013), la dos hojas verdaderas es cuando, fuera de las dos hojas cotiledonales, aparecen dos hojas verdaderas extendidas que ya tienen forma romboidal y con nervaduras claramente distinguibles y se encuentran en botón foliar el siguiente par de hojas, ocurre de los 15 a 20 días de la siembra, mostrando un crecimiento rápido del sistema radicular, en esta fase puede ocurrir el ataque de los gusanos cortadores de plantas tiernas (*Copitarsia turbata* Herrich-Schaeffer, y *Feltia experta* Wik.) "Ticuchis".

1.1.8.3. Cuatro hojas verdaderas

Es cuando ya se observa dos pares de hojas verdaderas completamente extendidas y aún se nota la presencia de las hojas cotiledonales de color verde, encontrándose en botón foliar las siguientes hojas del ápice de la plántula e inicio de formación de botones en las axilas del primer par de hojas; ocurre de los 25 a 30 días después de la siembra, en esta fase ya la planta tiene buena resistencia a la sequía y al frío, porque ha extendido fuertemente sus raíces y muestra movimientos nictinásticos nocturnos cuando hace frío, dada la presencia de hojas tiernas, se inicia el ataque de insectos masticadores de hojas (*Epitrix subcrinita* Leconte y *Diabrotica de color*.)" pulguilla saltona y Loritos" sobre todo cuando hay escasez de lluvias (Mujica y Canahua, 1989).

1.1.8.4. Seis hojas verdaderas

Se observa tres pares de hojas verdaderas extendidas, tornándose de color amarillento las hojas cotiledonales y algo flácidas, se notan ya las hojas axilares, desde el estado de formación de botones hasta el inicio de apertura de botones del ápice a la base de la plántula, esta fase ocurre de los 35 a 45 días de la siembra, en la cual se nota con mayor claridad la protección del ápice vegetativo por las hojas más adultas, especialmente cuando se presentan bajas temperaturas, sequía y sobre todo al anochecer;

durante el día en presencia de viento la plántula flamea (Mujica *et al.*, 2013).

1.1.8.5. Ramificación

Según Mujica *et al.* (2013), la ramificación se nota ocho hojas verdaderas extendidas y extensión de las hojas axilares hasta la tercera fila de hojas en el tallo, las hojas cotiledonales se caen y dejan cicatrices claramente notorias en el tallo, también se observa la presencia de la inflorescencia protegida por las hojas sin dejar al descubierto la panoja, ocurre de los 45 a 50 días de la siembra. En esta fase se efectúa el aporque para las quinuas de valle, así mismo es la etapa de mayor resistencia al frío y se nota con mucha nitidez la presencia de cristales de oxalato de calcio en las hojas dando una apariencia cristalina e incluso de colores que caracterizan a los distintos genotipos; debido a la gran cantidad de hojas es la etapa en la que mayormente se consume las hojas como verdura, hasta esta fase el crecimiento de la planta pareciera lento, para luego alargarse rápidamente, la planta ya se nota bien establecida y entre plantas se observa cierto acercamiento.

1.1.8.6. Inicio de panojamiento

La inflorescencia se ve que va emergiendo del ápice de la planta, observándose alrededor aglomeraciones de hojas pequeñas con bastantes cristales de oxalato de calcio, las cuales van cubriendo a la panoja en sus tres cuartas partes. Ello ocurre de los 55 a 60 días de la siembra; así mismo se puede ver amarillamiento del primer par de hojas verdaderas (hojas que dejaron de ser fotosintéticamente activas) y se produce una fuerte elongación del tallo, así como engrosamiento. En esta fase ocurre el ataque de la primera generación de *Eurysacca quinoae* Povolny "Kcona-Kcona". En esta fase, la parte más sensible a las heladas no es el ápice, sino por debajo de este y en caso de severas bajas de temperatura que afectan a la planta, se produce el colgado del ápice (Mujica y Canahua, 1989).

1.1.8.7. Panojamiento

Según Mujica *et al.* (2013), el panojamiento es cuando la inflorescencia sobresale con mucha nitidez por encima de las hojas superiores, notándose los glomérulos de la base de la panoja, los botones florales individualizados sobre todo los apicales que corresponderán a las flores pistiladas. Esta etapa ocurre de los 65 a 70 días de la siembra; a partir de esta etapa se puede consumir las panojas tiernas como verdura.

1.1.8.8. Inicio de floración

Es cuando las flores hermafroditas apicales de los glomérulos conformantes de la inflorescencia se encuentran abiertos, mostrando los estambres separados de color amarillento, ocurre de los 75 a 80 días de la siembra, en esta fase es bastante sensible a la sequía y heladas, también ocurre amarillamiento y defoliación de las hojas inferiores sobre todo aquellas de menor eficiencia fotosintética (Mujica *et al.*, 2013).

1.1.8.9. Floración

Según Mujica *et al.* (2013), la floración es cuando el 50% de las flores de la inflorescencia principal (cuando existan inflorescencias secundarias) se encuentran abiertas, esto ocurre de los 90 a 100 días de la siembra, esta fase es muy sensible a las heladas, pudiendo resistir solo hasta 2 °C, debe observarse esta etapa al medio día, ya que en horas de la mañana y al atardecer las flores se encuentran cerradas, por ser heliófilas, así mismo la planta elimina en mayor cantidad las hojas inferiores que son menos activas fotosintéticamente y existe abundancia de polen en los estambres que tienen una coloración amarilla.

1.1.8.10. Grano acuoso

Es cuando se inicia la formación de la semilla después de ser fecundada, en donde al ser presionada por las uñas de los dedos pulgares presenta una consistencia acuosa, de color transparente a partir de esta fase se inicia la formación del fruto (Mujica *et al.*, 2013).

1.1.8.11. Grano lechoso

Según Mujica *et al.* (2013), el grano lechoso es cuando los frutos al ser presionados entre las uñas de los dedos pulgares, explotan y dejan salir un líquido lechoso, ocurre de los 100 a 130 días de la siembra. En esta fase el déficit de agua es perjudicial para la producción.

1.1.8.12. Grano pastoso

Es cuando los frutos al ser presionados presentan una consistencia pastosa de color blanco, ocurre de los 130 a 160 días de la siembra, en esta fase el ataque de la segunda generación de *Eurysacca quinoae* Povolny "Kcona-Kcona" causa daños considerables, así mismo el déficit de humedad afecta fuertemente a la producción (Mujica y Canahua, 1989).

1.1.8.13. Madurez fisiológica

Según Mujica *et al.* (2013), es la fase en la que la planta completa su madurez, y se reconoce cuando los granos al ser presionados por las uñas presentan resistencia a la penetración, ocurre de los 160 a 180 días de la siembra, en esta etapa el contenido de humedad del grano varia de 14 a 16 %; el lapso comprendido desde la floración hasta la madurez fisiológica, viene a constituir el período de llenado de grano.

1.1.8.14. Madurez de cosecha

Es cuando los granos sobresalen del perigonio, dando una apariencia de estar casi suelto y listo para desprenderse, la humedad de la planta es tal que facilita la trilla (Mujica *et al.*, 2013).

1.1.9. Variedades de quinua

1.1.9.1. Salcedo INIA

Mujica *et al.* (2001), mencionan que esta variedad fue lograda por selección masal del cruce dialélico de siete x siete de las variedades Real Boliviana x Sajama, en la estación experimental de Salcedo-INIA (Programa de Investigación de Cultivos Andinos-PICA), Planta de color verde, con inflorescencia glomerulada, con altura de planta de 1,80 m, de

grano grande con diámetro de 1,8 a 2 mm, de color blanco, sin saponina, panoja glomerulada, periodo vegetativo 160 días (precoz), potencial de rendimiento 3 500 kg.ha⁻¹, resistente a heladas (-2 °C), tolerante al mildiu. De gran adaptación a diferentes altitudes (3 800 - 3 900 msnm); se recomienda su cultivo en la zona circunlacustre de Juli, Pomata, Ilave, Pilcuyo y otros como la costa y valles interandinos.

1.1.9.2. Huariponcho

Reinoso y Paredes (1998), menciona que es una variedad más resistente a las granizadas y las heladas. Fue descubierto en el distrito de Taraco, esta quinua es amarga y suele ser más defensiva frente al ataque de las aves. Esta quinua tiene un potencial de rendimiento de 2 205 kg.ha⁻¹. A la vez por tener una panoja gruesa es resistente a las granizadas.

1.1.9.3. Pasankalla

La variedad Pasankalla se distingue por tener plantas de tallo rojo y tallo blanco, el color de semilla es plomo, la altura de la planta alcanza hasta 0,88 m y con un potencial de rendimiento grano es de 2 510 kg.ha⁻¹, contenido saponina (grano) trazas (dulce), ciclo vegetativo, promedio es de 170 días, en cuanto a la respuesta a factores bióticos y abióticos es susceptible a heladas (2 °C) y al granizo. Tolerante al mildiu (*Peronospora variabilis* Gaus), susceptible al ataque de aves y los usos que se les da es para harina tostada, expandido, graneado, ideal para pasteles (Grace, 1985).

1.1.9.4. Negra collana

Catacora y Canahua (1991), mencionan a la variedad "Negra collana", es resultado de las pruebas de identificación, adaptación y eficiencia desarrollados en el ámbito de la Estación Experimental Agraria Illpa del Instituto Nacional de Innovación Agraria (INIA), y evaluaciones participativas en campo, con agricultores de las comunidades campesinas, Collana, Collpa, Cieneguilla, Vizcachani, Kallachoco y Corcoroni de los distritos de Cabana, Ilave, Mañazo y Pilcuyo de la Región Puno. Su adaptación; su mejor desarrollo se logra en la zona agroecológica Suni del

altiplano, entre los 3 815 y 3 900 msnm, con clima frío seco, precipitación de 400 a 550 mm y temperatura de 4 °C a 15 °C, con un potencial de rendimiento de 3 010 kg.ha⁻¹.

1.1.9.5. Kcancolla

Tapia (2000), menciona que fue seleccionada a partir del ecotipo local de la zona de Cabanillas, Puno, planta de color verde, de tamaño mediano alcanzando 80 cm de altura, de ciclo vegetativo tardío, más de 170 días, grano blanco, tamaño mediano, con alto contenido de saponina, panoja generalmente amarantiforme, resistente al frío, granizo, su potencial de rendimiento es de 2 500 kg.ha⁻¹, segrega a otros colores desde el verde hasta el púrpura, muy difundida en el altiplano peruano. Se usa generalmente para sopas y elaboración de kispiño (panecillo frito en grasa animal que tiene una duración de varios meses).

1.1.9.6. Pandela rosada

Provienen del altiplano Sur de Bolivia, son precoces en ciclo vegetativo (140 días), grano grande y amargo. Una desventaja de este genotipo es su alta susceptibilidad al mildiu, no es tolerante a las sequias, el color de grano una vez alcanzado su madurez fisiológica es de color marfil y su potencial de rendimiento es de 2 500 kg.ha⁻¹ (Tapia, 2000).

1.1.10. Genética de la quinua

1.1.10.1. Gen de la quinua

Actualmente los intentos por acrecentar la investigación sobre la genética de la quinua son limitados. Poca información se tiene sobre sus genes, de cómo estos se ubican en su genoma y como se heredan. Sin embargo, modernos programas de reproducción y mejoramiento genético, apoyados por agencias privadas y gubernamentales, se han ido estableciendo rápidamente en Bolivia y Perú, con el objeto de desarrollar marcadores moleculares para el manejo de germoplasmas y facilitar los programas de mejoramiento genético tradicional. Gracias a la tecnología de los marcadores moleculares se ha desarrollado el primer mapa de

ligamiento genético para quinua empleando 230 polimorfismos de longitud de fragmentos amplificados, más conocidos por su acrónimo inglés AFLP (Amplified fragment length polymorphism), 19 secuencias simples repetidas o microsatélites, SSR (Single Sequence Repeat) y seis polimorfismos de longitud de los fragmentos de restricción o RFLP (del inglés Restriction Fragment Length Polymorphism). Donde se obtuvo una extensión del mapa de 1,020 cM y contiene 35 grupos de ligamiento con una densidad media del marcador de 4.0 cM por marcador (Maughan *et al.*, 2004).

1.1.10.2. Cromosomas

Ward (2000), indica que los cromosomas se encuentran en el núcleo celular y son los portadores de los genes y por ende de la sustancia hereditaria. La quinua cultivada tiene 36 cromosomas, repartidos en 4 genomios con el número básico de x=9 cromosomas, es decir, la quinua es un tetraploide, con 4x=36 cromosomas. Como esta tetraploidia es el resultado, de un cruce de dos diferentes especies diploides (con 2n=18), la quinua es más específicamente un alotetraploide con 2n=4x=36 cromosomas.

1.1.10.3. Erosión genética

Se denomina erosión genética a la pérdida gradual de la diversidad genética. Aunque generalmente es aceptado que una cantidad significativa de erosión genética ocurre y sigue ocurriendo con la destrucción de ecosistemas y hábitats por las actividades humanas, existe muy poca información sobre las cantidades precisas y extensión de la perdida. Ciertamente, debido a las comodidades alimenticias actuales ha habido un dramático incremento del uso de un pequeño número de cultivos uniformes altamente seleccionados y esto ha sido asociado a la reducción del número de cultivares y a la reducción de áreas en donde cultivos tradicionales y nativos crecían (Hodgkin, 1995).

1.1.10.4. Herencia de caracteres de la quinua

El objetico principal del mejoramiento de la quinua es, desarrollar variedades con un alto nivel de rendimiento y producción, alto contenido de proteína. Más no se centra en el mejoramiento de sus capacidades de resistencia a factores abióticos. Esta falta de interés puede deberse a que estas características inherentes de la quinua son muy amplias y fuertemente marcadas en casi todas las variedades existentes como las describe el CIP (Jacobsen, 2000), en donde ésta puede crecer en agua de mar, en diferentes zonas de vida y alturas o incluso bajo condiciones extremas de sequía y heladas.

Actualmente los esfuerzos de mejoramiento genéticos de esta especie se han realizado bajo técnicas convencionales, es decir, mediante cruzamientos. Sin embargo, esta técnica es muy complicada debido al alto porcentaje de auto-polinización y a que el tamaño de las flores de quinua es muy pequeño, lo que hace que la emasculación e hibridación sea un trabajo muy tedioso (Bhargava *et al.*, 2006).

Gracias a estas prácticas, se han efectuado avances considerables en la biología foral de la quinua, que han permitido iniciar trabajos de mejoramiento a través de la hibridación y selecciones, estos estudios han permitido conocer los porcentajes de autopolinización, polinización cruzada, cantidades de flores de diferentes sexos, cantidad de glomérulos en las inflorescencias, numero de flores en los glomérulos, tiempo de apertura de las flores, tiempo de maduración de los estambres y estigmas, presencia de aberraciones florales, agentes polinizadores y comportamiento diferencial de las variedades (Jacobsen, 2000).

Según Silvestri y Gil (2000), la planta es primordialmente autopolinizadora, pero posee un porcentaje de polinización cruzada de 17.36%.
Este bajo porcentaje de cruzamiento ocurre frecuentemente cuando se
encuentran a una distancia de un metro y ocasionalmente a distancias
menores de 20 metros (Gandarillas, 1979). Otros estudios sobre porcentaje
de polinización cruzada natural y autopolinización en variedades
comerciales de quinua como: Kcancolla, Blanca de Juli y Sajama,

presentan mayormente autogamia, aunque por la existencia de un gran número de flores femeninas permiten cierto grado de alogamia, al trabajar con los genotipos Ayara y Mixtura, observó que el genotipo Ayara se comportaba como Alógama (12.2% de polinización cruzada) mientras que a mixtura como autógama (97.6 % de autopolinización), en ambos genotipos se observó homostilia, siendo homógamas, encontró una marcada variación sexual en dos líneas según el color de la panoja, observando flores pistiladas, hermafroditas y androestériles, la línea blanca presentó 99.13% de autopolinización y la morada 98.66%, considerando a ambas como autógamas.

Por otra parte, es de vital importancia considerar el uso de la biotecnología como una herramienta capaz de acelerar el alcance de objetivos en los programas de mejoramiento mediante el estudio de ADN y otras técnicas. Estudios que pueden ir desde la determinación del nivel de diversidad en un proceso de selección, hasta el estudio de genes específicos que controlan importantes características, tales como la resistencia a enfermedades, control genético de la producción de saponinas en el grano, o la comprensión de características más complejas como la tolerancia a la sequía o la salinidad (Fuentes *et al.*, 2009).

Mujica (1988), determino la haredabilidad de las variables de quinua, en donde predominan altura de planta con 0.78, diámetro de tallo con 0.60, longitud de panoja con 0.04, diámetro de panoja con 0.61, floración con 0.75, madurez fisiológica con 0.82 y rendimiento con 0.33. En quinua el tipo de inflorescencia puede ser amarantiforme o glomerulada, siendo esta última dominante sobre la primera. El color de las plantas de quinua es un carácter de herencia simple; en cambio el color de los granos es por la acción de agentes complementarios, siendo el color blanco un carácter recesivo.

1.1.10.5. Conservación de la diversidad genética

La conservación de la diversidad genética de quinua a través de estrategias de conservación *in situ* y *ex situ*, ha permitido implementar los actuales programas de mejoramiento genético en la región andina. Pese a

ello es importante considerar el comportamiento en campo de esta diversidad, para posteriormente determinar aquellas líneas promisorias sobresaliente en atributos de interés como el rendimiento, índice de cosecha, calidad de grano, resistencia a enfermedades, tolerancia a sequía y/o a salinidad, entre otras características productivas relevantes. Así mismo resulta importante el conocimiento del sistema reproductivo de plantas de quinua, los cuales facilitarán en mayor o menor medida los procesos de fecundación natural o artificial entre plantas, dada la amplia variación en inflorescencias y tipos florales presentes en quinua (Bhargava et al., 2006). Por otra parte, el uso de herramientas biotecnológicas como los marcadores moleculares y los mapas genéticos son altamente útiles para los programas de fitomejoramiento y particularmente importantes para la conservación de bancos de germoplasma, incluyendo también el desarrollo de núcleos de colección e identificación de cultivares.

El primer banco de germoplasma caracterizado en Perú fue liderado por la Universidad Nacional del Altiplano (UNAP), la cual reportó una colección de 1.029 accesiones de quinuas, las que a partir de ellas se definió la colección núcleo de 103 accesiones (Ortiz *et al.*, 1998), sin considerar la presencia de especies silvestres. Otros grupos de investigación en el Perú también mantienen colecciones de germoplasma, por ejemplo, la Universidad Nacional Agraria de la Molina (UNALM), posee una colección de aproximadamente 2.800 accesiones de quinua.

1.1.10.6. Fitomejoramiento en quinua

Por tratarse de una especie autógama con polinización cruzada frecuente (Gandarillas, 1979), los métodos de mejoramiento aplicables para la quinua son aquellos desarrolladas para las autógamas de grano, esto considerando que la quinua no pasa del 10 % de alogamia (Tapia, 1979). La elección del método de mejoramiento para la quinua dependerá de los objetivos del mejoramiento genético, las características del material de partida, de los recursos disponibles, el conocimiento de las técnicas de mejoramiento, etc. (Gandarillas, 1979).

Los métodos empleados en el mejoramiento de la quinua fueron diferentes en los países andinos, así en Bolivia se ha iniciado con la hibridación artificial y selección, mientras que en Perú y Ecuador se iniciaron con la selección en poblaciones o accesiones de germoplasma. En la última década los tres países han adoptado la hibridación y selección como método de mejoramiento, además de iniciar el empleo de herramientas de biología molecular en la caracterización del material genético y búsqueda de marcadores moleculares para algunos caracteres de interés (saponina, mildiú, sequía, proteínas). También se ha incorporado la evaluación participativa de líneas y variedades (Bonifacio, 2013).

En Perú, las variedades de quinua hasta ahora obtenidas han sido desarrolladas por el método de selección; pero las exigencias actuales no se pueden responder con este método, razón por la cual se han iniciado programas de mejoramiento por hibridación o cruzamiento (Tapia, 2000).

Singh (1996), recomienda que para realizar cruzamientos se debe tener en cuenta la distancia genética entre los padres involucrados en la cruza como origen, habilidad combinatoria, tipo de semilla, hábito de crecimiento, madurez, adaptación, etc. Además de los genes útiles de resistencia a enfermedades.

1.1.10.7. Hibridación

Ofrece buenas perspectivas para lograr objetivos como alto rendimiento, tamaño de grano, resistencia a enfermedades y otros caracteres agronómicos importantes dichos caracteres se encuentran en diferentes razas o variedades. El análisis del comportamiento de estos factores, ligados a las diferentes razas de quinuas, muestra que las posibilidades de obtener por selección una nueva variedad con los caracteres deseados, son poco probables. Para reunir en una sola variedad más caracteres favorables, hay que recurrir al cruzamiento de una o varias razas. Las técnicas de cruzamientos en sí varían en cómo se lleva el procedimiento, aunque de forma general primero se debe realizar una castración de las flores que servirán como madres y luego hay que polinizar con los granos de polen que tienen características deseadas

(Peterson *et al.*, 2015).

Este método consiste en cruzar dos progenitores con características deseables. La F1 es sembrada en un área adecuada para obtener plantas F2 suficientes y permitir la identificación de los caracteres fenotípicos. En la F2, son seleccionadas las plantas sobresalientes que muestran las características fenotípicas buscadas por la cruza. Las plantas seleccionadas son cultivadas en sistema panoja-surco para obtener F3. En esta generación, todas las líneas que no producen las características deseadas, son eliminadas. Entre las líneas seleccionadas, las plantas superiores son elegidas para ser sembradas en hileras, para que las líneas de cada familia identificada estén disponibles. En la F4, tanto la familia completa como las líneas de la familia son seleccionadas. Esto continúa en la F5 y en la F6 a medida que las líneas aumentan. Subsecuentemente, el testeo de las líneas se realiza en múltiples años y en varias localidades (Jacobsen y Mujica, 2002).

Dentro del fitomejoramiento es importante considerar la resistencia; y en la quinua la principal enfermedad es el mildiú (*Peronospora variabilis* Gaus), enfermedad de importancia económica en las zonas agroecológicas de producción, tanto así que los mismos agricultores manifiestan que ésta es una de las enfermedades más importantes en el cultivo. Desde 1999 al 2001 el INIA con el apoyo del proyecto de resistencia duradera para la zona andina, realizó trabajos de mejoramiento genético para resistencia duradera a mildiú, los cuales estaban básicamente orientados a la evaluación de la resistencia a mildiú en accesiones de germoplasma local y a la selección de líneas promisorias con la participación activa de los agricultores. En este trabajo observaron que cuanto más precoz es la planta, mayor es el grado de susceptibilidad y cuanto más tardía es la planta, mayor es la resistencia al hongo (Gamarra *et al.*, 2001).

1.1.10.8. Selección de lineas promisorias

Cuando la selección en una especie de cultivo involucra varias características el uso de un índice de selección debe ser tomado en cuenta, debido a que esta metodología incluye la combinación de distintas

características, de tal forma que cada individuo tiene un valor índice sobre el que la selección es aplicada como si fuera una característica simple. La selección simultánea de múltiples características se puede utilizar para evitar la disminución de los niveles de aquéllas que están asociadas de forma negativa con la característica a seleccionar, que resulta de la selección de caracteres individuales. Para realizarla, se puede diseñar y emplear varios índices de selección; la eficiencia de éstos será afectada por el número de características involucradas y sus asociaciones con otras, la variabilidad y heredabilidad para cada característica, y la intensidad de selección utilizada para cada una de ellas (Andrade, 2012).

Yan y Rajcan (2002), concluyen que la selección basada en múltiples características es un tema inevitable para todos los mejoradores, ya que además de rendimiento y calidad, también son objetivos esenciales de mejoramiento la resistencia a plagas y características agronómicas que determinen la adaptación y estabilidad. Menciona que en la mayoría de los programas de mejoramiento de cultivos hay una necesidad para mejorar más de una característica a la vez y que el reconocimiento de que el mejoramiento de una característica puede causar mejoramiento o deterioración en características asociadas sirve para enfatizar la necesidad para simultaneas consideraciones de todas las características que son importantes en especies de cultivo, este mismo autor indica que los índices de selección proporcionan un método para el mejoramiento de dos o más características en un programa de mejoramiento.

El índice de Elston que es el producto de los valores fenotípicos menos el mínimo observado para cada característica. Encontrando que con correlaciones genéticas y fenotípicas adversas los índices simples llevan a bajas ganancias esperadas en algunas características y diferentes grupos de individuos son elegidos como el mejor, sin embargo donde las características son positivamente asociadas todos los índices producen similares ganancias esperadas y grupos similares de individuos seleccionados como el mejor (Elston, 2014).

1.2. ANTECEDENTES

Con respecto a la herencia genética (cromosómica), la quinua tiene un comportamiento hereditario del tipo disómico (Simmonds, 1971). Esta forma de herencia implícita al menos para caracteres cualitativos, en varios trabajos de Gandarillas (1979), quien han observado la segregación de caracteres en F2 concordantes con las proporciones clásicas de 3:1 y 9:3: 3:1 correspondientes a uno y dos pares de genes respectivamente. también indica que los Fitomejoradores venían usando la hibridación en el mejoramiento de plantas mucho antes del redescubrimiento de las leyes de Mendel en 1900. Numerosos investigadores ya habían observado ciertas características del Mendelismo, tales como la dominancia en la F1, la segregación en la F2 y la regularidad de la aparición de los tipos paternales en la descendencia.

A su vez Reyes (1985), indica que cuando el hombre tuvo conocimiento de la sexualidad y de la reproducción sexual en las plantas, desarrolló técnicas de hibridación, siendo más tarde una modalidad de mejoramiento. Cuando se descubren las leyes de herencia, las técnicas de la hibridación, son mayormente aplicables y el mejoramiento es de mayor alcance y más rápido; cuando el hombre aplica la estadística a los problemas biológicos es posible la evaluación de las diferentes causas de variación observadas en una población de plantas y consecuentemente permite la discriminación del efecto genético, el ecológico y la acción conjunta o interacción. Sin embargo, Lescano (1994), indica que este método de hibridación empleado en quinua, se inicia en la estación experimental de Patacamaya (Bolivia) y donde se obtiene la variedad dulce "Sajama" (Gandarillas, 1979). El método presenta buenas perspectivas, para el mejoramiento principalmente referentes a rendimiento, tamaño de grano, contenido de saponina, resistencia a enfermedades y otras características agronómicas.

León (2006), en su investigación concluye que el cultivar Pasankalla se hibridó con los cultivares Salcedo-INIA y Choclo, mejor porcentaje de semillas hibridas se logró en las cruzas simples realizadas a la intemperie en la campaña agrícola 2003-2004, obteniéndose: 41% de semillas hibridas de la cruza de los progenitores Salcedo-INIA x Pasankalla, 63% de semillas hibridas de la cruza de los progenitores Pasankalla x Choclo; y en las cruzas reciprocas realizadas en la campaña agrícola 2004-2005 dentro de invernadero se obtuvo: 39% de semillas hibridas de la cruza de progenitores Salcedo-INIA 11% de semillas hibridas, 18% de semillas hibridas de la cruza de los progenitores

Pasankalla x Choclo y en su reciproca Choclo por Pasankalla 29% de semillas hibridas. El sistema de cruzamiento es preferentemente autógama, aunque presenta entre 2 y 9% de alogamía (Gandarillas, 1979).

Las técnicas de mejoramiento han sido revisadas por Tapia (1979) y Gandarillas (1979), concluyen que la selección panoja-surco es una de las más promisorias. Además, se reconoce que existe una amplia variabilidad, con material precoz, tolerante a las principales enfermedades y plagas, diferentes tamaños de grano, contenido de saponina y potencial productivo. Lescano (1994), indica que otras técnicas como la hibridación han sido empleadas con relativa respuesta.

El trabajo de mejoramiento genético se inició en la Universidad Nacional del Altiplano Puno en octubre de 2011, en el invernadero de la Facultad de Ciencias Agrarias, sembrando ocho variedades de quinua utilizados como genitores (1. Salcedo INIA (SAL), 2. Huariponcho (HUA), 3. Choclito (CHO), 4. Chullpi rojo (CHU), 5. Pasankalla (PAS), 6. Negra collana (COL), 7. Kcancolla (KCA), 8. Pandela rosada (PAN)), con cuatro repeticiones y tres fechas de siembra, distanciadas en una semana, para obtener polen viable y ovario receptivo. Los resultados indican que las variedades distantes son: Huariponcho con Kcancolla, Salcedo INIA con Huariponcho y Pasankalla con Kcancolla y las emparentadas: Negra collana con Kcancolla, Salcedo-INIA con Pandela y Salcedo-INIA con Negra collana. La hibridación de las variedades con características deseadas, es el punto de partida para la obtención de nuevas variedades de quinua mejoradas genéticamente en un futuro, con características agronómicas requeridas por el productor. A través de las cruzas simples se obtendrán caracteres sobresalientes de la quinua, de tal forma que se seleccionara las mejores. Mujica et al., (2013), muestran toda la metodología de hibridación, las variedades utilizadas, el seguimiento de la fenología y las distancias genéticas utilizando marcadores genéticos en base al índice de similitud genética.

Bustincio (2013), determino la variabilidad de las progenies F1 esto en base a las características agromorfológicas, en donde se ha obtenido las cruzas distantes a los siguientes progenies: Pasankalla x Kcancolla y Huariponcho x Kcancolla con 32,75; Salcedo INIA x Pandela y Huariponcho x Kcancolla con 29,79; Negra collana x Kcancolla y Huariponcho x Kcancolla con 29,39 y como cercanas: Salcedo INIA x Pandela y Negra collana x Kcancolla con 15,38; Salcedo INIA x Huariponcho y

Huariponcho x Kcancolla con 15,50; Salcedo INIA x Negra collana y Salcedo INIA x Pandela con 16,32.

Pinto (2014), evaluó el comportamiento en la etapa S1 de las progenies obtenidos de las seis cruzas simples en cuanto a precocidad, rendimiento y calidad se concluye, la prueba de significancia Tukey (ANOVA) en comparativo con el análisis de componentes principales, encentrándose las cruzas más sobre salientes en cuanto a los caracteres de precocidad, rendimiento y calidad; las que se ubicaron en los primeros componentes, cruza 1 (Salcedo INIA x Huariponcho), cruza 3 (Salcedo INIA x Negra collana), cruza 19 (Pasankalla x Pandela) y cruza 22 (Kcancolla x Pandela).

Apaza (2014), determino la variabilidad entre las progenies obtenidas por cruzas simples en donde menciona que los caracteres longitud de la panoja, diámetro de la panoja y número de dientes de hoja tienen mayor coeficiente de variabilidad. En cuanto a la correlación de Pearson obtuvo alta correlación entre las características fenológicas y de grano, respecto a la arquitectura de la planta y con el análisis multivariado determinó la variabilidad genética entre progenies, donde los más distantes fueron: Pasankalla x Kcancolla y Salcedo-INIA x Negra collana con 0,690401, Salcedo-INIA x Huariponcho y Negra collana x Kcancolla con 0,538099 y finalmente Pasankalla x Kcancolla y Salcedo-INIA x Pandela Rosada con 0,527767. Y los más cercanos fueron: Salcedo-INIA x Pandela Rosada y Salcedo-INIA x Huariponcho con 0,266395, Salcedo-INIA x Negra collana y Salcedo-INIA x Pandela Rosada con 0,33666 y finalmente Negra collana x Kcancolla y Huariponcho x Kcancolla con 0,390854 a travez de las características agromorfologicas.

Domínguez (2015), determino la variabilidad fenotípica en las seis progenies de quinua S4 en donde encontró que Pasankalla x Kcancolla y Huariponcho x Kcancolla dista más del resto de las progenies debido a que el primero presenta características fenológicas tardías y bajo índice de cosecha y el segundo porque es planta pequeña, gano pequeño y precoz, las progenies restantes presentan características fenológicas y arquitectura de planta similares. Mediante el análisis de conglomerados se ha estimado la variabilidad fenotípica entre progenies, donde los más distantes fueron: Pasankalla x Kcancolla y Huariponcho x Kcancolla con 0,696409 y las más cercanas fueron: Salcedo INIA x Negra collana y Salcedo–INIA x Huariponcho con 0,214359 también determino los caracteres de alto poder discriminante fueron 50 % de madurez fisiológica (50 % MF), 50 % de

floración (50 % F), longitud de panoja (LP), grano lechoso (GL), inicio de floración (IF), formación del botón floral (FBF), grano pastoso (GP). Se concluye que las variables que tienen relación con la reproducción de la planta son más discriminatorias que las vegetativas.

Choquechambi (2016), caracterizó utilizando los descriptores de caracterización y evaluación en donde evaluó 40 características morfológicas y agronómicas (21 cuantitativas y 19 cualitativas) mediante el análisis de componentes principales mostró que los tres primeros componentes explican más de los 63% de la variación total, en las seis cruzas y seis progenitores para las 40 variables explicativas. Con el análisis clúster observó que el progenitor femenino tiene mayor similitud o asociación con las cruzas en sus caracteres, menciono que las cruzas que tienen mayor asociación con el progenitor femenino, fueron las siguientes: Col x Kca, Hua x Kca, Sal x Col, Pas x Kca.

CAPÍTULO II

PLANTEAMIENTO DEL PROBLEMA

2.1. IDENTIFICACIÓN DEL PROBLEMA

La zona donde se cultiva la quinua es variada en factores ambientales que afectan tanto la calidad como el rendimiento (Aguilar y Jacobsen, 2003), y como consecuencia se observa una alta variabilidad genética que puede ser utilizada para seleccionar y mejorar genotipos que se adapten a condiciones desfavorables de suelo y clima (García *et al.*, 2003). Una de las principales limitantes en la selección de variedades, es la alta interacción genotipo x ambiente del rendimiento (Rodríguez *et al.*, 2002).

En el Altiplano existe una alta variabilidad en la quinua que es cultivada (Fuentes *et al.*, 2009). Muchas veces las semillas que se emplean han sido seleccionadas por fenotipos por los propios agricultores (Arar *et al.*, 2011). En base al color de pericarpio del grano que puede variar entre blanco, amarillo, rojo y negro. También se cultivan como mezcla de diferentes fenotipos las que presentan variaciones como el color de las hojas, color de la panoja, altura, color de pericarpio de la semilla, entre otras; sin embargo, este procedimiento les confiere a los agricultores un grado de seguridad ante cambios climáticos inesperados, como sequías, heladas, entre otros (Fuentes *et al.*, 2009). La selección de los caracteres que se quiere mejorar genéticamente dependerá de los factores deseables en el proceso de producción, industrialización y consumo. Las dificultades que hoy en día tienen los agricultores de la región del altiplano son: rendimientos promedios muy bajos con 600-1200 kg.ha⁻¹ en los campos tradicionales, periodo vegetativo tardíos hasta 210 días, desuniformidad al momento de la maduración dentro de las variedades locales, lo que afecta la cosecha ya que solo se puede realizar manualmente mas no tecnificarlo y la falta de variedades que se adaten al cambio climático que hoy en día sufre

el mundo. Esto ocurre porque actualmente no existen variedades que puedan superar esas limitaciones que tienen los agricultores de este cultivo (Delatorre *et al.*, 2008). El proceso de mejoramiento de la quinua implica utilizar técnicas de mejoramiento adecuadas para plantas alogamas, lo que además requiere tomar precauciones para evitar una fecundación cruzada (encapuchamiento de plantas, aislamiento de campos). De esta forma, con el método de selección se crea un genotipo nuevo, que presenta los caracteres deseados (ERPE *et al.*, 2001). Lo importante es que en el material se presente suficiente variación genética para poder realizar exitosamente una selección (Fuentes *et al.*, 2009).

En base a lo expuesto este trabajo de investigación es parte del programa de mejoramiento genético de quinua que pretende obtener nuevas variedades a través de las líneas promisorias que indiquen ganancia genética respecto a sus genitores de acuerdo a las variables altura de planta, diámetro de tallo, longitud de panoja, diámetro de panoja; precocidad y rendimiento, que son de interés del programa de mejoramiento, lo que implica que existe líneas muy similares y superiores a sus genitores en cuanto idiotipo y comportamiento agronomico; esto a pesar de que las líneas evaluadas se encuentran en la séptima generación, lo que hace plantear que existe una amplia base genética entre líneas y poca segregación genética dentro de las líneas; estos resultados obtenidos nos darán una mayor posibilidad de encontrar lo que se busca en el mejoramiento genético cuyo objetivo es generar mayor variabilidad genética y mayor coeficiente de heredabilidad en la búsqueda del vigor hibrido, por lo cual este trabajo es la primera selección preliminar de líneas de las seis cruzas simples tanto distantes como cercanas genéticamente solamente se ha estado realizando las autofecundaciones hasta la sexta generación, de tal manera este sería la primera selección de la líneas de acuerdo a las características de interés del agricultor, variedades que sean de tamaño mediano, tallos gruesos, precoces, de fácil manejo, resistentes a factores bióticos, abióticos, que la panoja de quinua sea de mayor volumen, sobre todo de alto rendimiento de granos y que se adapten a los cambios climáticos que hoy en día se vive (Hena et al., 2016).

2.2. JUSTIFICACIÓN

La quinua presenta una gran capacidad de adaptación a diferentes ambientes, aún bajo condiciones climáticas extremas. Además de ser una fuente importante de proteínas para pobladores de la región andina, se la puede considerar como una de las especies sub utilizadas de mayor potencial en el mundo (Rodríguez *et al.*, 2002). En la última década

se ha incrementado el volumen de exportación desde los principales países productores, así como también se han abierto nuevos mercados (principalmente en países desarrollados). Presenta la posibilidad de ser una especie con adaptación a regiones áridas y semiáridas, habitualmente relegadas para el cultivo de plantas. Sus cualidades nutricionales justifican su uso en la alimentación cotidiana. Además, los avances en el área de nutrición ubican la quinua como una materia prima promisoria para el desarrollo de alimentos funcionales (Hena *et al.*, 2016).

El presente trabajo de investigación está orientado al mejoramiento genético de la quinua en vista a que en la actualidad la producción comercial de quinua está limitada, principalmente por falta de variedades de alto rendimiento y el cambio climatico, las cuales pueden ser muy negativas para muchas variedades y/o lineas debido a la variabilidad del tiempo. Los agricultores de la región andina que cultivan quinua obtienen rendimientos ente los 600 a 1200 kg.ha⁻¹ en época lluviosa (Delatorre *et al.*, 2008). Esto requiere de urgentes innovaciones genéticas que permitan mejoras el proceso productivo y adaptabilidad, con variedades mejoradas a partir del material genético que se dispone, en base a esta realidad el programa mejoramiento genético de quinua pretende obtener nuevas variedades con características de calidad que les permitan obtener mayores rendimientos, precoces y con resistencia a factores bióticos y abióticos adversos de tal manera que las nuevas variedades a obtener mediante la selección de las líneas puedan mejorar la productividad de este cultivo (Delgado *et al.* 2009).

El programa mejoramiento genético se inició realizando la hibridación y autofecundación hasta la sexta generación, para obtener mayor homocigosis dentro de las líneas y mayor variabilidad genética entre líneas, esta investigación es parte del proceso de obtención de nuevas variedades de quinua con características anheladas que mejoraran el rendimiento, la precocidad, la madurez uniforme de plantas dentro de una variedad y la adaptabilidad al cambio climático que hoy en día se vive. Se ha estimado que la necesidad de alimentos se duplicará en los próximos 30 años el Perú, como muchos países del mundo enfrentan graves problemas nutricionales como consecuencia del crecimiento geométrico de la población y aritmética de la alimentación en forma permanente; este crecimiento demográfico, exige un incremento de la producción de alimentos para poder satisfacer las necesidades mínimas de nutrición. Es por eso la importancia de obtener nuevas variedades que puedan incrementar la productividad de este alimento de calidad y de esta manera lograr la seguridad alimentaria para la humanidad en el mundo.

2.3. OBJETIVOS DE ESTUDIO

2.3.1. Objetivo general

Seleccionar las líneas promisorias a partir de las autofecundaciones S5 de seis cruzas simples con una presión genética del 20 %, en base a altura de planta, diámetro de tallo, longitud de panoja, diámetro de panoja; principalmente a la precocidad y rendimiento.

2.3.2. Objetivos específicos

- > Evaluar el comportamiento agronómico de las líneas de quinua procedente de cruzamientos simples.
- > Comparar los rendimientos preliminares de las líneas y sus respectivos genitores.
- ➤ Seleccionar 40 líneas promisorias de las 196 líneas obtenidos en cada una de las seis cruzas simples de quinua.

2.4. HIPÓTESIS DE TRABAJO

- ✓ Se obtendrá material genético elite de cada cruza simple después de seleccionar líneas promisorias de cruzas simples, genéticamente distantes y cercanas.
- ✓ Existirá variabilidad entre líneas y estos presentarán características superiores respecto a sus genitores al evaluar el comportamiento agronómico.
- ✓ Las cruzas simples genéticamente distantes presentarán rendimiento mayores respectos a las cercanas y sus genitores.
- ✓ Las 40 líneas promisorias seleccionadas serán superiores a sus genitores en cuanto al comportamiento agronómicos.

CAPÍTULO III

MATERIALES Y METODOS

3.1. LUGAR DE ESTUDIO

3.1.1. Características demográficas

El presente trabajo de investigación se realizó en la campaña 2015-2016 en el Centro de Investigación y Producción (CIP)-Camacani y el CIP-Illpa de la Universidad Nacional del Altiplano-Puno.

3.1.1.1. CIP-Camacani

Localizado al costado sur de la carretera asfaltada Puno-Desaguadero, en el kilómetro 24, que se encuentra ubicado en:

Ubicación en coordenadas UTM:

Este X : 408369.55

Norte Y : 8236456.43

Altura : 3850 msnm

Datum : WGS 1984 UTM Zona 19S

Ubicación política:

Región : Puno

Provincia : Puno

Distrito : Platería

3.1.1.2. CIP-Illpa

Localizado al costado oeste de la carretera asfaltada Puno-Juliaca, en el kilómetro 19, desvió de las ruinas de Sillustani, que se encuentra ubicado en:

Ubicación en coordenadas UTM:

Este X : 384945

Norte Y : 8263812

Altura : 3827 msnm

Datum : WGS 1984 UTM Zona 19S

Ubicación política:

Región : Puno

Provincia : Puno

Distrito : Paucarcolla

3.1.2. Análisis de suelo

Para la caracterización fisicoquímica de los suelos, se realizaron los análisis correspondientes (Cuadro 1). Las muestras de suelo fueron analizadas en el laboratorio de análisis de suelo, agua y semillas de la Estación Experimental-Arequipa INIA (Anexo 27 y 28).

3.1.2.1. Camacani

Camacani tiene un suelo de textura franco arcillo arenoso, con reacción ligeramente neutro en pH, no salino en conductividad eléctrica, normal en contenido de materia orgánica y nitrógeno, alto en concentración de fosforo y ligeramente alto en potasio respectivamente; es recomendable adicionar materia orgánica y fertilizantes en base de calcio de acuerdo a los resultados de análisis; con referencia a capacidad de intercambio catiónico CIC, la interpretación es medio (Anexo 27) (Cuadro 1).

Cuadro 1

Análisis físico químico del suelo del CIP Camacani e Illpa. Puno, Perú-2017.

ANÁLISIS	Resultados			
111 (11212)	Camacani	Illpa		
pH	6.86	7.50		
CE dS m ⁻¹ extr. 1:2.5	0.46	0.35		
CaCO3 (%)	0.00	0.75		
Materia Orgánica (MO) (%)	3.38	3.20		
Fósforo (P) (ppm)	48.90	41.91		
Potasio (K2O) (ppm)	300.00	374.98		
CIC (meq 10 ⁻² g ⁻¹ S°)	22.68	31.70		
Ca (meq 10 ⁻² g ⁻¹ S°)	20.00	28		
Mg (meq 10 ⁻² g ⁻¹ S°)	2.00	2.4		
K (meq 10 ⁻² g ⁻¹ S°)	0.59	0.95		
Na (meq 10 ⁻² g ⁻¹ S°)	0.09	0.35		
Arena (%)	55.6	15.6		
Limo (%)	20.8	38.8		
Arcilla (%)	23.6	46.6		
Clase textural	Franco arcillo arenoso	Arcillo limoso		

Fuente: INIA-Arequipa (2016).

3.1.2.2. Illpa

Es un suelo de textura arcillo limoso, con reacción ligeramente alcalino en pH, no salino en conductividad eléctrica, normal en contenido de materia orgánica y nitrógeno, alto en concentración de fosforo y potasio respectivamente; es recomendable adicionar materia orgánica y fertilizantes de acuerdo a los resultados de análisis; con referencia a capacidad de intercambio catiónico CIC, la interpretación es alto (Cuadro 1) (Anexo 28).

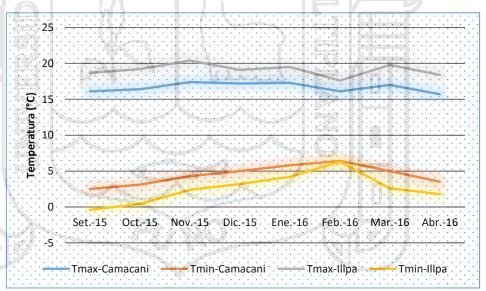
Se tiene suelos similares en las dos localidades y son adecuados para la instalación de la quinua. En general son suelos con reacción neutra en pH, no salino en conductividad eléctrica, normal en contenido de materia orgánica y nitrógeno, alto en concentración de fosforo y potasio, con referencia a la capacidad de intercambio catiónico CIC, la interpretación es medio y alto. Los análisis de los suelos determinan características favorables, la cual se ajusta a los requerimientos del cultivo según la (FAO, 2001).

3.1.3. Características ambientales

Se presenta los datos meteorológicos de temperatura, precipitación, y humedad relativa (Cuadro 2), durante la ejecución del trabajo de investigación que duró de setiembre de 2015 a abril de 2016 en ambas localidades. Estos datos se obtuvieron del Servicio Nacional de Meteorología e Hidrología Puno-Perú (Anexo 29 y 30).

3.1.3.1. Camacani

Durante el presente trabajo de investigación la temperatura alcanzó valores máximos como 17.40 °C durante el mes noviembre y mínimas de 2.50 °C durante el mes setiembre (Figura 1); respecto a la humedad relativa el valor máximo fue de 68% para el mes de febrero y el valor mínimo de 49% para el mes de setiembre y noviembre; mientras que para la precipitación se presentó el valor máximo 169.60 mm durante el mes de febrero, y el valor mínimo 26.80 mm durante el mes marzo (Anexo 29), no existiendo mayores problemas para el desarrollo del cultivo de quinua


(Cuadro 2). Estos datos se encuentran dentro de los rangos tolerantes del cultivo de quinua (FAO, 2001).

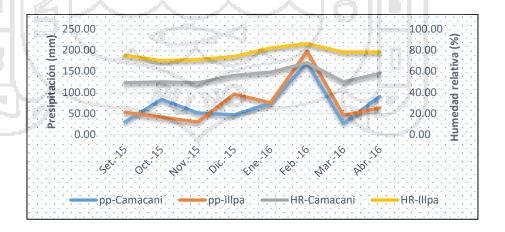
Cuadro 2

Datos meteorológicos de Camacani e Illpa. Puno, Perú-2017.

		CAMACANI				ILLPA			
, ÑO	MEG	TEMPERATURA °C		L	1113 (ED) D	TEMPER	ATURA °C		1113 (ED + D
AÑO	MES	MAXIMA	MINIMA	PRECIPITA CIÓN (mm)	HUMEDAD RELATIVA	MAXIMA	MINIMA	PRECIPITA CIÓN (mm)	HUMEDAD RELATIVA
Ann.		MAXIMA	MINIMA	CION (IIIII)	%	MAXIMA	MINIMA	CION (MIII)	%
6.0	Setiembre	16.10	2.50	29.50	49.00	18.70	-0.40	52.70	75.00
2015	Octubre	16.40	3.10	83.20	50.00	19.20	0.40	41.20	70.00
	Noviembre	17.40	4.30	51.30	49.00	20.40	2.40	29.80	71.00
	Diciembre	17.20	5.00	46.60	56.00	19.10	3.20	95.70	74.00
701	Enero	17.30	5.80	74.50	59.00	19.50	4.20	75.30	82.00
2016	Febrero	16.10	6.40	169.60	68.00	17.60	6.30	197.70	86.00
2010	Marzo	17.00	5.00	26.80	50.00	19.80	2.60	45.40	78.00
	Abril	15.70	3.50	90.00	58.00	18.40	1.80	63.00	78.00

Fuente: Senamhi (2017).

Figura 1. Comportamiento de temperaturas máximos y mínimos de Camacani e Illpa. Puno, Perú-2017.


Fuente: Senamhi (2017).

3.1.3.2. Illpa

Durante el presente trabajo (Anexo 30), la temperatura alcanzó valores máximos como 20.40 °C durante el mes noviembre y mínimas de -0.40 °C durante el mes setiembre (Cuadro 2); respecto a la humedad relativa el valor máximo fue de 86% para el mes de febrero y el valor mínimo de 70% para el mes de octubre; mientras que para la precipitación se presentó el valor máximo 197.70 mm durante el mes de febrero, y el valor mínimo 29.80 mm durante el mes noviembre, no existe mayores problemas para el desarrollo del cultivo de quinua. Estos datos se encuentran dentro de los rangos tolerantes del cultivo de quinua (FAO, 2001).

Su período vegetativo de la quinua varía desde los 90 hasta los 240 días, crece con precipitaciones desde 200 a 2600 mm anuales (Figura 2) y temperatura media entre 5 y 14°C (Figura 1). Se adapta a suelos ácidos de pH 4.5 hasta alcalinos con pH de 9.0, sus semillas germinan hasta con 56 mmhos.cm⁻¹ de concentración salina, se adapta a diferentes tipos de suelos desde los arenosos hasta los arcillosos (Mujica y Jacobsen, 2006). Concluyendo que en ambas localidades se pueden cultivar la quinua, pero vale resaltar que las características edafoclimaticas de Camacani son más óptimas para la quinua a diferencia de Illpa que tiene las condiciones más adversas seguramente habrá una diferencia significativa en ambas localidades.

Figura 2. Precipitación y humedad relativa de las dos localidades. Puno, Perú-2017.

Fuente: Senamhi (2017).

3.2. MATERIALES

3.2.1. Material genético

Los genotipos S5 autofecundados, fueron obtenidos dentro del programa mejoramiento genético de quinua por hibridación, mediante los marcadores moleculares fueron estimados las distancias genéticas para la generación de nuevos cultivares, con el objetivo de crear mayor variabilidad genética, mayor coeficiente de heredabilidad en la búsqueda del vigor hibrido.

Se trabajó con seis cruzas simples como se observa en la Cuadro 3, genéticamente distantes: Huariponcho X Kcancolla, Salcedo INIA X Huariponcho y Pasankalla X Kcancolla; y cercanas: Salcedo INIA X Pandela Rosada, Negra collana X Kcancolla y Salcedo INIA X Negra collana; en donde se evaluó el comportamiento de las líneas de quinua en las seis cruzas cada uno con 198 genotipos (196 líneas y 2 testigos).

Cuadro 3

Cruzas simples genéticamente distantes y cercanas. Puno, Perú-2017.

Cruzas simples	Líneas	Testigos	Unidades experimentales
Huariponcho (HUA) X Kcancolla (KCA)	196	Huariponcho Kcancolla	198
Salcedo-INIA (SAL) X Huariponcho (HUA)	196	Salcedo INIA Huariponcho	198
Pasankalla (PAS) X Kcancolla (KCA)	196	Pasankalla Kcancolla	198
Salcedo-INIA (SAL) X Pandela (PAN)	196	Salcedo INIA Pandela	198

Negra collana (COL) X Kcancolla (KCA)	196	collana Kcancolla	198
Salcedo-INIA (SAL) X Negra collana (COL)	196	Salcedo INIA collana	198
Total de unidade	1188		

3.2.2. Materiales de campo

- a) Insumos:
 - > Estiércol de ovino
 - > Fertilizantes:
 - Urea
 - Fosfato diamónico
 - Cloruro de potasio
- b) Herramientas de campo:
 - > Pala
 - > Pico
 - Rastrillo
 - ➤ Gancho de coreo
 - ➤ Hoz
- c) Equipos de campo:
 - > Tractor e implementos.
- d) Otros:
 - > Sacos
 - > Rafia
 - Balanza analítica
 - > Tamiz
 - > Sobres de manila

- Cuaderno de apuntes y lápiz
- Calculadora
- > Cinta métrica
- > Bandejas plásticas
- > Regla
- Vernier
- Cámara digital
- ➤ Lap Top

3.3. POBLACIÓN

En el experimento se tuvo 89100 plantas como población de la investigación que corresponde a las seis cruzas simples cada uno de ellos con 196 líneas y sus respectivos genitores. En base a que la densidad fue a razón de 15 plantas por metro lineal, con distanciamiento entre surco de 0.5 m, con una longitud de 5 m por lo que se tendría 2.5 m² de área por parcela obteniéndose 75 plantas por parcela investigación.

3.4. MUESTRA

Rojas y Padulosi (2013), indican que para la evaluación del comportamiento agronómico se debe seleccionar 10 plantas al azar dentro de cada parcela y etiquetarlos debidamente para su seguimiento desde inicio hasta el final de las evaluaciones correspondientes, en base a lo anterior la muestra del trabajo de investigación es 11880 plantas que se le ha realizado las evaluaciones correspondientes desde el inicio hasta el final de la investigación (Anexo 16).

3.5. CARACTERÍSTICAS DEL EXPERIMENTO

En el Anexo 25 y 26, se puede observar el croquis experimental de las dos localidades en sus dimensiones y características:

- Localidades: 2
- Número de parcelas por bloque: 1188
- Número de repeticiones: 2
- ❖ Longitud de surcos: 5 m
- ❖ Ancho de surco: 0.5 m
- ❖ Área neta por parcela: 2.5 m²

❖ Área neta del bloque: 2970 m²

❖ Área neta del experimento: 11880 m²

3.6. MÉTODO DE INVESTIGACIÓN

Se utilizó el método experimental para la realización del trabajo con dos factores en estudio; primer factor cruzas simples con 6 niveles (HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL) y 198 sub-niveles (196 líneas más dos testigos) y el segundo factor localidades con dos niveles (Centro de Investigación y Producción (CIP)-Camacani y CIP-Illpa).

3.6.1. Manejo agronómico del experimento

3.6.1.1. Preparación del terreno

La preparación del terreno se llevó a cabo en setiembre del 2015, se roturo el terreno experimental y posteriormente se pasó la rastra de discos para desterronar el suelo, en cruz para mullir mejor el suelo, finalmente se procedió a realizar el surcado del terreno (Figura 3).

Figura 3. Preparación de terreno agrícola para la instalación de la investigación de cruzas simples de quinua. Puno, Perú-2017.

3.6.1.2. Siembra

En ambas localidades, la siembra de las líneas se realizó el primero de octubre del 2015, de acuerdo a la recomendación de (Mujica *et al.*, 2013), que consiste en elegir correctamente la época de siembra, cantidad de semilla, sistema de siembra; para el cultivo de quinua. Para la siembra se prepararon sobres con 5 g de semilla para cada surco, se sembró a chorro continuo, con una densidad de 10 kg.ha⁻¹, previa a la aplicación de estiércol de ovino al campo experimental (Anexo 7-9). El distanciamiento entre surco fue de 0.50 m y 5 m de largo. Al momento del tapado de las semillas se procuró que éstas quedaran a no más de 2 cm de profundidad (Figura 4).

Figura 4. Siembra por surco de la investigación de cruzas simples de quinua. Puno, Perú-2017.

3.6.1.3. Fertilización

La fórmula de fertilización usada fue 120-80-60 de NPK. Las fuentes empleadas fueron urea (46%), fosfato diamónico (46%), y cloruro de potasio (60%), de tal manera que se utilizó 270 kg.ha⁻¹ de urea, 190 kg.ha⁻¹ de fosfato diamónico, finalmente 113 kg.ha⁻¹ de cloruro de potasio para suplir la necesidad del cultivo de quinua de acuerdo al análisis de suelo. El

abonamiento nitrogenado se fraccionó en dos partes, la primera parte se incorporó junto al fosfato diamónico y cloruro de potasio en el fondo de surco antes de la siembra, y la otra fracción se aplicó después del primer deshierbo.

3.6.1.4. Desahije

Esta labor se realizó para generar un equilibrio en la densidad de la quinua además para poder eliminar aquellas plantas débiles y pequeñas, solo se dejó aquellas de óptimas condiciones para la producción. Se realizó cuando las plantas estaban en las fases de ramificación, con un tamaño aproximado de 30 cm. Se dejaron 15 plantas por metro lineal (Figura 5).

Figura 5. Desahijé de los surcos del campo experimental de cruzas simples de quinua. Puno, Perú-2017.

3.6.1.5. Desmalezado

El deshierbo se realizó para asegurar el crecimiento y desarrollo del cultivo de quinua, esto se hizo manualmente, aprovechando la humedad del suelo después de la lluvia. Se realizaron cinco deshierbos durante la campaña del cultivo (Figura 6).

Figura 6. Deshierbo del campo experimental de cruzas simples de quinua. Puno, Perú-2017.

3.6.1.6. Control fitosanitario

En cuanto a las plagas no se presentó ninguno por encima del umbral de daño económico, solo se observó algunas larvas de *Eurysacca quinoae* Povolny en la fase de madurez fisiológica. En cuanto a las enfermedades solo se presentó *Peronospora variabilis* Gaus, con severidad e incidencia bajísimos, por lo que no había necesidad de darle algún control.

3.6.1.7. Cosecha

La cosecha se realizó de acuerdo a la madurez fisiológica de cada línea. Se cortaron las plantas y se subieron al almacén sobre mantas, para que baje la humedad de grano por lo menos hasta 12%. Una vez secas, se llevó a cabo la trilla por panoja de las 10 plantas evaluadas. Finalmente se procedió a limpiar los granos con viento para ser guardados dentro de los sobres de manila, debidamente etiquetados (Figura 7).

Figura 7. Cosecha de las líneas de cruzas simples en el campo experimental. Puno, Perú-2017.

3.6.2. Evaluación de variables

A. Altura de planta

Como se observa en la Figura 8, se registró a la madurez fisiológica del cultivo, tomando 10 plantas al azar por surco. La medida se estableció desde la base del tallo hasta el ápice de la panoja central y se expresó en centímetros (Rojas y Padulosi, 2013).

Figura 8. Evaluaciones de las líneas de cruzas simples. Puno, Perú-2017.

B. Diámetro de tallo

Se tomaron 10 plantas seleccionadas al azar dentro de la parcela experimental, de cada planta se registró este dato a la madurez fisiológica en tercio inferior; y se expresó en milímetros (Rojas y Padulosi, 2013).

C. Longitud de panoja

Se registró a la madurez fisiológica del cultivo, seleccionando 10 plantas al azar de la parcela experimental; de cada planta se tomó la panoja central y se estableció la longitud de panoja desde la base de la misma

hasta el ápice, la lectura se registró en centímetros (Rojas y Padulosi, 2013).

D. Diámetro de panoja

Esta variable se midió con la ayuda de un vernier y se realizó tomando la medida en el punto más ancho de la panoja (diámetro ecuatorial) esta variable se registró a la madurez fisiológica y se tomaron 10 plantas al azar dentro de la parcela experimental, la lectura se registró en centímetros (Rojas y Padulosi, 2013).

E. Floración

Se contabilizarán los días transcurridos desde la siembra hasta el 50% de plantas del surco presenten el botón apical abierto (Rojas y Padulosi, 2013) (Figura 9).

Figura 9. Fase fenológica de días a floración de las líneas en el campo experimental de cruzas simples. Puno, Perú-2017.

F. Madurez fisiológica

Se contabilizarán los días transcurridos desde la siembra hasta el 50 % de plantas del surco presenten características de madurez de cosecha (Rojas y Padulosi, 2013) (Figura 10).

Figura 10. Fase fenológica de madurez fisiológica de las líneas en el campo experimental de cruzas simples. Puno, Perú-2017.

G. Rendimiento

Se seleccionaron 10 panojas por parcela experimental, luego de realizar la trilla y limpieza de cada panoja, posteriormente se pesó toda la semilla obtenida, la medida se registró en gramos por panoja (Rojas y Padulosi, 2013).

3.7. ANÁLISIS ESTADÍSTICO

3.7.1. Diseño experimental

Se utilizó el Diseño de Bloques Completos al Azar (DBCA) con 1188 unidades experimentales y dos repeticiones para cada localidad (CIP-Camcani e Illpa), para el análisis estadístico se utilizó los softwares R y PAST.

3.7.2. Análisis de varianza

Para el análisis de varianza (ANOVA) se planteó un modelo estadístico como se observa en la Cuadro 4, donde se analizó por localidades (Camacani e Illpa), repeticiones, también por el factor en estudio genotipos y finalmente por la interacción de las localidades y genotipos (LOG*GEN).

Cuadro 4

Esquema del ANOVA de las líneas para cada cruza simple. Puno, Perú-2017.

FUENTE DE VARIACIÓN	GL
LOCALIDADES	1
REPETICIÓNES	2
GENOTIPOS	197
LOC*GEN	197
ERROR CIONAL	394
TOTAL	791
PROMEDIO CV (%)	

3.7.3. Análisis funcional

Al detectarse diferencias estadísticas en el análisis de varianza se realizó la prueba de Tukey (p < 0.05) para los factores en estudio (líneas) para establecer diferencias y comparar medias entre progenies y sus respectivos genitores.

3.7.4. Selección de líneas superiores

Para la selección de líneas superiores se utilizó el índice de selección (IS) de Elston fue construido en base a valores agronómicos altura de planta, diámetro de tallo, longitud de panoja, diámetro de panoja, floración, madurez fisiológica, y rendimiento, con el fin de adecuarlo dentro del modelo de análisis de varianza que

$$Y_{ij} = \mu + e_j + \sum_{k=1}^n \lambda_k \alpha_{ik} \gamma_{jk} + R_{ij}$$

aporte elementos para apoyar la hipótesis que existen diferencias dentro de los índices y realizar la identificación de líneas superiores este valor índice fue calculado en base a las dos localidades para adecuarlo dentro de un modelo de análisis (Elston, 2014). La selección se realizó con una presión genética del 20% como mencionan Peralta *et al.*, 2012; en la selección de líneas promisorias de cruzas simples, empleando el modelo de regresión y la metodología cuyo modelo se presenta a continuación:

Dónde: Yij = valor del índice de selección del i-ésimo genotipo en el j-ésimo ambiente; μ = media general; ej = efecto del j-ésimo ambiente; K_k = raíz cuadrada del vector característico del k-ésimo eje del ACP; a_{ik} = calificación del ACP para el k-ésimo eje del i-ésimo genotipo; Y_{jk} = calificación del ACP para el k-ésimo eje del j-ésimo ambiente; R_{ij} = residual del modelo con $-DNI(o^2.r^{-1})$

CAPÍTULO IV

RESULTADOS Y DISCUSIÓN

4.1. EVALUACIÓN DEL COMPORTAMIENTO AGRONÓMICO

Para la evaluación del comportamiento y selección de las líneas se analizaron las variables: altura de planta, diámetro de tallo, longitud de panoja, diámetro de panoja, floración, madurez fisiológica y rendimiento (Anexo 1-6); que son variables de importancia en un programa mejoramiento genético de quinua, las cuales fueron empleadas en la selección de séptima generación de cruzas simples.

4.1.1. Altura de planta

El análisis de variancia para la variable altura de planta (Cuadro 5), en la cruza simple HUAxKCA, se observa diferencias significativas para localidades, y no significativas tanto para repeticiones, genotipos y como localidades x genotipos (Loc*Gen), el promedio general para esta variable fue de 64.24 cm, con coeficiente de variación de 2.21%; para la cruza SALxHUA se observa que existe significancia entre los genotipos estudiados como también para localidades, y la interacción localidades x genotipos (Loc*Gen), y no significativas para repeticiones, el promedio general fue de 69.22 cm, con un coeficiente de variación de 1.77 %; como se aprecia en la cruza PASxKCA que existe significancia en localidades, genotipos y localidades x genotipos (Loc*Gen), y no significativas para repeticiones, el promedio general fue de 78.45 cm, con un coeficiente de variación de 1.35 %; y en la cruza SALxPAN se observa que existe significancia para localidades, genotipos y localidades x genotipos (Loc*Gen), y no significativas para repeticiones; el promedio general fue de 73.72 cm, con un coeficiente de variación de 1.59 %; también en la cruza COLxKCA se aprecia que existe significancia para localidades, genotipos y

localidades x genotipos (Loc*Gen), y no significativas para repeticiones, el promedio general fue de 61.24 cm, con un coeficiente de variación de 2.50 %; finalmente para la cruza SALxCOL se observa en el análisis de varianza que existe significancia para localidades, poco significativo para genotipos, y no significativas para repeticiones y localidades x genotipos (Loc*Gen), el promedio general fue de 62.68 cm, con un coeficiente de variación de 2.39 %.

Cuadro 5

Análisis de varianza para altura de planta de las seis cruzas. Puno, Perú-2017.

FUENTE DE	GL	$U = I \infty$	CUADRADOS MEDIOS PARA ALTURA DE PLANTA					
VARIACIÓN	6	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL	
LOCALIDADES	1	41025.17 **	53563.83 **	176577.71 **	182094.95 **	54010.49 **	47238.38 **	
REPETICIÓNES	2	0.41 ns	1.91 ns	2.26 ns	3.14 ns	5.44 ns	0.65 ns	
GENOTIPOS	197	2.36 ns	2.22 **	5.22 **	3.41 **	2.82 ns	2.81 *	
LOC*GEN	197	2.13 ns	2.00 **	3.62 **	2.69 **	2.23 ns	2.37 ns	
ERROR	394	2.01	1.51	1.12	1.38	2.35	2.24	
TOTAL	791					\	0	
PROMEDIO (cm)		64.24	69.22	78.45	73.72	61.24	62.68	
C.V. (%)		2.21	1.77	1.35	1.59	2.50	2.39	

La prueba de Tukey (p < 0.05) para la variable altura de planta (Cuadro 6), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAxKCA18, HUAxKCA196, HUAxKCA3, HUAxKCA102, HUAxKCA6, HUAxKCA186, HUAxKCA149 Y HUAxKCA118 fueron las que presentaron mayor altura de planta para esta cruza con medias de 66.13, 66.01, 65.83, 65.74, 65.67, 65.65, 65.61 y 65.58 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio altura de planta fueron HUAxKCA91, HUAxKCA169, HUAxKCA174, HUAxKCA30, HUAxKCA86, HUAxKCA170, HUAxKCA161 y HUAxKCA60 con medias de 65.17, 65.17, 65.11, 65.08, 65.06, 65.06, 65.01 y 65.00 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor altura de planta fueron HUAxKCA55, HUAxKCA78, HUAxKCA39, HUAxKCA110, HUAxKCA164, HUAxKCA65, HUAxKCA122 y HUAxKCA152 con medias de 63.12, 63.02, 63.00, 62.96, 62.86, 62.65, 62.60 y 62.34 cm respectivamente a los que se clasifico en el tercer rango de significancia. El genitor femenino (Huariponcho) tuvo una media de

62.44 cm donde se clasifico en el segundo rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 60.58 cm de altura de planta y se clasifico también en el segundo rango de significancia (Figura 11).

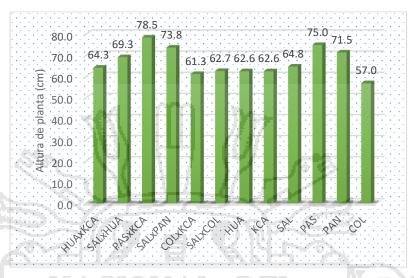


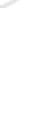
Figura 11. Comparación de altura de planta entre las cruzas y los testigos. Puno, Perú-2017.

Para la cruza simple SALxHUA (Cuadro 6), muestra tres rangos de significancia para la variable altura de planta, en las 196 líneas de la cruza simple Salcedo INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Salcedo INIA y Huariponcho); donde se observa que las líneas SALxHUA112, SALxHUA28, SALxHUA56, SALxHUA141, SALxHUA23, SALxHUA87, SALxHUA161 y SALxHUA59 fueron las que presentaron mayor altura de planta para esta cruza con medias de 70.87, 70.76, 70.69, 70.62, 70.56, 70.53, 70.41 y 70.40 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte, las líneas que tuvieron intermedio altura de planta fueron SALxHUA61, SALxHUA125, SALxHUA195, SALxHUA174, SALxHUA54, SALxHUA43, SALxHUA30 y SALxHUA34 con medias de 69.36, 69.32, 69.31, 69.30, 69.30, 69.30, 69.28 y 69.26 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor altura de planta fueron SALxHUA95, SALxHUA108, SALxHUA64, SALxHUA149, SALxHUA51, SALxHUA14, SALxHUA179 y SALxHUA145 con medias de 68.19, 68.16, 68.05, 67.91, 67.89, 67.74, 67.59 y 67.10 cm respectivamente a los que se clasifico en el segundo rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 67.05 cm se clasifico en el segundo rango; mientras tanto el genitor masculino

(Huariponcho) presento una media de 64.60 cm de altura de planta y se clasifico en el tercer rango de significancia.

La prueba de Tukey (p < 0.05) para la tercera cruza PASxKCA (Cuadro 6), muestra cuatro rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Pasankalla x Kcancolla y dos testigos que son los genitores (Pasankallay x Kcancolla). Donde se observa que las líneas PASxKCA30, PASxKCA77, PASxKCA120, PASxKCA14, PASxKCA178, PASxKCA17, PASxKCA164 y PASxKCA126 fueron las que presentaron mayor altura de planta para esta cruza con medias de 80.15, 80.03, 79.86, 79.63, 79.59, 79.55, 79.52 y 79.47 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte, las líneas que tuvieron intermedio altura de planta fueron PASxKCA134, PASxKCA21, PASxKCA106, PASxKCA88, PASxKCA29, PASxKCA146, PASxKCA54 v PASxKCA179 con medias de 78.57, 78.56, 78.55, 78.55, 78.55, 78.54, 78.51 y 78.50 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor altura de planta fueron PASxKCA96, PASxKCA44, PASxKCA4, PASxKCA55, PASxKCA153, PASxKCA149, PASxKCA83 y PASxKCA32 con medias de 77.60, 77.57, 77.57, 77.57, 77.47, 77.46, 77.29 y 77.26 cm respectivamente a los que se clasifico en el segundo rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 75.00 cm se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 64.86 cm de altura de planta y se clasifico en el cuarto rango de significancia.

La prueba de Tukey (p < 0.05) para la cuarta cruza SALxPAN (Cuadro 6), muestra cuatro rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Salcedo INIA y Pandela). Donde se observa que las líneas SALxPAN150, SALxPAN108, SALxPAN57, SALxPAN112, SALxPAN166, SALxPAN36, SALxPAN162 y SALxPAN21 fueron las que presentaron mayor altura de planta para esta cruza con medias de 75.74, 75.37, 75.26, 75.22, 75.08, 75.00, 74.97 y 74.80 cm respectivamente a los que se clasifico en el primer y segundo rango de significancia; por otra parte, las líneas que tuvieron intermedio altura de planta fueron SALxPAN179, SALxPAN88, SALxPAN104, SALxPAN119, SALxPAN24, SALxPAN192, SALxPAN196 y SALxPAN174 con medias de 73.79, 73.78, 73.78,


73.77, 73.76, 73.75, 73.75 y 73.75 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor altura de planta fueron SALxPAN43, SALxPAN25, SALxPAN173, SALxPAN137, SALxPAN99, SALxPAN58, SALxPAN116 y SALxPAN131 con medias de 72.82, 72.82, 72.71, 72.63, 72.52, 72.40, 72.33 y 72.24 cm respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 64.08 cm se clasifico en el tercer rango; mientras tanto el genitor masculino (Pandela) presento una media de 71.46 cm de altura de planta y se clasifico en el cuarto rango de significancia.

En la Cuadro 6 se muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Negra collanay Kcancolla). Donde se observa que las líneas COLxKCA115, COLxKCA35, COLxKCA78, COLxKCA137, COLxKCA13, COLxKCA144, COLxKCA158 y COLxKCA122 fueron las que presentaron mayor altura de planta para esta cruza con medias de 63.94, 63.25, 63.18, 63.07, 62.88, 62.77, 62.62 y 62.59 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte, las líneas que tuvieron intermedio altura de planta fueron COLxKCA75, COLxKCA121, COLxKCA135, COLxKCA177, COLxKCA132, COLxKCA20, COLxKCA159 y COLxKCA48 con medias de 61.35, 61.35, 61.34, 61.30, 61.30, 61.23, 61.23 y 61.23 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor altura de planta fueron COLxKCA150, COLxKCA190, COLxKCA12, COLxKCA106, COLxKCA169, COLxKCA14, COLxKCA112 y COLxKCA41 con medias de 60.01, 60.01, 59.92, 59.91, 59.91, 59.79, 59.40 y 59.29 cm respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Negra collana) tuvo una media de 56.77 cm se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 60.40 cm de altura de planta y se clasifico en el segundo rango de significancia.

En la Cuadro 6, se observa cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIA y Negra collana). Donde se observa que las líneas SALxCOL58, SALxCOL50, SALxCOL145, SALxCOL68, SALxCOL181, SALxCOL94, SALxCOL109 y SALxCOL141 fueron las que

presentaron mayor altura de planta para esta cruza con medias de 65.32, 64.71, 64.54, 64.51, 64.45, 64.18, 64.15 y 64.08 cm respectivamente a los que se clasifico en el primer y segundo rango de significancia; por otra parte, las líneas que tuvieron intermedio altura de planta fueron SALxCOL51, SALxCOL174, SALxCOL40, SALxCOL111, SALxCOL186, SALxCOL126, SALxCOL91 y SALxCOL121 con medias de 62.75, 62.74, 62.72, 62.70, 62.69, 62.69, 62.64 y 62.63 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor altura de planta fueron SALxCOL157, SALxCOL159, SALxCOL17, SALxCOL132, SALxCOL49, SALxCOL122, SALxCOL25 y SALxCOL116 con medias de 61.53, 61.52, 61.48, 61.27, 61.05, 60.93, 60.84 y 60.28 cm respectivamente a los que se clasifico también en el tercero y cuarto rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 63.24 cm se clasifico en el segundo rango; mientras tanto el genitor masculino (Negra collana) presento una media de 57.16 cm de altura de planta y se clasifico en el quinto rango de significancia.

Cuadro 6

Prueba de Tukey al 5% para altura de planta de las seis cruzas. Puno, Perú-2017.

CENOTIDOS	ALTURA DE PLANTA (cm)					
GENOTIPOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LINEA1	63.13 ab	69.19 a	78.73 a	74.36 ab	60.73 ab	62.91 ab
LINEA2	64.16 ab	68.77 a	79.03 a	73.90 ab	61.50 ab	62.10 ab
LINEA3	65.83 a	69.01 a	78.30 ab	74.04 ab	60.15 ab	62.23 ab
LINEA4	63.96 ab	69.12 a	77.57 ab	72.91 ab	60.63 ab	63.55 ab
LINEA5	65.39 a	69.12 a	78.65 a	74.53 ab	60.75 ab	62.46 ab
LINEA6	65.67 a	69.14 a	78.46 ab	73.46 ab	60.52 ab	63.30 ab
LINEA7	64.25 ab	69.44 a	77.64 ab	73.85 ab	61.15 ab	62.33 ab
LINEA8	64.43 ab	68.55 ab	78.02 ab	73.65 ab	61.40 ab	63.58 ab
LINEA9	64.02 ab	69.87 a	78.63 a	73.67 ab	62.12 a	62.40 ab
LINEA10	65.46 a	68.81 a	78.02 ab	74.09 ab	62.11 a	62.21 ab
LINEA11	65.26 a	69.14 a	79.12 a	74.20 ab	61.76 ab	61.97 ab
LINEA12	63.85 ab	68.60 ab	78.36 ab	74.27 ab	59.92 ab	61.91 ab
LINEA13	64.70 ab	69.61 a	78.31 ab	73.91 ab	62.88 a	63.10 ab
LINEA14	63.21 ab	67.74 ab	79.63 a	73.27 ab	59.79 ab	62.92 ab
LINEA15	64.93 ab	68.78 a	78.27 ab	73.55 ab	60.42 ab	61.64 ab
LINEA16	63.48 ab	69.45 a	78.79 a	73.73 ab	60.07 ab	62.53 ab
LINEA17	63.91 ab	68.32 ab	79.55 a	74.26 ab	61.44 ab	61.48 ab
LINEA18	66.13 a	69.60 a	77.92 ab	73.13 ab	62.17 a	63.41 ab
LINEA19	63.74 ab	70.32 a	77.90 ab	73.91 ab	62.12 a	63.08 ab
LINEA20	63.64 ab	68.59 ab	78.98 a	74.63 ab	61.23 ab	61.62 ab
LINEA21	64.40 ab	69.74 a	78.56 a	74.80 ab	61.15 ab	63.26 ab
LINEA22	63.84 ab	70.00 a	77.92 ab	74.71 ab	61.09 ab	62.01 ab
LINEA23	63.44 ab	70.56 a	77.71 ab	73.94 ab	61.72 ab	61.76 ab
LINEA24	64.34 ab	69.01 a	78.96 a	73.76 ab	60.78 ab	62.32 ab
LINEA25	63.88 ab	69.47 a	77.99 ab	72.82 ab	62.49 a	60.84 ab
LINEA26	64.04 ab	69.37 a	78.89 a	74.29 ab	60.46 ab	62.42 ab
LINEA27	63.72 ab	69.56 a	78.48 a	74.03 ab	61.43 ab	63.48 ab
LINEA28	65.54 a	70.76 a	78.24 ab	74.70 ab	60.74 ab	62.47 ab
LINEA29	63.72 ab	68.90 a	78.55 a	74.62 ab	62.40 a	63.09 ab
LINEA30	65.08 ab	69.28 a	80.15 a	73.47 ab	61.50 ab	62.86 ab
LINEA31	65.36 a	69.74 a	78.43 ab	73.40 ab	60.63 ab	62.33 ab
LINEA32	64.41 ab	69.15 a	77.26 ab	73.60 ab	60.48 ab	62.52 ab
LINEA33	63.43 ab	69.85 a	79.29 a	74.15 ab	60.71 ab	61.86 ab
LINEA34	64.47 ab	69.26 a	78.17 ab	74.03 ab	60.68 ab	63.82 ab
LINEA35	64.90 ab	68.79 a	78.20 ab	74.47 ab	63.25 a	63.30 ab

LINEA36	63.27 ab	68.42 ab	79.03 a	75.00 ab	61.09 ab	61.79 ab
LINEA37	64.59 ab	68.81 a	78.17 ab	73.43 ab	61.37 ab	62.98 ab
LINEA38	64.54 ab	69.97 a	78.19 ab	73.37 ab	61.37 ab	62.89 ab
LINEA39	63.00 ab	68.61 ab	78.29 ab	74.18 ab	61.16 ab	62.80 ab
LINEA40	63.16 ab	68.65 a	79.21 a	74.06 ab	62.35 a	62.72 ab
LINEA41	64.37 ab	69.71 a	78.61 a	73.72 ab	59.29 ab	62.38 ab
LINEA42	63.34 ab	69.87 a	78.58 a	73.54 ab	61.60 ab	63.35 ab
LINEA43	65.51 a	69.30 a	78.32 ab	72.82 ab	60.57 ab	62.25 ab
LINEA44	64.70 ab	69.56 a	77.57 ab	73.65 ab	61.85 a	63.13 ab
LINEA45	63.85 ab	68.21 ab	78.97 a	72.89 ab	61.15 ab	62.85 ab
LINEA46	64.39 ab	69.92 a	79.09 a	73.58 ab	61.04 ab	62.19 ab
LINEA47	64.25 ab	68.78 a	78.90 a	74.39 ab	60.52 ab	62.54 ab
LINEA48	64.87 ab	69.39 a	78.28 ab	73.42 ab	61.23 ab	62.93 ab
LINEA49	64.80 ab	69.75 a	78.59 a	73.96 ab	60.48 ab	61.05 ab
LINEA50	64.54 ab	68.63 ab	79.21 a	74.56 ab	61.54 ab	64.71 a
LINEA51	64.87 ab	67.89 ab	79.05 a	73.81 ab	62.32 a	62.75 ab
LINEA52	63.84 ab	69.56 a	78.38 ab	73.92 ab	60.75 ab	63.13 ab
LINEA53	64.33 ab	68.78 a	78.32 ab	73.56 ab	60.75 ab	63.16 ab
LINEA54	64.15 ab	69.30 a	78.51 a	74.39 ab	61.93 a	62.91 ab
LINEA55	63.12 ab	69.38 a	77.57 ab	73.46 ab	61.88 a	62.51 ab
LINEA56	63.84 ab	70.69 a	78.59 a	73.46 ab	62.37 a	63.31 ab
LINEA57	65.28 a	68.30 ab	78.25 ab	75.26 ab	60.56 ab	63.31 ab
LINEA58	64.84 ab	68.89 a	77.72 ab	72.40 ab	62.37 a	65.32 a
LINEA59	63.83 ab	70.40 a	79.33 a	73.86 ab	60.55 ab	62.91 ab
LINEA60	65.00 ab	68.36 ab	79.29 a	73.80 ab	60.80 ab	62.87 ab
LINEA61	64.69 ab	69.36 a	79.03 a	73.24 ab	60.70 ab	63.26 ab
LINEA62	65.56 a	69.98 a	79.39 a	73.80 ab	60.60 ab	63.34 ab
LINEA63	64.52 ab	68.50 ab	78.03 ab	74.12 ab	61.16 ab	63.38 ab
LINEA64	63.56 ab	68.05 ab	79.11 a	74.30 ab	60.69 ab	62.45 ab
LINEA65	62.65 ab	69.82 a	78.66 a	73.73 ab	61.72 ab	63.43 ab
LINEA66	63.71 ab	69.71 a	78.70 a	73.64 ab	61.65 ab	63.02 ab
LINEA67	63.15 ab	68.24 ab	78.19 ab	73.29 ab	61.23 ab	62.15 ab
LINEA68	64.05 ab	69.47 a	79.39 a	73.84 ab	60.77 ab	64.51 ab
LINEA69	63.91 ab	70.02 a	78.09 ab	72.84 ab	60.21 ab	63.47 ab
LINEA70	64.35 ab	69.53 a	78.39 ab	72.93 ab	62.21 a	62.42 ab
LINEA71	64.92 ab	69.03 a	78.08 ab	73.66 ab	61.64 ab	61.98 ab
LINEA72	64.92 ab	68.93 a	78.36 ab	73.20 ab	61.03 ab	63.75 ab
LINEA73	64.24 ab	69.84 a	78.80 a	73.92 ab	60.38 ab	62.82 ab
LINEA74	64.40 ab	69.88 a	78.63 a	74.46 ab	61.19 ab	62.54 ab
LINEA75	63.86 ab	69.87 a	78.67 a	74.37 ab	61.35 ab	63.00 ab

LINEA76	63.36 ab	70.09 a	78.05 ab	74.08 ab	60.08 ab	62.12 ab
LINEA77	63.81 ab	68.48 ab	80.03 a	74.33 ab	62.02 a	62.25 ab
LINEA78	63.02 ab	69.39 a	79.11 a	74.10 ab	63.18 a	63.06 ab
LINEA79	64.94 ab	68.41 ab	78.13 ab	73.83 ab	61.82 a	63.06 ab
LINEA80	64.17 ab	69.78 a	79.12 a	74.52 ab	61.44 ab	62.61 ab
LINEA81	64.06 ab	68.64 a	79.06 a	73.93 ab	60.97 ab	62.29 ab
LINEA82	64.85 ab	68.37 ab	78.34 ab	74.65 ab	62.15 a	63.68 ab
LINEA83	63.65 ab	68.68 a	77.29 ab	73.26 ab	60.08 ab	63.07 ab
LINEA84	64.12 ab	69.45 a	78.68 a	73.91 ab	61.38 ab	61.58 ab
LINEA85	63.43 ab	68.26 ab	79.01 a	73.14 ab	62.28 a	63.70 ab
LINEA86	65.06 ab	69.40 a	78.71 a	73.75 ab	62.56 a	63.25 ab
LINEA87	64.49 ab	70.53 a	79.01 a	74.21 ab	60.98 ab	63.24 ab
LINEA88	63.45 ab	68.99 a	78.55 a	73.78 ab	61.36 ab	63.02 ab
LINEA89	63.49 ab	69.04 a	78.18 ab	73.67 ab	62.03 a	61.64 ab
LINEA90	64.03 ab	69.64 a	78.45 ab	72.88 ab	60.51 ab	62.04 ab
LINEA91	65.17 ab	69.38 a	78.99 a	73.53 ab	60.28 ab	62.64 ab
LINEA92	63.54 ab	69.77 a	78.47 a	74.25 ab	61.37 ab	63.17 ab
LINEA93	63.36 ab	70.37 a	77.75 ab	73.37 ab	60.98 ab	63.66 ab
LINEA94	63.47 ab	69.18 a	78.34 ab	74.11 ab	61.67 ab	64.18 ab
LINEA95	64.92 ab	68.19 ab	78.10 ab	74.34 ab	61.46 ab	62.26 ab
LINEA96	64.23 ab	69.20 a	77.60 ab	73.19 ab	62.03 a	62.99 ab
LINEA97	64.84 ab	68.93 a	79.15 a	73.49 ab	62.00 a	62.35 ab
LINEA98	64.42 ab	68.40 ab	79.29 a	73.47 ab	61.08 ab	62.25 ab
LINEA99	63.75 ab	69.91 a	79.02 a	72.52 ab	61.91 a	62.12 ab
LINEA100	64.53 ab	70.26 a	78.58 a	74.50 ab	61.16 ab	62.14 ab
LINEA101	63.94 ab	69.58 a	79.02 a	74.07 ab	60.74 ab	61.60 ab
LINEA102	65.74 a	69.13 a	78.10 ab	73.80 ab	61.55 ab	62.24 ab
LINEA103	64.28 ab	68.99 a	78.18 ab	73.41 ab	61.89 a	61.89 ab
LINEA104	63.77 ab	70.30 a	78.68 a	73.78 ab	61.72 ab	61.55 ab
LINEA105	64.10 ab	69.92 a	79.15 a	73.42 ab	61.74 ab	62.09 ab
LINEA106	64.31 ab	69.78 a	78.55 a	73.26 ab	59.91 ab	63.29 ab
LINEA107	64.15 ab	69.37 a	78.40 ab	73.08 ab	60.07 ab	63.64 ab
LINEA108	64.65 ab	68.16 ab	78.96 a	75.37 a	61.53 ab	62.02 ab
LINEA109	64.86 ab	69.42 a	78.12 ab	73.41 ab	61.38 ab	64.15 ab
LINEA110	62.96 ab	69.84 a	78.04 ab	73.58 ab	60.16 ab	62.97 ab
LINEA111	63.99 ab	69.78 a	77.76 ab	73.88 ab	60.25 ab	62.70 ab
LINEA112	65.46 a	70.87 a	78.63 a	75.22 ab	59.40 ab	62.12 ab
LINEA113	65.55 a	68.82 a	78.13 ab	73.69 ab	61.58 ab	62.20 ab
LINEA114	63.37 ab	68.41 ab	78.21 ab	72.87 ab	62.22 a	62.52 ab
LINEA115	64.30 ab	69.17 a	78.06 ab	73.39 ab	63.94 a	63.48 ab

LINEA116	63.88 ab	70.18 a	77.99 ab	72.33 ab	60.67 ab	60.28 ab
LINEA117	64.01 ab	68.25 ab	78.90 a	73.83 ab	60.78 ab	61.81 ab
LINEA118	65.58 a	69.03 a	79.10 a	73.58 ab	60.90 ab	61.99 ab
LINEA119	64.07 ab	68.25 ab	79.04 a	73.77 ab	61.54 ab	62.76 ab
LINEA120	63.62 ab	69.87 a	79.86 a	73.45 ab	61.51 ab	63.08 ab
LINEA121	63.94 ab	69.47 a	78.12 ab	73.11 ab	61.35 ab	62.63 ab
LINEA122	62.60 ab	70.20 a	77.75 ab	73.06 ab	62.59 a	60.93 ab
LINEA123	63.52 ab	69.52 a	77.95 ab	72.88 ab	61.70 ab	62.58 ab
LINEA124	64.45 ab	69.68 a	78.11 ab	74.56 ab	60.24 ab	62.13 ab
LINEA125	63.75 ab	69.32 a	78.35 ab	74.40 ab	62.01 a	63.05 ab
LINEA126	64.67 ab	69.51 a	79.47 a	73.05 ab	61.85 a	62.69 ab
LINEA127	63.40 ab	69.87 a	78.92 a	73.82 ab	60.95 ab	63.75 ab
LINEA128	64.53 ab	70.23 a	77.85 ab	72.92 ab	62.48 a	63.21 ab
LINEA129	64.88 ab	69.19 a	78.25 ab	74.71 ab	61.64 ab	62.91 ab
LINEA130	64.63 ab	69.06 a	78.36 ab	73.92 ab	61.52 ab	62.23 ab
LINEA131	64.77 ab	68.89 a	77.83 ab	72.24 ab	61.69 ab	63.60 ab
LINEA132	64.69 ab	69.16 a	79.16 a	73.70 ab	61.30 ab	61.27 ab
LINEA133	63.32 ab	69.60 a	78.58 a	73.44 ab	61.58 ab	62.43 ab
LINEA134	63.48 ab	69.26 a	78.57 a	74.12 ab	61.79 ab	62.56 ab
LINEA135	63.68 ab	68.47 ab	77.98 ab	74.76 ab	61.34 ab	63.57 ab
LINEA136	64.90 ab	69.23 a	77.68 ab	73.68 ab	60.81 ab	63.05 ab
LINEA137	63.63 ab	69.58 a	78.30 ab	72.63 ab	63.07 a	62.29 ab
LINEA138	64.85 ab	68.38 ab	78.84 a	73.39 ab	60.73 ab	63.36 ab
LINEA139	63.86 ab	69.05 a	78.76 a	73.57 ab	60.49 ab	61.89 ab
LINEA140	63.60 ab	69.46 a	79.16 a	73.21 ab	62.15 a	62.58 ab
LINEA141	64.34 ab	70.62 a	77.75 ab	74.02 ab	61.20 ab	64.08 ab
LINEA142	64.06 ab	68.52 ab	78.96 a	73.16 ab	60.26 ab	62.21 ab
LINEA143	64.03 ab	69.20 a	78.27 ab	73.64 ab	60.35 ab	63.28 ab
LINEA144	64.99 ab	68.73 a	79.13 a	73.01 ab	62.77 a	62.07 ab
LINEA145	64.81 ab	67.10 ab	78.16 ab	73.43 ab	61.51 ab	64.54 ab
LINEA146	63.58 ab	68.74 a	78.54 a	74.08 ab	61.71 ab	62.93 ab
LINEA147	63.52 ab	69.41 a	78.81 a	73.24 ab	60.84 ab	62.28 ab
LINEA148	64.43 ab	69.15 a	78.28 ab	74.34 ab	60.77 ab	64.01 ab
LINEA149	65.61 a	67.91 ab	77.46 ab	74.31 ab	60.62 ab	62.38 ab
LINEA150	64.14 ab	68.96 a	78.62 a	75.74 a	60.01 ab	63.05 ab
LINEA151	65.37 a	68.55 ab	78.17 ab	73.21 ab	61.70 ab	62.38 ab
LINEA152	62.34 ab	68.95 a	78.43 ab	73.58 ab	62.24 a	62.31 ab
LINEA153	63.48 ab	68.85 a	77.47 ab	73.65 ab	61.63 ab	62.06 ab
LINEA154	64.34 ab	68.98 a	78.48 a	73.08 ab	60.66 ab	62.37 ab
LINEA155	63.52 ab	68.71 a	78.78 a	74.02 ab	62.14 a	62.80 ab

LINEA156	64.14 ab	68.36 ab	78.80 a	73.29 ab	61.89 a	63.70 ab
LINEA157	64.92 ab	69.05 a	78.66 a	74.71 ab	60.18 ab	61.53 ab
LINEA158	64.52 ab	69.41 a	77.67 ab	74.12 ab	62.62 a	61.89 ab
LINEA159	64.75 ab	69.53 a	78.23 ab	73.69 ab	61.23 ab	61.52 ab
LINEA160	65.30 a	70.22 a	79.23 a	73.99 ab	60.94 ab	62.31 ab
LINEA161	65.01 ab	70.41 a	79.08 a	72.94 ab	60.96 ab	63.68 ab
LINEA162	63.97 ab	70.33 a	78.71 a	74.97 ab	62.10 a	62.86 ab
LINEA163	64.63 ab	68.90 a	79.15 a	74.61 ab	61.18 ab	62.49 ab
LINEA164	62.86 ab	69.47 a	79.52 a	73.89 ab	61.85 a	63.73 ab
LINEA165	64.38 ab	69.09 a	78.82 a	73.49 ab	61.72 ab	62.34 ab
LINEA166	64.97 ab	69.51 a	79.09 a	75.08 ab	60.83 ab	62.29 ab
LINEA167	64.97 ab	69.90 a	78.68 a	73.32 ab	60.85 ab	62.27 ab
LINEA168	64.09 ab	69.78 a	79.06 a	74.02 ab	60.51 ab	61.89 ab
LINEA169	65.17 ab	69.70 a	78.89 a	72.97 ab	59.91 ab	62.96 ab
LINEA170	65.06 ab	68.54 ab	78.42 ab	73.54 ab	60.38 ab	62.03 ab
LINEA171	64.43 ab	69.25 a	77.75 ab	74.19 ab	60.93 ab	63.28 ab
LINEA172	63.31 ab	69.71 a	77.87 ab	74.06 ab	60.70 ab	62.19 ab
LINEA173	64.50 ab	69.60 a	78.21 ab	72.71 ab	61.57 ab	62.41 ab
LINEA174	65.11 ab	69.30 a	77.97 ab	73.75 ab	61.76 ab	62.74 ab
LINEA175	64.28 ab	68.96 a	78.01 ab	74.26 ab	61.17 ab	62.95 ab
LINEA176	64.01 ab	70.16 a	77.80 ab	73.39 ab	61.69 ab	62.62 ab
LINEA177	64.19 ab	69.36 a	79.21 a	73.62 ab	61.30 ab	63.43 ab
LINEA178	64.29 ab	69.42 a	79.59 a	73.00 ab	60.62 ab	62.75 ab
LINEA179	64.26 ab	67.59 ab	78.50 a	73.79 ab	60.31 ab	62.58 ab
LINEA180	63.15 ab	68.67 a	78.95 a	74.31 ab	61.55 ab	62.37 ab
LINEA181	63.75 ab	69.87 a	78.08 ab	73.45 ab	62.52 a	64.45 ab
LINEA182	64.31 ab	69.38 a	79.18 a	74.06 ab	60.39 ab	62.00 ab
LINEA183	64.13 ab	69.38 a	79.04 a	74.01 ab	61.21 ab	61.70 ab
LINEA184	64.03 ab	68.29 ab	79.39 a	73.61 ab	62.19 a	62.98 ab
LINEA185	64.45 ab	69.87 a	77.71 ab	73.02 ab	61.86 a	64.01 ab
LINEA186	65.65 a	68.34 ab	78.66 a	74.69 ab	61.70 ab	62.69 ab
LINEA187	64.29 ab	69.37 a	78.64 a	73.60 ab	61.81 a	63.27 ab
LINEA188	63.95 ab	69.11 a	78.66 a	74.06 ab	60.42 ab	63.01 ab
LINEA189	63.59 ab	69.47 a	79.26 a	74.41 ab	61.49 ab	62.96 ab
LINEA190	64.38 ab	69.56 a	78.43 ab	74.15 ab	60.01 ab	63.33 ab
LINEA191	64.48 ab	69.42 a	78.83 a	73.33 ab	60.48 ab	63.08 ab
LINEA192	64.90 ab	69.24 a	79.30 a	73.75 ab	60.08 ab	62.46 ab
LINEA193	64.50 ab	69.03 a	77.85 ab	73.81 ab	61.81 a	63.12 ab
LINEA194	64.71 ab	70.04 a	78.24 ab	73.80 ab	61.43 ab	62.80 ab
LINEA195	64.21 ab	69.31 a	78.42 ab	74.46 ab	61.13 ab	62.53 ab
LINEA196	66.01 a	69.24 a	79.09 a	73.75 ab	61.97 a	62.13 ab
G. FEMENINO	60.58 b	67.05 ab	75.00 b	64.08 c	56.77 b	63.24 ab
G. MASCULINO	62.44 ab	64.60 b	64.86 c	71.46 b	60.40 ab	57.16 ab

Rojas *et al.* (2014), indican que existe variedades con altura de planta bajo, mediano y alto de acuerdo a su genotipo, por otra parte, Bonifacio *et al.* (2013), indican una altura promedio de 70 -100 cm ideal para el manejo agronómico. Sin embargo, en el presente ensayo se obtuvo HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL con 64.27, 69.26, 78.54, 73.78, 61.27 y 62.71 cm respectivamente, superando ligeramente a sus genitores HUA, KCA, SAL, PAS, PAN y COL con 62.59, 62.57, 64.79, 75.00, 71.46 y 56.9 cm respectivamente esto indica que existe una ganancia genética respecto a esta variable (Mujica *et al.*, 2001). La altura de planta de quinua es un carácter muy variable donde es posible encontrar variedades altas a enanas según las características (Gandarillas y Bonifacio, 1991). Así mismo (Mújica *et al.*, 2004), indica que la altura de planta depende del tipo de quinua, de las condiciones ambientales donde crece, de la fertilidad de los suelos y de los genotipos.

Según PROINPA (2005), indica que la altura de planta no es determinante en la calidad de la semilla debido a que el comportamiento de la quinua es muy particular. Cuando las plantas son pequeñas los granos son grandes, contrariamente si existen plantas con mayor altura el tamaño de grano es menor. Según estudios realizados por Bonifacio *et al.* (2013), los genotipos precoces y semiprecoces presentan alturas de planta con un rango de 80 a 95 cm para la variable.

Sañudo et al. (2005), afirman que una variedad puede mostrar variaciones en la altura de planta, de acuerdo con la época de siembra, la fertilidad del suelo y las condiciones climáticas, de lo anterior se deduce que la altura además de ser una característica propia de cada genotipo, su expresión también está condicionada por el entorno. Al respecto Tapia (2000), afirma que de acuerdo con la variedad la quinua alcanza diferentes alturas, afirmando lo que dice Mujica et al. (2013), donde señala que uno de los objetivos de mejoramiento genético en quinua deber ser precisamente mejorar la arquitectura de planta con una alta eficiencia productiva con panojas grandes y anchas, tallos gruesos y plantas de alturas medianas.

En cuanto a esta variable lo que se pretende es obtener una variedad de porte mediano que facilite la cosecha mecanizada. Los resultados obtenidos en este estudio se corroboran con Benavides y Rodríguez (2007), quienes trabajaron con líneas de

cruzas simples de quinua en el municipio de Pasto (2450 m.s.n.m), encontraron líneas con mayor altura de planta respecto a sus genitores, considerándolos también los de porte mediano como ideal para la selección. También Peralta *et al.* (2012), trabajaron con líneas de cruzas simples buscando obtener variedades de porte mediano, ya que esto facilita la cosecha mecanizada cuando se tiene grandes extensiones de siembra.

4.1.2. Diámetro de tallo

En el análisis de varianza para el diámetro de tallo (Cuadro 7) en la cruza simples HUAxKCA se observa que existe alta significancia para localidades, y no significativas para repeticiones, genotipos y localidades x genotipos (Loc*Gen), el promedio general fue de 9.52 mm, con un coeficiente de variación de 1.21%; para la cruza SALxHUA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); y no significativa para repeticiones, el promedio general fue de 11 mm, con un coeficiente de variación de 1.17%; para la cruza PASxKCA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); y no significativa para repeticiones; el promedio general fue de 11.96 mm, con un coeficiente de variación de 0.94%; también en la cruza SALxPAN se observa que existe alta significancia para localidades, y baja significancia en genotipos, y no significativa para localidades x genotipos (Loc*Gen), y repeticiones, el promedio general fue de 10.99 mm, con un coeficiente de variación de 1.05%; para la cruza COLxKCA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen), y no significativa para repeticiones; el promedio general fue de 9.13 mm, con un coeficiente de variación de 1.46%; y finalmente en la cruza SALxCOL se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); y no significancia para repeticiones; el promedio general fue de 9.66 mm, con un coeficiente de variación de 1.41%, lo cual valida los resultados que se reportan en esta variable.

Cuadro 7

Análisis de varianza para diámetro de tallo de las seis cruzas. Puno, Perú-2017.

FUENTE DE	GL		CUADRADOS MEDIOS PARA DIAMETRO DE TALLO						
VARIACIÓN	GL	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL		
LOCALIDADES	1	758.72 **	1773.55 **	5028.21 **	4915.86 **	261.60 **	954.85 **		
REPETICIÓNES	2	0.02 ns	0.00 ns	0.02 ns	0.00 ns	0.01 ns	0.00 ns		
GENOTIPOS	197	0.01 ns	0.04 **	0.10 **	0.02 *	0.02 **	0.04 **		
LOC*GEN	197	0.01 ns	0.04 **	0.09 **	0.02 ns	0.02 **	0.04 **		
ERROR	394	0.01	0.02	0.01	0.01	0.02	0.02		
TOTAL	791	16.11		/////					
PROMEDIO (mm)		9.52	11.00	11.96	10.99	9.13	9.66		
C.V. (%)	N	1.21	1.17	0.94	1.05	1.46	1.41		

La prueba de Tukey (p < 0.05) para la variable diámetro de tallo (Cuadro 8), muestra los rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAxKCA132, HUAxKCA175, HUAxKCA62, HUAxKCA133, HUAxKCA173, HUAxKCA48 y HUAxKCA155 fueron las que presentaron mayor diámetro de tallo para esta cruza con medias de 9.65, 9.64, 9.64, 9.64, 9.63, 9.63 y 9.62 mm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de tallo fueron HUAxKCA120, HUAxKCA80, HUAxKCA51, HUAxKCA147, HUAxKCA87, HUAxKCA40, HUAxKCA14 y HUAxKCA103 con medias de 9.53, 9.52, 9.52, 9.52, 9.52, 9.52 y 9.52 mm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor diámetro de tallo fueron HUAxKCA76, HUAxKCA3, HUAxKCA157, HUAxKCA9, HUAxKCA58, HUAxKCA134, HUAxKCA98 y HUAxKCA24 con medias de 9.42, 9.42, 9.41, 9.40, 9.40, 9.39, 9.36 y 9.36 mm respectivamente a los que se clasifico también en el segundo y tercer rango de significancia. El genitor femenino (Huariponcho) tuvo una media de 9.47 mm donde se clasifico en el segundo rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 9.52 mm de diámetro de tallo y se clasifico también en el segundo rango de significancia (Figura 12).

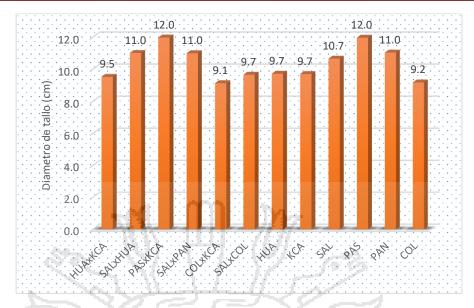


Figura 12. Comparación del diámetro de tallo entre las cruzas y los testigos. Puno, Perú-2017.

Para la cruza SALxHUA muestra dos rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Salcedo INIA y Huariponcho). Donde se observa que las líneas SALxHUA192, SALxHUA128, SALxHUA65, SALxHUA124, SALxHUA107, SALxHUA183, SALxHUA6 y SALxHUA189 fueron las que presentaron mayor diámetro de tallo para esta cruza con medias de 11.14, 11.12, 11.12, 11.12, 11.12, 11.12, 11.12 y 11.11 mm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de tallo fueron SALxHUA20, SALxHUA4, SALxHUA10, SALxHUA118, SALxHUA139, SALxHUA35, SALxHUA45 y SALxHUA140 con medias de 11.01, 11.01, 11.01, 11.01, 11.01, 11.01, 11.01 y 11.01 mm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor diámetro de tallo fueron SALxHUA133, SALxHUA39, SALxHUA53, SALxHUA17, SALxHUA74, SALxHUA96, SALxHUA72 y SALxHUA28con medias de 10.90, 10.90, 10.90, 10.89, 10.89, 10.87, 10.86 y 10.81 mm respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 10.92 mm se clasifico en el primer rango; mientras tanto el genitor masculino (Huariponcho) presento una media de 9.96 mm de diámetro de tallo y se clasifico también en el segundo rango de significancia.

Para la cruza PASxKCA muestra dos rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Pasankalla x Kcancolla (PASxKCA) y dos testigos que son los genitores (Pasankalla y Kcancolla). Donde se observa que PASxKCA43, PASxKCA181, PASxKCA168, líneas PASxKCA177, PASxKCA172, PASxKCA74, PASxKCA161 y PASxKCA113 fueron las que presentaron mayor diámetro de tallo para esta cruza con medias de 12.13, 12.11, 12.10, 12.09, 12.08, 12.08, 12.08 y 12.08 mm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio tallo fueron PASxKCA171, PASxKCA28, PASxKCA31, diámetro PASxKCA182, PASxKCA157, PASxKCA159, PASxKCA115 y PASxKCA139 con medias de 11.97, 11.97, 11.97, 11.97, 11.97, 11.97, 11.97 y 11.97 mm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor diámetro de tallo fueron PASxKCA12, PASxKCA169, PASxKCA93, PASxKCA114, PASxKCA8, PASxKCA82, PASxKCA27 v PASxKCA173 con medias de 11.87, 11.87, 11.86, 11.86, 11.85, 11.84, 11.82 y 11.82 mm respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 11.96 mm se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 9.94 mm de diámetro de tallo y se clasifico en el segundo rango de significancia.

En la Cuadro 8, también se observa tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Salcedo INIA y Pandela). Donde se observa que las líneas SALxPAN77, SALxPAN79, SALxPAN192, SALxPAN28, SALxPAN108, SALxPAN25, SALxPAN23 y SALxPAN4 fueron las que presentaron mayor diámetro de tallo para esta cruza con medias de 11.14, 11.13, 11.12, 11.11, 11.11, 11.10, 11.10 y 11.10 mm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio fueron SALxPAN111, SALxPAN81, tallo ALxPAN181, SALxPAN138, SALxPAN161, SALxPAN168 y SALxPAN112 con medias de 11.00, 11.00, 11.00, 10.99, 10.99, 10.99, 10.99 y 10.99 mm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor diámetro de tallo fueron SALxPAN7,

SALxPAN144, SALxPAN113, SALxPAN118, SALxPAN180, SALxPAN83, SALxPAN133 y SALxPAN162 con medias de 10.89, 10.89, 10.89, 10.89, 10.88, 10.87, 10.86 y 10.83 mm respectivamente a los que se clasifico en el tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 10.55 mm se clasifico en el primer rango; mientras tanto el genitor masculino (Pandela) presento una media de 11.03 mm de diámetro de tallo y se clasifico en el primer rango de significancia.

Para la cruza COLxKCA muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Negra collana y Kcancolla). Donde observa que las líneas COLxKCA55, COLxKCA4, COLxKCA163, COLxKCA44, COLxKCA69, COLxKCA154, COLxKCA181 y COLxKCA175 fueron las que presentaron mayor diámetro de tallo para esta cruza con medias de 9.28, 9.27, 9.27, 9.26, 9.26, 9.26 y 9.26 mm respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de tallo fueron COLxKCA160, COLxKCA105, COLxKCA97, COLxKCA145, COLxKCA137, COLxKCA58, COLxKCA30 y COLxKCA68 con medias de 9.13, 9.13, 9.13, 9.13, 9.12, 9.12, 9.12 y 9.12 mm respectivamente a los que se clasifico en el tercer rango de significancia; finalmente las líneas que presentaron menor diámetro de tallo fueron COLxKCA161, COLxKCA167, COLxKCA127, COLxKCA118, COLxKCA65, COLxKCA70 COLxKCA82 y COLxKCA81 con medias de 9.01, 9.00, 9.00, 8.99, 8.97, 8.97, 8.97 y 8.94 mm respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Negra collana) tuvo una media de 9.12 mm se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 9.64 mm de diámetro de tallo y se clasifico en el primer rango de significancia.

Finalmente, para la cruza muestra cuatro rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIA y Negra collana). Donde se observa que las líneas SALxCOL157, SALxCOL174, SALxCOL67, SALxCOL72, SALxCOL21, SALxCOL40, SALxCOL36 y SALxCOL37 fueron las que presentaron mayor diámetro de tallo para esta cruza con medias de 9.88, 9.84, 9.83, 9.82, 9.82, 9.82, 9.79 y 9.78 mm respectivamente a los que se clasifico en el

segundo rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de tallo fueron SALxCOL178, SALxCOL79, SALxCOL11, SALxCOL162, SALxCOL156, SALxCOL133, SALxCOL52 y SALxCOL57 con medias de 9.66, 9.66, 9.65, 9.65, 9.65, 9.65, 9.65 y 9.65 mm respectivamente a los que se clasifico también en el segundo rango de significancia; finalmente las líneas que presentaron menor diámetro de tallo fueron SALxCOL64, SALxCOL10, SALxCOL28, SALxCOL15, SALxCOL168, SALxCOL123, SALxCOL101 y SALxCOL97 con medias de 9.52, 9.52, 9.52, 9.52, 9.50, 9.49, 9.48 y 9.48 mm respectivamente a los que se clasifico en el tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 10.50 mm se clasifico en el primer rango; mientras tanto el genitor masculino (Negra collana) presento una media de 9.23 mm de diámetro de tallo y se clasifico en el cuarto rango de significancia.

Cuadro 8

Prueba de Tukey al 5% para diámetro de tallo de las seis cruzas. Puno, Perú-2017.

CENOTIDOS		DIAMETRO DE TALLO (mm)								
GENOTIPOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL				
LINEA1	9.51 a	11.06 a	11.93 a	11.04 a	9.09 b	9.64 b				
LINEA2	9.57 a	10.94 a	11.92 a	10.98 a	9.11 b	9.68 b				
LINEA3	9.59 a	11.03 a	11.99 a	10.93 a	9.04 b	9.72 b				
LINEA4	9.47 a	11.01 a	11.99 a	11.10 a	9.27 ab	9.70 b				
LINEA5	9.44 a	10.90 a	11.96 a	10.94 a	9.17 b	9.71 b				
LINEA6	9.57 a	11.12 a	11.99 a	11.04 a	9.14 b	9.59 bc				
LINEA7	9.53 a	11.06 a	11.93 a	10.89 ab	9.11 b	9.69 b				
LINEA8	9.47 a	11.03 a	11.84 a	10.97 a	9.26 ab	9.65 b				
LINEA9	9.50 a	11.09 a	11.99 a	10.97 a	9.13 b	9.69 b				
LINEA10	9.49 a	10.95 a	11.90 a	11.09 a	9.18 b	9.52 bc				
LINEA11	9.48 a	11.10 a	11.92 a	10.99 a	9.09 b	9.65 b				
LINEA12	9.50 a	11.05 a	11.87 a	11.00 a	9.15 b	9.66 b				
LINEA13	9.47 a	10.94 a	12.06 a	11.05 a	9.18 b	9.74 b				
LINEA14	9.52 a	11.03 a	12.00 a	10.98 a	9.04 b	9.72 b				
LINEA15	9.55 a	11.03 a	11.99 a	10.94 a	9.08 b	9.52 bc				
LINEA16	9.56 a	11.03 a	12.07 a	11.05 a	9.07 b	9.69 b				
LINEA17	9.50 a	10.89 a	11.99 a	10.99 a	9.02 b	9.64 b				
LINEA18	9.59 a	10.96 a	12.03 a	11.04 a	9.18 b	9.53 bc				
LINEA19	9.51 a	11.09 a	11.96 a	11.06 a	9.10 b	9.56 bc				
LINEA20	9.59 a	11.01 a	11.98 a	10.92 ab	9.08 b	9.68 b				
LINEA21	9.49 a	10.92 a	11.93 a	11.05 a	9.19 b	9.82 b				
LINEA22	9.52 a	10.92 a	11.96 a	11.04 a	9.16 b	9.61 b				
LINEA23	9.57 a	10.91 a	12.00 a	11.10 a	9.07 b	9.64 b				
LINEA24	9.36 a	11.10 a	12.02 a	11.06 a	9.17 b	9.69 b				
LINEA25	9.44 a	10.97 a	11.99 a	11.10 a	9.09 b	9.68 b				
LINEA26	9.49 a	10.98 a	12.04 a	11.01 a	9.16 b	9.70 b				
LINEA27	9.59 a	10.98 a	11.82 a	11.03 a	9.09 b	9.63 b				
LINEA28	9.47 a	10.81 a	11.97 a	11.11 a	9.06 b	9.52 bc				
LINEA29	9.46 a	11.04 a	11.97 a	10.98 a	9.11 b	9.66 b				
LINEA30	9.53 a	10.94 a	11.94 a	11.01 a	9.12 b	9.68 b				
LINEA31	9.42 a	11.03 a	11.97 a	10.99 a	9.08 b	9.63 b				
LINEA32	9.60 a	11.05 a	12.00 a	10.97 a	9.09 b	9.66 b				
LINEA33	9.52 a	11.05 a	12.06 a	10.96 a	9.04 b	9.68 b				
LINEA34	9.53 a	11.10 a	12.05 a	10.96 a	9.04 b	9.58 bc				
LINEA35	9.55 a	11.01 a	11.93 a	11.03 a	9.17 b	9.56 bc				

LINEA36	9.47 a	11.01 a	11.89 a	11.04 a	9.10 b	9.79 b
LINEA37	9.50 a	10.92 a	11.94 a	10.95 a	9.17 b	9.78 b
LINEA38	9.46 a	10.93 a	11.90 a	10.99 a	9.10 b	9.55 bc
LINEA39	9.57 a	10.90 a	11.92 a	11.02 a	9.06 b	9.58 bc
LINEA40	9.52 a	10.93 a	11.89 a	10.99 a	9.14 b	9.82 b
LINEA41	9.49 a	10.92 a	12.03 a	10.96 a	9.10 b	9.70 b
LINEA42	9.53 a	11.11 a	11.91 a	11.01 a	9.05 b	9.71 b
LINEA43	9.50 a	10.99 a	12.13 a	10.91 ab	9.14 b	9.67 b
LINEA44	9.48 a	11.03 a	12.01 a	10.89 ab	9.27 ab	9.72 b
LINEA45	9.57 a	11.01 a	12.03 a	10.99 a	9.07 b	9.65 b
LINEA46	9.60 a	10.96 a	11.96 a	10.97 a	9.15 b	9.70 b
LINEA47	9.51 a	11.02 a	12.01 a	11.03 a	9.18 b	9.64 b
LINEA48	9.63 a	10.98 a	11.98 a	10.99 a	9.13 b	9.58 bc
LINEA49	9.59 a	10.98 a	12.08 a	11.04 a	9.14 b	9.66 b
LINEA50	9.51 a	11.06 a	11.98 a	10.98 a	9.10 b	9.54 bc
LINEA51	9.52 a	11.00 a	11.92 a	10.98 a	9.17 b	9.60 bc
LINEA52	9.45 a	11.06 a	11.93 a	11.00 a	9.03 b	9.65 b
LINEA53	9.53 a	10.90 a	11.96 a	11.02 a	9.05 b	9.58 bc
LINEA54	9.52 a	10.98 a	12.00 a	11.10 a	9.24 ab	9.74 b
LINEA55	9.51 a	10.94 a	12.04 a	10.95 a	9.28 ab	9.63 b
LINEA56	9.55 a	10.98 a	11.98 a	11.01 a	9.08 b	9.58 bc
LINEA57	9.56 a	11.00 a	11.98 a	11.06 a	9.20 ab	9.65 b
LINEA58	9.40 a	11.04 a	12.06 a	10.97 a	9.12 b	9.56 bc
LINEA59	9.56 a	11.11 a	12.01 a	11.06 a	9.17 b	9.54 bc
LINEA60	9.59 a	11.03 a	11.95 a	10.89 ab	9.06 b	9.63 b
LINEA61	9.59 a	11.04 a	11.92 a	11.02 a	9.02 b	9.73 b
LINEA62	9.64 a	10.95 a	12.04 a	11.10 a	9.06 b	9.74 b
LINEA63	9.56 a	10.95 a	11.97 a	11.00 a	9.12 b	9.71 b
LINEA64	9.49 a	11.04 a	11.95 a	11.09 a	9.21 ab	9.52 bc
LINEA65	9.56 a	11.12 a	11.93 a	10.98 a	8.97 b	9.77 b
LINEA66	9.47 a	10.98 a	11.89 a	10.92 ab	9.15 b	9.56 bc
LINEA67	9.47 a	11.02 a	11.99 a	10.89 ab	9.04 b	9.83 b
LINEA68	9.44 a	10.99 a	11.96 a	10.96 a	9.12 b	9.62 b
LINEA69	9.60 a	11.01 a	11.96 a	11.05 a	9.26 ab	9.61 b
LINEA70	9.55 a	11.11 a	11.93 a	10.92 ab	8.97 b	9.56 bc
LINEA71	9.54 a	11.04 a	11.99 a	11.02 a	9.09 b	9.63 b
LINEA72	9.51 a	10.86 a	12.00 a	10.96 a	9.22 ab	9.82 b
LINEA73	9.51 a	10.96 a	12.00 a	10.92 ab	9.23 ab	9.74 b
LINEA74	9.60 a	10.89 a	12.08 a	10.97 a	9.08 b	9.63 b
LINEA75	9.54 a	10.94 a	12.01 a	10.95 a	9.10 b	9.54 bc

LINEA76	9.42 a	10.96 a	11.99 a	11.02 a	9.16 b	9.61 b
LINEA77	9.61 a	10.97 a	12.00 a	11.14 a	9.15 b	9.64 b
LINEA78	9.48 a	11.04 a	11.97 a	10.98 a	9.17 b	9.62 b
LINEA79	9.60 a	10.92 a	11.92 a	11.13 a	9.14 b	9.66 b
LINEA80	9.52 a	10.95 a	12.04 a	10.94 a	9.09 b	9.59 bc
LINEA81	9.50 a	10.91 a	12.00 a	11.00 a	8.94 b	9.65 b
LINEA82	9.52 a	10.97 a	11.87 a	10.94 a	8.97 b	9.68 b
LINEA83	9.46 a	10.97 a	12.00 a	10.87 ab	9.04 b	9.56 bc
LINEA84	9.53 a	10.91 a	12.04 a	11.04 a	9.23 ab	9.68 b
LINEA85	9.51 a	11.07 a	12.03 a	11.06 a	9.04 b	9.64 b
LINEA86	9.53 a	11.06 a	12.05 a	10.96 a	9.08 b	9.61 b
LINEA87	9.52 a	11.04 a	11.90 a	10.97 a	9.06 b	9.62 b
LINEA88	9.51 a	10.98 a	11.94 a	10.97 a	9.10 b	9.63 b
LINEA89	9.55 a	11.07 a	12.03 a	11.09 a	9.21 ab	9.61 b
LINEA90	9.54 a	10.99 a	11.94 a	11.01 a	9.10 b	9.64 b
LINEA91	9.40 a	11.08 a	12.04 a	11.03 a	9.12 b	9.62 b
LINEA92	9.50 a	11.08 a	11.90 a	11.00 a	9.13 b	9.64 b
LINEA93	9.55 a	10.97 a	11.86 a	10.98 a	9.21 ab	9.74 b
LINEA94	9.59 a	10.98 a	11.92 a	11.03 a	9.19 b	9.74 b
LINEA95	9.59 a	11.03 a	12.04 a	10.95 a	9.09 b	9.60 bc
LINEA96	9.56 a	10.87 a	11.94 a	10.94 a	9.11 b	9.61 b
LINEA97	9.54 a	10.97 a	11.97 a	10.91 ab	9.13 b	9.48 bc
LINEA98	9.36 a	11.08 a	11.92 a	10.96 a	9.22 ab	9.59 bc
LINEA99	9.54 a	11.07 a	12.02 a	10.90 ab	9.05 b	9.62 b
LINEA100	9.44 a	10.95 a	12.05 a	10.97 a	9.09 b	9.67 b
LINEA101	9.47 a	11.01 a	12.02 a	10.99 a	9.07 b	9.48 bc
LINEA102	9.51 a	10.99 a	11.97 a	10.98 a	9.01 b	9.61 b
LINEA103	9.52 a	10.98 a	12.04 a	10.97 a	9.15 b	9.62 b
LINEA104	9.42 a	10.96 a	12.06 a	10.95 a	9.16 b	9.62 b
LINEA105	9.50 a	10.96 a	12.01 a	11.03 a	9.13 b	9.62 b
LINEA106	9.55 a	11.08 a	11.95 a	11.00 a	9.09 b	9.67 b
LINEA107	9.52 a	11.12 a	12.01 a	10.96 a	9.10 b	9.63 b
LINEA108	9.56 a	11.05 a	11.94 a	11.11 a	9.19 b	9.68 b
LINEA109	9.50 a	11.04 a	12.03 a	11.05 a	9.11 b	9.64 b
LINEA110	9.55 a	11.03 a	11.95 a	11.02 a	9.11 b	9.56 bc
LINEA111	9.59 a	10.97 a	11.96 a	11.00 a	9.20 b	9.67 b
LINEA112	9.61 a	11.06 a	12.00 a	10.99 a	9.11 b	9.69 b
LINEA113	9.57 a	11.02 a	12.08 a	10.89 ab	9.09 b	9.54 bc
LINEA114	9.57 a	11.05 a	11.85 a	11.08 a	9.04 b	9.70 b
LINEA115	9.55 a	11.05 a	11.97 a	10.94 a	9.11 b	9.67 b

LINEA116	9.61 a	11.00 a	12.07 a	11.03 a	9.16 b	9.67 b
LINEA117	9.58 a	10.99 a	12.01 a	11.00 a	9.10 b	9.62 b
LINEA118	9.46 a	11.01 a	11.94 a	10.89 ab	8.99 b	9.61 b
LINEA119	9.59 a	11.11 a	11.98 a	10.98 a	9.15 b	9.70 b
LINEA120	9.53 a	11.05 a	12.04 a	10.92 ab	9.15 b	9.59 bc
LINEA121	9.55 a	10.99 a	12.04 a	10.96 a	9.08 b	9.60 bc
LINEA122	9.45 a	10.95 a	11.93 a	11.04 a	9.06 b	9.76 b
LINEA123	9.60 a	11.06 a	11.88 a	10.96 a	9.18 b	9.49 bc
LINEA124	9.50 a	11.12 a	11.98 a	11.01 a	9.17 b	9.63 b
LINEA125	9.44 a	11.05 a	11.93 a	10.96 a	9.18 b	9.67 b
LINEA126	9.54 a	11.04 a	11.91 a	11.03 a	9.25 ab	9.63 b
LINEA127	9.43 a	11.06 a	11.97 a	11.04 a	9.00 b	9.66 b
LINEA128	9.57 a	11.12 a	12.02 a	11.05 a	9.14 b	9.69 b
LINEA129	9.50 a	10.91 a	11.94 a	11.09 a	9.14 b	9.58 bc
LINEA130	9.48 a	11.03 a	11.88 a	11.07 a	9.03 b	9.67 b
LINEA131	9.54 a	10.99 a	11.90 a	11.03 a	9.01 b	9.71 b
LINEA132	9.65 a	11.10 a	12.04 a	11.00 a	9.10 b	9.73 b
LINEA133	9.64 a	10.90 a	11.89 a	10.86 ab	9.13 b	9.65 b
LINEA134	9.39 a	11.00 a	11.95 a	10.98 a	9.15 b	9.70 b
LINEA135	9.49 a	10.98 a	11.96 a	11.03 a	9.14 b	9.67 b
LINEA136	9.53 a	11.04 a	11.98 a	11.10 a	9.21 ab	9.73 b
LINEA137	9.53 a	11.03 a	11.94 a	11.04 a	9.12 b	9.69 b
LINEA138	9.51 a	10.96 a	11.92 a	10.99 a	9.18 b	9.63 b
LINEA139	9.53 a	11.01 a	11.97 a	11.00 a	9.14 b	9.62 b
LINEA140	9.53 a	11.01 a	11.99 a	10.92 ab	9.07 b	9.68 b
LINEA141	9.50 a	11.09 a	11.99 a	10.98 a	9.24 ab	9.74 b
LINEA142	9.55 a	11.05 a	12.07 a	10.96 a	9.18 b	9.66 b
LINEA143	9.42 a	11.03 a	11.97 a	10.99 a	9.13 b	9.74 b
LINEA144	9.43 a	10.93 a	11.94 a	10.89 ab	9.24 ab	9.73 b
LINEA145	9.57 a	11.08 a	12.00 a	10.96 a	9.13 b	9.71 b
LINEA146	9.46 a	10.95 a	11.93 a	11.00 a	9.06 b	9.73 b
LINEA147	9.52 a	11.08 a	11.90 a	11.05 a	9.08 b	9.69 b
LINEA148	9.56 a	11.03 a	11.96 a	10.93 a	9.09 b	9.58 bc
LINEA149	9.50 a	10.98 a	11.91 a	10.95 a	9.01 b	9.61 b
LINEA150	9.48 a	11.11 a	12.02 a	10.96 a	9.10 b	9.63 b
LINEA151	9.51 a	11.02 a	11.95 a	11.04 a	9.20 ab	9.67 b
LINEA152	9.44 a	10.97 a	12.02 a	10.99 a	9.21 ab	9.73 b
LINEA153	9.44 a	11.10 a	12.01 a	10.98 a	9.19 b	9.70 b
LINEA154	9.46 a	11.05 a	12.02 a	11.06 a	9.26 ab	9.74 b
LINEA155	9.62 a	10.96 a	11.90 a	11.00 a	9.17 b	9.68 b

LINEATEC	9.51 a	10.98 a	11.93 a	11.02 a	9.07 b	9.65 b
LINEA156 LINEA157	9.31 a 9.41 a	10.98 a 11.09 a	11.95 a 11.97 a	10.95 a	9.07 b	9.88 b
LINEA157	9.41 a 9.56 a	11.05 a	11.97 a 12.00 a	10.95 a 10.96 a	9.20 b 9.06 b	9.66 b
LINEA156	9.50 a 9.51 a	11.03 a 11.04 a	12.00 a 11.97 a	10.90 a 10.98 a	9.00 b 9.14 b	9.69 b
LINEA160	9.48 a	11.04 a	11.97 a 11.92 a	10.98 a 11.01 a	9.14 b	9.62 b
LINEA160	9.46 a	10.98 a	11.92 a 12.08 a	10.99 a	9.13 b	9.62 b
LINEA162	9.40 a 9.54 a	10.98 a	12.06 a 11.90 a	10.99 a 10.83 ab	9.01 b	9.65 b
LINEA162	9.54 a 9.59 a	11.01 a 11.02 a	11.90 a 12.07 a	10.85 ab	9.22 ab	9.65 b
LINEA164	9.39 a 9.49 a	11.02 a 11.08 a	12.07 a	10.90 a 11.05 a	9.27 ab	9.62 b
LINEA165	9.49 a 9.57 a	11.08 a	11.93 a	11.05 a 10.95 a	9.17 b	9.62 b
LINEA165	9.57 a 9.53 a	11.03 a 11.07 a	11.93 a 11.94 a	10.93 a 11.00 a	9.10 b	9.58 bc
LINEA167	9.33 a 9.49 a	10.95 a	11.94 a 12.00 a	10.94 a	9.10 b	9.38 bc
LINEA168	9.49 a 9.55 a	10.93 a 11.08 a	12.00 a	10.94 a 10.99 a	9.26 ab	9.70 bc
LINEA169	9.33 a 9.48 a	11.00 a	12.10 a	10.99 a 11.02 a	9.20 ab	9.71 b
LINEA170	9.48 a	10.95 a	11.89 a	10.96 a	9.03 b	9.71 b
LINEA170	9.54 a	11.02 a	11.97 a	10.90 a 11.04 a	9.18 b	9.59 bc
LINEA171	9.53 a	10.95 a	12.08 a	10.98 a	9.19 b	9.77 b
LINEA172	9.63 a	10.93 a	11.82 a	10.98 a	9.21 ab	9.64 b
LINEA174	9.59 a	10.91 a	11.02 a	11.00 a	9.16 b	9.84 b
LINEA175	9.64 a	11.04 a	11.95 a	11.00 a	9.26 ab	9.76 b
LINEA176	9.46 a	11.04 a	11.92 a	10.98 a	9.16 b	9.61 b
LINEA177	9.50 a	10.95 a	12.09 a	11.00 a	9.14 b	9.66 b
LINEA178	9.56 a	10.98 a	11.98 a	10.95 a	9.07 b	9.66 b
LINEA179	9.56 a	10.97 a	11.96 a	10.92 ab	9.07 b	9.62 b
LINEA180	9.62 a	11.03 a	11.90 a	10.88 ab	9.16 b	9.63 b
LINEA181	9.50 a	11.06 a	12.11 a		9.26 ab	9.71 b
LINEA182	9.47 a	11.05 a	11.97 a	10.94 a	9.14 b	9.61 b
LINEA183	9.52 a	11.12 a	12.04 a	11.00 a	9.13 b	9.62 b
LINEA184	9.50 a	10.98 a	11.97 a	11.01 a	9.09 b	9.75 b
LINEA185	9.54 a	11.00 a	12.02 a	11.01 a	9.09 b	9.53 bc
LINEA186	9.45 a	10.93 a	12.04 a	11.04 a	9.17 b	9.74 b
LINEA187	9.53 a	10.94 a	12.05 a	10.95 a	9.13 b	9.68 b
LINEA188	9.60 a	11.02 a	11.92 a	11.04 a	9.04 b	9.67 b
LINEA189	9.47 a	11.11 a	11.92 a	11.06 a	9.12 b	9.73 b
LINEA190	9.55 a	11.00 a	11.95 a	10.99 a	9.10 b	9.57 bc
LINEA191	9.51 a	11.07 a	11.95 a	11.00 a	9.10 b	9.60 bc
LINEA192	9.51 a	11.14 a	11.95 a	11.12 a	9.07 b	9.58 bc
LINEA193	9.50 a	11.00 a	11.97 a	11.05 a	9.20 ab	9.72 b
LINEA194	9.50 a	10.96 a	11.95 a	11.03 a	9.14 b	9.74 b
LINEA195	9.54 a	11.00 a	11.91 a	11.05 a	9.08 b	9.76 b
LINEA196	9.56 a	11.06 a	11.99 a	11.00 a	9.11 b	9.70 b
G. FEMENINO	9.47 a	10.92 a	11.96 a	10.55 b	9.12 b	10.50 a
G. MASCULINO	9.52 a	9.96 b	9.94 b	11.03 a	9.64 a	9.23 c

La estructura y constitución de la planta son de mucha importancia, ya que son características que se traducirán directamente en un buen o mal rendimiento, dependiendo de cuál sea el caso, además de que una planta bien constituida será menos propensa al ataque de factores bióticos como insectos, enfermedades, pájaros, etc. y a factores abióticos como viento, heladas y demás condiciones adversas que puedan provocar un acame en las plantas. Según Álvarez (1990), características agronómicas como precocidad, uniformidad, tamaño de planta, madurez uniforme, tipo de panoja, tallos resistentes al vuelco y resistencia a enfermedades vienen dadas desde la genética misma de la planta, esto sumado a una buena nutrición dará como resultado un cultivo con mejor vigor y rendimiento.

Los resultados obtenidos en este estudio se corroboran con Benavides y Rodríguez (2007), quienes trabajaron con líneas de cruzas simples de quinua, encontraron líneas con mayor diámetro de tallo respecto a sus genitores, considerándolos también los de mayor diámetro como ideal para la selección HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL presentaron 9.52, 11.01, 11.97, 10.99, 9.12 y 9.65 mm respectivamente, superando ligeramente a sus genitores HUA, KCA, SAL, PAS, PAN y COL con 9.72, 9.70, 10.66, 11.96, 11.03 y 9.17 mm respectivamente esto indica que existe un avance genético respecto a esta variable.

Según Sañudo *et al.* (2005), afirman que una variedad puede mostrar variaciones en el diámetro de tallo, de acuerdo con la época de siembra, la fertilidad del suelo y las condiciones climáticas, de lo anterior se deduce que el diámetro de tallo además de ser una característica propia de cada genotipo, su expresión también está condicionada por el entorno (Hena *et al.*, 2016). Al respecto Tapia (2000), afirma que de acuerdo con la variedad la quinua alcanza diferentes diámetros. Además, Mujica *et al.* (2013), señalan que uno de los objetivos de mejoramiento genético en quinua deber ser precisamente mejorar la arquitectura de planta con una alta eficiencia productiva con tallos gruesos y plantas de alturas medianos.

4.1.3. Longitud de panoja

En el análisis de varianza para la longitud de panoja (Cuadro 9), en la cruza simple HUAxKCA se observa que existe alta significancia para localidades, no existe significancia para repeticiones, y poca significativa para genotipos y localidades x genotipos (Loc*Gen), el promedio general fue de 21.24 cm, con un coeficiente de variación de 1.85%; para la cruza SALxHUA se observa que existe alta significativa para localidades y genotipos; y no existe significancia para repeticiones, y localidades x genotipos (Loc*Gen); el promedio general fue de 22.84 cm, con un coeficiente de variación de 1.30%; en la cruza PASxKCA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); no significativa para repeticiones, y poca significativa para el promedio general fue de 24.22 cm, con un coeficiente de variación de 1.19%; en la cruza SALxPAN se observa que existe alta significancia para localidades, genotipos; no existe significancia para repeticiones y localidades x genotipos (Loc*Gen), el promedio general fue de 22.24 cm, con un coeficiente de variación de 1.93%; para la cruza COLxKCA se observa que existe alta significancia para localidades, y genotipos; no significancia para repeticiones y localidades x enotipos (Loc*Gen), el promedio general fue de 18.74 cm, con un coeficiente de variación de 2.23%; y finalmente para cruza SALxCOL se observa que existe alta significancia para localidades, no significativa para repeticiones, genotipos y localidades x genotipos (Loc*Gen) el promedio general fue de 18.99 cm, con un coeficiente de variación de 2.54%.

Cuadro 9

Análisis de varianza para longitud de panoja de las seis cruzas. Puno, Perú-2017.

FUENTE DE	GL		CUADRADOS	MEDIOS PAR	A LONGITUD D	E PANOJA	
VARIACIÓN	GL	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LOCALIDADES	1	14290.97 **	10480.95 **	14203.51 **	21818.79 **	25884.15 **	19893.71 **
REPETICIÓNES	2	0.23 ns	0.01 ns	0.09 ns	0.09 ns	0.01 ns	0.08 ns
GENOTIPOS	197	0.20 *	0.13 **	0.19 **	0.30 **	0.25 **	0.27 ns
LOC*GEN	197	0.19 *	0.09 ns	0.15 **	0.19 ns	0.21 ns	0.21 ns
ERROR	394	0.16	0.09	0.08	0.19	0.18	0.23
TOTAL	791						
PROMEDIO (cm)		21.24	22.84	24.22	22.24	18.74	18.99
C.V. (%)		1.85	1.30	1.19	1.93	2.23	2.54

La prueba de Tukey (p < 0.05) para la variable longitud de panoja (Cuadro 10), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de

la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAxKCA149, HUAxKCA107, HUAxKCA20, HUAxKCA83, HUAxKCA29, HUAxKCA173, HUAxKCA52 y HUAxKCA70 fueron las que presentaron mayor longitud de panoja para esta cruza con medias de 21.83, 21.76, 21.76, 21.73, 21.71, 21.71, 21.66 y 21.63 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio longitud de panoja HUAxKCA129, HUAxKCA124, HUAxKCA54, HUAxKCA141, HUAxKCA23, HUAxKCA18, HUAxKCA119 y HUAxKCA73 con medias de 21.26, 21.25, 21.25, 21.25, 21.25, 21.25, 21.24 y 21.24 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor longitud de panoja fueron HUAxKCA108, HUAxKCA13, HUAxKCA46, HUAxKCA7, HUAxKCA123, HUAxKCA154, HUAxKCA135 y HUAxKCA34 con medias de 20.85, 20.85, 20.85, 20.81, 20.78, 20.75, 20.74 y 20.62 cm respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Huariponcho) tuvo una media de 20.34 cm donde se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 20.59 cm de longitud de panoja y se clasifico en el segundo rango de significancia (Figura 13).

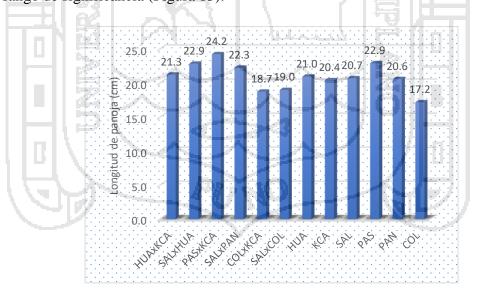


Figura 13. Comparación de la longitud de panoja entre las cruzas y los testigos. Puno, Perú-2017.

Para la variable longitud de panoja (Cuadro 10), muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo

INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Salcedo INIA y Huariponcho). Donde se observa que las líneas SALxHUA103, SALxHUA162, SALxHUA88, SALxHUA28, SALxHUA34, SALxHUA112, SALxHUA58 y SALxHUA155 fueron las que presentaron mayor longitud de panoja para esta cruza 23.25, 23.19, 23.15, 23.14, 23.13, 23.13, 23.12 y 23.12 cm con medias de respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio longitud de panoja fueron SALxHUA174, SALxHUA108, SALxHUA195, SALxHUA107, SALxHUA166, SALxHUA138, SALxHUA153 y SALxHUA69 con medias de 22.87, 22.87, 22.87, 22.86, 22.86, 22.86, 22.86 y 22.86 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor longitud de panoja fueron SALxHUA43, SALxHUA193, SALxHUA19, SALxHUA40, SALxHUA187, SALxHUA75, SALxHUA44 y SALxHUA104 con medias de 22.59, 22.59, 22.58 22.56, 22.56, 22.53, 22.51 y 22.49 cm respectivamente a los que se clasifico en el segundo y tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 22.10 cm donde se clasifico en el cuarto rango; mientras tanto el genitor masculino (Huariponcho) presento una media de 21.58 cm de longitud de panoja y se clasifico en el quinto rango de significancia.

Se observa cuatro rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Pasankalla x Kcancolla (SALxHUA) y dos testigos que son los genitores (Pasankalla y Kcancolla). Donde se observa que las líneas PASxKCA69, PASxKCA130, PASxKCA166, PASxKCA157, PASxKCA106, PASxKCA34, PASxKCA79 y PASxKCA181 fueron las que presentaron mayor longitud de panoja para esta cruza con medias de 24.63, 24.62, 24.62, 24.54, 24.54, 24.52, 24.51 y 24.49 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio longitud de panoja fueron PASxKCA16, PASxKCA111, PASxKCA66, PASxKCA64, PASxKCA14, PASxKCA25, PASxKCA86 y PASxKCA53 con medias de 24.25, 24.25, 24.24, 24.24, 24.24, 24.24, 24.24 y 24.23 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor longitud de panoja fueron PASxKCA40, PASxKCA96, PASxKCA28, PASxKCA154, PASxKCA18, PASxKCA2, PASxKCA159 y PASxKCA164 con medias de 24.02, 24.00, 24.00, 24.00, 23.97, 23.95, 23.88 y 23.76 cm respectivamente a los que se

clasifico en el primer y segundo rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 22.92 cm donde se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 22.20 cm de longitud de panoja y se clasifico en el cuarto rango de significancia.

Para SALxPAN muestra cuatro rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Salcedo INIA y Pandela). Donde se observa que las líneas SALxPAN16, SALxPAN32, SALxPAN127, SALxPAN22, SALxPAN12, SALxPAN126, SALxPAN121 y SALxPAN116 fueron las que presentaron mayor longitud de panoja para esta cruza con medias de 22.76, 22.75, 22.68, 22.65, 22.63, 22.61 y 22.60 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio longitud de panoja fueron SALxPAN10, SALxPAN82, SALxPAN142, SALxPAN162, SALxPAN176, SALxPAN129, SALxPAN138 y SALxPAN40 con medias de 22.28, 22.28, 22.27, 22.26, 22.26, 22.26 y 22.26 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor longitud de panoja fueron SALxPAN186, SALxPAN65, SALxPAN37, SALxPAN168, SALxPAN106, SALxPAN87, SALxPAN91 y SALxPAN181 con medias de 21.88, 21.88, 21.88, 21.87, 21.86, 21.81, 21.81 y 21.79 cm respectivamente a los que se clasifico en el segundo rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 20.33 cm donde se clasifico en el cuarto rango; mientras tanto el genitor masculino (Pandela) presento una media de 20.61 cm de longitud de panoja y se clasifico en el tercer rango de significancia.

Para COLxKCA muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Negra collana y Kcancolla). Donde se observa que las líneas COLxKCA24, COLxKCA44, COLxKCA131, COLxKCA118, COLxKCA145, COLxKCA189, COLxKCA20 y COLxKCA3 fueron las que presentaron mayor longitud de panoja para esta cruza con medias de 19.54, 19.30, 19.22, 19.19, 19.17, 19.13, 19.12 y 19.12 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio longitud de panoja fueron COLxKCA9, COLxKCA57, COLxKCA149, COLxKCA155, COLxKCA116, COLxKCA178, COLxKCA75 y COLxKCA40 con

medias de 18.77, 18.77, 18.77, 18.77, 18.76, 18.76, 18.75 y 18.75 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor longitud de panoja fueron COLxKCA96, COLxKCA30, COLxKCA89, COLxKCA109, COLxKCA184, COLxKCA55, COLxKCA158 y COLxKCA164 con medias de 18.39, 18.38, 18.37, 18.34, 18.33, 18.37, 18.27 y 18.20 cm respectivamente a los que se clasifico en el primer y segundo rango de significancia. El genitor femenino (Negra collana) tuvo una media de 16.88 cm donde se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 18.50 cm de longitud de panoja y se clasifico en el primer rango de significancia.

La prueba de Tukey (p < 0.05) para la variable longitud de panoja (Cuadro 10), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIA y Negra collana). Donde se observa que las líneas SALxCOL86, SALxCOL159, SALxCOL154, SALxCOL75, SALxCOL158, SALxCOL196, SALxCOL108, SALxCOL141 fueron las que presentaron mayor longitud de panoja para esta cruza con medias de 19.65, 19.50, 19.50, 19.49, 19.48, 19.48, 19.44 19.44 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio longitud de panoja fueron SALxCOL67, SALxCOL50, SALxCOL20, SALxCOL94, SALxCOL169, SALxCOL68, SALxCOL138 y SALxCOL82 con medias de 19.02, 19.02, 19.02, 19.01, 19.01, 19.01, 19.00 y 19.00 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor longitud de panoja fueron SALxCOL180, SALxCOL185, SALxCOL76, SALxCOL19, SALxCOL34, SALxCOL162, SALxCOL87, SALxCOL191 con medias de 18.60, 18.58, 18.57, 18.52, 18.49, 18.48, 18.42 y 18.34 cm respectivamente a los que se clasifico en el segundo rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 19.73 cm donde se clasifico en el primer rango; mientras tanto el genitor masculino (Negra collana) presento una media de 17.50 cm de longitud de panoja y se clasifico en el tercer rango de significancia.

Cuadro 10

Prueba de Tukey al 5% para longitud de panoja de las seis cruzas. Puno, Perú-2017.

CENOTIDOS		LO	GITUD DE PANOJA (cm)				
GENOTIPOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL	
LINEA1	21.27 ab	22.84 ab	24.29 a	22.42 a	19.05 a	19.05 ab	
LINEA2	21.14 ab	22.76 ab	23.95 a	22.31 a	18.73 a	19.04 ab	
LINEA3	21.56 ab	22.87 ab	24.28 a	22.23 a	19.12 a	19.29 a	
LINEA4	21.43 ab	22.75 ab	24.34 a	21.96 ab	18.54 a	18.94 ab	
LINEA5	21.14 ab	22.83 ab	24.43 a	22.12 a	18.78 a	19.22 a	
LINEA6	21.15 ab	22.82 ab	24.32 a	22.32 a	18.86 a	18.92 ab	
LINEA7	20.81 ab	22.81 ab	24.17 a	22.41 a	18.68 a	19.03 ab	
LINEA8	21.11 ab	22.63 ab	24.19 a	22.29 a	18.80 a	19.09 a	
LINEA9	21.04 ab	22.92 ab	24.47 a	22.19 a	18.77 a	19.16 a	
LINEA10	21.23 ab	22.61 ab	24.11 a	22.28 a	18.68 a	18.92 ab	
LINEA11	21.20 ab	22.71 ab	24.14 a	22.01 ab	18.61 a	18.97 ab	
LINEA12	21.33 ab	22.97 ab	24.43 a	22.65 a	19.01 a	19.15 a	
LINEA13	20.85 ab	23.02 ab	24.27 a	22.04 a	18.92 a	19.10 a	
LINEA14	21.11 ab	23.06 a	24.24 a	22.40 a	18.68 a	19.17 a	
LINEA15	21.31 ab	22.88 ab	24.43 a	22.19 a	18.79 a	18.76 ab	
LINEA16	21.53 ab	22.71 ab	24.25 a	22.75 a	18.84 a	19.16 a	
LINEA17	21.21 ab	22.97 ab	24.12 a	21.91 ab	18.95 a	19.07 ab	
LINEA18	21.25 ab	22.91 ab	23.97 a	22.52 a	19.05 a	18.78 ab	
LINEA19	21.33 ab	22.58 ab	24.14 a	22.40 a	18.39 a	18.52 ab	
LINEA20	21.76 a	22.78 ab	24.38 a	21.99 ab	19.12 a	19.02 ab	
LINEA21	21.49 ab	23.06 a	24.14 a	22.15 a	18.87 a	18.78 ab	
LINEA22	21.32 ab	22.66 ab	24.19 a	22.68 a	18.73 a	18.93 ab	
LINEA23	21.25 ab	22.92 ab	24.18 a	22.43 a	18.39 a	19.12 a	
LINEA24	21.59 ab	22.73 ab	24.28 a	22.08 a	19.54 a	18.66 ab	
LINEA25	21.01 ab	22.92 ab	24.24 a	22.21 a	18.47 a	19.15 a	
LINEA26	20.88 ab	22.99 ab	24.29 a	22.33 a	18.77 a	18.73 ab	
LINEA27	21.41 ab	22.99 ab	24.31 a	22.06 a	18.69 a	18.63 ab	
LINEA28	21.01 ab	23.14 a	24.00 a	22.00 ab	18.59 a	18.67 ab	
LINEA29	21.71 a	22.82 ab	24.37 a	22.19 a	18.87 a	18.98 ab	
LINEA30	21.21 ab	22.67 ab	24.18 a	21.97 ab	18.38 a	19.08 ab	
LINEA31	21.39 ab	22.88 ab	24.22 a	22.15 a	18.84 a	19.16 a	
LINEA32	21.49 ab	22.89 ab	24.13 a	22.76 a	18.43 a	18.89 ab	
LINEA33	21.07 ab	22.66 ab	24.38 a	22.24 a	18.66 a	19.17 a	
LINEA34	20.62 ab	23.13 a	24.52 a	22.31 a	18.87 a	18.49 ab	
LINEA35	20.97 ab	22.80 ab	24.14 a	22.51 a	18.72 a	19.22 a	

LINEA36				22.43 a		19.02 ab
LINEA37	21.17 ab	22.80 ab	24.08 a	21.88 ab	18.77 a	18.69 ab
LINEA38	21.05 ab	22.99 ab		22.31 a		
LINEA39	21.24 ab	22.87 ab		22.29 a	18.84 a	
LINEA40	21.43 ab	22.56 ab	24.02 a	22.26 a		
LINEA41	21.24 ab	22.74 ab		22.17 a	18.86 a	18.87 ab
LINEA42	21.63 ab	22.72 ab	24.40 a	22.30 a	18.61 a	19.32 a
LINEA43	21.43 ab	22.59 ab	24.35 a	21.95 ab	18.49 a	18.82 ab
LINEA44	21.48 ab	22.51 ab	24.33 a	22.56 a	19.30 a	18.94 ab
LINEA45	21.35 ab	23.03 ab	24.12 a	22.41 a	18.48 a	18.84 ab
LINEA46	20.85 ab	22.92 ab	24.26 a	22.02 a	18.51 a	19.26 a
LINEA47	21.28 ab	22.93 ab	24.13 a	21.96 ab	18.98 a	19.39 a
LINEA48	21.59 ab	22.90 ab	24.25 a	22.06 a	18.86 a	19.15 a
LINEA49	21.17 ab	22.81 ab	24.13 a	22.08 a	18.58 a	18.86 ab
LINEA50	21.28 ab	22.88 ab	24.11 a	22.30 a	18.79 a	19.02 ab
LINEA51	21.36 ab	22.97 ab	24.20 a	22.19 a	18.90 a	19.35 a
LINEA52	21.66 a	22.72 ab	24.11 a	22.31 a	19.09 a	18.81 ab
LINEA53	21.20 ab	22.73 ab	24.23 a	22.28 a	18.60 a	19.09 a
LINEA54	21.25 ab	22.68 ab	24.18 a	22.24 a	18.58 a	18.87 ab
LINEA55	21.14 ab	22.89 ab	24.08 a	22.47 a	18.33 a	18.78 ab
LINEA56	21.32 ab	22.71 ab	24.37 a	22.52 a	19.01 a	18.88 ab
LINEA57	21.22 ab	23.00 ab	24.14 a	22.15 a	18.77 a	19.13 a
LINEA58	21.27 ab	23.12 a	24.30 a	22.30 a	18.69 a	18.86 ab
LINEA59	21.36 ab	22.99 ab	24.04 a	22.25 a	18.60 a	18.91 ab
LINEA60	20.89 ab	22.70 ab	24.37 a		18.81 a	18.72 ab
LINEA61	21.31 ab	22.80 ab	24.18 a	22.37 a	19.05 a	18.92 ab
LINEA62	21.33 ab	22.99 ab	24.19 a	22.13 a	18.92 a	18.69 ab
LINEA63	21.07 ab	23.02 ab	24.13 a	22.18 a	18.59 a	18.83 ab
LINEA64	21.21 ab	22.71 ab	24.24 a	22.01 ab	18.65 a	19.39 a
LINEA65	21.30 ab	22.63 ab	24.26 a	21.88 ab	18.78 a	18.96 ab
LINEA66	21.56 ab	22.99 ab	24.24 a	22.06 a	18.96 a	19.17 a
LINEA67	21.44 ab	22.98 ab	24.12 a	21.93 ab	18.78 a	19.02 ab
LINEA68	21.37 ab	22.87 ab	24.44 a	22.49 a	18.77 a	19.01 ab
LINEA69	20.97 ab	22.86 ab	24.63 a	22.35 a	18.67 a	19.03 ab
LINEA70	21.63 ab	22.93 ab	24.26 a	22.14 a	18.73 a	19.05 ab
LINEA71	21.27 ab	22.78 ab	24.32 a	22.44 a	18.91 a	19.10 a
LINEA72	21.41 ab	22.91 ab	24.22 a	22.15 a	19.03 a	19.08 ab
LINEA73	21.24 ab	22.93 ab	24.26 a	22.21 a	19.02 a	19.05 ab
LINEA74	21.45 ab	22.79 ab	24.36 a	22.24 a	18.53 a	19.12 a
LINEA75	21.18 ab	22.53 ab	24.22 a	22.00 ab	18.75 a	19.48 a

LINIEAZC	21.25 ab	23.02 ab	24.19 a	22.40 a	10 05 0	10 57 ob
LINEA76	21.35 ab 21.16 ab	23.02 ab	24.16 a 24.43 a	22.49 a	18.85 a	
LINEA77		22.82 ab		22.23 a	18.72 a	
LINEA78 LINEA79	21.26 ab			22.08 a	18.92 a	
	21.23 ab	22.74 ab		22.38 a	18.79 a	18.90 ab
LINEA80	21.41 ab	23.04 a	24.37 a	22.24 a	18.88 a	18.71 ab
LINEA81	20.91 ab	22.76 ab		22.26 a	18.79 a	18.83 ab
LINEA82	21.11 ab	22.95 ab		22.28 a	18.68 a	
LINEA83	21.73 a	22.60 ab	and the second	21.96 ab	19.03 a	
LINEA84	21.52 ab	22.89 ab	24.06 a	22.44 a		
LINEA85	21.23 ab	22.76 ab	24.31 a			18.89 ab
LINEA86	21.48 ab	22.88 ab	24.24 a			
LINEA87	21.01 ab	22.96 ab	24.08 a			
LINEA88	21.28 ab			22.36 a	18.83 a 18.37 a	
LINEA89 LINEA90	21.20 ab 21.30 ab	22.61 ab 22.77 ab	24.32 a 24.09 a		18.57 a 18.59 a	
The second second						19.33 a 19.04 ab
LINEA91 LINEA92	21.15 ab	22.76 ab 22.75 ab	24.17 a 24.28 a	21.81 ab 22.34 a		
LINEA92	21.33 ab 21.27 ab	23.06 a	24.26 a 24.44 a	22.34 a 22.36 a		19.30 a
LINEA94	21.27 ab	23.00 a 22.88 ab	24.44 a 24.27 a	22.36 a 22.05 a		
LINEA95	21.22 ab	22.74 ab	24.43 a		18.44 a	
LINEA96	21.12 ab	23.00 ab	24.43 a 24.00 a			19.20 a
LINEA97	21.47 ab	22.73 ab	24.45 a		18.74 a	
LINEA98		23.03 ab	24.08 a			19.07 ab
LINEA99		22.65 ab	24.27 a		18.56 a	18.90 ab
LINEA100	20.94 ab	22.88 ab	24.30 a		18.81 a	
LINEA101	21.40 ab	23.07 a	24.31 a		19.03 a	19.30 a
LINEA102	21.58 ab	22.77 ab	24.27 a	22.51 a	18.65 a	18.99 ab
LINEA103	21.41 ab	23.25 a	24.13 a	22.11 a	18.65 a	19.14 a
LINEA104	21.18 ab	22.49 ab	24.16 a	22.08 a	18.65 a	19.22 a
LINEA105	21.00 ab	23.01 ab	24.43 a	22.36 a	18.55 a	18.76 ab
LINEA106	21.31 ab	22.66 ab	24.54 a	21.86 ab	18.70 a	18.98 ab
LINEA107	21.76 a	22.86 ab	24.33 a	22.22 a	18.41 a	18.96 ab
LINEA108	20.85 ab	22.87 ab	24.12 a	22.48 a	18.58 a	19.44 a
LINEA109	21.62 ab	22.70 ab	24.43 a	22.31 a	18.34 a	19.04 ab
LINEA110	21.53 ab	23.05 a	24.35 a	22.56 a	18.79 a	18.69 ab
LINEA111	21.16 ab	23.05 a	24.25 a	22.36 a	18.55 a	18.81 ab
LINEA112	21.17 ab	23.13 a	24.17 a	22.54 a	19.03 a	18.65 ab
LINEA113	21.16 ab	22.87 ab	24.28 a	22.09 a	18.92 a	18.79 ab
LINEA114	21.46 ab	23.03 ab	24.30 a	22.40 a	18.74 a	18.84 ab
LINEA115	21.37 ab	22.90 ab	24.12 a	22.35 a	18.58 a	19.12 a

-						
LINEA116	21.58 ab	22.71 ab	24.05 a	22.60 a	18.76 a	18.93 ab
LINEA117	21.55 ab	22.82 ab	24.30 a	22.35 a	18.68 a	18.70 ab
LINEA118	21.19 ab	22.77 ab	24.20 a	22.37 a	19.19 a	19.19 a
LINEA119	21.24 ab	22.91 ab	24.20 a	22.31 a	18.88 a	18.77 ab
LINEA120	21.27 ab	22.94 ab	24.27 a	22.12 a	19.01 a	19.14 a
LINEA121	21.13 ab	22.71 ab	24.28 a	22.61 a	18.44 a	19.33 a
LINEA122	21.28 ab	23.03 ab	24.20 a	22.16 a	18.69 a	18.87 ab
LINEA123	20.78 ab	22.94 ab	24.06 a	22.52 a	18.62 a	19.11 a
LINEA124	21.25 ab	22.82 ab	24.15 a	22.55 a	18.84 a	18.86 ab
LINEA125	20.93 ab	22.79 ab	24.35 a	22.52 a	18.61 a	19.27 a
LINEA126	21.37 ab	22.75 ab	24.26 a	22.63 a	18.87 a	18.89 ab
LINEA127	21.18 ab	22.82 ab	24.28 a	22.75 a	18.66 a	18.94 ab
LINEA128	21.17 ab	22.99 ab	24.20 a	22.39 a	19.04 a	19.04 ab
LINEA129	21.26 ab	23.09 a	24.26 a	22.26 a	18.60 a	18.73 ab
LINEA130	21.07 ab	22.84 ab	24.62 a	22.43 a	18.64 a	18.73 ab
LINEA131	21.24 ab	23.02 ab	24.31 a	22.45 a	19.22 a	19.06 ab
LINEA132	21.21 ab	23.00 ab	24.15 a	22.44 a	18.43 a	18.73 ab
LINEA133	21.22 ab	22.60 ab	24.32 a	22.55 a	18.63 a	19.09 a
LINEA134	20.94 ab	22.84 ab	24.03 a	22.00 ab	18.87 a	18.78 ab
LINEA135	20.74 ab	22.80 ab	24.18 a	22.52 a	18.84 a	19.19 a
LINEA136	21.32 ab	22.77 ab	24.33 a	22.22 a	18.51 a	19.27 a
LINEA137	21.37 ab	22.98 ab	24.25 a	22.51 a	18.86 a	19.11 a
LINEA138	21.03 ab	22.86 ab	24.17 a	22.26 a	18.78 a	19.00 ab
LINEA139	21.23 ab	23.06 a	24.09 a	22.32 a	18.90 a	18.78 ab
LINEA140	21.13 ab	22.75 ab	24.25 a	22.15 a	18.93 a	18.81 ab
LINEA141	21.25 ab	22.68 ab	24.11 a	22.57 a	18.85 a	19.44 a
LINEA142	21.34 ab	22.95 ab	24.27 a	22.27 a	18.89 a	18.90 ab
LINEA143	21.53 ab	23.04 ab	24.33 a	22.35 a	18.50 a	18.68 ab
LINEA144	21.32 ab	23.07 a	24.23 a	22.49 a	18.52 a	19.12 a
LINEA145	21.40 ab	22.89 ab	24.29 a	22.47 a	19.17 a	19.17 a
LINEA146	21.27 ab	22.80 ab	24.30 a	22.19 a	18.52 a	19.08 ab
LINEA147	21.31 ab	23.08 a	24.09 a	22.38 a	18.90 a	19.10 a
LINEA148	20.96 ab	22.82 ab	24.23 a	21.90 ab	18.49 a	18.83 ab
LINEA149	21.83 a	23.00 ab	24.40 a	22.39 a	18.77 a	18.92 ab
LINEA150	21.28 ab	22.73 ab	24.21 a	22.36 a	19.10 a	18.73 ab
LINEA151	21.00 ab	22.90 ab	24.05 a	22.39 a	19.08 a	18.84 ab
LINEA152	21.52 ab	22.62 ab	24.22 a	22.03 a	18.57 a	19.37 a
LINEA153	21.26 ab	22.86 ab	24.17 a	22.21 a	19.02 a	19.27 a
LINEA154	20.75 ab	22.68 ab	24.00 a	22.18 a	19.03 a	19.49 a
LINEA155	21.34 ab	23.12 a	24.07 a	21.98 ab	18.77 a	19.04 ab

LINEA156	21.11 ab	22.72 ab	24.30 a	22.46 a	18.83 a	18.92 ab
LINEA157	21.01 ab	22.93 ab	24.54 a	22.07 a	18.68 a	19.38 a
LINEA158	21.23 ab	23.11 a	24.23 a	22.54 a	18.27 a	19.65 a
LINEA159	21.08 ab	22.88 ab	23.88 a	22.60 a	19.09 a	19.50 a
LINEA160	21.48 ab	22.72 ab	24.15 a	22.48 a	18.84 a	19.22 a
LINEA161	21.33 ab	22.79 ab	24.28 a	21.99 ab	18.53 a	19.12 a
LINEA162	21.19 ab	23.19 a	24.15 a	22.26 a	18.50 a	18.48 ab
LINEA163	21.38 ab	22.91 ab	24.23 a	22.43 a	18.57 a	18.75 ab
LINEA164	21.03 ab	22.64 ab	23.76 ab	22.37 a	18.20 ab	18.96 ab
LINEA165	21.11 ab	22.65 ab	24.11 a	22.23 a	18.61 a	19.09 a
LINEA166	21.35 ab	22.86 ab	24.62 a	22.31 a	18.80 a	18.96 ab
LINEA167	21.16 ab	23.05 a	24.21 a	22.34 a	18.50 a	18.99 ab
LINEA168	21.15 ab	22.78 ab	24.33 a	21.87 ab	18.58 a	19.02 ab
LINEA169	21.13 ab	22.82 ab	24.18 a	22.06 a	18.80 a	19.01 ab
LINEA170	21.13 ab	22.82 ab	24.03 a	22.26 a	18.60 a	18.95 ab
LINEA171	21.21 ab	22.85 ab	24.38 a	22.30 a	18.83 a	18.88 ab
LINEA172	21.28 ab	23.00 ab	24.19 a	22.25 a	18.95 a	19.23 a
LINEA173	21.71 a	22.88 ab	24.31 a	22.10 a	18.80 a	18.84 ab
LINEA174	21.40 ab	22.87 ab	24.29 a	22.15 a	18.51 a	19.17 a
LINEA175	21.22 ab	22.79 ab	24.23 a	22.32 a	18.79 a	19.15 a
LINEA176	21.34 ab	22.96 ab	24.11 a	22.26 a	18.71 a	18.77 ab
LINEA177	21.30 ab	22.67 ab	24.30 a	22.10 a	18.55 a	19.19 a
LINEA178	21.05 ab	23.04 a	24.03 a	22.35 a	18.76 a	18.94 ab
LINEA179	21.15 ab	22.99 ab	24.29 a		18.74 a	19.10 a
LINEA180	21.27 ab	22.78 ab	24.28 a	22.32 a	18.97 a	18.60 ab
LINEA181	20.99 ab	22.88 ab	24.49 a		18.57 a	19.34 a
LINEA182	21.11 ab	22.73 ab	24.10 a		18.92 a	18.72 ab
LINEA183	21.26 ab	22.82 ab	24.37 a	21.92 ab		19.06 ab
LINEA184	21.32 ab	22.68 ab	24.27 a	22.05 a	18.33 a	19.19 a
LINEA185	21.17 ab	22.95 ab		22.12 a	18.45 a	18.58 ab
LINEA186	21.22 ab		24.32 a	21.88 ab	18.92 a	19.05 ab
LINEA187	21.08 ab	22.56 ab	24.33 a	22.46 a	18.47 a	18.66 ab
LINEA188	21.11 ab	22.78 ab		22.34 a	18.66 a	18.73 ab
LINEA189	21.17 ab	22.91 ab	24.27 a	22.45 a	19.13 a	19.35 a
LINEA190	21.47 ab	22.96 ab		22.02 ab	18.90 a	18.87 ab
LINEA191	21.11 ab	22.83 ab	24.09 a	22.14 a	19.07 a	18.34 ab
LINEA192	20.92 ab	22.72 ab	24.21 a	22.13 a	18.73 a	19.12 a
LINEA193	21.11 ab	22.59 ab	24.11 a	22.01 ab	18.63 a	19.17 a
LINEA194	21.14 ab	23.02 ab	24.33 a	21.93 ab	18.83 a	18.73 ab
LINEA195	21.38 ab	22.87 ab	24.11 a	22.26 a	18.88 a	19.39 a
LINEA196	21.16 ab	22.71 ab	24.14 a	21.96 ab	18.98 a	19.48 a
G. FEMENINO	20.34 b	22.10 ab	22.92 bc	20.33 c	16.88 b	19.73 a
G. MASCULINO	20.59 ab	21.58 ab	22.20 c	20.61 bc	18.50 a	17.50 b

En la Figura 13, se observa que HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL con 21.25, 22.85, 24.24, 22.26, 18.75 y 18.99 cm respectivamente de longitud de panoja, superando ligeramente a sus genitores HUA, KCA, SAL, PAS, PAN y COL con 20.96, 20.43, 20.72, 22.92, 20.61 y 17.19 cm respectivamente esto indica que existe un avance genético respecto a esta variable.

La variación estadística registrada entre las repeticiones para la evaluación de las variables presentadas en el Cuadro 10, alguna variación dentro de las líneas se puede atribuir principalmente a la segregación que todavía se puede observar en las líneas evaluadas; de las variables que aun reflejan la inestabilidad del material evaluado, por lo tanto, un criterio de liberación de estas líneas como posibles futuras variedades puede ser al momento en que se puedan estabilizar estas variables.

La longitud de panoja varia en las líneas avaluadas, el promedio en el presente ensayo fue superior a los testigos, carácter que se atribuyen al material genético y no al medio ambiente, esta variable de respuesta permite dimensionar el volumen de la panoja, que a su vez refleja la cantidad de grano producido por la planta directamente relacionado con el rendimiento, sin embargo, influye también el tipo de inflorescencia si es compacta o laxa.

La producción de granos está de acuerdo a la longitud de la panoja, las medias registradas en el presente estudio, clasifican a la longitud de panoja de las líneas como medianos, esto de acuerdo al rango de (Bonifacio *et al.*, 2004) quienes agrupan la longitud de panoja en pequeñas de 15 cm, medianas y grandes hasta 70 cm. Se puede atribuir al potencial genético de las líneas mejoradas.

La longitud de panoja es uno de los principales componentes, directamente relacionado con el rendimiento en grano de la quinua, ya que a partir de esta variable se podrá determinar la productividad de una determinada variedad, los promedios en longitud de panoja registrados en el presente estudio clasifican a las líneas entre grandes a medianas de acuerdo al rango (Bonifacio *et al.*, 2004) que agrupan la longitud de panoja en pequeñas de 15 cm, medianas y grandes hasta 70 cm. Estos resultados se pueden atribuir al potencial genético de la variedad y las líneas mejoradas, así mismo a las condiciones climáticas del lugar.

Similares resultados fueron encontrados por Inguilán y Pantoja (2007), en su estudio con las cruzas simples en el municipio de Córdoba (2800 msnm), quienes obtuvieron para las líneas de las cruzas simples panojas con mayor longitud, y menor longitud; superando casi todos a sus genitores. Delgado y Benavides (2000), en su estudio con selecciones provenientes del material Piartal en el municipio de Pasto (2454 msnm) y Córdoba (2800 msnm), mencionan promedios de longitud de panoja de 26.25 y 32.89 cm; superando también a sus genitores, lo cual concuerda con lo obtenido en este trabajo que se presentó líneas con mayor longitud que sus genitores, siendo así la panoja una característica de alta variabilidad.

Respecto a la longitud de panoja Bonifacio *et al.* (2013), en los estudios que evaluaron la variedad genitores la que indican una longitud promedio de 30 cm en dicha variedad. Sin embargo, las líneas del ensayo obtuvieron un promedio de 36 cm superando ligeramente a sus genitores.

4.1.4. Diámetro de panoja

En el análisis de varianza para el diámetro de panoja (Cuadro 11) en la cruza HUAxKCA se observa que existe alta significancia para localidades, no existe significancia para repeticiones, genotipos y localidades x genotipos (Loc*Gen); el promedio general fue de 5.12 cm, con un coeficiente de variación de 2.72%; para la cruza SALxHUA se observa que existe alta significancia para localidades y genotipos, baja significancia para localidades x genotipos (Loc*Gen); y no significativa para repeticiones; el promedio general fue de 6.00 cm, con un coeficiente de variación de 2.05%; seguidamente se observa en la cruza PASxKCA que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); y no existe significancia para repeticiones; el promedio general fue de 7.19 cm, con un coeficiente de variación de 2.17%; en la cruza SALxPAN se observa que existe alta significancia para localidades, y genotipos; y no existe significancia para repeticiones y localidades x genotipos (Loc*Gen); el promedio general fue de 6.12 cm, con un coeficiente de variación de 2.33%; y para la cruza COLxKCA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); y no significancia para repeticiones; el promedio general fue de 4.75 cm, con un coeficiente de variación de 3.63%; finalmente en la cruza SALxCOL se observa que existe alta significancia para localidades; y no existe

significancia para repeticiones genotipos y localidades x genotipos (Loc*Gen), el promedio general fue de 5.14 cm, con un coeficiente de variación de 2.78%.

Cuadro 11

Análisis de varianza para diámetro de panoja de las seis cruzas. Puno, Perú-2017.

FUENTE DE	GL	CUADRADOS MEDIOS PARA DIAMETRO DE PANOJA						
VARIACIÓN	GL	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL	
LOCALIDADES	1	308.49 **	446.24 **	1875.87 **	2070.11 **	794.08 **	296.85 **	
REPETICIÓNES	2	0.00 ns	0.01 ns	0.03 ns	0.02 ns	0.04 ns	0.04 ns	
GENOTIPOS 🍣	197	0.02 ns	0.03 **	0.07 **	0.03 **	0.04 ns	0.02 ns	
LOC*GEN	197	0.02 ns	0.02 *	0.09 **	0.02 ns	0.03 ns	0.02 ns	
ERROR	394	0.02	0.02	0.02	0.02	0.03	0.02	
TOTAL	791	-1///			The same			
PROMEDIO (cm)		5.12	6.00	7.19	6.12	4.75	5.14	
C.V. (%)		2.72	2.05	2.17	2.33	3.63	2.78	

La prueba de Tukey (p < 0.05) para la variable diámetro de panoja (Cuadro 12), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAXKCA110, HUAXKCA153, HUAXKCA97, HUAXKCA48, HUAXKCA102, HUAxKCA65, HUAxKCA6 y HUAxKCA85 fueron las que presentaron mayor diámetro de panoja para esta cruza con medias de 5.32, 5.31, 5.30, 5.29, 5.29, 5.26, 5.25 y 5.25 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de panoja fueron HUAxKCA138, HUAxKCA31, HUAxKCA42, HUAxKCA20, HUAxKCA164, HUAxKCA122, HUAxKCA151 y HUAxKCA114 con medias de 5.12, 5.12, 5.12, 5.12, 5.12, 5.12, 5.12 y 5.12 cm respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menor diámetro de panoja fueron HUAxKCA146, HUAxKCA56, HUAxKCA183, HUAxKCA100, HUAxKCA147, HUAxKCA139, HUAxKCA92 y HUAxKCA101 con medias de 5.00, 5.00, 5.00, 4.99, 4.98, 4.98, 4.97 y 4.91 cm respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Huariponcho) tuvo una media de 4.93 cm donde se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 4.92 cm de diámetro de panoja y se clasifico en el segundo rango de significancia (Figura 14).

Figura 14. Comparación del diámetro de panoja entre las cruzas y los testigos. Puno, Perú-2017.

Para SALXHUA muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Salcedo INIA y Huariponcho). Donde se observa que SALxHUA174, SALxHUA17, SALxHUA20, SALxHUA32, líneas SALxHUA29, SALxHUA121, SALxHUA143 y SALxHUA10 fueron las que presentaron mayor diámetro de panoja para esta cruza con medias de 6.19, 6.16, 6.14, 6.14, 6.14, 6.13 y 6.13 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de SALxHUA49, SALxHUA7, SALxHUA170, SALxHUA166, SALxHUA162, SALxHUA192, SALxHUA108 y SALxHUA128 con medias de 6.01, 6.01, 6.01, 6.01, 6.01, 6.00, 6.00 y 6.00 cm respectivamente a los que se clasifico también en el segundo rango de significancia; finalmente las líneas que presentaron menor diámetro de panoja fueron SALxHUA183, SALxHUA185, SALxHUA132, SALxHUA189, SALxHUA159, SALxHUA191, SALxHUA9 y SALxHUA118 con medias de 5.89, 5.89, 5.89, 5.88, 5.88, 5.87, 5.86 y 5.84 cm respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 5.79 cm donde se clasifico en el segundo rango; mientras tanto el genitor masculino (Huariponcho) presento una media de 5.38 cm de diámetro de panoja y se clasifico en el tercer rango de significancia.

también muestra dos rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Pasankalla x Kcancolla (SALxHUA) y dos testigos que son los genitores (Pasankalla y Kcancolla). Donde se observa que las líneas PASxKCA82, PASxKCA124, PASxKCA5, PASxKCA11. PASxKCA170. PASxKCA123, PASxKCA39 y PASxKCA128 fueron las que presentaron mayor diámetro de panoja para esta cruza con medias de 7.41, 7.40, 7.37, 7.36, 7.36, 7.36, 7.36 y 7.35 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de panoja fueron PASxKCA150, PASxKCA32, PASxKCA30, PASxKCA115, PASxKCA87, PASxKCA4, PASxKCA191 y PASxKCA177 con medias de 7.20, 7.20, 7.20, 7.20, 7.20, 7.19 y 7.19 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor diámetro de panoja fueron PASxKCA169, PASxKCA63, PASxKCA192, PASxKCA71, PASxKCA66, PASxKCA7, PASxKCA53 y PASxKCA148 con medias de 7.07, 7.07, 7.07, 7.07, 7.06, 7.03, 7.02 y 7.01 cm respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 7.14 cm donde se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 5.68 cm de diámetro de panoja y se clasifico en el segundo rango de significancia.

Muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Salcedo INIA y Pandela). Donde se observa que las líneas SALxPAN13, SALxPAN42, SALxPAN88, SALxPAN98, SALxPAN21, SALxPAN141, SALxPAN162 y SALxPAN72 fueron las que presentaron mayor diámetro de panoja para esta cruza con medias de 6.31, 6.28, 6.28, 6.27, 6.25, 6.23, 6.23 y 6.23 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de panoja fueron SALxPAN135, SALxPAN78, SALxPAN136, SALxPAN96, SALxPAN192, SALxPAN179, SALxPAN39 y SALxPAN44 con medias de 6.13, 6.13, 6.13, 6.12, 6.12, 6.12, 6.12 y 6.12 cm respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas que presentaron menor diámetro de panoja fueron SALxPAN15, SALxPAN70, SALxPAN75, SALxPAN109, SALxPAN142, SALxPAN58, SALxPAN28 y SALxPAN31 con medias de 6.00, 5.99, 5.99, 5.98,

5.98, 5.98, 5.96 y 5.94 cm respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 5.90 cm donde se clasifico en el tercer rango; mientras tanto el genitor masculino (Pandela) presento una media de 5.47 cm de diámetro de panoja y se clasifico en el segundo rango de significancia.

Para COLxKCA muestra solo un rango de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Negra collana x Kcancolla). Donde se observa que las líneas COLxKCA191, COLxKCA123, COLxKCA4, COLxKCA184, COLxKCA125, COLxKCA80, COLxKCA74 y COLxKCA14 fueron las que presentaron mayor diámetro de panoja para esta cruza con medias de 5.04, 4.96, 4.96, 4.95, 4.94, 4.93, 4.92 y 4.92 cm respectivamente; por otra parte las líneas que tuvieron intermedio diámetro de panoja fueron COLxKCA115, COLxKCA127, COLxKCA195, COLxKCA171, COLxKCA73, COLxKCA173, COLxKCA132 y COLxKCA31 con medias de 4.75, 4.75, 4.74, 4.74, 4.74, 4.74 v 4.74 cm respectivamente; finalmente las líneas que presentaron menor diámetro de panoja fueron COLxKCA39, COLxKCA86, COLxKCA133, COLxKCA151, COLxKCA105, COLxKCA130, COLxKCA140 y COLxKCA77 con medias de 4.58, 4.56, 4.56, 4.55, 4.55, 4.53, 4.51 y 4.48 cm respectivamente. El genitor femenino (Negra collana) tuvo una media de 4.60 cm donde se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 4.62 cm de diámetro de panoja y se clasifico también en el primer rango de significancia.

Finalmente muestra un solo rango de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIAy Negra collana). Donde se observa que las líneas SALxCOL179, SALxCOL112, SALxCOL3, SALxCOL24, SALxCOL17, SALxCOL163, SALxCOL132 y SALxCOL41 fueron las que presentaron mayor diámetro de panoja para esta cruza con medias de 5.33, 5.32, 5.30, 5.29, 5.28, 5.27 y 5.27 cm respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio diámetro de panoja fueron SALxCOL172, SALxCOL92, SALxCOL173, SALxCOL123, SALxCOL153, SALxCOL89, SALxCOL133 y SALxCOL98 con medias de 5.14, 5.14, 5.14, 5.14, 5.14, 5.14, 5.14 y 5.14 cm respectivamente a los que se clasifico

también en el primer rango de significancia; finalmente las líneas que presentaron menor diámetro de panoja fueron SALxCOL95, SALxCOL100, SALxCOL80, SALxCOL33, SALxCOL176, SALxCOL4, SALxCOL62 y SALxCOL29 con medias de 5.04, 5.04, 5.04, 5.03, 5.02, 5.00, 5.00 y 4.99 cm respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 5.40 cm donde se clasifico en el primer rango; mientras tanto el genitor masculino (Negra collana) presento una media de 5.14 cm de diámetro de panoja y se clasifico en el primer rango de significancia.

Cuadro 12

Prueba de Tukey al 5% para diámetro de panoja de las seis cruzas simples. Puno, Perú-2017.

GENOTIPOS	DIAMETRO DE PANOJA (cm)								
GENOTIFOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL			
LINEA1	5.11 a	6.11 a	7.09 a	6.16 a	4.81 a	5.08 a			
LINEA2	5.03 a	5.94 a	7.15 a	6.17 a	4.84 a	5.17 a			
LINEA3	5.17 a	5.94 a	7.13 a	6.19 a	4.69 a	5.30 a			
LINEA4	5.06 a	5.93 a	7.20 a	6.17 a	4.96 a	5.00 a			
LINEA5	5.19 a	5.99 a	7.36 a	6.06 a	4.72 a	5.15 a			
LINEA6	5.25 a	6.04 a	7.34 a	6.20 a	4.78 a	5.13 a			
LINEA7	5.11 a	6.01 a	7.03 a	6.17 a	4.64 a	5.23 a			
LINEA8	5.07 a	5.96 a	7.20 a	6.10 a	4.84 a	5.12 a			
LINEA9	5.16 a	5.86 a	7.25 a	6.05 a	4.81 a	5.13 a			
LINEA10	5.20 a	6.13 a	7.26 a	6.11 a	4.67 a	5.22 a			
LINEA11	5.22 a	5.98 a	7.41 a	6.19 a	4.86 a	5.23 a			
LINEA12	5.06 a	6.06 a	7.16 a	6.13 a	4.82 a	5.15 a			
LINEA13	5.14 a	6.10 a	7.17 a	6.31 a	4.87_a	5.11 a			
LINEA14	5.16 a	6.02 a	7.25 a	6.20 a	4.92 a	5.12 a			
LINEA15	5.19 a	5.94 a	7.26 a	5.99 a	4.71 a	5.15 a			
LINEA16	5.14 a	6.12 a	7.15 a	6.17 a	4.71 a	5.14 a			
LINEA17	5.20 a	6.16 a	7.14 a	6.09 a	4.82 a	5.28 a			
LINEA18	5.15 a	5.92 a	7.23 a	6.18 a	4.77 a	5.07 a			
LINEA19	5.11 a	6.12 a	7.25 a	6.18 a	4.71 a	5.06 a			
LINEA20	5.12 a	6.14 a	7.15 a	6.22 a	4.73 a	5.11 a			
LINEA21	5.22 a	5.99 a	7.11 a	6.25 a	4.70 a	5.11 a			
LINEA22	5.05 a	6.07 a	7.22 a	6.05 a	4.72 a	5.12 a			
LINEA23	5.02 a	6.02 a	7.13 a	6.12 a	4.72 a	5.18 a			
LINEA24	5.08 a	5.95 a	7.10 a	6.08 a	4.72 a	5.29 a			
LINEA25	5.06 a	5.91 a	7.27 a	6.13 a	4.85 a	5.11 a			
LINEA26	5.08 a	6.02 a	7.19 a	6.06 a	4.84 a	5.20 a			
LINEA27	5.04 a	6.10 a	7.20 a	6.13 a	4.71 a	5.09 a			
LINEA28	5.19 a	6.02 a	7.34 a	5.96 a	4.72 a	5.12 a			
LINEA29	5.10 a	6.14 a	7.21 a	6.21 a	4.72 a	4.99 a			
LINEA30	5.14 a	5.98 a	7.20 a	6.11 a	4.83 a	5.09 a			
LINEA31	5.12 a	6.07 a	7.21 a	5.94 a	4.74 a	5.15 a			
LINEA32	5.18 a	6.14 a	7.20 a	6.13 a	4.69 a	5.11 a			
LINEA33	5.12 a	5.95 a	7.14 a	6.19 a	4.78 a	5.03 a			
LINEA34	5.13 a	6.06 a	7.27 a	6.11 a	4.89 a	5.06 a			
LINEA35	5.12 a	6.10 a	7.21 a	6.04 a	4.90 a	5.22 a			

LINEA36	5.12 a	6.03 a	7.24 a	6.07 a	4.78 a	5.19 a
LINEA37	5.12 a 5.14 a	5.97 a	7.24 a 7.19 a	6.09 a	4.83 a	5.04 a
LINEA38	5.14 a 5.08 a	5.91 a	7.19 a 7.31 a	6.12 a		
LINEA39	5.00 a	5.91 a	7.31 a 7.36 a	6.12 a	4.70 a	5.12 a 5.15 a
LINEA39	5.10 a 5.12 a	6.01 a	7.30 a 7.11 a	6.12 a		
LINEA40		6.04 a	7.11 a 7.24 a			5.10 a 5.27 a
	5.15 a			6.15 a	4.72 a	5.27 a 5.14 a
LINEA42	5.12 a	6.02 a	7.21 a	6.28 a	4.76 a	
LINEA43		5.95 a	7.09 a	6.13 a	4.63 a	
LINEA44		6.10 a	7.22 a	6.12 a	4.68 a	5.22 a
LINEA45		5.96 a	7.11 a	6.14 a		
LINEA46		6.03 a	7.22 a	6.14 a	4.82 a	5.25 a
LINEA47	5.18 a	5.93 a	7.12 a	6.07 a	4.80 a	5.25 a
LINEA48	5.29 a	6.03 a	7.25 a	6.18 a	4.60 a	5.07 a
LINEA49	5.22 a	6.01 a	$= \frac{7.15 \text{ a}}{7.12}$		4.81 a	
LINEA50	5.05 a	6.03 a	7.13 a	6.05 a		
LINEA51	5.21 a	6.12 a	7.28 a	6.15 a	4.77 a	5.13 a
LINEA52	5.11 a		7.22 a	6.10 a	4.63 a	5.12 a
LINEA53	5.17 a	6.05 a	7.02 a	6.09 a	4.63 a	5.23 a
LINEA54	5.16 a	5.97 a	7.21 a	6.14 a	4.66 a	5.09 a
LINEA55	5.12 a	6.12 a	7.21 a	6.09 a	4.78 a	5.16 a
LINEA56	5.00 a	6.07 a	7.16 a	6.15 a	4.84 a	5.13 a
LINEA57	5.02 a	6.06 a	7.09 a	6.18 a		5.20 a
LINEA58	5.23 a	5.95 a	7.11 a	5.98 a	4.69 a	5.16 a
LINEA59	5.02 a	5.90 a	7.13 a	6.23 a	4.77 a	5.13 a
LINEA60	5.07 a	6.00 a	7.17 a	6.02 a	4.77 a	5.18 a
LINEA61	5.02 a	5.92 a	7.16 a	6.11 a	4.67 a	5.09 a
LINEA62	5.10 a	6.10 a	7.10 a	6.20 a	4.82 a	5.00 a
LINEA63	5.08 a	6.00 a	7.07 a	6.02 a	4.71 a	5.10 a
LINEA64	5.09 a	5.96 a	7.18 a	6.11 a	4.86 a	5.10 a
LINEA65	5.26 a	6.07 a	7.17 a	6.08 a	4.71 a	5.17 a
LINEA66	5.13 a	5.98 a	7.06 a	6.04 a	4.73 a	5.05 a
LINEA67	5.10 a	6.08 a	7.10 a	6.18 a	4.90 a	5.10 a
LINEA68	5.19 a	6.04 a	7.19 a	6.02 a	4.63 a	5.15 a
LINEA69	5.06 a	5.91 a	7.20 a	6.04 a	4.82 a	5.16 a
LINEA70	5.16 a	5.99 a	7.14 a	5.99 a	4.75 a	5.13 a
LINEA71	5.05 a	6.13 a	7.07 a	6.13 a	4.64 a	5.14 a
LINEA72	5.07 a	5.98 a	7.11 a	6.23 a	4.79 a	5.26 a
LINEA73	5.08 a	6.05 a	7.17 a	6.16 a	4.74 a	5.15 a
LINEA74	5.07 a	6.05 a	7.15 a	6.12 a	4.92 a	5.13 a
LINEA75	5.04 a	5.93 a	7.26 a	5.98 a	4.72 a	5.12 a

LINEA76	5.22 a	6.04 a	7.31 a	6.07 a	4.67 a	5.17 a
LINEA77	5.06 a	5.98 a	7.15 a	6.05 a	4.48 a	5.23 a
LINEA78	5.15 a	5.97 a	7.30 a	6.13 a	4.77 a	5.08 a
LINEA79	5.14 a	5.93 a	7.13 a	6.11 a	4.82 a	5.15 a
LINEA80	5.18 a	6.01 a	7.27 a	6.14 a	4.93 a	5.04 a
LINEA81	5.09 a	6.01 a	7.19 a	6.18 a	4.81 a	5.19 a
LINEA82	5.12 a	6.04 a	7.40 a	6.01 a	4.67 a	5.06 a
LINEA83	5.16 a	6.09 a	7.14 a	6.22 a	4.89 a	5.14 a
LINEA84	5.11 a	5.91 a	7.24 a	6.15 a	4.69 a	5.12 a
LINEA85	5.25 a	5.98 a	7.12 a	6.17 a	4.69 a	5.12 a
LINEA86	5.16 a	6.07 a	7.20 a	6.08 a	4.56 a	5.22 a
LINEA87	5.11 a	6.02 a	7.20 a	6.06 a	4.80 a	5.16 a
LINEA88	5.03 a	6.07 a	7.27 a	6.28 a	4.79 a	5.20 a
LINEA89	5.23 a	6.07 a	7.19 a	6.16 a	4.75 a	5.14 a
LINEA90	5.18 a	6.08 a	7.18 a	6.14 a	4.78 a	5.08 a
LINEA91	5.16 a	6.04 a	7.19 a	6.17 a	4.81 a	5.12 a
LINEA92	4.97 a	5.99 a	7.21 a	6.22 a	4.79 a	5.14 a
LINEA93	5.14 a	6.05 a	7.18 a	6.22 a	4.79 a	5.23 a
LINEA94	5.22 a	6.10 a	7.25 a	6.22 a	4.65 a	5.23 a
LINEA95	5.19 a	6.03 a	7.26 a	6.11 a	4.76 a	5.04 a
LINEA96	5.08 a	5.96 a	7.22 a	6.12 a	4.86 a	5.11 a
LINEA97	5.30 a	5.99 a	7.10 a	6.11 a	4.85 a	5.16 a
LINEA98	5.16 a	5.99 a	7.22 a	6.27 a	4.65 a	5.14 a
LINEA99	5.18 a	6.09 a	7.18 a	6.15 a	4.85 a	5.17 a
LINEA100	4.99 a	6.07 a	7.30 a	6.09 a	4.82 a	5.04 a
LINEA101	4.91 a	5.96 a	7.18 a	6.08 a	4.68 a	5.15 a
LINEA102	5.29 a	6.06 a	7.21 a	6.14 a	4.73 a	5.24 a
LINEA103	5.15 a	5.92 a	7.27 a	6.03 a	4.71 a	5.08 a
LINEA104	5.22 a	5.95 a	7.23 a	6.15 a	4.66 a	5.05 a
LINEA105	5.25 a	5.93 a	7.17 a	6.09 a	4.55 a	5.09 a
LINEA106	5.08 a	5.95 a	7.14 a	6.09 a	4.59 a	5.16 a
LINEA107	5.10 a	6.01 a	7.21 a	6.10 a	4.77 a	5.07 a
LINEA108	5.04 a	6.00 a	7.30 a	6.11 a	4.82 a	5.06 a
LINEA109	5.14 a	5.95 a	7.11 a	5.98 a	4.76 a	5.15 a
LINEA110	5.32 a	6.11 a	7.23 a	6.04 a	4.78 a	5.15 a
LINEA111	5.12 a	5.93 a	7.26 a	6.02 a	4.92 a	5.10 a
LINEA112	5.18 a	6.00 a	7.24 a	6.06 a	4.71 a	5.32 a
LINEA113	5.23 a	6.03 a	7.23 a	6.15 a	4.83 a	5.22 a
LINEA114	5.12 a	5.95 a	7.29 a	6.21 a	4.79 a	5.18 a
LINEA115	5.02 a	6.01 a	7.20 a	6.07 a	4.75 a	5.19 a

LINEA116	5.12 a	6.05 a	7.15 a	6.17 a	4.71 a	5.04 a
LINEA117	5.17 a	6.11 a	7.22 a	6.16 a	4.64 a	5.07 a
LINEA118	5.09 a	5.84 a	7.29 a	6.16 a	4.87 a	5.14 a
LINEA119	5.12 a	6.09 a	7.31 a	6.10 a	4.76 a	5.18 a
LINEA120	5.18 a	5.94 a	7.30 a	6.00 a	4.67 a	5.17 a
LINEA121	5.10 a	6.14 a	7.10 a	6.10 a	4.75 a	5.25 a
LINEA122	5.12 a	5.92 a	7.20 a	6.15 a	4.83 a	5.19 a
LINEA123	5.10 a	5.97 a	7.36 a	6.10 a	4.96 a	5.14 a
LINEA124	5.08 a	5.95 a	7.37 a	6.17 a	4.66 a	5.08 a
LINEA125	5.13 a	5.98 a	7.14 a	6.16 a	4.94 a	5.20 a
LINEA126	5.16 a	6.10 a	7.23 a	6.10 a	4.73 a	5.12 a
LINEA127	5.03 a	5.95 a	7.28 a	6.16 a	4.75 a	5.26 a
LINEA128	5.09 a	6.00 a	7.35 a	6.03 a	4.78 a	5.07 a
LINEA129	5.12 a	6.12 a	7.14 a	6.14 a	4.89 a	5.10 a
LINEA130	5.14 a	6.06 a	7.25 a	6.09 a	4.53 a	5.18 a
LINEA131	5.15 a	6.02 a	7.32 a	6.06 a	4.80 a	5.10 a
LINEA132	5.13 a	5.89 a	7.18 a	6.16 a	4.74 a	5.27 a
LINEA133	5.22 a	6.00 a	7.13 a	6.11 a	4.56 a	5.14 a
LINEA134	5.22 a	5.99 a	7.20 a	6.01 a	4.68 a	5.17 a
LINEA135	5.05 a	6.00 a	7.29 a	6.13 a	4.70 a	5.19 a
LINEA136	5.07 a	5.98 a	7.22 a	6.13 a	4.91 a	5.13 a
LINEA137	5.03 a	5.96 a	7.07 a	6.20 a	4.85 a	5.14 a
LINEA138	5.12 a	6.06 a	7.22 a	6.11 a	4.69 a	5.08 a
LINEA139	4.98 a	6.00 a	7.10 a	6.01 a	4.72 a	5.21 a
LINEA140	5.16 a	5.99 a	7.23 a	6.17 a	4.51 a	5.18 a
LINEA141	5.04 a	5.98 a	7.26 a	6.23 a	4.68 a	5.04 a
LINEA142	5.08 a	5.99 a	7.13 a	6.00 a	4.72 a	5.08 a
LINEA143	5.08 a	6.13 a	7.19 a	6.07 a	4.77 a	5.10 a
LINEA144	5.09 a	6.03 a	7.18 a	6.08 a	4.68 a	5.19 a
LINEA145	5.15 a	6.01 a	7.18 a	6.09 a	4.68 a	5.17 a
LINEA146	5.00 a	6.02 a	7.31 a	6.11 a	4.69 a	5.10 a
LINEA147	4.98 a	6.05 a	7.17 a	6.05 a	4.72 a	5.09 a
LINEA148	5.10 a	5.90 a	7.01 a	6.11 a	4.76 a	5.17 a
LINEA149	5.06 a	5.99 a	7.29 a	6.14 a	4.66 a	5.14 a
LINEA150	5.21 a	5.97 a	7.20 a	6.12 a	4.66 a	5.13 a
LINEA151	5.12 a	5.99 a	7.14 a	6.14 a	4.55 a	5.18 a
LINEA152	5.01 a	6.01 a	7.24 a	6.13 a	4.85 a	5.11 a
LINEA153	5.31 a	5.96 a	7.22 a	6.07 a	4.73 a	5.14 a
LINEA154	5.17 a	6.06 a	7.17 a	6.17 a	4.71 a	5.09 a
LINEA155	5.01 a	6.00 a	7.25 a	6.16 a	4.66 a	5.19 a

	7 00					
LINEA156	5.08 a	6.01 a	7.12 a	6.02 a	4.61 a	5.19 a
LINEA157	5.08 a	6.03 a	7.18 a	6.17 a	4.82 a	5.13 a
LINEA158	5.05 a	6.07 a	7.23 a	6.14 a	4.81 a	5.15 a
LINEA159	5.15 a	5.88 a	7.26 a	6.11 a	4.74 a	5.23 a
LINEA160	5.03 a	5.98 a	7.16 a	6.06 a	4.78 a	5.14 a
LINEA161	5.20 a	6.09 a	7.33 a	6.20 a	4.72 a	5.22 a
LINEA162	5.06 a	6.01 a	7.10 a	6.23 a	4.81 a	5.11 a
LINEA163	5.03 a	5.97 a	7.10 a	6.21 a	4.82 a	5.28 a
LINEA164	5.12 a	5.94 a	7.19 a	6.23 a	4.67 a	5.18 a
LINEA165	5.20 a	6.01 a	7.18 a	6.14 a	4.87 a	5.04 a
LINEA166	5.11 a	6.01 a	7.27 a	6.10 a	4.73 a	5.11 a
LINEA167	5.20 a	5.91 a	7.20 a	6.15 a	4.77 a	5.09 a
LINEA168	5.14 a	5.98 a	7.14 a	6.09 a	4.63 a	5.15 a
LINEA169	5.11 a	5.94 a	7.07 a	6.09 a	4.81 a	5.16 a
LINEA170	5.06 a	6.01 a	7.36 a	6.21 a	4.87 a	5.10 a
LINEA171	5.11 a	6.05 a	7.17 a	6.06 a	4.74 a	5.06 a
LINEA172	5.18 a	6.01 a	7.18 a	6.21 a	4.78 a	5.14 a
LINEA173	5.19 a	5.94 a	7.28 a	6.03 a	4.74 a	5.14 a
LINEA174	5.21 a	6.19 a	7.12 a	6.08 a	4.69 a	5.16 a
LINEA175	5.07 a	6.03 a	7.14 a	6.13 a	4.68 a	5.18 a
LINEA176	5.17 a	5.93 a	7.24 a	6.21 a	4.72 a	5.02 a
LINEA177	5.08 a	5.95 a	7.19 a	6.07 a	4.68 a	5.09 a
LINEA178	5.09 a	6.00 a	7.16 a	6.18 a	4.85 a	5.11 a
LINEA179	5.24 a	5.96 a	7.16 a	6.12 a	4.76 a	5.33 a
LINEA180	5.14 a	6.02 a	7.31 a	6.09 a	4.73 a	5.23 a
LINEA181	5.08 a	6.05 a	7.21 a	6.18 a	4.62 a	5.22 a
LINEA182	5.08 a	6.02 a	7.28 a	6.15 a	4.60 a	5.27 a
LINEA183	5.00 a	5.89 a	7.19 a	6.17 a	4.86 a	5.08 a
LINEA184	5.11 a	5.99 a	7.23 a	6.08 a	4.95 a	5.09 a
LINEA185	5.07 a	5.89 a	7.15 a	6.16 a	4.72 a	5.06 a
LINEA186	5.23 a	6.02 a	7.17 a	6.23 a	4.76 a	5.09 a
LINEA187	5.16 a	5.94 a	7.10 a	6.12 a	4.58 a	5.21 a
LINEA188	5.12 a	5.98 a	7.19 a	6.07 a	4.62 a	5.23 a
LINEA189	5.17 a	5.88 a	7.18 a	6.23 a	4.70 a	5.20 a
LINEA190	5.14 a	6.03 a	7.21 a	6.11 a	4.63 a	5.14 a
LINEA191	5.11 a	5.87 a	7.19 a	6.21 a	5.04 a	5.10 a
LINEA192	5.17 a	6.00 a	7.07 a	6.12 a	4.64 a	5.08 a
LINEA193	5.14 a	5.98 a	7.23 a	6.12 a	4.76 a	5.07 a
LINEA194	5.13 a	6.05 a	7.23 a	6.07 a	4.71 a	5.08 a
LINEA195	5.10 a	5.99 a	7.12 a	6.09 a	4.75 a	5.22 a
LINEA196	5.10 a	6.08 a	7.20 a	6.16 a	4.71 a	5.19 a
G. FEMENINO	4.93 a	5.79 ab	7.14 a	5.47 b	4.60 a	5.40 a
G. MASCULINO	4.92 a	5.38 b	5.68 b	5.90 ab	4.62 a	5.14 a

El diámetro de panoja al igual que la longitud de panoja en líneas de quinua es característica propia de las líneas, es decir, del material genético, HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL con 5.12, 6.01, 7.20, 6.12, 4.75 y 5.14 cm respectivamente, superando ligeramente a sus genitores HUA, KCA, SAL, PAS, PAN y COL con 5.16, 5.07, 5.55, 7.14, 5.90 y 4.87 cm respectivamente esto indica que existe un avance genético respecto a esta variable. Por otra parte, Blanco (2009), indica el diámetro de panoja varia en un rango de 2.9 a 19.4 cm. Las líneas en estudio se encuentran dentro de este rango de variación.

La estructura y constitución de la planta son de mucha importancia, ya que son características que se traducirán directamente en un buen o mal rendimiento, dependiendo de cuál sea el caso, además de que una planta bien constituida será menos propensa al ataque de factores bióticos como insectos, enfermedades, pájaros, etc. y a factores abióticos como viento, heladas y demás condiciones adversas que puedan provocar un acame en las plantas. Según Álvarez (1990), características agronómicas como precocidad, uniformidad, tamaño de planta, madurez uniforme, tipo de panoja, tallos resistentes al vuelco y resistencia a enfermedades vienen dadas desde la genética misma de la planta, esto sumado a una buena nutrición dará como resultado un cultivo con mejor vigor y rendimiento.

Al respecto de la panoja, Tapia (1979), señala que, para la clasificación del material genético de quinua, se debe considerar el tamaño de 1a panoja (diámetro y longitud), aunque por la existencia de muchos genotipos, puede variar y crear un sistema muy complejo de clasificación.

Mujica *et al.* (2013), donde señala que uno de los objetivos de mejoramiento genético en quinua deber ser precisamente mejorar la arquitectura de planta con una alta eficiencia productiva con panojas grandes y anchas, tallos gruesos y plantas de alturas medianos.

4.1.5. Floración

En el análisis de varianza para la floración (Cuadro 13), en la cruza simple HUAxKCA se observa que existe alta significancia para localidades, no existe significancia para repeticiones, genotipos y localidades x genotipos (Loc*Gen), el promedio general fue de 85.03 días, con un coeficiente de variación de 1.17%, y para la cruza SALxHUA se observa que existe alta significancia para localidades, no hay significancia para repeticiones, genotipos y localidades x genotipos (Loc*Gen); el promedio general fue de 91.00 días, con un coeficiente de variación de 0.97%; en la cruza PASxKCA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); no existe significancia para repeticiones, el promedio general fue de 93.98 días, con un coeficiente de variación de 0.66%; en la cruza SALxPAN se observa que existe alta significancia para localidades; no existe significancia para repeticiones, genotipos y localidades x genotipos (Loc*Gen), el promedio general fue de 89.51 días, con un coeficiente de variación de 0.80%; en la cruza COLxKCA se observa que existe alta significancia para localidades, y baja significancia para genotipos, no existe significancia para repeticiones y localidades x genotipos (Loc*Gen), el promedio general fue de 82.79 días, con un coeficiente de variación de 0.83%; finalmente en la cruza SALxCOL se observa que existe alta significancia para localidades, y poco significativo para repeticiones, localidades x genotipos (Loc*Gen); no existe significancia para genotipos, el promedio general fue de 86.79 días, con un coeficiente de variación de 1.28%.

Cuadro 13

Análisis de varianza para días a floración de las seis cruzas simples. Puno, Perú-2017.

FUENTE DE	CI	CUADRADOS MEDIOS PARA FLORACIÓN						
VARIACIÓN	GL	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL	
LOCALIDADES	1	1703.97 **	220.29 **	1704.56 **	1801.25 **	444.15 **	1175.30 **	
REPETICIÓNES	2	1.53 ns	0.71 ns	0.14 ns	1.23 ns	0.25 ns	4.81 *	
GENOTIPOS	197	1.15 ns	0.71 ns	0.90 **	0.55 ns	0.58 *	1.31 ns	
LOC*GEN	197	1.12 ns	0.84 ns	0.81 **	0.45 ns	0.55 ns	1.56 *	
ERROR	394	1.00	0.79	0.38	0.51	0.47	1.23	
TOTAL	791							
PROMEDIO (dias)		85.03	91.00	93.98	89.51	82.79	86.79	
C.V. (%)		1.17	0.97	0.66	0.80	0.83	1.28	

La prueba de Tukey (p < 0.05) para la variable floración (Cuadro 14), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAxKCA23, HUAxKCA70, HUAxKCA178, HUAxKCA105, HUAxKCA11,HUAxKCA155, HUAxKCA180 y HUAxKCA74 fueron las más tardías en entrar a floración para esta cruza con medias de 86.35, 86.05, 86.03,85.98, 85.98, 85.95,85.90 y 85.85 días respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas semi precoces en entrar a floración fueron HUAxKCA139, HUAxKCA104, HUAxKCA151, HUAxKCA146, HUAxKCA77, HUAxKCA95, HUAxKCA120 y HUAxKCA125 con medias de 85.08, 85.08, 85.08, 85.05, 85.05, 85.05, 85.03 y 85.00 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas precoces en entrar a floración fueron HUAxKCA103, HUAxKCA90, HUAxKCA161, HUAxKCA131, HUAxKCA111, HUAxKCA40, HUAxKCA78 y HUAxKCA130 con medias de 84.08, 83.98, 83.98, 83.90, 83.90, 83.88, 83.63 y 83.60 días respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Huariponcho) tuvo una media de 86.30 días donde se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 86.75 días a floración y se clasifico también en el primer rango de significancia; la variedad Huariponcho es más precoz respecto a la variedad Kcancolla (Figura 15).

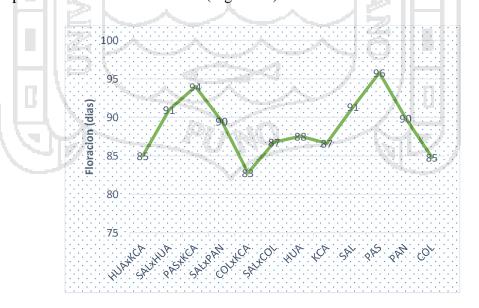


Figura 15. Comparación de la floración entre las cruzas y los testigos. Puno, Perú-2017.

Muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Salcedo INIA y Huariponcho). Donde se observa que las líneas SALxHUA112, SALxHUA138, SALxHUA132, SALxHUA134, SALxHUA93, SALxHUA111, SALxHUA24 y SALxHUA115 fueron las más tardías en entrar a floración para esta cruza con medias de 92.13, 91.90, 91.88, 91.80, 91.78, 91.73

91.68 y 91.65 días respectivamente a los que se clasifico en el primero y segundo rango de significancia; por otra parte las líneas semi precoces en entrar a floración fueron SALxHUA5, SALxHUA95, SALxHUA155, SALxHUA142, SALxHUA113, SALxHUA178, SALxHUA36 y SALxHUA48 con medias de 91.05, 91.03, 91.03, 91.03, 91.03, 91.00 y 91.00 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas precoces en entrar a floración fueron SALxHUA103, SALxHUA90, SALxHUA161, SALxHUA131, SALxHUA111, SALxHUA40, SALxHUA78 y SALxHUA130 con medias de 90.25, 90.23, 90.20, 90.18, 90.13, 90.13, 90.00 y 89.93 días respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 92.65 días se clasifico en el primer rango; mientras tanto el genitor masculino (Huariponcho) presento una media de 88.78 días a floración y se clasifico en el tercer rango de significancia.

Para PASxKCA muestra cuatro rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Pasankalla x Kcancolla (SALxHUA) y dos testigos que son los genitores (Pasankallay Kcancolla). Donde se observa que las líneas PASxKCA111, PASxKCA126, PASxKCA4, PASxKCA168, PASxKCA163, PASxKCA54, PASxKCA8 y PASxKCA84 fueron las más tardías en entrar a floración para esta cruza con medias de 94.63, 94.60, 94.58, 94.55, 94.55, 94.55 y 94.50 días respectivamente a los que se clasifico en el primero y segundo rango de significancia; por otra parte las líneas semi precoces en entrar a floración fueron PASxKCA53, PASxKCA28, PASxKCA122, PASxKCA173, PASxKCA96, PASxKCA27, PASxKCA112 y PASxKCA18 con medias de 94.00, 94.00, 94.00, 94.00, 94.00, 93.98 y 93.98 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas precoces en entrar a floración fueron PASxKCA114, PASxKCA161, PASxKCA83, PASxKCA130, PASxKCA7, PASxKCA61, PASxKCA35 y PASxKCA188 con medias de 93.45, 93.40, 93.40,

93.35, 93.33, 93.30, 93.28 y 93.23 días respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 95.80 días se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 89.25 días a floración y se clasifico en el cuarto rango de significancia.

Muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Salcedo INIA y Pandela). Donde se observa que las líneas SALxPAN42, SALxPAN168, SALxPAN179, SALxPAN196, SALxPAN114, SALxPAN31, SALxPAN21 y SALxPAN33 fueron las más tardías en entrar a floración para esta cruza con medias de 90.25, 90.20, 90.20, 90.20, 90.18, 90.18, 90.10 y 90.10 días respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas semi precoces en entrar a floración fueron SALxPAN131, SALxPAN71, SALxPAN57, SALxPAN55, SALxPAN46, SALxPAN104, SALxPAN135 v SALxPAN76 con medias de 89.53, 89.53, 89.53, 89.53, 89.53, 89.50, 89.50 y 89.50 días respectivamente a los que se clasifico tambien en el segundo rango de significancia; finalmente las líneas precoces en entrar a floración fueron SALxPAN29, SALxPAN20, SALxPAN158, SALxPAN150, SALxPAN17, SALxPAN30, SALxPAN85 y SALxPAN103 con medias de 88.83, 88.78, 88.75, 88.75, 88.73, 88.68, 88.60 y 88.55 días respectivamente a los que se clasifico también en el segundo y tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 91.08 días se clasifico en el primer rango; mientras tanto el genitor masculino (Pandela) presento una media de 89.90 días a floración y se clasifico en el segundo rango de significancia.

Muestra solo un rango de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Negra collana y Kcancolla). Donde se observa que las líneas COLxKCA165, COLxKCA8, COLxKCA127, COLxKCA79, COLxKCA106, COLxKCA58, COLxKCA43 y COLxKCA109 fueron las más tardías en entrar a floración para esta cruza con medias de 83.80, 83.63, 83.63, 83.55, 83.48, 83.43, 83.43 y 83.43 días respectivamente a los que se clasifico en el primero rango de significancia; por otra parte las líneas semi precoces en entrar a floración fueron COLxKCA93, COLxKCA185, COLxKCA168, COLxKCA180, COLxKCA134,

COLxKCA179, COLxKCA144 y COLxKCA33 con medias de 82.83, 82.83, 82.80, 82.80, 82.80, 82.80, 82.80 y 82.80 días respectivamente a los que se clasifico también en el primer rango de significancia; finalmente las líneas precoces en entrar a floración fueron COLxKCA12, COLxKCA77, COLxKCA118, COLxKCA190, COLxKCA149, COLxKCA46, COLxKCA75 y COLxKCA1 con medias de 82.10, 82.10, 82.08, 82.05, 82.05, 82.03, 81.93 y 81.70 días respectivamente a los que se clasifico también en el primer rango de significancia. El genitor femenino (Negra collana) tuvo una media de 83.55 días se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 83.88 días a floración y se clasifico en el primer rango de significancia.

La prueba de Tukey (p < 0.05) para la variable floración (Cuadro 14), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIA y Negra collana). Donde se observa que las líneas SALxCOL195, SALxCOL54, SALxCOL129, SALxCOL109, SALxCOL58, SALxCOL19, SALxCOL159 y SALxCOL189 fueron las más tardías en entrar a floración para esta cruza con medias de 87.98, 87.83, 87.78, 87.75, 87.68, 87.63, 87.63 y 87.60 días respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas semi precoces en entrar a floración fueron SALxCOL138, SALxCOL14, SALxCOL140, SALxCOL73, SALxCOL132, SALxCOL17, SALxCOL61 v SALxCOL149 con medias de 86.88, 86.85, 86.85, 86.85, 86.85, 86.83, 86.83 y 86.83 días respectivamente a los que se clasifico también en el segundo rango de significancia; finalmente las líneas precoces en entrar a floración SALxCOL153, SALxCOL180, fueron SALxCOL119, SALxCOL12, SALxCOL137, SALxCOL36, SALxCOL65 y SALxCOL163 con medias de 85.75, 85.75, 85.68, 85.58, 85.53, 85.48, 85.45 y 85.25 días respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 90.35 días se clasifico en el primer rango; mientras tanto el genitor masculino (Negra collana) presento una media de 86.05 días a floración y se clasifico en el tercer rango de significancia.

Cuadro 14

Prueba de Tukey al 5% para días a floración de cruzas simples de quinua. Puno, Perú-2017.

CENOTIDOS			FLORACI	ÓN (días)		
GENOTIPOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LINEA1	85.13 a	91.58 ab	93.53 b	89.33 ab	81.70 a	86.30 b
LINEA2	84.95 a	90.88 ab	93.85 ab	89.33 ab	82.73 a	86.20 b
LINEA3	85.23 a	91.38 ab	93.63 b	90.05 ab	82.25 a	86.48 b
LINEA4	84.25 a	90.73 ab	94.60 ab	89.15 ab	82.33 a	87.03 ab
LINEA5	85.60 a	90.25 ab	94.48 ab	89.63 ab	82.53 a	86.98 ab
LINEA6	85.55 a	91.48 ab	94.03 ab	89.75 ab	82.90 a	87.28 ab
LINEA7	85.00 a	91.15 ab	93.33 b	89.70 ab	82.38 a	86.78 ab
LINEA8	84.38 a	90.70 ab	94.55 ab	89.58 ab	83.63 a	87.60 ab
LINEA9	84.50 a	91.25 ab	93.58 b	89.48 ab	83.03 a	86.88 ab
LINEA10	84.98 a	90.55 ab	93.90 ab	89.08 ab	82.78 a	87.05 ab
LINEA11	85.98 a	90.88 ab	94.50 ab	89.65 ab	83.03 a	86.20 b
LINEA12	84.58 a	90.83 ab	94.20 ab	89.65 ab	82.10 a	85.58 b
LINEA13	84.60 a	91.45 ab	94.20 ab	89.65 ab	82.48 a	86.55 b
LINEA14	84.40 a	91.03 ab	94.23 ab	89.58 ab	82.15 a	86.85 ab
LINEA15	84.50 a	90.60 ab	94.13 ab	88.95 ab	82.68 a	86.68 b
LINEA16	85.40 a	90.70 ab	93.90 ab	89.18 ab	83.35 a	86.30 b
LINEA17	85.43 a	91.20 ab	93.63 b	88.73 ab	82.48 a	86.83 ab
LINEA18	84.75 a	91.00 ab	93.98 ab	89.88 ab	82.43 a	87.18 ab
LINEA19	84.73 a	90.55 ab	93.90 ab	89.45 ab	83.30 a	87.83 ab
LINEA20	84.73 a	91.53 ab	94.23 ab	88.78 ab	83.28 a	86.33 b
LINEA21	85.48 a	90.88 ab	94.48 ab	90.10 ab	83.43 a	86.65 b
LINEA22	85.33 a	91.53 ab	94.03 ab	89.60 ab	82.95 a	86.88 ab
LINEA23	86.35 a	90.98 ab	94.25 ab	89.35 ab	82.98 a	86.03 b
LINEA24	85.33 a	91.68 ab	93.90 ab	89.70 ab	82.85 a	86.68 b
LINEA25	85.33 a	91.33 ab	93.78 ab	89.65 ab	82.35 a	87.55 ab
LINEA26	85.55 a	91.13 ab	93.75 b	89.45 ab	82.58 a	87.20 ab
LINEA27	84.58 a	91.20 ab	94.00 ab	89.28 ab	82.65 a	86.75 ab
LINEA28	85.43 a	91.25 ab	94.00 ab	89.70 ab	82.90 a	86.70 b
LINEA29	84.28 a	90.75 ab	94.45 ab	88.83 ab	82.93 a	86.30 b
LINEA30	84.98 a	91.33 ab	93.63 b	88.68 b	82.30 a	87.10 ab
LINEA31	84.63 a	91.05 ab	94.48 ab	90.18 ab	82.43 a	87.15 ab
LINEA32	85.63 a	90.68 ab	93.75 b	89.58 ab	83.20 a	87.20 ab
LINEA33	84.53 a	90.53 ab	93.68 b	90.10 ab	82.80 a	86.10 b
LINEA34	85.13 a	90.73 ab	94.23 ab	89.05 ab	82.65 a	87.00 ab
LINEA35	85.30 a	91.40 ab	93.28 b	89.50 ab	83.30 a	86.80 ab

LINEA36	84.95 a	90.00 ab	94.38 ab	89.35 ab	82.80 a	85.48 b
LINEA37	84.60 a	90.48 ab	94.13 ab	89.43 ab	82.90 a	86.08 b
LINEA38	84.98 a	91.30 ab	93.73 b	89.35 ab	82.63 a	86.75 ab
LINEA39	85.55 a	90.68 ab	94.33 ab	89.03 ab	83.05 a	87.15 ab
LINEA40	83.88 a	90.95 ab	93.93 ab	89.18 ab	83.13 a	86.03 b
LINEA41	85.40 a	90.83 ab	94.25 ab	89.40 ab	82.65 a	86.20 b
LINEA42	85.53 a	91.48 ab	94.48 ab	90.25 ab	82.95 a	87.33 ab
LINEA43	85.50 a	91.18 ab	94.23 ab	89.93 ab	83.43 a	86.90 ab
LINEA44	84.08 a	91.13 ab	94.28 ab	89.58 ab	82.65 a	86.40 b
LINEA45	85.75 a	90.85 ab	94.38 ab	89.68 ab	82.88 a	86.20 b
LINEA46	84.58 a	90.78 ab	93.48 b	89.53 ab	82.03 a	86.28 b
LINEA47	84.08 a	91.55 ab	93.65 b	89.08 ab	82.15 a	86.95 ab
LINEA48	85.08 a	89.93 ab	94.38 ab	89.38 ab	83.33 a	87.08 ab
LINEA49	84.83 a	91.28 ab	94.33 ab	89.18 ab	83.08 a	87.15 ab
LINEA50	84.88 a	91.25 ab	93.95 ab	89.73 ab	82.90 a	87.13 ab
LINEA51	85.10 a	91.33 ab	93.85 ab	89.50 ab	83.03 a	85.90 b
LINEA52	84.70 a	90.78 ab	94.30 ab	89.00 ab	83.08 a	87.18 ab
LINEA53	85.63 a	91.28 ab	94.00 ab	89.43 ab	83.00 a	86.70 b
LINEA54	85.30 a	91.30 ab	94.55 ab	89.70 ab	83.13 a	87.78 ab
LINEA55	85.63 a	90.90 ab	94.35 ab	89.53 ab	82.30 a	87.25 ab
LINEA56	84.95 a	90.95 ab	93.88 ab	89.48 ab	82.43 a	87.10 ab
LINEA57	85.20 a	90.90 ab	94.08 ab	89.53 ab	82.70 a	87.55 ab
LINEA58	84.68 a	91.48 ab	94.13 ab	89.65 ab	83.43 a	87.63 ab
LINEA59	85.35 a	91.23 ab	93.75 b	89.78 ab	82.40 a	87.23 ab
LINEA60	84.43 a	90.95 ab	94.08 ab	89.28 ab	83.05 a	86.13 b
LINEA61	85.30 a	90.93 ab	93.30 b	90.08 ab	82.38 a	86.83 ab
LINEA62	84.33 a	91.30 ab	94.20 ab	89.05 ab	82.40 a	87.13 ab
LINEA63	84.95 a	91.05 ab	94.08 ab	89.23 ab	82.65 a	87.25 ab
LINEA64	84.18 a	91.00 ab	93.90 ab	89.05 ab	82.90 a	85.78 b
LINEA65	85.20 a	91.40 ab	93.73 b	88.90 ab	82.90 a	85.45 b
LINEA66	85.20 a	91.60 ab	93.68 b	89.90 ab	82.85 a	86.75 ab
LINEA67	84.55 a	91.18 ab	93.50 b	89.20 ab	82.85 a	87.13 ab
LINEA68	85.35 a	91.38 ab	94.38 ab	89.38 ab	82.53 a	86.55 b
LINEA69	84.20 a	90.90 ab	94.18 ab	89.68 ab	82.65 a	86.60 b
LINEA70	86.05 a	90.68 ab	93.83 ab	90.00 ab	83.10 a	87.18 ab
LINEA71	85.08 a	91.18 ab	93.58 b	89.53 ab	83.28 a	87.33 ab
LINEA72	85.60 a	91.20 ab	94.30 ab	89.33 ab	83.23 a	86.70 b
LINEA73	85.70 a	91.03 ab	93.93 ab	89.60 ab	83.10 a	86.85 ab
LINEA74	85.85 a	91.10 ab	94.05 ab	89.18 ab	82.60 a	86.00 b
LINEA75	85.23 a	91.28 ab	93.80 ab	89.03 ab	81.93 a	86.98 ab

LINEA76	85.28 a	91.28 ab	93.73 b	89.50 ab	82.85 a	87.13 ab
LINEA77	85.05 a	91.38 ab	93.65 b	89.20 ab	82.10 a	86.20 b
LINEA78	83.63 a	90.40 ab	94.23 ab	89.83 ab	82.50 a	87.03 ab
LINEA79	84.80 a	90.73 ab	94.15 ab	89.70 ab	83.55 a	86.90 ab
LINEA80	84.60 a	91.10 ab	93.85 ab	89.48 ab	82.30 a	86.48 b
LINEA81	85.80 a	90.28 ab	93.83 ab	89.53 ab	82.15 a	87.48 ab
LINEA82	84.88 a	91.18 ab	93.63 b	89.20 ab	83.15 a	87.25 ab
LINEA83	84.68 a	91.08 ab	93.40 b	89.48 ab	83.05 a	86.33 b
LINEA84	85.15 a	91.05 ab	94.50 ab	89.25 ab	83.00 a	87.28 ab
LINEA85	85.38 a	91.28 ab	94.13 ab	88.60 b	83.15 a	86.93 ab
LINEA86	85.53 a	91.10 ab	94.18 ab	89.65 ab	82.55 a	87.05 ab
LINEA87	85.13 a	90.95 ab	94.38 ab	89.70 ab	82.60 a	86.43 b
LINEA88	85.00 a	90.25 ab	94.28 ab	89.85 ab	82.73 a	87.23 ab
LINEA89	85.45 a	91.43 ab	94.18 ab	89.50 ab	82.88 a	87.00 ab
LINEA90	83.98 a	91.00 ab	94.05 ab	89.65 ab	83.20 a	86.78 ab
LINEA91	85.63 a	91.45 ab	93.93 ab	89.30 ab	82.48 a	85.93 b
LINEA92	85.70 a	90.60 ab	94.30 ab	89.78 ab	82.65 a	87.05 ab
LINEA93	85.60 a	91.78 a	94.15 ab	89.73 ab	82.83 a	86.93 ab
LINEA94	84.88 a	90.80 ab	93.80 ab	89.33 ab	82.88 a	86.95 ab
LINEA95	85.05 a	90.23 ab	93.95 ab	90.00 ab	82.33 a	86.93 ab
LINEA96	84.20 a	90.93 ab	94.00 ab	89.63 ab	82.78 a	86.28 b
LINEA97	84.80 a	91.30 ab	93.58 b	89.33 ab	82.85 a	87.53 ab
LINEA98	85.60 a	91.08 ab	94.23 ab	89.25 ab	82.53 a	87.20 ab
LINEA99	85.53 a	91.28 ab	93.78 ab	88.98 ab	82.48 a	86.98 ab
LINEA100	84.43 a	91.48 ab	94.18 ab	90.05 ab	83.18 a	86.50 b
LINEA101	85.80 a	90.88 ab	94.08 ab	89.60 ab	82.45 a	86.95 ab
LINEA102	85.18 a	90.75 ab	93.78 ab	89.75 ab	82.45 a	86.23 b
LINEA103	84.08 a	90.75 ab	93.83 ab	88.55 b	82.78 a	87.30 ab
LINEA104	85.08 a	91.00 ab	93.80 ab	89.50 ab	83.18 a	87.18 ab
LINEA105	85.98 a	91.28 ab	94.48 ab	89.70 ab	82.70 a	86.63 b
LINEA106	84.93 a	90.83 ab	93.88 ab	89.70 ab	83.48 a	86.35 b
LINEA107	85.18 a	91.43 ab	93.63 b	89.93 ab	82.45 a	87.08 ab
LINEA108	85.45 a	91.13 ab	94.18 ab	89.98 ab	83.15 a	87.20 ab
LINEA109	84.65 a	90.50 ab	94.50 ab	89.13 ab	83.43 a	87.68 ab
LINEA110	85.55 a	90.98 ab	94.25 ab	89.25 ab	82.88 a	87.55 ab
LINEA111	83.90 a	91.73 a	94.63 ab	89.70 ab	82.83 a	86.50 b
LINEA112	84.20 a	92.13 a	93.98 ab	89.40 ab	83.00 a	86.73 ab
LINEA113	85.35 a	90.13 ab	94.03 ab	89.53 ab	82.60 a	86.60 b
LINEA114	84.28 a	91.38 ab	93.45 b	90.18 ab	82.93 a	87.48 ab
LINEA115	84.98 a	91.65 ab	93.75 b	89.48 ab	83.28 a	87.00 ab

1	!					
LINEA116	84.78 a	90.85 ab	94.13 ab	89.20 ab	83.30 a	87.40 ab
LINEA117	84.83 a	91.33 ab	94.20 ab	90.00 ab	82.78 a	86.90 ab
LINEA118	84.43 a	90.80 ab	93.58 b	89.88 ab	82.08 a	87.08 ab
LINEA119	85.40 a	90.65 ab	93.88 ab	89.88 ab	83.03 a	85.75 b
LINEA120	85.03 a	90.55 ab	93.93 ab	90.08 ab	82.88 a	86.93 ab
LINEA121	85.35 a	91.33 ab	94.13 ab	90.00 ab	82.58 a	87.10 ab
LINEA122	84.45 a	90.93 ab	94.00 ab	89.73 ab	82.83 a	86.78 ab
LINEA123	84.68 a	91.03 ab	94.28 ab	89.83 ab	83.20 a	86.90 ab
LINEA124	84.75 a	91.35 ab	94.30 ab	90.05 ab	82.78 a	87.10 ab
LINEA125	85.00 a	90.83 ab	94.38 ab	90.08 ab	82.60 a	87.18 ab
LINEA126	85.25 a	90.83 ab	94.63 ab	89.70 ab	82.58 a	86.28 b
LINEA127	84.95 a	90.80 ab	93.60 b	90.05 ab	83.63 a	87.08 ab
LINEA128	85.00 a	91.08 ab	94.00 ab	89.30 ab	82.40 a	87.48 ab
LINEA129	84.23 a	91.10 ab	93.95 ab	88.88 ab	82.75 a	87.75 ab
LINEA130	83.60 a	90.85 ab	93.35 b	89.48 ab	82.90 a	86.83 ab
LINEA131	83.90 a	90.33 ab	93.53 b	89.53 ab	82.15 a	86.30 b
LINEA132	84.98 a	91.88 a	94.35 ab	89.58 ab	82.73 a	86.85 ab
LINEA133	84.13 a	91.05 ab	94.40 ab	89.05 ab	83.13 a	86.68 b
LINEA134	84.60 a	91.80 a	94.45 ab	89.93 ab	82.80 a	87.13 ab
LINEA135	84.60 a	91.05 ab	93.70 b	89.50 ab	82.18 a	86.68 b
LINEA136	84.85 a	90.38 ab	93.83 ab	89.88 ab	82.83 a	86.88 ab
LINEA137	85.63 a	91.28 ab	94.15 ab	89.38 ab	82.93 a	85.53 b
LINEA138	85.28 a	91.90 a	94.33 ab	89.95 ab	83.25 a	86.88 ab
LINEA139	85.08 a	91.23 ab	94.10 ab	89.28 ab	83.03 a	86.15 b
LINEA140	84.75 a	90.78 ab	93.68 b	89.38 ab	83.08 a	86.85 ab
LINEA141	85.68 a	91.10 ab	93.78 ab	89.30 ab	82.95 a	86.10 b
LINEA142	85.00 a	90.18 ab	94.05 ab	89.30 ab	82.93 a	86.65 b
LINEA143	85.18 a	91.08 ab	93.90 ab	89.35 ab	82.50 a	87.15 ab
LINEA144	85.53 a	91.38 ab	94.03 ab	88.98 ab	82.80 a	86.78 ab
LINEA145	84.33 a	90.90 ab	94.25 ab	89.68 ab	83.05 a	87.08 ab
LINEA146	85.05 a	90.75 ab	94.40 ab	89.60 ab	82.13 a	86.83 ab
LINEA147	84.88 a	91.18 ab	94.05 ab	89.48 ab	82.25 a	86.45 b
LINEA148	85.18 a	90.88 ab	93.55 b	90.08 ab	82.43 a	86.63 b
LINEA149	85.13 a	91.23 ab	94.15 ab	89.33 ab	82.05 a	86.83 ab
LINEA150	84.48 a	90.98 ab	93.80 ab	88.75 ab	83.28 a	86.35 b
LINEA151	85.08 a	90.85 ab	94.03 ab	89.35 ab	82.63 a	86.60 b
LINEA152	84.75 a	91.10 ab	93.85 ab	89.00 ab	83.08 a	86.25 b
LINEA153	85.45 a	90.83 ab	93.90 ab	89.90 ab	82.15 a	85.75 b
LINEA154	85.68 a	90.63 ab	93.93 ab	89.73 ab	82.43 a	87.30 ab
LINEA155	85.95 a	90.20 ab	93.55 b	89.30 ab	82.90 a	87.10 ab

LINIEAGEC	05.52 -	00 00 -1-	02.021-	00.00 -1-	92.20 -	96 20 L
LINEA156	85.53 a	90.88 ab	93.93 ab	89.80 ab	83.30 a	86.20 b
LINEA157	85.75 a	90.85 ab	93.78 ab	89.60 ab	82.28 a	86.55 b
LINEA158	84.78 a	91.25 ab	93.83 ab	88.75 ab	82.63 a	87.40 ab
LINEA159	85.73 a	90.28 ab	93.88 ab	89.73 ab	82.70 a	87.63 ab
LINEA160	84.65 a	90.65 ab	93.80 ab	89.88 ab	82.38 a	87.15 ab
LINEA161	83.98 a	90.78 ab	93.40 b	89.50 ab	82.98 a	86.50 b
LINEA162	85.25 a	90.73 ab	93.78 ab	89.23 ab	82.75 a	86.28 b
LINEA163	85.68 a	90.45 ab	94.55 ab	88.90 ab	83.38 a	85.25 b
LINEA164	84.68 a	91.23 ab	94.28 ab	89.73 ab	82.70 a	85.95 b
LINEA165	84.80 a	90.93 ab	94.10 ab		83.80 a	87.10 ab
LINEA166	85.38 a	90.80 ab	93.58 b	89.35 ab	82.90 a	86.90 ab
LINEA167	84.58 a	91.23 ab	93.48 b	89.15 ab		86.15 b
LINEA168	84.70 a	91.03 ab	94.58 ab	90.20 ab	82.80 a	86.58 b
LINEA169	84.75 a	90.88 ab	94.05 ab	89.35 ab	82.10 a	86.63 b
LINEA170	85.18 a	91.25 ab	94.38 ab	89.75 ab	82.88 a	86.40 b
LINEA171	84.90 a	90.90 ab	93.95 ab	89.28 ab	82.90 a	86.35 b
LINEA172	85.43 a	91.35 ab	93.78 ab	89.80 ab	82.60 a	86.48 b
LINEA173	85.40 a	91.25 ab	94.00 ab	89.78 ab	82.70 a	86.95 ab
LINEA174	85.35 a	90.63 ab	93.63 b	89.43 ab	83.00 a	85.85 b
LINEA175	84.50 a	91.43 ab	93.80 ab	89.30 ab	83.05 a	86.80 ab
LINEA176	84.83 a	91.25 ab	93.73 b	89.63 ab	82.78 a	87.40 ab
LINEA177	85.40 a		93.93 ab	89.38 ab	82.60 a	86.95 ab
LINEA178	86.03 a	90.13 ab	93.80 ab	89.60 ab	82.30 a	86.75 ab
LINEA179	85.53 a	91.15 ab	94.30 ab	90.20 ab		87.53 ab
LINEA180	85.90 a	90.75 ab	93.98 ab	89.08 ab	82.80 a	85.68 b
LINEA181	85.40 a	90.78 ab	94.10 ab			85.90 b
LINEA182	85.53 a	91.18 ab	93.80 ab	89.55 ab		86.35 b
LINEA183	84.93 a		94.38 ab			86.78 ab
LINEA184	84.33 a	91.25 ab	94.05 ab	89.18 ab	82.70 a	86.48 b
LINEA185	85.15 a	90.53 ab	93.90 ab	89.78 ab	82.83 a	86.75 ab
LINEA186	84.90 a	90.73 ab	93.88 ab	89.60 ab	82.75 a	87.03 ab
LINEA187	85.38 a	90.75 ab	94.20 ab	89.50 ab	82.70 a	86.50 b
LINEA188	84.93 a	91.30 ab	93.23 b	89.58 ab	83.25 a	86.33 b
LINEA189	84.98 a	91.00 ab	94.03 ab	89.75 ab	82.60 a	87.60 ab
LINEA190	85.10 a	91.23 ab	94.03 ab	89.23 ab	82.05 a	86.75 ab
LINEA191	84.60 a	90.93 ab	93.95 ab	89.08 ab	82.88 a	86.60 b
LINEA192	84.83 a	90.55 ab	93.68 b	89.43 ab	82.78 a	87.33 ab
LINEA193	85.50 a	90.65 ab	93.70 b	89.05 ab	82.53 a	87.55 ab
LINEA194	84.33 a	91.03 ab	93.73 b	89.23 ab	82.83 a	86.70 b
LINEA195	84.75 a	90.80 ab	94.35 ab	89.43 ab	82.85 a	87.98 ab
LINEA196	84.83 a	90.98 ab	93.95 ab	90.20 ab	83.30 a	87.28 ab
G. FEMENINO	86.30 a	92.65 a	95.80 a	91.08 a	83.55 a	90.35 a
G. MASCULINO	86.75 a	88.78 b	89.25 c	89.90 ab	83.88 a	86.05 b

Para la variable días a floración Peralta *et al.* (2012), estableció seis rangos de significancia encontrando líneas precoces, intermedia y tardía en entrar a la floración respecto a sus genitores, al final de la evaluación a las líneas clasificaron según los días a cosecha, las genotipos en estudio es esta investigación HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL presentaron 85, 91, 94, 90, 83 y 87 días respectivamente, superando ligeramente a sus genitores HUA, KCA, SAL, PAS, PAN y COL con 88, 87, 91, 96, 90 y 85 días respectivamente observándose ligeramente más precoces de los progenies respecto a sus progenitores, esto basado en los rangos del ciclo de cultivo que se reportan para las cruzas simples y los genitores.

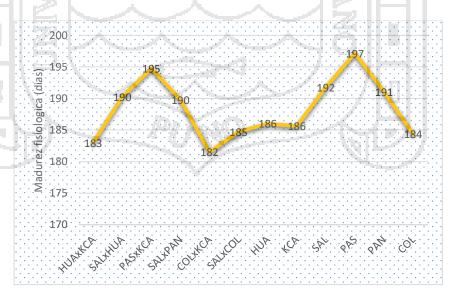
Es interesante notar que la mayoría de las líneas evaluadas mostraron un ciclo de cultivo intermedio entre las variedades testigos, estos materiales seleccionados, se pueden considerar como promisorios ya que se alcanzó el objetivo de reducir el ciclo del cultivo al respecto de los genitores.

Los resultados de las líneas de quinua y de los testigos comerciales, en referencia al ciclo de vida, oscilaron entre 83 y 94 días, siendo la línea más precoz COLxKCA y HUAxKCA, seguida por las otras líneas y el testigo del mismo grupo. Considerando el criterio de Wahli (1990), se clasifica como material precoz, semiprecoces, semitardíos y como tardío. Delgado y Benavides (2000), en su investigación clasificaron siete de ellas como semitardías y tres tardías. Chávez y Pérez (1996), clasificaron como material semitardío a la variedad superiores de 90 días a floración. Inguilán y Pantoja (2007), quienes evaluaron los mismos materiales en el municipio de Córdoba a 2.800 msnm con una temperatura de 12°C, reportan un ciclo de vida entre 70-95 días similar a los encontrados en este estudio.

Mujica *et al.* (2013), señalan que uno de los objetivos de mejoramiento genético en quinua deber ser precisamente mejorar la arquitectura de planta con una alta eficiencia productiva y precoz.

4.1.6. Madurez fisiológica

En el análisis de varianza para la madurez fisiológica (Cuadro 15), en la cruza HUAxKCA se observa que existe alta significancia para localidades, poca significativa para localidades x genotipos (Loc*Gen), y no existe significancia para repeticiones, y genotipos; el promedio general fue de 183.01 días, con un coeficiente de variación de 0.45%; para la cruza SALxHUA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen); y no existe significancia para repeticiones; el promedio general fue de 190.26 días, con un coeficiente de variación de 0.37%, en la cruza PASxKCA se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen) y no existe significancia para repeticiones; el promedio general fue de 194.75 días, con un coeficiente de variación de 0.30%; para la cruza SALxPAN se observa que existe alta significancia para localidades, y no significativa para repeticiones, genotipos y localidades x genotipos (Loc*Gen); el promedio general fue de 189.82 días, con un coeficiente de variación de 0.42%; en la cruza COLxKCA se observa que existe alta significancia para localidades, y baja significancia para localidades x genotipos (Loc*Gen) y no existe significancia para repeticiones y genotipos; el promedio general fue de 181.54 días, con un coeficiente de variación de 0.49%; finalmente para la cruza SALxCOL se observa que existe alta significancia para localidades, genotipos y localidades x genotipos (Loc*Gen) y no existe significancia para repeticiones; el promedio general fue de 184.79 días, con un coeficiente de variación de 0.28%.


Cuadro 15

Análisis de varianza para madurez fisiológica de las seis cruzas simples de quinua. Puno, Perú-2017.

FUENTE DE	GL	CUADRADOS MEDIOS PARA MADUREZ FISIOLOGICA					
VARIACIÓN	GL	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LOCALIDADES	1	23985.51 **	5941.75 **	2502.04 **	1210.40 **	5154.57 **	13996.93 **
REPETICIÓNES	2	0.48 ns	0.96 ns	0.48 ns	0.36 ns	0.40 ns	0.02 ns
GENOTIPOS	197	0.73 ns	0.93 **	1.07 **	0.59 ns	0.86 ns	1.04 **
LOC*GEN	197	0.86 *	0.81 **	1.03 **	0.69 ns	0.98 *	1.11 **
ERROR	394	0.67	0.51	0.35	0.65	0.79	0.27
TOTAL	791						
PROMEDIO (dias)		183.01	190.26	194.75	189.82	181.54	184.79
C.V. (%)		0.45	0.37	0.30	0.42	0.49	0.28

La prueba de Tukey (p < 0.05) para la variable madurez fisiológica (Cuadro 16), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAxKCA126, HUAxKCA185, HUAxKCA155, HUAxKCA114, HUAxKCA28, HUAxKCA92, HUAxKCA23 y HUAxKCA161 fueron las más tardías en entrar a madurez fisiológica para esta cruza con medias de 184.00, 183.93, 183.88, 183.85, 183.85, 183.70, 183.63 y 183.60 días respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas semiprecoces en entrar a fueron HUAxKCA17, HUAxKCA13, HUAxKCA173, madurez fisiológica HUAxKCA141, HUAxKCA170, HUAxKCA169 HUAxKCA190 y HUAxKCA70 con medias de 183.05, 183.05, 183.03, 183.03, 183.03, 183.03, 183.03 y 183.03 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas más precoces en entrar a madurez fisiológica fueron HUAxKCA16, HUAxKCA58, HUAxKCA10, HUAxKCA194, HUAxKCA151, HUAxKCA19, HUAxKCA59 y HUAxKCA4 con medias de 182.30, 182.20, 182.20, 182.18, 182.15, 182.13, 181.90 y 181.80 días respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Huariponcho) tuvo una media de 185.05 días donde se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 184.63 días a madurez fisiológica y se clasifico también en el primer rango de significancia (Figura 16).

Figura 16. Comparación de la madurez fisiológica entre las cruzas y los testigos. Puno, Perú-2017.

Muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Salcedo INIA y Huariponcho). Donde se observa que las líneas SALxHUA47, SALxHUA156, SALxHUA63, SALxHUA81, SALxHUA18, SALxHUA32, SALxHUA70 y SALxHUA76 fueron las más tardías en entrar a madurez fisiológica para esta cruza con medias de 191.48, 191.40, 191.28, 191.10, 191.03, 191.00, 191.00 y 190.98 días respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas semi precoces en entrar a madurez fisiológica fueron SALxHUA64, SALxHUA2, SALxHUA170, SALxHUA106, SALxHUA194, SALxHUA13, SALxHUA71 y SALxHUA175 con medias 190.28, 190.28, 190.25, 190.25, 190.25, 190.25, 190.25 y 190.25 días respectivamente a los que se clasifico en el tercer rango de significancia; finalmente las líneas más precoces en entrar a madurez fisiológica fueron SALxHUA57, SALxHUA28, SALxHUA96, SALxHUA12, SALxHUA33, SALxHUA173, SALxHUA179 y SALxHUA19 con medias de 189.60, 189.58, 189.55, 189.55, 189.45, 189.40, 189.35 y 189.30 días respectivamente a los que se clasifico el tercero y cuarto rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 192.90 días donde se clasifico en el primer rango; mientras tanto el genitor masculino (Huariponcho) presento una media de 187.00 días a madurez fisiológica y se clasifico en el quinto rango de significancia.

para las 196 líneas de la cruza simple Pasankalla x Kcancolla (SALxHUA) y dos testigos que son los genitores (Pasankalla y Kcancolla), muestra cuatro rangos de significancia de acuerdo a sus medias. Donde se observa que las líneas PASxKCA163, PASxKCA28, PASxKCA125, PASxKCA131, PASxKCA29, PASxKCA10, PASxKCA56 y PASxKCA102 fueron las más tardías en entrar a madurez fisiológica para esta cruza con medias de 195.70, 195.43, 195.40, 195.38, 195.35, 195.35, 195.33 y 195.30 días respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas semi precoces en entrar a madurez fisiológica fueron PASxKCA153, PASxKCA139, PASxKCA130, PASxKCA39, PASxKCA54, PASxKCA173, PASxKCA86 y PASxKCA73 con medias 194.78, 194.78, 194.78, 194.78, 194.78, 194.75 y 194.75 días respectivamente a los que se clasifico en el tercer rango de significancia; finalmente las líneas más precoces en entrar a madurez fisiológica fueron PASxKCA87,

PASxKCA170, PASxKCA13, PASxKCA85, PASxKCA7, PASxKCA136, PASxKCA178 y PASxKCA177 con medias de 194.25, 194.20, 194.20, 194.18, 194.18, 194.08 y 194.03 días respectivamente a los que se clasifico también en el tercero rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 197.18 días donde se clasifico en el primer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 189.28 días a madurez fisiológica y se clasifico en el cuarto rango de significancia.

Muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Salcedo INIAy Pandela). Donde se observa que las líneas SALxPAN120, SALxPAN117, SALxPAN182, SALxPAN129, SALxPAN128, SALxPAN165, SALxPAN133 y SALxPAN112 fueron las más tardías en entrar a madurez fisiológica para esta cruza con medias de 190.60, 190.58, 190.55, 190.50, 190.48, 190.48, 190.48 y 190.40 días respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas semi precoces en entrar a madurez fisiológica fueron SALxPAN26, SALxPAN87, SALxPAN195, SALxPAN173, SALxPAN102, SALxPAN30, SALxPAN113 y SALxPAN125 con medias 189.80, 189.80, 189.80, 189.80, 189.80, 189.80, 189.80 y 189.80 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas más precoces en entrar a madurez fisiológica fueron SALxPAN154, SALxPAN178, SALxPAN39, SALxPAN44, SALxPAN82, SALxPAN12, SALxPAN36 y SALxPAN140 con medias de 189.20, 189.20, 189.03, 188.93, 188.93, 188.90, 188.85 y 188.60 días respectivamente a los que se clasifico también en el segundo y tercero rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 191.55 días se clasifico en el primer rango; mientras tanto el genitor masculino (Pandela) presento una media de 191.08 días a madurez fisiológica y se clasifico en el segundo rango de significancia.

Para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Negra collana y Kcancolla). Donde se observa que las líneas COLxKCA99, COLxKCA72, COLxKCA168, COLxKCA84, COLxKCA169, COLxKCA81, COLxKCA67 y COLxKCA104 fueron las más tardías en entrar a madurez fisiológica para esta cruza con medias de 183.08, 182.53, 182.50, 182.50, 182.45, 182.40, 182.35 y 182.33 días respectivamente a los que se clasifico en el

primer y segundo rango de significancia; por otra parte las líneas semi precoces en entrar a madurez fisiológica fueron COLxKCA60, COLxKCA53, COLxKCA80, COLxKCA9, COLxKCA34, COLxKCA155, COLxKCA96 y COLxKCA44 con medias 181.58, 181.58, 181.55, 181.55, 181.55, 181.55, 181.53, 181.53 y 181.53 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas más precoces en entrar a madurez fisiológica fueron COLxKCA114, COLxKCA186, COLxKCA190, COLxKCA116, COLxKCA129, COLxKCA74, COLxKCA179 y COLxKCA68 con medias de 180.80, 180.75, 180.73, 180.70, 180.63, 180.50, 180.43 y 180.15 días respectivamente a los que se clasifico también en el segundo y tercer rango de significancia. El genitor femenino (Negra collana) tuvo una media de 182.88 días donde se clasifico en el segundo rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 182.98 días a madurez fisiológica y se clasifico en el segundo rango de significancia.

Muestra dos rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIA y Negra collana). Donde se observa que las líneas SALxCOL100, SALxCOL139, SALxCOL66, SALxCOL20, SALxCOL119, SALxCOL58, SALxCOL177 y SALxCOL189 fueron las más tardías en entrar a madurez fisiológica para esta cruza con medias de 185.48, 185.43, 185.25, 185.25, 185.18, 185.18, 185.18 y 185.15 días respectivamente a los que se clasifico en el segundo rango de significancia; por otra parte las líneas semi precoces en entrar a fisiológica fueron SALxCOL79, SALxCOL98, SALxCOL140, madurez SALxCOL55, SALxCOL176, SALxCOL78, SALxCOL145 y SALxCOL57 con medias 184.78, 184.78, 184.78, 184.78, 184.78, 184.75, 184.75 y 184.75 días respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas más precoces en entrar a madurez fisiológica SALxCOL102, SALxCOL169, SALxCOL131, SALxCOL35, SALxCOL185, SALxCOL124, SALxCOL143 y SALxCOL191 con medias de 184.30, 184.28, 184.28, 184.25, 184.23, 184.20, 184.18 y 184.18 días respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 190.93 días se clasifico en el primer rango; mientras tanto el genitor masculino (Negra collana) presento una media de 185.85 días a madurez fisiológica y se clasifico en el segundo rango de significancia.

Cuadro 16

Prueba de Tukey al 5% para madurez fisiológica de las seis cruzas simples de quinua. Puno, Perú-2017.

CENOTIDOS		MAD	UREZ FISI	OLOGICA	(dias)	
GENOTIPOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LINEA1	182.68 abc	190.43 b	195.03 b	189.68 ab	182.15 ab	184.53 b
LINEA2	182.48 abc	190.28 b	194.90 b	190.40 ab	181.48 ab	184.30 b
LINEA3	183.25 abc	190.15 b	194.70 b	189.88 ab	180.85 ab	184.35 b
LINEA4	181.80 abc	189.98 b	194.38 b	189.75 ab	181.18 ab	184.70 b
LINEA5	182.98 abc	190.55 b	195.05 b	189.43 ab	180.83 ab	184.95 b
LINEA6	183.13 abc	189.90 b	194.60 b	190.00 ab	181.60 ab	184.48 b
LINEA7	183.58 abc	190.18 b	194.18 b	190.03 ab	181.15 ab	184.93 b
LINEA8	182.80 abc	190.53 b	194.28 b	190.13 ab	181.23 ab	184.43 b
LINEA9	183.13 abc	189.63 b	194.98 b	189.85 ab	181.55 ab	184.65 b
LINEA10	182.20 abc	189.90 b	195.35 ab	189.78 ab	180.98 ab	184.83 b
LINEA11	182.45 abc	190.83 ab	194.98 b	189.95 ab	181.63 ab	184.88 b
LINEA12	182.83 abc	189.55 b	194.68 b	188.90 b	181.85 ab	184.90 b
LINEA13	183.05 abc	190.25 b	194.20 b	189.93 ab	181.30 ab	184.88 b
LINEA14	183.08 abc	190.20 b	194.80 b	189.75 ab	181.98 ab	185.08 b
LINEA15	183.13 abc	190.63 ab	194.40 b	190.25 ab	181.88 ab	184.90 b
LINEA16	182.30 abc	190.60 ab	194.98 b	190.18 ab	182.25 ab	184.65 b
LINEA17	183.05 abc	190.33 b	194.53 b	190.28 ab	181.45 ab	185.03 b
LINEA18	182.45 abc	191.03 ab	195.25 ab	189.48 ab	180.95 ab	184.33 b
LINEA19	182.13 abc	189.30 bc	194.70 b	189.95 ab	181.43 ab	184.80 b
LINEA20	183.50 abc	190.15 b	194.63 b	189.70 ab	181.38 ab	185.25 b
LINEA21	182.53 abc	190.08 b	195.08 b	189.68 ab	181.43 ab	184.83 b
LINEA22	182.55 abc	190.50 b	194.83 b	189.48 ab	181.68 ab	185.00 b
LINEA23	183.63 abc	190.50 b	194.95 b	189.95 ab	180.85 ab	184.40 b
LINEA24	182.83 abc	189.88 b	194.65 b	189.33 ab	182.13 ab	184.85 b
LINEA25	183.48 abc	190.58 ab	194.90 b	189.95 ab	181.20 ab	185.15 b
LINEA26	183.10 abc	190.73 ab	194.50 b	189.80 ab	181.68 ab	184.80 b
LINEA27	182.60 abc	189.88 b	195.05 b	189.63 ab	181.43 ab	184.85 b
LINEA28	183.85 abc	189.58 b	195.43 ab	189.23 ab	181.78 ab	184.53 b
LINEA29	183.20 abc	190.73 ab	195.35 ab	189.78 ab	181.68 ab	184.55 b
LINEA30	182.78 abc	190.33 b	194.53 b	189.80 ab	181.23 ab	184.55 b
LINEA31	182.43 abc	190.03 b	194.53 b	189.55 ab	182.00 ab	184.60 b
LINEA32	183.53 abc	191.00 ab	195.08 b	189.65 ab	181.60 ab	184.78 b
LINEA33	182.75 abc	189.45 b	195.05 b	189.50 ab	181.38 ab	184.65 b
LINEA34	183.15 abc	189.88 b	194.50 b	190.00 ab	181.55 ab	184.70 b
LINEA35	182.58 abc	190.80 ab	194.58 b	189.35 ab	181.58 ab	184.25 b

	102.22 1	100.70 1	105 02 1	100.05.1	101.40.1	104.45.1
LINEA36	183.33 abc	190.70 ab		188.85 b	181.48 ab	184.45 b
LINEA37	182.88 abc	190.33 b	194.98 b	189.25 ab	181.13 ab	184.45 b
LINEA38	183.18 abc	190.35 b	195.13 b	189.40 ab	182.00 ab	185.03 b
LINEA39	183.33 abc	189.85 b	194.78 b	189.03 ab	181.95 ab	184.83 b
LINEA40	182.78 abc	190.38 b	194.63 b	189.40 ab	181.68 ab	184.98 b
LINEA41	182.50 abc	189.95 b	194.85 b	189.60 ab	181.45 ab	184.50 b
LINEA42	183.28 abc	190.25 b	194.48 b	189.70 ab	181.58 ab	185.00 b
LINEA43	182.85 abc	190.00 b	194.50 b	189.55 ab	181.23 ab	184.98 b
LINEA44	183.48 abc	190.18 b	195.03 b	188.93 ab	181.53 ab	184.53 b
LINEA45	182.75 abc	190.88 ab	194.58 b	189.85 ab	181.03 ab	184.58 b
LINEA46	183.08 abc	190.23 b	194.28 b	190.23 ab	181.65 ab	184.90 b
LINEA47	182.85 abc	191.48 ab	194.73 b	189.55 ab	180.93 ab	184.83 b
LINEA48	182.83 abc	190.75 ab	194.98 b	190.28 ab	181.45 ab	184.63 b
LINEA49	182.60 abc	190.03 b	194.70 b	189.25 ab	181.90 ab	184.83 b
LINEA50	183.48 abc	190.23 b	195.23 b	189.88 ab	181.40 ab	184.93 b
LINEA51	182.93 abc	190.18 b	194.38 b	189.85 ab	181.98 ab	184.48 b
LINEA52	182.55 abc	190.10 b	195.15 b	189.93 ab	181.13 ab	184.58 b
LINEA53	182.80 abc	190.33 b	194.50 b	189.90 ab	181.58 ab	184.85 b
LINEA54	183.15 abc	189.85 b	194.78 b	189.90 ab	181.70 ab	184.45 b
LINEA55	183.18 abc	190.40 b	194.73 b	189.63 ab	181.15 ab	184.78 b
LINEA56	183.55 abc	190.25 b	195.33 ab	190.10 ab	181.25 ab	184.70 b
LINEA57	182.70 abc	189.60 b	194.63 b	189.78 ab	181.23 ab	184.75 b
LINEA58	182.20 abc	190.03 b	194.50 b	190.38 ab	181.25 ab	185.18 b
LINEA59	181.90 abc	190.53 b	195.08 b	189.40 ab	182.03 ab	185.15 b
LINEA60	183.30 abc	190.10 b	194.60 b	190.10 ab	181.58 ab	184.48 b
LINEA61	182.55 abc	189.98 b	194.85 b	189.98 ab	181.63 ab	184.65 b
LINEA62	182.85 abc	189.68 b	194.45 b	189.83 ab	181.05 ab	184.80 b
LINEA63	183.00 abc	191.28 ab	194.40 b	189.50 ab	181.93 ab	184.68 b
LINEA64	182.45 abc	190.28 b	194.53 b	190.35 ab	182.03 ab	184.83 b
LINEA65	183.03 abc	190.40 b	194.48 b	189.63 ab	181.93 ab	184.88 b
LINEA66	183.30 abc	190.45 b	194.63 b	190.18 ab	181.23 ab	185.25 b
LINEA67	183.20 abc	189.98 b	194.58 b	189.98 ab	182.35 ab	184.83 b
LINEA68	182.60 abc	190.33 b	195.15 b	189.88 ab	180.15 b	184.93 b
LINEA69	183.13 abc	190.75 ab	194.60 b	190.38 ab	181.93 ab	184.85 b
LINEA70	183.03 abc	191.00 ab	195.15 b	189.83 ab	181.68 ab	184.83 b
LINEA71	183.30 abc	190.25 b	195.03 b	189.65 ab	181.23 ab	184.75 b
LINEA72	182.95 abc	190.48 b	194.50 b	190.30 ab	182.53 ab	185.05 b
LINEA73	183.40 abc	190.45 b	194.75 b	189.75 ab	181.83 ab	185.13 b
LINEA74	183.38 abc	190.13 b	194.73 b	189.78 ab	180.50 ab	184.70 b
LINEA75	182.88 abc	190.20 b	194.70 b	189.63 ab	181.10 ab	185.03 b

		10000	101 = 1	100.00.1	101 = 0 1	101001
LINEA76	183.03 abc	190.98 ab	194.75 b	189.88 ab	181.78 ab	184.98 b
LINEA77	183.48 abc	189.80 b	194.73 b	189.98 ab	181.43 ab	184.90 b
LINEA78	183.43 abc	190.45 b	195.13 b	189.70 ab	181.20 ab	184.75 b
LINEA79	183.20 abc	190.33 b	194.30 b	190.33 ab	180.88 ab	184.78 b
LINEA80	182.83 abc	189.90 b	194.68 b	190.10 ab	181.55 ab	184.55 b
LINEA81	182.33 abc	191.10 ab	194.40 b	189.93 ab	182.40 ab	184.80 b
LINEA82	183.30 abc	190.38 b	194.98 b	188.93 ab	181.93 ab	184.63 b
LINEA83	183.48 abc	190.28 b	194.70 b	189.85 ab	181.05 ab	184.58 b
LINEA84	182.68 abc	190.63 ab	194.50 b	189.73 ab	182.50 ab	184.53 b
LINEA85	182.90 abc	190.83 ab	194.20 b	189.78 ab	181.00 ab	184.48 b
LINEA86	183.10 abc	190.23 b	194.75 b	189.73 ab	180.98 ab	184.63 b
LINEA87	182.98 abc	189.90 b	194.25 b	189.80 ab	181.43 ab	184.93 b
LINEA88	183.08 abc	189.83 b	194.45 b	189.25 ab	181.85 ab	185.03 b
LINEA89	183.58 abc	190.43 b	194.75 b	189.95 ab	181.75 ab	185.03 b
LINEA90	183.15 abc	190.60 ab	194.85 b	190.03 ab	181.98 ab	184.55 b
LINEA91	183.55 abc	190.35 b	195.00 b	189.73 ab	181.65 ab	184.98 b
LINEA92	183.70 abc	190.05 b	195.00 b	189.73 ab	181.70 ab	184.65 b
LINEA93	183.33 abc	190.53 b	194.40 b	189.70 ab	180.95 ab	184.48 b
LINEA94	182.40 abc	190.10 b	194.58 b	189.63 ab	181.98 ab	185.05 b
LINEA95	182.70 abc	190.30 b	194.80 b	190.23 ab	181.60 ab	184.83 b
LINEA96	182.88 abc	189.55 b	195.03 b	189.95 ab	181.53 ab	185.03 b
LINEA97	183.28 abc	189.83 b	194.70 b	189.78 ab	181.75 ab	184.70 b
LINEA98	183.08 abc	190.20 b	194.65 b	189.63 ab	181.18 ab	184.78 b
LINEA99	183.18 abc	189.88 b	194.65 b	189.83 ab	183.08 a	184.85 b
LINEA100	182.75 abc	190.20 b	194.43 b	189.65 ab	181.13 ab	185.48 b
LINEA101	182.80 abc	190.78 ab	194.80 b	189.78 ab	181.95 ab	184.50 b
LINEA102	182.75 abc	190.23 b	195.30 ab	189.80 ab	182.03 ab	184.30 b
LINEA103	183.15 abc	190.70 ab	194.85 b	189.75 ab	181.08 ab	184.83 b
LINEA104	182.83 abc	190.25 b	195.00 b	190.05 ab	182.33 ab	184.60 b
LINEA105	182.60 abc	189.80 b	195.05 b	190.38 ab	181.33 ab	184.63 b
LINEA106	182.70 abc	190.25 b	195.25 ab	189.58 ab	181.85 ab	184.48 b
LINEA107	182.55 abc	190.48 b	195.03 b	189.23 ab	181.75 ab	184.58 b
LINEA108	182.60 abc	190.75 ab	194.85 b	190.20 ab	181.98 ab	185.00 b
LINEA109	182.83 abc	189.63 b	194.45 b	190.20 ab	181.50 ab	184.80 b
LINEA110	183.30 abc	190.63 ab	194.35 b	189.78 ab	181.60 ab	184.93 b
LINEA111	183.15 abc	190.20 b	195.20 b	189.95 ab	181.28 ab	184.65 b
LINEA112	183.20 abc	190.58 ab	194.83 b	190.40 ab	181.80 ab	184.53 b
LINEA113	183.43 abc	190.20 b	194.95 b	189.80 ab	181.98 ab	184.63 b
LINEA114	183.85 abc	190.40 b	195.03 b	189.88 ab	180.80 ab	184.95 b
LINEA115	183.25 abc	190.23 b	194.60 b	189.58 ab	181.18 ab	184.95 b

	100 (0.1	100 10 1	101001	100.00 1	100 50 1	101 (0.1
LINEA116	182.68 abc		194.83 b	189.30 ab	180.70 ab	184.68 b
LINEA117	183.28 abc	190.58 ab	194.65 b	190.58 ab	181.45 ab	184.95 b
LINEA118	183.30 abc	190.53 b	194.88 b	189.83 ab	180.95 ab	184.70 b
LINEA119	182.50 abc	190.33 b	195.20 b	189.53 ab	181.05 ab	185.18 b
LINEA120	182.88 abc	189.80 b	195.20 b	190.60 ab	181.28 ab	184.45 b
LINEA121	183.38 abc	190.28 b	194.78 b	189.93 ab	181.28 ab	185.03 b
LINEA122	182.70 abc	190.78 ab	195.05 b	190.23 ab	181.33 ab	184.83 b
LINEA123	183.15 abc	190.80 ab	194.28 b	189.43 ab	181.85 ab	184.88 b
LINEA124	182.73 abc	190.08 b	194.90 b	189.58 ab	181.23 ab	184.20 b
LINEA125	183.48 abc	190.03 b	195.40 ab	189.80 ab	181.78 ab	184.70 b
LINEA126	184.00 ab	190.00 b	194.45 b	189.70 ab	181.03 ab	184.48 b
LINEA127	182.68 abc	190.03 b	194.95 b	189.93 ab	181.65 ab	184.43 b
LINEA128	182.70 abc	190.45 b	194.45 b	190.48 ab	181.78 ab	184.98 b
LINEA129	182.70 abc	189.68 b	194.40 b	190.50 ab	180.63 ab	184.93 b
LINEA130	183.25 abc	190.23 b	194.78 b	189.90 ab	182.08 ab	184.95 b
LINEA131	183.00 abc	190.00 b	195.38 ab	189.90 ab	181.78 ab	184.28 b
LINEA132	182.38 abc	190.45 b	194.63 b	189.43 ab	180.83 ab	184.45 b
LINEA133	183.23 abc	190.30 b	194.43 b	190.48 ab	180.93 ab	184.98 b
LINEA134	183.00 abc	190.65 ab	194.65 b	189.60 ab	181.33 ab	184.68 b
LINEA135	183.23 abc	189.98 b	195.13 b	189.28 ab	181.63 ab	184.63 b
LINEA136	182.95 abc	190.13 b	194.18 b	189.60 ab	182.13 ab	184.95 b
LINEA137	183.15 abc	189.90 b	194.43 b	189.70 ab	181.75 ab	184.68 b
LINEA138	183.25 abc	189.83 b	194.70 b	189.75 ab	181.13 ab	184.65 b
LINEA139	182.63 abc	189.85 b	194.78 b	189.85 ab	181.00 ab	185.43 b
LINEA140	183.08 abc	190.63 ab	194.95 b	188.60 b	182.08 ab	184.78 b
LINEA141	183.03 abc	190.15 b	194.33 b	190.18 ab	181.28 ab	184.63 b
LINEA142	183.13 abc	190.08 b	195.08 b	189.75 ab	181.30 ab	184.63 b
LINEA143	183.45 abc	189.90 b	194.63 b	189.58 ab	181.68 ab	184.18 b
LINEA144	183.00 abc	190.20 b	194.95 b	190.15 ab	181.93 ab	184.38 b
LINEA145	182.35 abc	189.78 b	194.55 b	189.50 ab	181.98 ab	184.75 b
LINEA146	183.08 abc	190.05 b	194.45 b	189.83 ab	181.18 ab	185.13 b
LINEA147	183.28 abc	190.38 b	194.78 b	189.75 ab	181.65 ab	184.88 b
LINEA148	183.03 abc	190.30 b	194.85 b	189.58 ab	181.85 ab	184.73 b
LINEA149	182.98 abc	190.90 ab	194.93 b	189.75 ab	181.53 ab	185.10 b
LINEA150	183.10 abc	190.40 b	194.98 b	189.75 ab	181.28 ab	185.13 b
LINEA151	182.15 abc	190.43 b	194.98 b	189.73 ab	182.20 ab	184.93 b
LINEA152	183.05 abc	189.78 b	194.80 b	190.28 ab	181.65 ab	184.53 b
LINEA153	182.83 abc	190.45 b	194.78 b	190.03 ab	181.80 ab	184.73 b
LINEA154	183.48 abc	190.73 ab	194.50 b	189.20 ab	181.88 ab	184.33 b
LINEA155	183.88 abc	190.28 b	194.83 b	189.58 ab	181.53 ab	184.45 b

—						
LINEA156	182.45 abc	191.40 ab	194.83 b	189.95 ab	181.35 ab	184.90 b
LINEA157	183.53 abc	190.35 b	194.65 b	189.80 ab	181.23 ab	184.70 b
LINEA158	182.60 abc	190.73 ab	195.15 b	189.63 ab	181.70 ab	185.08 b
LINEA159	183.15 abc	190.33 b	194.95 b	189.40 ab	181.60 ab	184.50 b
LINEA160	182.98 abc	190.68 ab	194.73 b	189.73 ab	181.50 ab	185.15 b
LINEA161	183.60 abc	190.43 b	194.58 b	190.03 ab	181.03 ab	184.83 b
LINEA162	183.03 abc	189.73 b	195.18 b	189.30 ab	181.50 ab	184.83 b
LINEA163	182.88 abc	189.70 b	195.70 ab	189.35 ab	181.73 ab	184.43 b
LINEA164	182.68 abc	190.53 b	194.73 b	189.43 ab	182.03 ab	184.40 b
LINEA165	183.30 abc	190.03 b	195.08 b	190.48 ab	180.80 ab	184.75 b
LINEA166	182.80 abc	189.90 b	194.85 b	189.53 ab	181.25 ab	184.73 b
LINEA167	183.40 abc	190.00 b	194.95 b	189.33 ab	181.43 ab	184.60 b
LINEA168	182.98 abc	190.55 b	195.13 b	189.65 ab	182.50 ab	184.53 b
LINEA169	183.03 abc	190.28 b	195.03 b	190.38 ab	182.45 ab	184.28 b
LINEA170	183.03 abc	190.25 b	194.20 b	190.25 ab	181.75 ab	184.98 b
LINEA171	182.65 abc	190.20 b	194.80 b	189.88 ab	181.43 ab	185.10 b
LINEA172	183.38 abc	190.73 ab	194.50 b	190.05 ab	182.15 ab	185.03 b
LINEA173	183.03 abc	189.40 b	194.78 b	189.80 ab	181.03 ab	184.65 b
LINEA174	183.38 abc	190.13 b	194.85 b	189.33 ab	182.18 ab	184.63 b
LINEA175	183.08 abc	190.25 b	194.40 b	189.75 ab	182.28 ab	184.95 b
LINEA176	182.38 abc	189.73 b	194.88 b	190.10 ab	181.48 ab	184.78 b
LINEA177	183.13 abc	190.50 b	194.03 b	190.05 ab	181.25 ab	185.18 b
LINEA178	182.63 abc	190.58 ab	194.08 b	189.20 ab	181.23 ab	184.58 b
LINEA179	182.85 abc	189.35 b	194.40 b	190.15 ab	180.43 ab	184.58 b
LINEA180	182.55 abc	190.03 b	194.65 b	190.18 ab	181.03 ab	185.10 b
LINEA181	183.15 abc	190.85 ab	194.55 b	189.60 ab	181.88 ab	184.95 b
LINEA182	182.55 abc	190.40 b	194.98 b	190.55 ab	181.50 ab	184.68 b
LINEA183	183.00 abc	190.40 b	195.08 b	190.00 ab	181.70 ab	184.35 b
LINEA184	183.15 abc	189.70 b	194.70 b	190.13 ab	181.90 ab	184.68 b
LINEA185	183.93 ab	189.90 b	194.73 b	190.28 ab	181.33 ab	184.23 b
LINEA186	182.53 abc	189.90 b	195.05 b	190.00 ab	180.75 ab	185.08 b
LINEA187	183.10 abc	190.35 b	194.80 b	189.50 ab	182.00 ab	184.83 b
LINEA188	183.33 abc	190.20 b	194.35 b	189.85 ab	181.98 ab	184.38 b
LINEA189	183.00 abc	190.45 b	194.68 b	189.53 ab	181.33 ab	185.15 b
LINEA190	183.03 abc	190.05 b	194.63 b	190.00 ab	180.73 ab	184.80 b
LINEA191	182.80 abc	190.30 b	194.90 b	190.20 ab	181.83 ab	184.18 b
LINEA192	183.13 abc	189.83 b	194.83 b	189.20 ab	181.73 ab	184.63 b
LINEA193	183.15 abc	190.53 b	194.63 b	190.10 ab	181.90 ab	184.65 b
LINEA194	182.18 abc	190.25 b	194.90 b	190.23 ab	181.53 ab	184.80 b
LINEA195	183.38 abc	190.00 b	194.70 b	189.80 ab	181.13 ab	184.73 b
LINEA196	183.15 abc	190.60 ab	195.05 b	189.88 ab	181.48 ab	184.70 b
G. FEMENINO	185.05 a	192.90 a	197.18 a	191.55 a	182.88 ab	190.93 a
G. MASCULINO	184.63 a	187.00 c	189.28 c	191.08 ab	182.98 ab	185.85 b

Analizando lo ocurrido con la evaluación en las dos localidades podemos observar que no muestran variables como floración y madurez fisiológica que no tienen una relación directa con el efecto de factores ambientales no presentan mucha significación, para el caso específico de precocidad, según Sánchez *et al.* (2009), señala que esta es una característica cuantitativa, controlada por múltiples loci, además de considerarse como dominante.

Los genotipos estudiados tuvieron un ciclo vegetativo HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL con 183, 190, 195, 190, 182 y 185 días respectivamente, siendo ligeramente más precoces que sus genitores HUA, KCA, SAL, PAS, PAN y COL con 186, 186, 192, 197, 191 y 184 días respectivamente se observa que los progenies son ligeramente más precoz respecto a sus genitores y se clasifican como precoces, semiprecoz e intermedio de acuerdo al rango de (PROINPA, 2005) en el catálogo de quinua real donde el ciclo vegetativo de las variedades varían en un rango de: precoz de 144 a 150 días, semiprecoz de 161 días, intermedios de 166 a 195 días y tardíos más de 195 días.

Rojas *et al.* (2014), hicieron evaluaciones con respecto al ciclo vegetativo donde los genitores obtuvieron un promedio de 145 y 165 días de madurez fisiológica. Por su parte (Bonifacio *et al.* 2013), indican que la precocidad está relacionada con la altura de planta.

De acuerdo al potencial genotípico de la semilla y las condiciones climáticas de la zona en el que se cultive tiende a disminuir (en el valle) o aumentar (en el altiplano) los días para llegar a la madurez fisiológica (Blanco, 2009).

A su vez, Gandarillas (1979), menciona que las variedades cultivadas en el altiplano presentan una amplia gama de duración del periodo vegetativo, entre 150 y 210 días desde la siembra a la madurez fisiológica. Esta aseveración se asemeja más a lo obtenido en el presente ensayo, ya que las líneas en estudio, alcanzaron la madurez entre 195 días después de la siembra.

Según Inguilán y Pantoja (2007) y Benavides y Rodríguez (2007), quienes evaluaron las líneas de cruzas en los municipios de Córdoba a 2800 msnm y Pasto a 2454 msnm, respectivamente, reportaron que existen líneas más precoces y tardías en comparación a sus genitores (Delgado *et al.*, 2009). Es interesante notar que todas

las líneas evaluadas mostraron un ciclo de cultivo intermedio entre las variedades testigos, pero las líneas élites seleccionados se pueden considerar como precoces en vista a que su periodo vegetativo es menor a sus genitores.

4.1.7. Rendimiento

En el análisis de varianza para el rendimiento (Cuadro 17), en la cruza HUAxKCA se observó una alta significancia para las localidades, poca significativa para genotipos, y no existe significancia para repeticiones, y localidades x genotipos (Loc*Gen); el promedio general fue de 13.74 g por panoja, con un coeficiente de variación de 5.44%; para la cruza SALxHUA se observa que existe alta significancia para localidades y genotipos; y no existe significancia para repeticiones, y localidades x genotipos (Loc*Gen), el promedio general fue de 14.20 g por panoja, con un coeficiente de variación de 5.47%; en la cruza PASxKCA se observa que existe alta significancia para localidades, poca significancia para genotipos, y no existe significancia para repeticiones, y localidades x genotipos (Loc*Gen); el promedio general fue de 13.52 g por panoja, con un coeficiente de variación de 3.97 %; para la cruza SALxPAN se observa que existe alta significancia para localidades, y genotipos, y no existe significancia para repeticiones, y localidades x genotipos (Loc*Gen); el promedio general fue de 11.75 g por panoja, con un coeficiente de variación de 3.87 %; en la cruza COLxKCA se observa que existe alta significancia para localidades, y no existe significancia para repeticiones, genotipos y localidades x genotipos (Loc*Gen); el promedio general fue de 8.47 g por panoja, con un coeficiente de variación de 6.21 %; finalmente la cruza SALxCOL se observa que existe alta significancia para localidades genotipos, y no significancia para repeticiones, y localidades x genotipos (Loc*Gen); el promedio general fue de 11.05 g por panoja, con un coeficiente de variación de 4.97 %.

Cuadro 17

Análisis de varianza para rendimiento por panoja de las seis cruzas simples de quinua. Puno, Perú-2017.

FUENTE DE	CI	CUADRADOS MEDIOS PARA RENDIMIENTO					
VARIACIÓN	GL	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LOCALIDADES	1	8393.86 **	5721.53 **	1848.49 **	8354.84 **	762.95 **	709.45 **
REPETICIÓNES	2	0.67 ns	0.00 ns	0.01 ns	0.00 ns	0.10 ns	0.09 ns
GENOTIPOS	197	0.68 *	0.96 **	0.36 *	0.28 **	0.24 ns	0.46 **
LOC*GEN	197	0.67 ns	0.64 ns	0.29 ns	0.22 ns	0.19 ns	0.28 ns
ERROR	394	0.56	0.60	0.29	0.21	0.28	0.30
TOTAL	791						
PROMEDIO (g)	1	13.74	14.20	13.52	11.75	8.47	11.05
C.V. (%)		5.44	5.47	3.97	3.87	6.21	4.97

La prueba de Tukey (p < 0.05) para la variable rendimiento por panoja (Cuadro 18), muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Huariponcho x Kcancolla (HUAxKCA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas HUAxKCA22, HUAxKCA68, HUAxKCA37, HUAxKCA160, HUAxKCA108, HUAxKCA48, HUAxKCA99 y HUAxKCA191 fueron las que presentaron mayores rendimientos por panoja de planta para esta cruza con medias de 14.76, 14.51, 14.49, 14.48, 14.46, 14.45, 14.42 y 14.39 g respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio rendimiento por panoja de planta fueron HUAxKCA91, HUAxKCA40, HUAxKCA58, HUAxKCA63, HUAxKCA8, HUAxKCA23, HUAxKCA33 y HUAxKCA182 con medias de 13.77, 13.77, 13.77, 13.77, 13.76, 13.75, 13.74 y 13.74 g respectivamente a los que se clasifico en el tercer rango de significancia; finalmente las líneas que presentaron menores rendimientos por panoja de planta HUAxKCA170, HUAxKCA15, HUAxKCA196, HUAxKCA177, HUAxKCA189, HUAxKCA98, HUAxKCA118 y HUAxKCA49 con medias de 13.08, 13.05, 13.03, 13.03, 12.97, 12.95, 12.92 y 12.91 g respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Huariponcho) tuvo una media de 11.93 g se clasifico en el cuarto rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 11.49 g de rendimiento por panoja de planta y se clasifico en el quinto rango de significancia (Figura 17).

Figura 17. Comparación del rendimiento entre las seis cruzas y los testigos. Puno, Perú-2017.

La prueba de Tukey (p < 0.05) para la variable rendimiento por panoja (Cuadro 18), muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Huariponcho (SALxHUA) y dos testigos que son los genitores (Huariponcho y Kcancolla). Donde se observa que las líneas SALXHUA102, SALXHUA63, SALXHUA114, SALXHUA116, SALXHUA8, SALxHUA27, SALxHUA41 y SALxHUA141 fueron las que presentaron mayores rendimientos por panoja de planta para esta cruza con medias de 15.36, 15.33, 15.23, 15.06, 15.05, 15.00, 14.94 y 14.93 g respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio rendimiento por panoja de planta fueron SALxHUA158, SALxHUA189, SALxHUA58, SALxHUA179, SALxHUA152, SALxHUA108, SALxHUA187 y SALxHUA44 con medias de 14.24, 14.24, 14.24, 14.23, 14.23, 14.22, 14.21, y 14.21 g respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menores rendimientos por panoja de planta SALxHUA87, SALxHUA128, SALxHUA18, SALxHUA153, SALxHUA77, SALxHUA196, SALxHUA65 y SALxHUA151 con medias de 13.50, 13.50, 13.48, 13.43, 13.41, 13.36, 13.30 y 13.18 g respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 11.76 g se clasifico en el cuarto rango; mientras tanto el genitor masculino

(Huariponcho) presento una media de 11.39 g de rendimiento por panoja de planta y se clasifico en el quinto rango de significancia.

La prueba de Tukey (p < 0.05) para la variable rendimiento por panoja (Cuadro 18), muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Pasankalla x Kcancolla (SALxHUA) y dos testigos que son los genitores (Kcancolla y Kcancolla). Donde se observa que las líneas PASxKCA91, PASxKCA64, PASxKCA157, PASxKCA166, PASxKCA118, PASxKCA14, PASxKCA23 y PASxKCA153 fueron las que presentaron mayores rendimientos por panoja de planta para esta cruza con medias de 14.18, 14.17, 14.17, 14.13, 14.04, 14.01, 14.00 y 13.99 g respectivamente a los que se clasifico en el primer y segundo rango de significancia; por otra parte las líneas que tuvieron intermedio rendimiento por panoja de planta fueron PASxKCA39, PASxKCA78, PASxKCA150, PASxKCA67, PASxKCA106, PASxKCA135, PASxKCA38 y PASxKCA82 con medias de 13.55, 13.55, 13.55, 13.53, 13.52, 13.52, 13.52 y 13.51 g respectivamente a los que se clasifico en el tercer rango de significancia; finalmente las líneas que presentaron menores rendimientos por panoja de planta PASxKCA79, PASxKCA186, PASxKCA8, PASxKCA34, PASxKCA145, PASxKCA193, PASxKCA57 y PASxKCA30 con medias de 13.05, 12.99, 12.98, 12.96, 12.92, 12.89, 12.88 y 12.71 g respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Pasankalla) tuvo una media de 12.17 g se clasifico en el quinto rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 12.29 g de rendimiento por panoja de planta y se clasifico en el cuarto rango de significancia.

La prueba de Tukey (p < 0.05) para la variable rendimiento por panoja (Cuadro 18), muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Pandela (SALxPAN) y dos testigos que son los genitores (Pandela y Pandela). Donde se observa que las líneas SALxPAN171, SALxPAN97, SALxPAN159, SALxPAN83, SALxPAN107, SALxPAN14, SALxPAN196 y SALxPAN44 fueron las que presentaron mayores rendimientos por panoja de planta para esta cruza con medias de 12.42, 12.36, 12.27, 12.23, 12.23, 12.22, 12.21 y 12.20 g respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio rendimiento por panoja de planta fueron SALxPAN5, SALxPAN143, SALxPAN45, SALxPAN12,

SALxPAN150, SALxPAN114, SALxPAN56 y SALxPAN179 con medias de 11.79, 11.78, 11.78, 11.77, 11.77, 11.77, 11.77 y 11.76 g respectivamente a los que se clasifico en el tercer rango de significancia; finalmente las líneas que presentaron menores rendimientos por panoja de planta SALxPAN157, SALxPAN127, SALxPAN126, SALxPAN193, SALxPAN138, SALxPAN186, SALxPAN2 y SALxPAN189 con medias de 11.35, 11.35, 11.35, 11.29, 11.28, 11.28, 11.25 y 11.23 g respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 10.55 g se clasifico en el quinto rango; mientras tanto el genitor masculino (Pandela) presento una media de 10.62 g de rendimiento por panoja de planta y se clasifico en el cuarto rango de significancia.

La prueba de Tukey (p < 0.05) para la variable rendimiento por panoja (Cuadro 18), muestra tres rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Negra collana x Kcancolla (COLxKCA) y dos testigos que son los genitores (Kcancolla y Kcancolla). Donde se observa que las líneas COLxKCA195, COLxKCA101, COLxKCA14, COLxKCA29, COLxKCA73, COLxKCA4, COLxKCA89 y COLxKCA138 fueron las que presentaron mayores rendimientos por panoja de planta para esta cruza con medias de 9.13, 8.95, 8.94, 8.93, 8.91, 8.90, 8.90 y 8.89 g respectivamente a los que se clasifico en el primer y segundo rango de significancia; por otra parte las líneas que tuvieron intermedio rendimiento por panoja de planta fueron COLxKCA128, COLxKCA191, COLxKCA83, COLxKCA104, COLxKCA148, COLxKCA61, COLxKCA122 y COLxKCA134 con medias de 8.50, 8.50, 8.50, 8.49, 8.49, 8.49, 8.49 y 8.49 g respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menores rendimientos por panoja de planta COLxKCA72, COLxKCA112, COLxKCA58, COLxKCA13, COLxKCA17, COLxKCA64, COLxKCA20 y COLxKCA162 con medias de 8.13, 8.08, 8.07, 8.05, 8.01, 7.96, 7.93 y 7.87 g respectivamente a los que se clasifico también en el segundo rango de significancia. El genitor femenino (Negra collana) tuvo una media de 7.26 g se clasifico en el tercer rango; mientras tanto el genitor masculino (Kcancolla) presento una media de 7.37 g de rendimiento por panoja de planta y se clasifico en el tercer rango de significancia.

La prueba de Tukey (p < 0.05) para la variable rendimiento por panoja (Cuadro 18), muestra cinco rangos de significancia de acuerdo a sus medias, para las 196 líneas de la cruza simple Salcedo INIA x Negra collana (SALxCOL) y dos testigos que son los genitores (Salcedo INIA y Negra collana). Donde se observa que las líneas SALxCOL16, SALxCOL166, SALxCOL6, SALxCOL31, SALxCOL102, SALxCOL83, SALxCOL51 y SALxCOL119 fueron las que presentaron mayores rendimientos por panoja de planta para esta cruza con medias de 11.80, 11.74, 11.70, 11.67, 11.66, 11.63, 11.62 y 11.60 g respectivamente a los que se clasifico en el primer rango de significancia; por otra parte las líneas que tuvieron intermedio rendimiento por panoja de planta fueron SALxCOL137, SALxCOL182, SALxCOL169, SALxCOL96, SALxCOL101, SALxCOL158, SALxCOL160 y SALxCOL32 con medias de 11.06, 11.06, 11.06, 11.06, 11.05, 11.04, 11.03, 11.03 g respectivamente a los que se clasifico en el segundo rango de significancia; finalmente las líneas que presentaron menores rendimientos por panoja de planta SALxCOL131, SALxCOL65, SALxCOL58, SALxCOL81, SALxCOL28. SALxCOL55, SALxCOL99 y SALxCOL78 con medias de 10.54, 10.53, 10.50, 10.44, 10.42, 10.40, 10.27 y 10.27 g respectivamente a los que se clasifico también en el tercer rango de significancia. El genitor femenino (Salcedo INIA) tuvo una media de 9.20 g se clasifico en el cuarto rango; mientras tanto el genitor masculino (Negra collana) presento una media de 9.47 g de rendimiento por panoja de planta y se clasifico en el quinto rango de significancia.

Cuadro 18

Prueba de Tukey al 5% para rendimiento por panoja de las seis cruzas simples de quinua. Puno, Perú-2017.

CENOTIDOS	RENDIMIENTO (g)					
GENOTIPOS	HUAxKCA	SALxHUA	PASxKCA	SALxPAN	COLxKCA	SALxCOL
LINEA1	13.71 ab	14.52 a	13.45 abc	11.53 abc	8.68 ab	11.34 a
LINEA2	13.49 abc	13.94 a	13.39 abc	11.25 abc	8.52 ab	10.55 abc
LINEA3	13.57 abc	13.82 a	13.33 abc	11.73 abc	8.23 ab	10.62 abc
LINEA4	14.16 ab	14.59 a	13.20 abc	12.12 a	8.90 ab	10.89 abc
LINEA5	14.31 a	14.20 a	13.93 abc	11.79 abc	8.27 ab	10.88 abc
LINEA6	13.74 ab	13.63 ab	13.17 abc	12.10 a	8.54 ab	11.67 a
LINEA7	13.79 ab	13.56 ab	13.59 abc	12.00 ab	8.20 ab	11.01 ab
LINEA8	13.76 ab	15.05 a	12.98 abc	11.83 abc	8.65 ab	11.27 a
LINEA9	13.89 ab	14.10 a	13.41 abc	11.71 abc	8.59 ab	11.55 a
LINEA10	14.32 a	14.13 a	13.56 abc	11.65 abc	8.51 ab	10.86 abc
LINEA11	13.78 ab	14.18 a	13.48 abc	11.49 abc	8.56 ab	10.85 abc
LINEA12	13.36 abc	14.88 a	13.38 abc	11.77 abc	8.44 ab	11.41 a
LINEA13	13.99 ab	14.85 a	13.73 abc	11.51 abc	8.05 ab	11.08 ab
LINEA14	13.58 abc	14.42 a	14.01 ab	12.22 a	8.94 ab	11.16 ab
LINEA15	13.05 abc	14.06 a	13.24 abc	11.60 abc	8.54 ab	10.97 abc
LINEA16	13.98 ab	14.85 a	13.93 abc	11.53 abc	8.33 ab	11.74 a
LINEA17	13.69 ab	14.33 a	13.60 abc	11.76 abc	8.01 ab	10.99 abc
LINEA18	13.18 abc	13.48 ab	13.50 abc	11.90 abc	8.35 ab	10.82 abc
LINEA19	13.48 abc	14.66 a	13.43 abc	11.74 abc	8.44 ab	11.36 a
LINEA20	14.34 a	14.68 a	13.62 abc	11.55 abc	7.93 ab	10.79 abc
LINEA21	13.79 ab	14.44 a	13.65 abc	11.87 abc	8.19 ab	11.00 abc
LINEA22	14.76 a	14.19 a	13.40 abc	11.88 abc	8.53 ab	10.88 abc
LINEA23	13.75 ab	14.20 a	14.00 ab	11.85 abc	8.63 ab	10.73 abc
LINEA24	13.40 abc	13.62 ab	13.83 abc	11.91 abc	8.51 ab	11.39 a
LINEA25	13.30 abc	14.44 a	13.66 abc	11.56 abc	8.62 ab	10.82 abc
LINEA26	14.01 ab	14.09 a	13.28 abc	12.10 a	8.39 ab	11.02 ab
LINEA27	14.11 ab	15.00 a	13.70 abc	12.00 ab	8.75 ab	11.02 ab
LINEA28	13.88 ab	14.35 a	13.90 abc	11.57 abc	8.56 ab	10.42 abc
LINEA29	13.44 abc	14.11 a	13.78 abc	11.67 abc	8.93 ab	10.79 abc
LINEA30	13.72 ab	14.86 a	12.71 abc	11.41 abc	8.85 ab	11.07 ab
LINEA31	13.29 abc	14.66 a	13.37 abc	11.54 abc	8.29 ab	11.80 a
LINEA32	13.45 abc	14.49 a	13.77 abc	11.93 abc	8.45 ab	11.03 ab
LINEA33	13.74 ab	14.69 a	13.16 abc	12.02 a	8.42 ab	11.01 ab
LINEA34	13.49 abc	14.66 a	12.96 abc	11.66 abc	8.68 ab	11.52 a
LINEA35	13.52 abc	14.46 a	13.74 abc	11.99 ab	8.24 ab	11.42 a

	i					
LINEA36	13.46 abc	14.38 a		11.63 abc	8.26 ab	11.12 ab
LINEA37	14.49 a	13.81 ab	13.66 abc	11.97 ab	8.46 ab	10.99 abc
LINEA38	14.02 ab	13.79 ab	13.52 abc	11.42 abc	8.34 ab	11.44 a
LINEA39	13.29 abc	14.21 a	13.55 abc	11.87 abc	8.46 ab	11.12 ab
LINEA40	13.77 ab	14.04 a	13.24 abc	11.56 abc	8.66 ab	10.75 abc
LINEA41	13.59 abc	14.94 a	13.92 abc	11.81 abc	8.59 ab	11.06 ab
LINEA42	14.06 ab	14.44 a	13.27 abc	12.07 a	8.34 ab	11.03 ab
LINEA43	13.26 abc	14.52 a	13.63 abc	11.49 abc	8.57 ab	11.23 ab
LINEA44	13.69 ab	14.21 a	13.07 abc	12.20 a	8.65 ab	11.23 ab
LINEA45	14.00 ab	14.67 a	13.56 abc	11.78 abc	8.48 ab	10.82 abc
LINEA46	14.25 ab	14.58 a	13.72 abc	11.73 abc	8.35 ab	11.13 ab
LINEA47	13.60 abc	13.58 ab	13.68 abc	11.74 abc	8.76 ab	10.64 abc
LINEA48	14.45 a	14.71 a	13.59 abc	11.79 abc	8.26 ab	11.23 ab
LINEA49	12.91 abc	14.27 a	13.45 abc	11.44 abc	8.65 ab	10.78 abc
LINEA50	13.73 ab	14.36 a	13.36 abc	11.95 ab	8.30 ab	10.90 abc
LINEA51	13.56 abc	13.56 ab	13.31 abc	11.59 abc	8.65 ab	11.62 a
LINEA52	13.83 ab	14.07 a	13.39 abc	11.75 abc	8.16 ab	11.22 ab
LINEA53	14.36 a	14.04 a	13.37 abc	11.75 abc	8.27 ab	11.02 ab
LINEA54	14.28 ab	13.70 ab	13.70 abc	11.68 abc	8.66 ab	10.81 abc
LINEA55	14.22 ab	13.98 a	13.94 ab	11.80 abc	8.43 ab	10.40 abc
LINEA56	13.85 ab	13.97 a	13.33 abc	11.77 abc	8.28 ab	10.61 abc
LINEA57	14.26 ab	14.68 a	12.88 abc	12.15 a	8.64 ab	10.78 abc
LINEA58	13.77 ab	14.24 a	13.69 abc	11.48 abc	8.07 ab	10.50 abc
LINEA59	13.90 ab	14.09 a	13.62 abc	11.63 abc	8.40 ab	11.26 ab
LINEA60	14.20 ab	13.73 ab	13.43 abc	11.44 abc	8.52 ab	11.45 a
LINEA61	14.11 ab	14.48 a	13.44 abc	11.94 abc	8.49 ab	11.37 a
LINEA62	13.61 abc	14.01 a	13.86 abc	11.63 abc	8.48 ab	10.95 abc
LINEA63	13.77 ab	15.33 a	13.41 abc	11.54 abc	8.17 ab	11.00 abc
LINEA64	14.32 a	14.66 a	14.17 a	11.63 abc	7.96 ab	11.12 ab
LINEA65	13.94 ab	13.30 ab	13.30 abc	11.65 abc	8.71 ab	10.53 abc
LINEA66	13.92 ab	14.46 a	13.10 abc	11.96 ab	8.28 ab	11.12 ab
LINEA67	13.71 ab	13.99 a	13.53 abc	11.83 abc	8.39 ab	11.18 ab
LINEA68	14.51 a	14.86 a	13.85 abc	11.71 abc	8.72 ab	10.83 abc
LINEA69	14.33 a	14.61 a	13.84 abc	11.74 abc	8.41 ab	11.44 a
LINEA70	13.92 ab	13.81 a	13.60 abc	11.66 abc	8.16 ab	11.14 ab
LINEA71	13.33 abc	14.71 a	13.39 abc	11.83 abc	8.36 ab	11.43 a
LINEA72	13.99 ab	13.70 ab	13.78 abc	11.55 abc	8.13 ab	11.28 a
LINEA73	14.19 ab	14.82 a	13.50 abc	11.75 abc	8.91 ab	11.23 ab
LINEA74	13.52 abc	13.99 a	13.82 abc	11.48 abc	8.59 ab	10.89 abc
LINEA75	13.94 ab	14.10 a	13.59 abc	11.95 ab	8.50 ab	10.89 abc

LINEA76	13.34 abc	14.63 a	13.30 abc	11.82 abc	8.53 ab	11.46 a
LINEA77	13.98 ab	13.41 ab	13.13 abc		8.84 ab	11.33 a
LINEA78	14.06 ab	13.68 ab		11.70 abc	8.63 ab	10.27 abc
LINEA79	13.81 ab	13.58 ab	13.05 abc	12.00 ab	8.29 ab	11.19 ab
LINEA80	13.67 ab	14.50 a		11.91 abc	8.65 ab	11.31 a
LINEA81	13.84 ab	14.20 a			8.27 ab	10.44 abc
LINEA82	14.01 ab	13.89 a		11.83 abc	8.39 ab	
LINEA83	14.27 ab	14.62 a		12.23 a	8.50 ab	11.63 a
LINEA84	14.14 ab	14.33 a		11.70 abc	8.64 ab	11.45 a
LINEA85	14.08 ab	14.09 a	13.50 abc	11.73 abc	8.19 ab	10.96 abc
LINEA86	13.44 abc	13.73 ab	13.30 abc	11.92 abc	8.47 ab	11.25 ab
LINEA87	13.57 abc	13.50 ab	13.40 abc	12.10 a	8.73 ab	10.86 abc
LINEA88	14.16 ab	13.81 a	13.49 abc	12.00 ab	8.38 ab	11.45 a
LINEA89	13.60 abc	14.56 a	13.82 abc	11.61 abc	8.90 ab	11.18 ab
LINEA90	14.13 ab	14.34 a	13.94 ab	11.56 abc	8.29 ab	11.21 ab
LINEA91	13.77 ab	14.58 a	14.18 a	11.55 abc	8.65 ab	11.10 ab
LINEA92	13.53 abc	14.39 a	13.89 abc	11.45 abc	8.34 ab	10.72 abc
LINEA93	13.54 abc	14.14 a	13.78 abc	11.44 abc	8.50 ab	11.17 ab
LINEA94	13.56 abc	14.37 a	13.50 abc	11.51 abc	8.45 ab	10.90 abc
LINEA95	14.28 ab	13.84 a	13.50 abc	11.94 abc	8.77 ab	10.71 abc
LINEA96	14.31 a	14.28 a	13.15 abc	11.68 abc	8.56 ab	11.06 ab
LINEA97	14.24 ab	14.33 a	13.87 abc	12.36 a	8.40 ab	10.95 abc
LINEA98	12.95 abc	14.35 a	13.95 ab	12.00 ab	8.39 ab	11.19 ab
LINEA99	14.42 a	13.96 a	13.70 abc	11.73 abc	8.43 ab	10.27 abc
LINEA100	13.61 abc	14.17 a	13.35 abc	11.62 abc	8.42 ab	11.14 ab
LINEA101	13.80 ab	13.87 a	13.48 abc	11.48 abc	8.95 ab	11.05 ab
LINEA102	13.57 abc	15.36 a	13.40 abc	11.54 abc	8.53 ab	11.66 a
LINEA103	13.86 ab	13.85 a		11.89 abc	8.67 ab	11.50 a
LINEA104	13.40 abc	13.98 a	13.59 abc	11.97 ab	8.49 ab	11.13 ab
LINEA105	13.42 abc	13.56 ab	13.24 abc	11.82 abc	8.44 ab	10.91 abc
LINEA106	14.09 ab	14.13 a	13.52 abc	11.60 abc	8.45 ab	10.80 abc
LINEA107	13.69 ab	13.56 ab	13.51 abc	12.23 a	8.70 ab	11.46 a
LINEA108	14.46 a	14.22 a	13.58 abc	11.61 abc	8.16 ab	10.91 abc
LINEA109	13.93 ab	14.57 a	13.66 abc	12.06 a	8.51 ab	11.47 a
LINEA110	13.45 abc	13.77 ab	13.57 abc	12.09 a	8.48 ab	11.30 a
LINEA111	14.29 ab	13.73 ab	13.48 abc	12.12 a	8.40 ab	11.09 ab
LINEA112	13.51 abc	14.43 a	13.28 abc	11.60 abc	8.08 ab	11.16 ab
LINEA113	13.39 abc	14.12 a	13.61 abc	11.82 abc	8.46 ab	10.64 abc
LINEA114	13.96 ab	15.23 a	13.76 abc	11.77 abc	8.42 ab	11.15 ab
LINEA115	13.84 ab	13.75 ab	13.86 abc	12.02 a	8.55 ab	11.29 a

LINEA11C	12.71 ab	15.06 a	13.57 abc	11.56 aba	0 27 oh	11.30 a
LINEA116 LINEA117	13.71 ab 13.31 abc	13.06 a 14.26 a	13.43 abc	11.56 abc 11.41 abc	8.37 ab 8.36 ab	11.30 a 10.81 abc
						10.81 abc
LINEA118 LINEA119	12.92 abc	14.26 a	14.04 ab	12.16 a	8.46 ab	
	13.65 abc	13.92 a	13.43 abc	11.60 abc	8.21 ab	11.60 a
LINEA120	13.59 abc	14.32 a	13.38 abc	11.60 abc	8.53 ab	
LINEA121	14.02 ab	14.10 a	13.37 abc	11.80 abc		10.89 abc
LINEA122	13.66 ab	13.87 a		11.41 abc		10.83 abc
LINEA123	13.78 ab	13.83 a	13.64 abc	11.63 abc	8.87 ab	10.68 abc
LINEA124	N.E.	14.64 a		11.83 abc		11.35 a
LINEA125	13.71 ab	14.47 a	13.67 abc	11.85 abc	8.62 ab	10.97 abc
LINEA126	13.42 abc		13.67 abc			11.19 ab
LINEA127	14.00 ab	14.68 a		11.35 abc	8.21 ab	11.02 ab
LINEA128	13.68 ab	13.50 ab		12.00 ab		11.14 ab
LINEA129	13.95 ab	14.36 a		11.81 abc		11.50 a
LINEA130	13.40 abc	13.93 a	13.97 ab	11.58 abc		10.97 abc
LINEA131	13.86 ab	14.25 a	13.78 abc		8.39 ab	10.54 abc
LINEA132		13.53 ab			8.56 ab	
LINEA133	13.46 abc	14.18 a	13.46 abc	12.15 a	8.34 ab	11.25 ab
LINEA134	13.67 ab	13.94 a	13.43 abc	11.51 abc	8.49 ab	11.25 ab
LINEA135	13.88 ab	13.85 a		11.46 abc	8.59 ab	11.25 ab
LINEA136	13.26 abc	14.49 a	13.42 abc	11.97 ab	8.58 ab	10.77 abc
LINEA137	13.89 ab	14.49 a	13.92 abc	11.58 abc	8.26 ab	11.06 ab
LINEA138	13.47 abc	13.85 a	13.22 abc	11.28 abc	8.89 ab	10.55 abc
LINEA139	14.08 ab	14.28 a	13.59 abc	11.86 abc	8.57 ab	11.01 ab
LINEA140	13.84 ab	14.50 a	13.83 abc	11.35 abc	8.66 ab	10.96 abc
LINEA141	13.44 abc	14.93 a	13.22 abc	12.04 a	8.56 ab	10.69 abc
LINEA142	13.57 abc	14.17 a	13.31 abc	11.75 abc	8.14 ab	10.87 abc
LINEA143	13.61 abc	13.99 a	13.82 abc	11.78 abc	8.54 ab	10.88 abc
LINEA144	13.56 abc	13.91 a	13.64 abc	11.59 abc	8.46 ab	11.39 a
LINEA145	13.29 abc	14.19 a	12.92 abc	11.97 ab	8.53 ab	11.49 a
LINEA146	13.50 abc	14.31 a	13.27 abc	11.88 abc	8.16 ab	10.89 abc
LINEA147	13.62 abc	14.82 a	13.57 abc	11.83 abc	8.56 ab	10.84 abc
LINEA148	13.69 ab	13.86 a	13.15 abc	11.96 ab	8.49 ab	11.22 ab
LINEA149	13.50 abc	14.11 a	13.96 ab	11.91 abc	8.80 ab	11.50 a
LINEA150	13.87 ab	13.99 a	13.55 abc	11.77 abc	8.22 ab	10.84 abc
LINEA151	13.48 abc	13.18 ab	13.24 abc	11.72 abc	8.51 ab	10.84 abc
LINEA152	13.84 ab	14.23 a	13.90 abc	11.89 abc	8.66 ab	10.96 abc
LINEA153	13.53 abc	13.43 ab	13.99 ab	12.01 ab	8.23 ab	11.18 ab
LINEA154	13.66 ab	13.71 ab	13.32 abc	11.86 abc	8.80 ab	10.62 abc
LINEA155	13.71 ab	13.93 a	13.09 abc	12.07 a	8.69 ab	11.32 a

LINICATEC	12 65 aha	14.05 a	12.57 ah a	11 07 also	0.70 ab	10.05 also
LINEA156				11.87 abc		
LINEA157	13.93 ab	13.71 ab	14.17 a			11.01 ab
LINEA158	14.04 ab	14.24 a		11.91 abc	8.79 ab	11.04 ab
LINEA159	13.92 ab	14.47 a	13.58 abc	12.27 a		11.18 ab
LINEA160	14.48 a	14.78 a		11.37 abc		11.03 ab 10.78 abc
LINEA161 LINEA162	14.02 ab 13.57 abc	14.25 a 13.89 a	13.84 abc 13.32 abc	12.06 a 11.84 abc		10.78 abc
LINEA162	13.37 abc 14.24 ab	13.89 a 14.13 a		12.11 a		11.32 a 11.45 a
LINEA164	13.26 abc	14.13 a 13.95 a		12.11 a 11.69 abc		11.45 a 11.29 a
LINEA165	13.20 abc	13.93 a 14.78 a		11.09 abc	0.0= 1	10.91 abc
LINEA166	WE.		13.87 abc		0.60.1	10.91 abc
LINEA167		14.59 a		11.90 abc		11.70 a 11.11 ab
LINEA168	13.01 abc	14.27 a	13.57 abc	11.38 abc		11.11 ab
LINEA169	14.00 ab	14.27 a		11.87 abc	- 1	
LINEA170	13.08 abc	14.59 a		11.55 abc		11.48 a
LINEA171	13.31 abc	14.36 a	13.83 abc	12.42 a		10.87 abc
LINEA172	13.58 abc	14.27 a	13.32 abc	11.75 abc		10.92 abc
LINEA173	13.94 ab			11.80 abc		11.29 a
LINEA174	13.81 ab	14.52 a		11.94 abc		11.43 a
LINEA175	13.53 abc	13.68 ab	13.62 abc	11.98 ab		11.33 a
LINEA176	14.00 ab	14.21 a		11.87 abc		11.29 a
LINEA177	13.03 abc	14.08 a	13.71 abc	11.81 abc	8.47 ab	10.90 abc
LINEA178	13.92 ab	14.27 a	13.09 abc	11.94 abc		11.35 a
LINEA179	13.52 abc	14.23 a	13.50 abc	11.76 abc	8.32 ab	11.09 ab
LINEA180	14.20 ab	14.41 a		12.00 ab		11.42 a
LINEA181	13.85 ab	13.70 ab	1	11.44 abc	8.57 ab	10.72 abc
LINEA182	13.74 ab	14.55 a	13.50 abc	11.89 abc	8.45 ab	11.06 ab
LINEA183	14.05 ab	14.32 a	13.42 abc	11.63 abc	8.63 ab	10.81 abc
LINEA184	13.71 ab	14.93 a	13.64 abc	11.99 ab	8.80 ab	11.18 ab
LINEA185	13.20 abc	14.07 a	13.63 abc	11.62 abc	8.28 ab	11.14 ab
LINEA186	13.51 abc	13.96 a	12.99 abc	11.28 abc	8.55 ab	10.95 abc
LINEA187	13.29 abc	14.21 a	13.61 abc	11.48 abc	8.47 ab	10.76 abc
LINEA188	13.09 abc	14.45 a	13.63 abc	11.64 abc	8.52 ab	10.95 abc
LINEA189	12.97 abc	14.24 a	13.09 abc	11.23 abc	8.67 ab	10.68 abc
LINEA190	14.27 ab	14.50 a	13.42 abc	11.99 ab	8.60 ab	11.23 ab
LINEA191	14.39 a	13.65 ab	13.41 abc	11.82 abc	8.50 ab	11.11 ab
LINEA192	13.78 ab	14.03 a	13.48 abc	11.81 abc	8.35 ab	10.74 abc
LINEA193	13.94 ab	14.62 a	12.89 abc	11.29 abc	8.68 ab	10.85 abc
LINEA194	13.71 ab	14.02 a	13.44 abc	11.70 abc	8.81 ab	10.96 abc
LINEA195	14.11 ab	14.67 a	13.91 abc	12.02 a	9.13 a	10.95 abc
LINEA196	13.03 abc	13.36 ab	13.46 abc	12.21 a	8.54 ab	11.23 ab
G. FEMENINO	11.93 abc	11.76 ab	12.17 c	10.55 abc	7.26 b	9.20 abc
G. MASCULINO	11.49 abc	11.39 ab	12.29 bc	10.62 abc	7.37 b	9.47 abc

En las características agronómicas se observó que las cruzas HUAxKCA, SALxHUA, PASxKCA genéticamente distantes fueron las que presentaron promedios altos en cuanto comportamiento agronómico respecto a COLxKCA, SALxCOL y SALxPAN que son genéticamente cercanas; sin embrago en la precocidad destaco COLxKCA como la más precoz del grupo, seguido por HUAxKCA y SALxCOL, y en cuanto al rendimiento por hectárea HUAxKCA, SALxHUA, PASxKCA, SALxPAN, COLxKCA y SALxCOL con 4128.90, 4266.60, 4060.20, 3529.20, 2545.80 y 3319.205 kg.ha⁻¹ respectivamente, y los genitores HUA, KCA, SAL, PAS, PAN y COL con 3497.70, 3114.30, 3150.60, 3651.00, 3186.00, 2508.90 kg.ha⁻¹ respectivamente (Anexo 19), sin embargo dichos valores son superados por las cruzas esto indica que existe una ganancia genética respecto estas características agronómicas; estos resultados nos dan mayor posibilidad y certeza de encontrar lo que se busca en el mejoramiento genético (Delgado *et al.*, 2009).

Los rendimientos de grano obtenidos en kg.ha⁻¹ en este estudio son similares a los reportados por (Mujica *et al.*, 2001; Reinoso y Paredes, 1998; Grace, 1985; Catacora y Canahua, 1991; Tapia, 2000); los mismos indican producciones desde 2 205 a 3500 kg.ha⁻¹, además es necesario señalar que los rendimientos de grano por hectárea son muy variables y en ella se tiene que considerar el tipo de suelo, humedad, variedad estudiada, fertilización y labores culturales imprimidas durante el periodo de crecimiento de las plantas. Estos resultados se deben principalmente a las condiciones edáficas y otros medioambientales (Delgado *et al.*, 2009).

Al respecto, Robles (1991), menciona que el rendimiento de los productos vegetales está condicionado por la interacción del medio ambiente con el genotipo, correspondiente a cada variedad. A su vez, León (2006), menciona que, los rendimientos varían en función a la variedad, fertilidad del suelo, tipo de suelo, manejo del cultivo, factores climáticos, nivel tecnológico, control de plagas y enfermedades, obteniéndose entre 600 a 1200 kg/ha en cultivos tradicionales en condiciones de secano.

Mujica *et al.* (2001), mencionan que la variedad Salcedo INIA fue lograda por selección masal del cruce dialélico de siete x siete de las variedades Real Boliviana x Sajama, en la estación experimental de Salcedo-INIA (Programa de Investigación de Cultivos Andinos-PICA), con altura de planta de 1,80 m, con buena longitud de

panoja, de grano grande con diámetro de 1,8 a 2 mm, de color blanco, sin saponina, panoja glomerulada, periodo vegetativo 160 días (precoz), potencial de rendimiento 3 500 kg.ha⁻¹, resistente a heladas (-2 °C), tolerante al mildiu.

Para la variedad Huariponcho Reinoso y Paredes (1998), mencionan que es una variedad resistente a las heladas, esta quinua es amarga y suele ser más defensiva frente al ataque de las aves, es de tamaño mediano, con diámetro de panoja gruesa que le da resistencia a la granizada, es precoz y con un potencial de rendimiento de 2 205 kg.ha⁻¹.

La variedad Pasankalla se distingue por tener plantas de tallo rojo y tallo blanco, el color de semilla es plomo, la altura de la planta alcanza hasta 0,88 m, con longitud de panoja largas y gruesos con un potencial de rendimiento grano es de 2 510 kg.ha⁻¹, contenido saponina bajo, ciclo vegetativo, promedio es de 170 días, en cuanto a la respuesta a factores bióticos y abióticos es susceptible a heladas (2 °C) y al granizo. Tolerante al mildiu (*Peronospora variabilis* Gaus), susceptible al ataque de aves y los usos que se les da es para harina tostada, expandido, graneado, ideal para pasteles (Grace, 1985).

Catacora y Canahua (1991), mencionan a la variedad "Negra collana" como resultado de las pruebas de identificación, adaptación y eficiencia desarrollados en el ámbito de la Estación Experimental Agraria Illpa del Instituto Nacional de Innovación Agraria (INIA), y evaluaciones participativas en campo, con agricultores de las comunidades campesinas, Collana, Collpa, Cieneguilla, Vizcachani, Kallachoco y Corcoroni de los distritos de Cabana, Ilave, Mañazo y Pilcuyo de la región Puno. Su adaptación; su mejor desarrollo se logra en la zona agroecológica Suni del altiplano, entre los 3 815 y 3 900 msnm, con clima frío seco, precipitación de 400 a 550 mm y temperatura de 4 °C a 15 °C, con un potencial de rendimiento de 3 010 kg.ha⁻¹.

Tapia (2000), menciona que la variedad Kcancolla fue seleccionada a partir del ecotipo local de la zona de Cabanillas, Puno, planta de color verde, de tamaño mediano alcanzando 80 cm de altura, de ciclo vegetativo tardío, más de 170 días, grano blanco, tamaño mediano, con alto contenido de saponina, panoja generalmente amarantiforme, resistente al frío, granizo, su potencial de rendimiento es de 2 500 kg.ha⁻¹, segrega a otros colores desde el verde hasta el púrpura, muy difundida en el altiplano peruano.

La variedad Pandela rosada provienen del altiplano Sur de Bolivia, son precoces en ciclo vegetativo (140 días), grano grande y amargo. Una desventaja de este genotipo es su alta susceptibilidad al mildiu, no es tolerante a las sequias, el color de grano una vez alcanzado su madurez fisiológica es de color marfil y su potencial de rendimiento es de 2 500 kg.ha⁻¹ (Tapia, 2000).

En base a lo anterior existe material genético de calidad, extiendo variedades que tienen altura de planta mediano, con tallos gruesos que pueda evitar el acame de plantas provocado por aves, con buena longitud de panoja, con panoja gruesa, precoces y de alto potencial de rendimiento, es por ellos que para este programa de mejoramiento genético de quinua se ha seleccionado como genitores; sin embargo dichos valores son superados por las líneas obtenidos por hibridación de estas variedades de quinua.

La estructura y constitución de la planta son de mucha importancia, ya que son características que se traducirán directamente en un buen o mal rendimiento, dependiendo de cuál sea el caso, además de que una planta bien constituida será menos propensa al ataque de factores bióticos como insectos, enfermedades, pájaros, etc. y a factores abióticos como viento, heladas y demás condiciones adversas que puedan provocar un acame en las plantas. Según Álvarez y Von (1990), las características agronómicas como precocidad, uniformidad, tamaño de planta, madurez uniforme, tipo de panoja, tallos resistentes al vuelco y resistencia a enfermedades vienen dadas desde la genética misma de la planta, esto sumado a una buena nutrición dará como resultado un cultivo con mejor vigor y rendimiento (Delgado *et al.*, 2009).

Los resultados concuerdan con Benavides y Rodríguez (2007), quienes en su trabajo con líneas de cruzas simples de quinua en el municipio de Pasto reportan a las líneas como las más productivos en comparación a sus genitores. Así mismo Cerón (2002), considera que la quinua se clasifica en tres respecto al rendimiento alto, regular y bajo: la mayoría de las líneas evaluadas presentaron altos rendimientos (Hena *et al.*, 2016). De igual manera (Mazón *et al.*, 2013), obtuvieron que algunas líneas con alto rendimiento individual superior al rendimiento promedio de los testigos comerciales.

Es necesario mencionar que el tamaño de grano, es una de las características que más se pretende mejorar, por el requerimiento del país, en donde se usan solo variedades

de tamaño de grano mediano y grano pequeño, ya que esto se traduce directamente en mejores rendimientos, con sus variedades alcanzan rendimientos superiores a 3 000 kg.ha⁻¹ dependiendo de la variedad (León, 2006).

Es importante mencionar que en un estudio realizado por Chungara (2000), en el Altiplano Central, determinó que la precocidad es un carácter que se asocia negativamente con la altura de la planta y el rendimiento, lo que significa que mientras más precoz sea, más pequeña será la planta y de menor rendimiento.

Según Bonifacio *et al.* (2004), el rendimiento es el resultado de las componentes de tipo genético, ambiental y la interacción genético-ambiental, donde la parte genética, que es heredable, es importante desde el punto de vista del mejoramiento.

4.2. SELECCIÓN DE LAS LÍNEAS PROMISORIAS

El índice de Elston permite la selección de líneas e híbridos de una manera fácil y precisa que es de mucha importancia en un programa de mejoramiento, pues que además de ser sencillo, permitirá el ahorro de tiempo en el análisis de los datos, examina el problema de cómo clasificar a los individuos en relación con las medidas sobre varios rasgos conjuntamente. El índice de selección o clasificación se desarrolla sobre bases intuitivas y luego se muestra que es en cierto sentido libre de peso. El uso de este índice se ilustra para rasgos (Elston, 2014).

La metodología descrita por Elston y si su aplicación es indistinta al lograr el mismo orden dentro de los híbridos. La correlación entre sus valores obtenidos con siete variables indica que existe asociación estadísticamente significativa.

La selección de líneas se llevó con una presión de selección del 20% de tal manera se seleccionaron 40 de 196 líneas que había en cada cruzas simples tanto distantes como cercanas genéticamente, de acuerdo a las variables de interés en el mejoramiento genético de quinua en esta investigación se dio prioridad a las líneas que tienen una altura de planta mediana, lo que busca los agricultores, para que así pueda facilitar la cosecha mecanizada; mayor diámetro de tallo, para evitar el acamado de la planta; mayor longitud de panoja, se prefiere el panojamiento desde la mitad de la planta; mayor diámetro de panoja glomeruladas; menor días a floración; menor días a madurez fisiológica, lo que se pretende es obtener variedades más precoces para que no esté expuesto durante un largo periodod a las adversidades del tiempo, hoy en día se puede apreciar un cambio radical

del tiempo y finalmente las líneas más rendidoras que puedan mejorar la productividad de los agricultores.

4.2.1. Huariponcho x Kcancolla

La selección de las líneas promisorias esta en base al índice de Elston (Cuadro 19), se pueden apreciar las líneas que más sobresalen del grupo de acuerdo a las características deseadas del programa mejoramiento genético; la línea HUAxKCA48 fue la que presento el mayor índice de selección 52.36 con las siguientes características altura de planta 64.87 cm, diámetro de tallo 9.63 mm, longitud de panoja 21.59 cm, diámetro de panoja 5.29 cm, floración 85.08 días, madurez fisiológica 182.83 días, y con rendimiento de 14.45 g; seguido por la línea HUAxKCA97 con un índice de selección 45.09 con las siguientes características altura de planta 64.84cm, diámetro de tallo 9.54 mm, longitud de panoja 21.63 cm, diámetro de panoja 5.30 cm, floración 84.80 días, madurez fisiológica 183.28días, y con rendimiento de 14.24 g; seguido por las siguientes líneas HUAxKCA102, HUAxKCA173, HUAxKCA3, HUAxKCA112, HUAxKCA62, HUAxKCA95, HUAxKCA6 y HUAxKCA10 con índice de selección de 41.52, 39.89, 39.57, 39.31, 38.74, 38.52, 38.25 y 38.17 respectivamente. y los materiales que presentaron menor índice de selección dentro de las cuarenta líneas sobresalientes encabeza la línea HUAxKCA99 fue la que presento el menor índice de selección de 30.91 con las siguientes características altura de planta 63.75 cm, diámetro de tallo 9.54 mm, longitud de panoja 21.51 cm, diámetro de panoja con 5.18 cm, floración 85.53 días, madurez fisiológica 183.18 días, y con rendimiento de 14.42 g; seguido por la línea, HUAxKCA94 con un índice de selección de 31.03; seguido por las siguientes líneas HUAxKCA15, HUAxKCA30, HUAxKCA129, HUAxKCA80, HUAxKCA21, HUAxKCA37, HUAxKCA103 y HUAxKCA165 con índice de selección de 31.24, 31.26, 31.29, 31.31, 31.49, 31.73, 31.76 y 31.95 respectivamente; fueron las cuarenta líneas promisorias seleccionadas de las 196 líneas que había dentro de esta cruza simple, que tienen características anheladas por agricultores como una altura de planta mediano, tallos gruesos, con una longitud de panoja mayor, glomeruladas, precoces y con mayor rendimiento; superando a los testigos en cuanto a la arquitectura de la planta, periodo vegetativo y rendimiento (Anexo 1).

Universidad Nacional del Altiplano

Cuadro 19
Selección de las líneas promisorias de HUAxKCA. Puno, Perú-2017.

			Índice de			U	Diámetro	Floración	Madurez	Kendimiento	Rendimiento
	N°	Líneas	Elston	planta	de tallo	de panoja	de panoja	(días)	fisiólogica	(g)	por hectarea
			Liston	(cm)	(mm)	(cm)	(cm)	(utas)	(días)	(8)	(kg.ha-1)
	1	HUAxKCA48	52.36	64.87	9.63	21.59	5.29	-85.08	-182.83	14.45	4335.00
	2	HUAxKCA97	45.09	64.84	9.54	21.63	5.30	-84.80	-183.28	14.24	4272.75
	3	HUAxKCA102	41.52	65.74	9.51	21.58	5.29	-85.18	-182.75	13.57	4071.00
	4	HUAxKCA173	39.89	64.50	9.63	21.71	5.19	-85.40	-183.03	13.94	4182.00
	5	HUAxKCA3	39.57	65.83	9.59	21.56	5.17	-85.23	-183.25	13.57	4071.00
	6	HUAxKCA112	39.31	65.46	9.61	21.17	5.18	-84.20	-183.20	13.51	4051.50
	7	HUAxKCA62	38.74	65.56	9.64	21.33	5.10	-84.33	-182.85	13.61	4082.25
	8	HUAxKCA95	38.52	64.92	9.59	21.12	5.19	-85.05	-182.70	14.28	4283.25
	9	HUAxKCA6	38.25	65.67	9.57	21.15	5.25	-85.55	-183.13	13.74	4120.50
	10	HUAxKCA10	38.17	65.46	9.49	21.23	5.20	-84.98	-182.20	14.32	4295.25
	11	HUAxKCA174	37.60	65.11	9.59	21.40	5.21	-85.35	-183.38	13.81	4142.25
7	12	HUAxKCA18	37.59	66.13	9.59	21.25	5.15	-84.75	-182.45	13.18	3954.75
-	13	HUAxKCA132	36.77	64.69	9.65	21.21	5.13	-84.98	-182.38	13.84	4151.25
	14	HUAxKCA131	34.89	64.77	9.54	21.24	5.15	-83.90	-183.00	13.86	4158.00
ı,	15	HUAxKCA113	34.63	65.55	9.57	21.16	5.23	-85.35	-183.43	13.39	4015.50
	16	HUAxKCA79	34.37	64.94	9.60	21.23	5.14	-84.80	-183.20	13.81	4142.25
1	17	HUAxKCA145	34.32	64.81	9.57	21.40	5.15	-84.33	-182.35	13.29	3987.00
Ì	18	HUAxKCA90	33.77	64.03	9.54	21.30	5.18	-83.98	-183.15	14.13	4239.75
	19	HUAxKCA20	33.59	63.64	9.59	21.76	5.12	-84.73	-183.50	14.34	4301.25
	20	HUAxKCA96	33.39	64.23	9.56	21.47	5.08	-84.20	-182.88	14.31	4291.50
	21	HUAxKCA190	33.27	64.38	9.55	21.47	5.14	-85.10	-183.03	14.27	4281.00
	22	HUAxKCA109	33.21	64.86	9.50	21.62	5.14	-84.65	-182.83	13.93	4179.00
	23	HUAxKCA111	33.10	63.99	9.59	21.16	5.12	-83.90	-183.15	14.29	4285.50
	24	HUAxKCA161	33.08	65.01	9.46	21.33	5.20	-83.98	-183.60	14.02	4206.00
	25	HUAxKCA186	32.83	65.65	9.45	21.22	5.23	-84.90	-182.53	13.51	4052.25
	26	HUAxKCA51	32.69	64.87	9.52	21.36	5.21	-85.10	-182.93	13.56	4067.25
	27	HUAxKCA46	32.52	64.39	9.60	20.85	5.15	-84.58	-183.08	14.25	4274.25
	28	HUAxKCA116	32.37	63.88	9.61	21.58	5.12	-84.78	-182.68	13.71	4113.75
	29	HUAxKCA49	32.27	64.80	9.59	21.17	5.22	-84.83	-182.60	12.91	3873.00
	30	HUAxKCA133	32.21	63.32	9.64	21.22	5.22	-84.13	-183.23	13.46	4036.50
	31	HUAxKCA165	31.95	64.38	9.57	21.11	5.20	-84.80	-183.30	13.80	4140.75
	32	HUAxKCA103	31.76	64.28	9.52	21.41	5.15	-84.08	-183.15	13.86	4157.25
	33	HUAxKCA37	31.73	64.59	9.50	21.17	5.14	-84.60	-182.88	14.49	4345.50
	34	HUAxKCA21	31.49	64.40	9.49	21.49	5.22	-85.48	-182.53	13.79	4137.75
	35	HUAxKCA80	31.31	64.17	9.52	21.41	5.18	-84.60	-182.83	13.67	4100.25
		HUAxKCA129	31.29	64.88	9.50	21.26	5.12	-84.23	-182.70	13.95	4185.75
		HUAxKCA30	31.26	65.08	9.53	21.21	5.14	-84.98	-182.78	13.72	4116.75
		HUAxKCA15	31.24	64.93	9.55	21.31	5.19	-84.50	-183.13	13.05	3914.25
		HUAxKCA94	31.03	63.47	9.59	21.22	5.22	-84.88	-182.40	13.56	4067.25
		HUAxKCA99	30.91	63.75	9.54	21.51	5.18	-85.53	-183.18	14.42	4325.25

4.2.2. Salcedo INIA x Huariponcho

La selección de las líneas promisorias esta en base al índice de Elston (Cuadro 20), se pueden apreciar las líneas que más sobresalen del grupo de acuerdo a las características deseadas del programa mejoramiento genético; la línea SALxHUA19 fue la que presento el mayor índice de selección 191.53 con las siguientes características altura de planta 70.32 cm, diámetro de tallo 11.09 mm, longitud de panoja 22.58 cm, diámetro de panoja 6.12 cm, floración 90.55 días, madurez fisiológica 189.30 días, y con rendimiento de 14.66 g; seguido por la línea SALxHUA34 con un índice de selección 168.62 con las siguientes características altura de planta 69.26 cm, diámetro de tallo 11.10 mm, longitud de panoja 23.13 cm, diámetro de panoja 6.06 cm, floración 90.73 días, madurez fisiológica 189.88 días, y con rendimiento de 14.66 g; seguido por las siguientes líneas promisorias SALxHUA33, SALxHUA12, SALxHUA116, SALxHUA174, SALxHUA48, SALxHUA27, SALxHUA102, y SALxHUA162 con índice de selección de 163.21, 159.90, 159.55, 157.71, 156.04, 155.31, 155.22 y 154.75 respectivamente. y los materiales que presentaron menor índice de selección dentro de las cuarenta líneas sobresalientes encabeza la línea SALxHUA80 fue la que presento el menor índice de selección de 133 con las siguientes características altura de planta 69.78 cm, diámetro de tallo 10.95 mm, longitud de panoja 23.04 cm, diámetro de panoja con 6.01 cm, floración 91.10 días, madurez fisiológica 189.90 días, y con rendimiento de 14.50 g; seguido por la línea; seguido por las siguientes líneas SALxHUA159, SALXHUA52, SALXHUA94, SALXHUA163, SALXHUA160, SALXHUA195, SALxHUA28, SALxHUA129 y SALxHUA142 con índice de selección de 140.96, 141.32, 141.71, 142.22, 142.40, 143.09, 143.12, 143.41 y 143.59 respectivemente; fueron las cuarenta líneas promisorias seleccionadas de las 196 líneas que había dentro de la cruza simple, que tienen características anheladas por agricultores como una altura de planta mediano, tallos gruesos, con una longitud de panoja mayor, glomeruladas, precoces y con mayor rendimiento; superando a los testigos en cuanto a la arquitectura de la planta, periodo vegetativo y rendimiento (Anexo 2).

Universidad Nacional del Altiplano

Cuadro 20
Selección de las líneas promisorias de SALxHUA. Puno, Perú-2017.

N°	Líneas	Índice de Elston	Altura de planta (cm)	Diámetro de tallo (mm)	Longitud de panoja (cm)	Diámetro de panoja (cm)	Floración (días)	Madurez fisiólogica (días)	Rendimiento (g)	Rendimiento por hectarea (kg.ha-1)
1	SALxHUA19	191.53	70.32	11.09	22.58	6.12	-90.55	-189.30	14.66	4396.50
2	SALxHUA34	168.62	69.26	11.10	23.13	6.06	-90.73	-189.88	14.66	4396.50
3	SALxHUA33	163.21	69.85	11.05	22.66	5.95	-90.53	-189.45	14.69	4406.25
4	SALxHUA12	159.90	68.60	11.05	22.97	6.06	-90.83	-189.55	14.88	4463.25
5	SALxHUA116	159.55	70.18	11.00	22.71	6.05	-90.85	-190.10	15.06	4516.50
6	SALxHUA174	157.71	69.30	10.96	22.87	6.19	-90.63	-190.13	14.52	4355.25
7	SALxHUA48	156.04	69.39	10.98	22.90	6.03	-89.93	-190.75	14.71	4411.50
8	SALxHUA27	155.31	69.56	10.98	22.99	6.10	-91.20	-189.88	15.00	4500.00
9	SALxHUA102	155.22	69.13	10.99	22.77	6.06	-90.75	-190.23	15.36	4608.75
10	SALxHUA162	154.75	70.33	11.01	23.19	6.01	-90.73	-189.73	13.89	4167.00
11	SALxHUA120	153.58	69.87	11.05	22.94	5.94	-90.55	-189.80	14.32	4294.50
1	SALxHUA109	153.32	69.42	11.04	22.70	5.95	-90.50	-189.63	14.57	4371.75
	SALxHUA88	151.95	68.99	10.98	23.15	6.07	-90.25	-189.83	13.81	4143.75
	SALxHUA141	151.29	70.62	11.09	22.68	5.98	-91.10	-190.15	14.93	4479.75
	SALxHUA166	151.25	69.51	11.07	22.86	6.01	-90.80	-189.90	14.56	4366.50
	SALxHUA31	149.66	69.74	11.03	22.88	6.07	-91.05	-190.03	14.66	4398.00
	SALxHUA92	149.24	69.77	11.08	22.75	5.99	-90.60	-190.05	14.39	4315.50
18	SALxHUA41	149.13	69.71	10.92	22.74	6.04	-90.83	-189.95	14.94	4482.00
	SALxHUA16	148.44	69.45	11.03	22.71	6.12	-90.70	-190.60	14.85	4454.25
20	SALxHUA126	148.07	69.51	11.04	22.75	6.10	-90.83	-190.00	14.37	4311.00
21	SALxHUA127	147.95	69.87	11.06	22.82	5.95	-90.80	-190.03	14.68	4403.25
22	SALxHUA131	147.74	68.89	10.99	23.02	6.02	-90.33	-190.00	14.25	4274.25
23	SALxHUA136	147.13	69.23	11.04	22.77	5.98	-90.38	-190.13	14.49	4347.00
	SALxHUA46	146.82	69.92	10.96	22.92	6.03	-90.78	-190.23	14.58	4374.00
25	SALxHUA192	145.62	69.24	11.14	22.72	6.00	-90.55	-189.83	14.03	4209.00
26		145.46	68.30	11.00	23.00	6.06	-90.90	-189.60	14.68	4404.75
	SALxHUA178	145.40	69.42	10.98	23.04	6.00	-90.13	-190.58	14.27	4279.50
	SALxHUA147		69.41	11.08	23.08	6.05	-91.18	-190.38	14.82	4445.25
	SALxHUA113	144.30	68.82	11.02	22.87	6.03	-90.13	-190.20	14.12	4235.25
	SALXHUA161	143.83	70.41	10.98	22.79	6.09	-90.78	-190.43	14.25	4274.25
1 %	SALxHUA142	143.59	68.52	11.05	22.95	5.99	-90.18	-190.08	14.17	4251.75
1	SALxHUA129	143.41	69.19	10.91	23.09	6.12	-91.10	-189.68	14.36	4308.75
1	SALxHUA28	143.12	70.76	10.81	23.14	6.02	-91.25	-189.58	14.35	4305.75
	SALxHUA195	143.09	69.31	11.00	22.87	5.99	-90.80	-190.00	14.67	4401.00
1	SALXHUA160	142.40	70.22	11.03	22.72	5.98	-90.65	-190.68	14.78	4434.00
	SALXHUA163	142.22	68.90	11.02	22.72	5.97	-90.45	-189.70	14.13	4239.75
	SALXHUA94	141.71	69.18	10.98	22.88	6.10	-90.80	-190.10	14.37	4309.50
	SALXHUA52	141.32	69.56	11.06	22.72	6.09	-90.78	-190.10	14.07	4221.75
	SALXHUA159	140.96	69.53	11.04	22.88	5.88	-90.28	-190.33	14.47	4339.50
	SALXHUA80	133.00	69.78	10.95	23.04	6.01	-91.10	-189.90	14.50	4350.00

4.2.3. Pasankalla x Kcancolla

La selección de las líneas promisorias está en base al índice de Elston (Cuadro 21), se pueden apreciar las líneas que más sobresalen del grupo de acuerdo a las características deseadas del programa mejoramiento genético; la línea PASxKCA161 fue la que presento el mayor índice de selección 140.84 con las siguientes características altura de planta 79.08 cm, diámetro de tallo 12.08 mm, longitud de panoja 24.28 cm, diámetro de panoja 7.33 cm, floración 93.40 días, madurez fisiológica 194.58 días, y con rendimiento de 13.84 g; seguido por la línea PASxKCA188 con un índice de selección 137.44 con las siguientes características altura de planta 78.66 cm, diámetro de tallo 11.92 mm, longitud de panoja 24.15 cm, diámetro de panoja 7.19 cm, floración 93.23 días, madurez fisiológica 194.35 días, y con rendimiento de 13.63 g; seguido por las siguientes líneas promisorias PASxKCA35, PASxKCA130, PASxKCA46. PASxKCA7. PASxKCA177, PASxKCA166, PASxKCA97, PASxKCA157 y PASxKCA17 con índice de selección de 137.29, 125.73, 125.56, 125.19, 125.12, 119.82, 113.76, 112.97 y 112.88 respectivamente. y los materiales que presentaron menor índice de selección dentro de las cuarenta líneas sobresalientes encabeza la línea PASxKCA143 fue la que presento el menor índice de selección de 96.90 con las siguientes características altura de planta 78.27 cm, diámetro de tallo 11.97 mm, longitud de panoja 24.33 cm, diámetro de panoja con 7.19 cm, floración 93.90 días, madurez fisiológica 194.63 días, y con rendimiento de 13.82 g; seguido por la línea; seguido las PASxKCA3, PASxKCA9, PASxKCA94, PASxKCA83, siguientes líneas PASxKCA172, PASxKCA114, PASxKCA30, PASxKCA75 v PASxKCA140 con índice de selección de 96.96, 97.35, 98.44, 98.75, 98.87, 99.06, 99.28, 99.47 y 99.73 respectivamente; fueron las cuarenta líneas promisorias seleccionadas de las 196 líneas que había dentro de la cruza simple, que tienen características anheladas por agricultores como una altura de planta mediano, tallos gruesos, con una longitud de panoja mayor, glomeruladas, precoces y con mayor rendimiento; superando a los testigos en cuanto a la arquitectura de la planta, periodo vegetativo y rendimiento (Anexo 3).

Universidad Nacional del Altiplano

Cuadro 21
Selección de las líneas promisorias de PASxKCA. Puno, Perú-2017.

N°	Líneas	Índice de Elston	Altura de planta (cm)	Diámetro de tallo (mm)	Longitud de panoja (cm)	Diámetro de panoja (cm)	Floración (días)	Madurez fisiólogica (días)	Rendimiento (g)	Rendimiento por hectarea (kg.ha-1)
1	PASxKCA161	140.84	79.08	12.08	24.28	7.33	-93.40	-194.58	13.84	4152.00
2	PASxKCA188	137.44	78.66	11.92	24.15	7.19	-93.23	-194.35	13.63	4087.50
3	PASxKCA46	137.29	79.09	11.96	24.26	7.22	-93.48	-194.28	13.72	4114.50
4	PASxKCA7	125.73	77.64	11.93	24.17	7.03	-93.33	-194.18	13.59	4075.50
5	PASxKCA177	125.56	79.21	12.09	24.30	7.19	-93.93	-194.03	13.71	4113.00
6	PASxKCA35	125.19	78.20	11.93	24.14	7.21	-93.28	-194.58	13.74	4120.50
7	PASxKCA130	125.12	78.36	11.88	24.62	7.25	-93.35	-194.78	13.97	4191.75
8	PASxKCA166	119.82	79.09	11.94	24.62	7.27	-93.58	-194.85	14.13	4238.25
9	PASxKCA97	113.76	79.15	11.97	24.45	7.10	-93.58	-194.70	13.87	4160.25
10	PASxKCA157	112.97	78.66	11.97	24.54	7.18	-93.78	-194.65	14.17	4250.25
11	PASxKCA17	112.88	79.55	11.99	24.12	7.14	-93.63	-194.53	13.60	4080.00
12	PASxKCA118	110.89	79.10	11.94	24.20	7.29	-93.58	-194.88	14.04	4210.50
13	PASxKCA178	110.03	79.59	11.98	24.03	7.16	-93.80	-194.08	13.09	3927.00
14	PASxKCA136	109.01	77.68	11.98	24.33	7.22	-93.83	-194.18	13.42	4024.50
15	PASxKCA64	108.33	79.11	11.95	24.24	7.18	-93.90	-194.53	14.17	4251.00
16	PASxKCA80	107.91	79.12	12.04	24.37	7.27	-93.85	-194.68	13.84	4152.75
17	PASxKCA61	107.28	79.03	11.92	24.18	7.16	-93.30	-194.85	13.44	4031.25
18	PASxKCA67	106.90	78.19	11.99	24.12	7.10	-93.50	-194.58	13.53	4057.50
19	PASxKCA167	106.90	78.68	12.00	24.21	7.20	-93.48	-194.95	13.91	4173.00
20	PASxKCA81	106.04	79.06	12.00	24.33	7.19	-93.83	-194.40	13.38	4013.25
21	PASxKCA26	104.71	78.89	12.04	24.29	7.19	-93.75	-194.50	13.28	3982.50
22	PASxKCA99	103.90	79.02	12.02	24.27	7.18	-93.78	-194.65	13.70	4108.50
23	PASxKCA51	103.26	79.05	11.92	24.20	7.28	-93.85	-194.38	13.31	3992.25
24	PASxKCA115	102.50	78.06	11.97	24.12	7.20	-93.75	-194.60	13.86	4158.00
25	PASxKCA175	102.21	78.01	11.95	24.23	7.14	-93.80	-194.40	13.62	4086.75
26	PASxKCA127	102.00	78.92	11.97	24.28	7.28	-93.60	-194.95	13.74	4121.25
27	PASxKCA47	101.56	78.90	12.01	24.13	7.12	-93.65	-194.73	13.68	4103.25
28	PASxKCA77	101.43	80.03	12.00	24.43	7.15	-93.65	-194.73	13.13	3938.25
29	PASxKCA141	101.38	77.75	11.99	24.11	7.26	-93.78	-194.33	13.22	3966.75
30	PASxKCA65	100.82	78.66	11.93	24.26	7.17	-93.73	-194.48	13.30	3989.25
31	PASxKCA140	99.73	79.16	11.99	24.25	7.23	-93.68	-194.95	13.83	4147.50
32	PASxKCA75	99.47	78.67	12.01	24.22	7.26	-93.80	-194.70	13.59	4076.25
33	PASxKCA30	99.28	80.15	11.94	24.18	7.20	-93.63	-194.53	12.71	3813.00
34	PASxKCA114	99.06	78.21	11.85	24.30	7.29	-93.45	-195.03	13.76	4127.25
35	PASxKCA172	98.87	77.87	12.08	24.19	7.18	-93.78	-194.50	13.32	3996.75
36	PASxKCA83	98.75	77.29	12.00	24.03	7.14	-93.40	-194.70	13.33	3999.75
37	PASxKCA94	98.44	78.34	11.92	24.27	7.25	-93.80	-194.58	13.50	4050.75
38	PASxKCA9	97.35	78.63	11.99	24.47	7.25	-93.58	-194.98	13.41	4023.00
39	PASxKCA3	96.96	78.30	11.99	24.28	7.13	-93.63	-194.70	13.33	3999.00
40	PASxKCA143	96.90	78.27	11.97	24.33	7.19	-93.90	-194.63	13.82	4145.25

4.2.4. Salcedo INIA x Pandela rosada

La selección de las líneas promisorias esta en base al índice de Elston (Cuadro 22), se pueden apreciar las líneas que más sobresalen del grupo de acuerdo a las características deseadas del programa mejoramiento genético; la línea SALxPAN163 fue la que presento el mayor índice de selección 198.79 con las siguientes características altura de planta 74.61 cm, diámetro de tallo 10.96 mm, longitud de panoja 22.43 cm, diámetro de panoja 6.21 cm, floración 88.90 días, madurez fisiológica 189.35 días, y con rendimiento de 12.11 g; seguido por la línea SALxPAN39 con un índice de selección 178.33con las siguientes características altura de planta 74.18 cm, diámetro de tallo 11.02 mm, longitud de panoja 22.29 cm, diámetro de panoja 6.12 cm, floración 89.03 días, madurez fisiológica 189.03 días, y con rendimiento de 11.87 g; seguido por las siguientes líneas promisorias SALxPAN57, SALxPAN158. SALxPAN150, SALxPAN12, SALxPAN44, SALxPAN171 y SALxPAN159 con índice de selección de 178.00, 176.31, 174.95, 172.17, 171.67, 171.62, 169.70 y 167.84 respectivamente. y los materiales que presentaron menor índice de selección dentro de las cuarenta líneas sobresalientes encabeza la línea SALxPAN40 fue la que presento el menor índice de selección de 154.02 con las siguientes características altura de planta 74.06 cm, diámetro de tallo 10.99 mm, longitud de panoja 22.26 cm, diámetro de panoja con 6.17 cm, floración 89.18 días, madurez fisiológica 189.40 días, y con rendimiento de 11.56 g; seguido por las siguientes líneas SALxPAN10, SALxPAN26, SALxPAN62, SALxPAN84, SALxPAN27, SALxPAN23, SALxPAN164, SALxPAN4 y SALxPAN149 con índice de selección de 154.28, 154.75, 155.12, 156.46, 156.92, 156.92, 156.96, 157.04 y 157.22 respectivamente; fueron las cuarenta líneas promisorias seleccionadas de las 196 líneas que había dentro de la cruza simple, que tienen características anheladas por agricultores como una altura de planta mediano, tallos gruesos, con una longitud de panoja mayor, glomeruladas, precoces y con mayor rendimiento; superando a los testigos en cuanto a la arquitectura de la planta, periodo vegetativo y rendimiento (Anexo 4).

Universidad Nacional del Altiplano

Cuadro 22
Selección de las líneas promisorias de SALxPAN. Puno, Perú-2017.

	N°	Líneas	Índice de Elston	Altura de planta (cm)	Diámetro de tallo (mm)	Longitud de panoja (cm)	Diámetro de panoja (cm)	Floración (días)	Madurez fisiólogica (días)	Rendimiento (g)	Rendimiento por hectarea (kg.ha-1)
	1	SALxPAN163	198.79	74.61	10.96	22.43	6.21	-88.90	-189.35	12.11	3632.25
	2	SALxPAN39	178.33	74.18	11.02	22.29	6.12	-89.03	-189.03	11.87	3559.50
	3	SALxPAN158	178.00	74.12	10.96	22.54	6.14	-88.75	-189.63	11.91	3572.25
	4	SALxPAN150	176.31	75.74	10.96	22.36	6.12	-88.75	-189.75	11.77	3531.00
	5	SALxPAN57	174.95	75.26	11.06	22.15	6.18	-89.53	-189.78	12.15	3643.50
	6	SALxPAN12	172.17	74.27	11.00	22.65	6.13	-89.65	-188.90	11.77	3531.75
	7	SALxPAN36	171.67	75.00	11.04	22.43	6.07	-89.35	-188.85	11.63	3488.25
	8	SALxPAN44	171.62	73.65	10.89	22.56	6.12	-89.58	-188.93	12.20	3658.50
	9	SALxPAN171	169.70	74.19	11.04	22.30	6.06	-89.28	-189.88	12.42	3724.50
	10	SALxPAN159	167.84	73.69	10.98	22.60	6.11	-89.73	-189.40	12.27	3681.75
	11	SALxPAN141	167.50	74.02	10.98	22.57	6.23	-89.30	-190.18	12.04	3612.75
Ý	12	SALxPAN162	167.22	74.97	10.83	22.26	6.23	-89.23	-189.30	11.84	2 7 7 0 7 0
	13	SALxPAN88	166.41	73.78	10.97	22.36	6.28	-89.85	-189.25	12.00	3600.75
	14	SALxPAN166	166.26	75.08	11.00	22.31	6.10	-89.35	-189.53	11.90	3570.75
П	15	SALxPAN35	165.96	74.47	11.03	22.51	6.04	-89.50	-189.35	11.99	3595.50
ľ	16	SALxPAN22	165.30	74.71	11.04	22.68	6.05	-89.60	-189.48	11.88	3562.50
ľ	17	SALxPAN98	165.27	73.47	10.96	22.21	6.27	-89.25	-189.63	12.00	3598.50
ŧ	18	SALxPAN29	163.96	74.62	10.98	22.19	6.21	-88.83	-189.78	11.67	3499.50
ľ	19	SALxPAN175	162.00	74.26	11.01	22.32	6.13	-89.30	-189.75	11.98	3594.75
	20	SALxPAN14	161.32	73.27	10.98	22.40	6.20	-89.58	-189.75	12.22	3665.25
	21	SALxPAN192	160.16	73.75	11.12	22.13	6.12	-89.43	-189.20	11.81	3541.50
	22	SALxPAN82	160.09	74.65	10.94	22.28	6.01	-89.20	-188.93	11.83	3549.75
	23	SALxPAN110	159.68	73.58	11.02	22.56	6.04	-89.25	-189.78	12.09	3627.00
	24	SALxPAN85	159.50	73.14	11.06	22.17	6.17	-88.60	-189.78	11.73	3518.25
	25	SALxPAN32	159.11	73.60	10.97	22.76	6.13	-89.58	-189.65	11.93	3578.25
	26	SALxPAN155	157.91	74.02	11.00	21.98	6.16	-89.30	-189.58	12.07	3621.75
	27	SALxPAN135	157.52	74.76	11.03	22.52	6.13	-89.50	-189.28	11.46	3436.50
ш		SALxPAN167		73.32	10.94	22.34	6.15	-89.15	-189.33	11.85	3555.75
		SALxPAN129	157.43	74.71	11.09	22.26	6.14	-88.88	-190.50	11.81	3542.25
		SALxPAN195	157.33	74.46	11.05	22.26	6.09	-89.43	-189.80	12.02	3604.50
		SALxPAN149	157.22	74.31	10.95	22.39	6.14	-89.33	-189.75	11.91	3571.50
		SALxPAN4	157.04	72.91	11.10	21.96	6.17	-89.15	-189.75	12.12	3636.00
		SALxPAN164	156.96	73.89	11.05	22.37	6.23	-89.73	-189.43	11.69	3507.75
		SALxPAN23	156.92	73.94	11.10	22.43	6.12	-89.35	-189.95	11.85	3554.25
		SALxPAN27	156.92	74.03	11.03	22.06	6.13	-89.28	-189.63	12.00	3599.25
		SALxPAN84	156.46	73.91	11.04	22.44	6.15	-89.25	-189.73	11.70	3510.75
		SALxPAN62	155.12	73.80	11.10	22.13	6.20	-89.05	-189.83	11.63	3489.75
		SALxPAN26	154.75	74.29	11.01	22.33	6.06	-89.45	-189.80	12.10	3630.00
		SALxPAN10	154.28	74.09	11.09	22.28	6.11	-89.08	-189.78	11.65	3495.75
		SALxPAN40	154.02	74.06	10.99	22.26	6.17	-89.18	-189.40	11.56	3468.00

4.2.5. Negra collana x Kcancolla.

La selección de las líneas promisorias está en base al índice de Elston (Cuadro 23), se pueden apreciar las líneas que más sobresalen del grupo de acuerdo a las características deseadas del programa mejoramiento genético; la línea COLxKCA4 fue la que presento el mayor índice de selección 0.47 con las siguientes características altura de planta 60.63 cm, diámetro de tallo 9.27 mm, longitud de panoja 18.54 cm, diámetro de panoja 4.96 cm, floración 82.33 días, madurez fisiológica 181.18 días, y con rendimiento de 8.90 g; seguido por la línea COLxKCA123 con un índice de selección 0.41 con las siguientes características altura de planta 61.70 cm, diámetro de tallo 9.18 mm, longitud de panoja 18.62 cm, diámetro de panoja 4.96 cm, floración 83.20 días, madurez fisiológica 181.85 días, y con rendimiento de 8.87 g; seguido por las siguientes líneas promisorias COLxKCA8, COLxKCA125, COLxKCA78, COLxKCA152, COLxKCA44, COLxKCA129, COLxKCA47 v COLxKCA73 con índice de selección de 0.33, 0.32, 0.31, 0.31, 0.29, 0.27, 0.26 y 0.26 respectivamente. y los materiales que presentaron menor índice de selección dentro de las cuarenta líneas sobresalientes encabeza la línea COLxKCA93 fue la que presento el menor índice de selección de 0.16 con las siguientes características altura de planta 60.98 cm, diámetro de tallo 9.21 mm, longitud de panoja 18.55 cm, diámetro de panoja con 4.79 cm, floración 82.83 días, madurez fisiológica 180.95 días, y con rendimiento de 8.50 g; seguido por las siguientes líneas COLxKCA40, COLxKCA84, COLxKCA25, COLxKCA194, COLxKCA195, COLxKCA35, COLxKCA160, COLxKCA55 y COLxKCA37 con índice de selección de 0.17, 0.17, 0.17, 0.18, 0.18, 0.18, 0.18, 0.18 y 0.18 respectivamente; fueron las cuarenta líneas promisorias seleccionadas de las 196 líneas que había dentro de la cruza simple, que tienen características anheladas por agricultores como una altura de planta mediano, tallos gruesos, con una longitud de panoja mayor, glomeruladas, precoces y con mayor rendimiento; superando a los testigos en cuanto a la arquitectura de la planta, periodo vegetativo y rendimiento (Anexo 5).

Universidad Nacional del Altiplano

Cuadro 23

Selección de las líneas promisorias de COLxKCA. Puno, Perú-2017.

N°	Líneas	Índice de Elston	Altura de planta (cm)	Diámetro de tallo (mm)	Longitud de panoja (cm)	Diámetro de panoja (cm)	Floración (días)	Madurez fisiólogica (días)	Rendimiento (g)	Rendimiento por hectarea (kg.ha-1)
1	COLxKCA4	0.47	60.63	9.27	18.54	4.96	-82.33	-181.18	8.90	2670.75
2	COLxKCA123	0.41	61.70	9.18	18.62	4.96	-83.20	-181.85	8.87	2659.50
3	COLxKCA8	0.33	61.40	9.26	18.80	4.84	-83.63	-181.23	8.65	2594.25
4	COLxKCA125	0.32	62.01	9.18	18.61	4.94	-82.60	-181.78	8.62	2584.50
5	COLxKCA78	0.31	63.18	9.17	18.92	4.77	-82.50	-181.20	8.63	2589.00
6	COLxKCA152	0.31	62.24	9.21	18.57	4.85	-83.08	-181.65	8.66	2598.75
7	COLxKCA44	0.29	61.85	9.27	19.30	4.68	-82.65	-181.53	8.65	2595.75
8	COLxKCA129	0.27	61.64	9.14	18.60	4.89	-82.75	-180.63	8.70	2610.75
9	COLxKCA47	0.26	60.52	9.18	18.98	4.80	-82.15	-180.93	8.76	2626.50
10	COLxKCA73	0.26	60.38	9.23	19.02	4.74	-83.10	-181.83	8.91	2673.00
11	COLxKCA154	0.25	60.66	9.26	19.03	4.71	-82.43	-181.88	8.80	2639.25
12	COLxKCA51	0.25	62.32	9.17	18.90	4.77	-83.03	-181.98	8.65	2593.50
13	COLxKCA180	0.24	61.55	9.16	18.97	4.73	-82.80	-181.03	8.83	2648.25
14	COLxKCA57	0.24	60.56	9.20	18.77	4.85	-82.70	-181.23	8.64	2592.75
15	COLxKCA89	0.24	62.03	9.21	18.37	4.75	-82.88	-181.75	8.90	2668.50
16	COLxKCA126	0.24	61.85	9.25	18.87	4.73	-82.58	-181.03	8.53	2559.00
17	COLxKCA80	0.23	61.44	9.09	18.88	4.93	-82.30	-181.55	8.65	2594.25
18	COLxKCA193	0.22	61.81	9.20	18.63	4.76	-82.53	-181.90	8.68	2603.25
19	COLxKCA183	0.22	61.21	9.13	18.93	4.86	-83.05	-181.70	8.63	2589.75
20	COLxKCA136	0.22	60.81	9.21	18.51	4.91	-82.83	-182.13	8.58	2574.00
21	COLxKCA184	0.22	62.19	9.09	18.33	4.95	-82.70	-181.90	8.80	2639.25
22	COLxKCA29	0.22	62.40	9.11	18.87	4.72	-82.93	-181.68	8.93	2679.00
23	COLxKCA163	0.21	61.18	9.27	18.57	4.82	-83.38	-181.73	8.51	2551.50
24	COLxKCA172	0.21	60.70	9.19	18.95	4.78	-82.60	-182.15	8.68	2602.50
25	COLxKCA128	0.21	62.48	9.14	19.04	4.78	-82.40	-181.78	8.50	2549.25
26	COLxKCA186	0.21	61.70	9.17	18.92	4.76	-82.75	-180.75	8.55	2565.75
27	COLxKCA9	0.20	62.12	9.13	18.77	4.81	-83.03	-181.55	8.59	2577.00
28	COLxKCA191	0.20	60.48	9.10	19.07	5.04	-82.88	-181.83	8.50	2549.25
29	COLxKCA30	0.19	61.50	9.12	18.38	4.83	-82.30	-181.23	8.85	2655.00
30	COLxKCA18	0.19	62.17	9.18	19.05	4.77	-82.43	-180.95	8.35	2503.50
31	COLxKCA37	0.18	61.37	9.17	18.77	4.83	-82.90	-181.13	8.46	2538.00
32		0.18	61.88	9.28	18.33	4.78	-82.30	-181.15	8.43	2527.50
33	COLxKCA160	0.18	60.94	9.13	18.84	4.78	-82.38	-181.50	8.75	2625.75
34	COLxKCA35	0.18	63.25	9.17	18.72	4.90	-83.30	-181.58	8.24	2471.25
35	COLxKCA195	0.18	61.13	9.08	18.88	4.75	-82.85	-181.13	9.13	2737.50
36	COLxKCA194	0.18	61.43	9.14	18.83	4.71	-82.83	-181.53	8.81	2643.75
37	COLxKCA25	0.17	62.49	9.09	18.47	4.85	-82.35	-181.20	8.62	2586.75
38	COLxKCA84	0.17	61.38	9.23	18.82	4.69	-83.00	-182.50	8.64	2592.00
39	COLxKCA40	0.17	62.35	9.14	18.75	4.72	-83.13	-181.68	8.66	2597.25
40	COLxKCA93	0.16	60.98	9.21	18.55	4.79	-82.83	-180.95	8.50	2550.00

4.2.6. Salcedo INIA x Negra collana

La selección de las líneas promisorias está en base al índice de Elston (Cuadro 24), se pueden apreciar las líneas que más sobresalen del grupo de acuerdo a las características deseadas del programa mejoramiento genético; la línea SALxCOL72 fue la que presento el mayor índice de selección 8.97 con las siguientes características altura de planta 63.75 cm, diámetro de tallo 9.82 mm, longitud de panoja 19.08cm, diámetro de panoja 5.26 cm, floración 86.70 días, madurez fisiológica 185.05 días, y con rendimiento de 11.28 g; seguido por la línea SALxCOL93 con un índice de selección 8.52 con las siguientes características altura de planta 63.66 cm, diámetro de tallo 9.74 mm, longitud de panoja 19.30 cm, diámetro de panoja 5.23 cm, floración 86.93 días, madurez fisiológica 184.48 días, y con rendimiento de 11.17 g; seguido líneas promisorias SALxCOL181, las siguientes SALxCOL145, SALxCOL174, SALxCOL86, SALxCOL135, SALxCOL175, SALxCOL94 y SALxCOL51 con índice de selección de 8.48, 8.38, 8.33, 7.25, 7.10, 6.88, 6.84 y 6.78 respectivamente, y los materiales que presentaron menor índice de selección dentro de las cuarenta líneas sobresalientes encabeza la línea SALxCOL156 fue la que presento el menor índice de selección de 5.76 con las siguientes características altura de planta 63.70 cm, diámetro de tallo 9.65 mm, longitud de panoja 18.92 cm, diámetro de panoja con 5.19 cm, floración 86.20 días, madurez fisiológica 184.90 días, y con rendimiento de 10.95 g; seguido por las siguientes líneas SALxCOL161, SALxCOL9, SALxCOL13, SALxCOL152, SALxCOL157 SALxCOL153, SALxCOL69, SALxCOL119 y SALxCOL125 con índice de selección de 5.77, 5.77, 5.78, 5.80, 5.88, 5.89, 5.89, 5.89 y 5.94 respectivamente; fueron las cuarenta líneas promisorias seleccionadas de las 196 líneas que había dentro de la cruza simple, que tienen características anheladas por agricultores como una altura de planta mediano, tallos gruesos, con una longitud de panoja mayor, glomeruladas, precoces y con mayor rendimiento; superando a los testigos en cuanto a la arquitectura de la planta, periodo vegetativo y rendimiento (Anexo 6).

Universidad Nacional del Altiplano

Cuadro 24
Selección de las líneas promisorias de SALxCOL. Puno, Perú-2017.

		ŕ	A14 J.	Diámetro	Longitud	Diámetro	III	Madurez	Rendimiento	Rendimiento
N°	Líneas	Índice de	Altura de	de tallo	de panoja	de panoja	Floración	fisiólogica	por planta	por hectarea
		Elston	planta (cm)	(mm)	(cm)	(cm)	(días)	(días)	(g)	(kg.ha-1)
1	SALxCOL72	8.97	63.75	9.82	19.08	5.26	-86.70	-185.05	11.28	3383.25
2	SALxCOL93	8.52	63.66	9.74	19.30	5.23	-86.93	-184.48	11.17	3350.25
3	SALxCOL181	8.48	64.45	9.71	19.34	5.22	-85.90	-184.95	10.72	3216.00
4	SALxCOL145	8.38	64.54	9.71	19.17	5.17	-87.08	-184.75	11.49	3446.25
5	SALxCOL174	8.33	62.74	9.84	19.17	5.16	-85.85	-184.63	11.43	3429.75
6	SALxCOL86	7.25	63.25	9.61	19.50	5.22	-87.05	-184.63	11.25	3375.00
7	SALxCOL135	7.10	63.57	9.67	19.19	5.19	-86.68	-184.63	11.25	3375.75
8	SALxCOL175	6.88	62.95	9.76	19.15	5.18	-86.80	-184.95	11.33	3398.25
9	SALxCOL94	6.84	64.18	9.74	19.01	5.23	-86.95	-185.05	10.90	3269.25
10	SALxCOL51	6.78	62.75	9.60	19.35	5.13	-85.90	-184.48	11.62	3486.00
11	SALxCOL16	6.68	62.53	9.69	19.16	5.14	-86.30	-184.65	11.74	3521.25
12	SALxCOL44	6.67	63.13	9.72	18.94	5.22	-86.40	-184.53	11.23	3369.75
13	SALxCOL164	6.59	63.73	9.62	18.96	5.18	-85.95	-184.40	11.29	3387.00
14	SALxCOL141	6.56	64.08	9.74	19.44	5.04	-86.10	-184.63	10.69	3207.00
15	SALxCOL35	6.55	63.30	9.56	19.22	5.22	-86.80	-184.25	11.42	3426.75
16	SALxCOL46	6.51	62.19	9.70	19.26	5.25	-86.28	-184.90	11.13	3339.75
17	SALxCOL115	6.49	63.48	9.67	19.12	5.19	-87.00	-184.95	11.29	3387.75
18	SALxCOL127	6.28	63.75	9.66	18.94	5.26	-87.08	-184.43	11.02	3304.50
19	SALxCOL163	6.28	62.49	9.65	18.75	5.28	-85.25	-184.43	11.45	3435.75
20	SALxCOL3	6.28	62.23	9.72	19.29	5.30	-86.48	-184.35	10.62	3186.00
21	SALxCOL184	6.16	62.98	9.75	19.19	5.09	-86.48	-184.68	11.18	3352.50
22	SALxCOL196	6.12	62.13	9.70	19.48	5.19	-87.28	-184.70	11.23	3369.75
23	SALxCOL36	6.10	61.79	9.79	19.02	5.19	-85.48	-184.45	11.12	3336.75
24	SALxCOL102	6.07	62.24	9.61	18.99	5.24	-86.23	-184.30	11.66	3496.50
25	SALxCOL77	6.06	62.25	9.64	19.19	5.23	-86.20	-184.90	11.33	3397.50
26	SALxCOL144	6.04	62.07	9.73	19.12	5.19	-86.78	-184.38	11.39	3415.50
27	SALxCOL109	6.04	64.15	9.64	19.04	5.15	-87.68	-184.80	11.47	3439.50
28	SALxCOL195	6.00	62.53	9.76	19.39	5.22	-87.98	-184.73	10.95	3285.75
29	SALxCOL42	5.96	63.35	9.71	19.32	5.14	-87.33	-185.00	11.03	3307.50
30	SALxCOL65	5.95	63.43	9.77	18.96	5.17	-85.45	-184.88	10.53	3159.00
31	SALxCOL125	5.94	63.05	9.67	19.27	5.20	-87.18	-184.70	10.97	3290.25
32	SALxCOL119	5.89	62.76	9.70	18.77	5.18	-85.75	-185.18	11.60	3480.75
33	SALxCOL69	5.89	63.47	9.61	19.03	5.16	-86.60	-184.85	11.44	3432.00
34	SALxCOL153	5.89	62.06	9.70	19.27	5.14	-85.75	-184.73	11.18	3353.25
35	SALxCOL157	5.88	61.53	9.88	19.38	5.13	-86.55	-184.70	11.01	3302.25
36	SALxCOL152	5.80	62.31	9.73	19.37	5.11	-86.25	-184.53	10.96	3286.50
37	SALxCOL13	5.78	63.10	9.74	19.10	5.11	-86.55	-184.88	11.08	3323.25
38	SALxCOL9	5.77	62.40	9.69	19.16	5.13	-86.88	-184.65	11.55	3464.25
39	SALxCOL161	5.77	63.68	9.61	19.12	5.22	-86.50	-184.83	10.78	3233.25
40	SALxCOL156	5.76	63.70	9.65	18.92	5.19	-86.20	-184.90	10.95	3285.00

El IS calculado (Cuadro 19, 20, 21, 22, 23 y 24), muestra valores comprendidos entre 0,16 hasta 198.79 para las 240 líneas seleccionadas de las 1176 líneas disponibles en las seis cruzas simples genéticamente distantes y cercanas. La selección simultánea de múltiples características se puede utilizar para evitar la disminución de los niveles de aquéllas que están asociadas de forma negativa con la característica a seleccionar, que resulta de la selección de caracteres individuales (Delgado *et al.*, 2009). Para realizarla, se puede diseñar y emplear varios índices de selección; la eficiencia de éstos será afectada por el número de características involucradas y sus asociaciones con otras, la variabilidad y heredabilidad para cada característica, y la intensidad de selección utilizada para cada una de ellas (Elston, 2014).

Sañudo *et al.* (2005), mencionan que un genotipo puede ser superior a los otros genotipos en todos los ambientes de evaluación o hay comportamiento variable de los genotipos en relación con el ambiente, observándose diferentes formas de estabilidad. Según Ramírez y Egaña (2003), la variabilidad fenotípica expresada en la mayor parte de los caracteres cuantitativos tiene un componente ambiental relativamente grande en comparación con el componente genético correspondiente. La teoría de la línea pura de Johannsen estableció que la variabilidad que aparece en cada línea no tiene una causa genética, sino que se debe a la distinta influencia que ejerce el ambiente sobre cada línea (Delgado *et al.*, 2009).

Mujica et al. (2013), mencionan que los agricultores requieren variedades que tenga una altura de planta ideal para facilitar la cosecha mecanizada, ya que a mayor altura de planta complica, por eso se anhela tener una variedad con altura de planta mediana; con tallos gruesos para dar un buen soporte frente a las adversidades de los condiciones edafoclimaticas y también a los ataques de aves; una longitud de panoja larga si es posible desde la mitad de planta para obtener mayor rendimiento; con diámetro de panoja grueso y glomerulado; precoces que tenga un menor periodo vegetativo para que no esté expuesto al ambiente durante un largo periodo porque los condiciones ambientales en los últimos años son drásticas y de buen rendimiento de grano/panoja para elevar la productividad de la región; justamente estas 240 líneas seleccionadas son las que poseen estas características deseadas respecto a las otras líneas que no fueron seleccionadas. Los materiales seleccionados son homogéneos en cuanto a sus características fenotípicas y genotípicas (Delgado et al., 2009). La selección obtenida a partir de una línea pura es óptima. Lo anterior se debe a las

autofecundaciones continuas hasta la sexta generación a los cuales han sido sometidas ya que a medida que avanza las generaciones, la variabilidad genética se incrementa y por lo tanto la ganancia genética aumenta.

Resultados similares obtuvieron Inguilán y Pantoja (2007), en el municipio de Córdoba, en cuanto al comportamiento superior de las líneas respecto a sus genitores; además, Benavides y Rodríguez (2007), en el municipio de Pasto reportan un IS entre -1,418 y 0,988, demostrando una amplia adaptabilidad de las líneas también a diferentes ambientes que sometió; de igual manera en este trabajo se sometió también a diferentes ambientes, y de acuerdo a eso se realizó una selección teniendo la seguridad de que esas líneas siempre tendrán un comportamiento deseado sometido a otros ambientes.

Además, en la selección que realizo Delgado et al. (2009), mediante la ecuación índice de selección (IS) utilizando las variables altura de plantas, precocidad, y rendimiento. Las variables altura, precocidad y reacción a mildiu se expresan en forma negativa, puesto que buscó aquellos genotipos de menor altura, más precoces y más tolerantes. Donde selecciono 'SL47' (T), S90, S95, S105, S133 y S100 con un alto IS superando a las variedades comerciales Piartal, Tunkahuan y Blanca de Jericó debido a su precocidad, homogeneidad, porte bajo, tolerancia al ataque de mildeo y buen rendimiento. No detectaron ganancia genética significativa en las selecciones realizadas a partir del material original 'SL47' y 'Piartal', lo cual concluyen que la selección inicial estuvo influida por factores ambientales y no por factores genéticos, catalogándolas como líneas puras. Sañudo et al. (2005), mencionan que un genotipo puede ser superior a los otros genotipos en todos los ambientes de evaluación o hay comportamiento variable de los genotipos en relación con el ambiente, observándose diferentes formas de estabilidad. Según Ramírez y Egaña (2003), la variabilidad fenotípica expresada en la mayor parte de los caracteres cuantitativos tiene un componente ambiental relativamente grande en comparación con el componente genético correspondiente. La teoría de la línea pura se estableció que la variabilidad que aparece en cada línea no tiene una causa genética, sino que se debe a la distinta influencia que ejerce el ambiente sobre cada línea. Por ello en esta investigación se ha seleccionado líneas que pueda adaptarse al cambio climático que hoy en día se vive (Hena et al., 2016).

CONCLUSIONES

- ❖ Las cruzas simples distantes HUAxKCA, SALxHUA y PASxKCA; presentaron promedios superiores respecto a las cruzas simples genéticamente cercanas COLxKCA, SALxCOL y SALxPAN; para precocidad la cruza COLxKCA fue la más precoz con 182 días, seguido por HUAxKCA y SALxCOL con 183 y 185 días respectivamente. Existe ganancia genética de las cruzas simples respeto a sus genitores en cuanto al comportamiento agronómico.
- ❖ SALxHUA presento mayor rendimiento con 4266.60 kg.ha⁻¹, seguido por HUAxKCA y PASxKCA con 4128.90 y 4060.20 kg.ha⁻¹ respectivamente que son las cruzas simples genéticamente distantes y las cruzas simples cercanas presentaron menor rendimiento COLxKCA con 2545.80 kg.ha⁻¹, seguido por SALxCOL y SALxPAN con 3319.20 y 3529.20 kg.ha⁻¹ respectivamente; y los genitores Pasankalla con 3651 kg.ha⁻¹, Huariponcho con 3497.70 kg.ha⁻¹, Pandela rosada con 3186.00 kg.ha⁻¹, Salcedo INIA con 3150.60 kg.ha⁻¹, Kcancolla 3114.30 kg.ha⁻¹ y Negra collana con 2508.90 kg.ha⁻¹.
- Se ha seleccionado las líneas sobresalientes por cruza: (1) HUAxKCA 48, 97, 102, 173, 3, 112, 62, 95, 6, 10, 174, 18, 132, 131 y 113; (2) SALxHUA 19, 34, 33, 12, 116, 174, 48, 27, 102, 162, 120, 109, 88, 141 y 166; (3) PASxKCA 161, 188, 46, 7, 177, 35, 130, 166, 97, 157, 17, 118, 178, 136 y 64; (4) SALxPAN 163, 39, 158, 150, 57, 12, 36, 44, 171, 159, 141, 162, 88, 166 y 35; (5) COLxKCA 4, 123, 8, 125, 78, 152, 44, 129, 47, 73, 154, 51, 180, 57, 89, 126, 80, 193, 183 y 136; y finalmente la cruza (6) SALxCOL 72, 93, 181, 145, 174, 86, 135, 175, 94, 51, 16, 44, 164, 141, 35, 46, 115, 127, 163 y 3; son las líneas que presentaron las características anheladas por agricultores y mejoradores, precoces y de alto rendimiento superando a sus genitores.

RECOMENDACIONES

- ✓ Se recomiendo realizar una caracterización molecular de las 40 líneas seleccionadas en cada cruza simples lo que no se pudo incluir en este trabajo por la magnitud, para poder identificar también las características genotípicas, e integrar esta información con las características fenotípicas para tener una información completa de la variabilidad de líneas.
- ✓ Debe continuarse con la selección dentro del programas de mejoramiento genético en quinua (*Chenopodium quinoa* Willd.) y probar estas líneas seleccionadas en otras localidades más para seguir evaluado el comportamiento y seleccionando en otras condiciones edafoclimaticas hasta liberar las nuevas variedades de quinua para la región, país, y para el mundo.
- ✓ Las progenies tienden a heredar más las características del genitor femenino en vista a ello para posteriores programas de mejoramiento en plantas se sugiere elegir como genitor femenino a la variedad que tiene más virtudes o caracteres deseable.
- ✓ Para la selección se debe utilizar el índice de Elston considerando diferentes parámetros principalmente longitud y diámetro de panoja que son las variables determinantes del rendimiento y a la vez tienen mayores índices de heredabilidad respecto al rendimiento.

BIBLIOGRAFÍA

- Aguilar, P. y Jacobsen, S. (2003). Cultivation of quinoa on the Peruvian Altiplano. Food Rev. Int., 19: 31-41.
- Alvarez, M. y Von S. (1990). Genética y Purificación de la Quinua. In Wahli, *C. Quinoa* hacia su cultivo comercial. Quito, EC, LANTINRECO. 33-60 p.
- Andrade, H. (2012). Métodos de mejora genética en maíz (Zea mays L.). S.L. S.E. 38 p.
- Apaza, J. (2014). Caracterización y variabilidad de progenies S₃ autofecundadas, procedentes de cruzas simples genéticamente distantes y cercanas, en seis cultivares de quinua (*Chenopodium quinoa* Willd.). (Tesis de Ingeniero Agrónomo). Facultad de Agronomía. Universidad Nacional San Agustín de Arequipa. Perú. 119 p.
- Arar A.; Matthiew, A.; Gómez, E.; Choque, J.; Arenas, J.; Delatorre, J. y Sánchez, M. (2011). La historia a dos voces de las cooperativas de quinua en la región de Tarapacá: Estrategias y Desafíos. Revista Geográfica de Valparaíso. Nº 42: 112-123.
- Benavides, A. y Rodríguez, M. (2007). Evaluación y selección de 16 líneas promisorias de quinua dulce en el Municipio de Pasto, Departamento de Nariño. Tesis de grado Ingeniero Agrónomo, Facultad de Ciencias Agrícolas, Universidad de Nariño. Pasto. 87 p.
- Bhargava, A.; Rana, T.; Shukla, S. y Ohri D. (2005). Seed protein electrophoresis of some cultivated and wild species of *Chenopodium*. Biol. Plan. 49(4), 505-511.
- Bhargava, A.; Shukla, S. y Ohri, D. 2006. *Chenopodium quinoa* Willd. An Indian perspective. Industrial Crops and Products. 23: 73–87.

- Blanco, H. (2009). Participación comunitaria en la evaluación de las características agronómicas de variedades y líneas mejoradas de quinua (*Chenopodium quinoa* Willd.), en el Municipio de Quime (Tesis de grado para optar el Título de Ingeniero Agrónomo). Universidad Mayor de San Andrés. La Paz, Bolivia.
- Bohórquez, P. y Riofrío, H. (2009). Producción y comercialización de quinua en el Ecuador. (Tesis Ingeniería Comercial). Guayaquil, EC, Escuela Superior Politécnica del Litoral. 248 p.
- Bonifacio, A.; Mujica, A.; Alvarez, A. y Roca, W. (2004). Mejoramiento genético, germoplasma y producción de semilla. En Quinua Ancestral Cultivo Andino, Alimento del Presente y futuro. Santiago, Chile. 125 159 pp.
- Bonifacio, A. (2013). Mejoramiento Genético de la Quinua en los Andes. IV Congreso Mundial de la Quinua y I Simposio Internacional de Granos Andinos. (Ibarra, 8-12 de Jul 2013) Memorias. Ibarra, EC. 17-18 p.
- Bustincio, R. (2013). Obtención de progenie de cruzas simples en ocho variedades de quinua (*Chenopodium quinoa* Willd.), mediante la estimación de distancias genéticas asistida por marcadores moleculares. (Tesis de Ingeniero Agrónomo). Facultad de Ciencias Agrarias. Universidad Nacional del Altiplano. Puno, Perú. 72 p.
- Casini, P. (2002). Possibilita di introdurre la quinoa negli ambienti mediterranei. Informatore Agrario. 27, 29–32.
- Catacora, P. y Canahua, A. (1991). Selección de genotipos de quinua (*Chenopodium quinoa* Willd.) resistentes a heladas y perspectivas de producción en camellones. En: Actas del VII Congreso Internacional sobre Cultivos Andinos. La Paz, 4-8 febrero. IBTA, ORSTOM, CIID- Canadá. La Paz, Bolivia. 53-56 pp.
- Cerón, E. (2002). La quinua, un cultivo para el desarrollo de la zona andina. Unigraf, Pasto, Colombia.
- Choquechambi, L. (2016). Caracterización de progenies S5 autofecundadas, procedentes de cruzas simples en seis cultivares de quinua (*Chenopodium quinoa* Willd.) genéticamente distantes y cercanas en Camacani. (Tesis de Ingeniero Agrónomo).

- Facultad de Ciencias Agrarias. Universidad Nacional del Altiplano. Puno, Perú. 180 p.
- Chungara, A. (2000). Evaluación y selección para tolerancia a la sequía de 60 cultivares de quinua (*Chenpodium quinoa* Willd.) del germoplasma de la zona andina. (Tesis de Grado). Universidad Técnica de Oruro, Facultad de Ciencias Agrícolas y Pecuarias. Oruro, Bolivia. 112 p.
- Danielsen, S. y Ames, T. (2000). El mildiu (*Peronospora variabilis* Gaus) de la quinua (*Chenopodium quinoa* Willd.) en la zona Andina. Manual práctico para el estudio de la enfermedad y del patógeno. Centro Internacional de la Papa. Lima, Perú. 29 p.
- Delatorre, J.; Sánchez, M. y Challapa, E. (2008). Manejo cultural de la quinua. E cultivo de la quinua. Revista de Agricultura del Desierto. (4): 23-31.
- Delgado, M. y Benavides, C. (2000). Comportamiento de Diez Selecciones de Grano Dulce de Quinua en los Municipios de Pasto y Córdoba Departamento de Nariño. (Tesis de grado Ingeniero Agrónomo), Facultad de Ciencias Agrícolas, Universidad de Nariño. Pasto, Colombia. 87p.
- Delgado, P.; Adriana, I.; Palacios, C.; y Jaime, H. (2009). Evaluation of 16 genotypes of sweet quinoa (*Chenopodium quinoa* Willd.) in the municipality of Iles. Nariño, Colombia. Agronomía.
- Domínguez, J. (2015). Caracterización y variabilidad de progenies S₄ autofecundadas, procedentes de cruzas simples genéticamente distantes y cercanas, en seis cultivares de quinua (*Chenopodium quinoa* Willd.). (Tesis de Ingeniero Agrónomo). Facultad de Agronomía. Universidad Nacional San Agustín de Arequipa. Perú. 110 p.
- Elston ARC. (2014). A Weight-Free Index for the Purpose of Ranking or Selection with Respect to Several Traits at a Time. 19: 85–97.
- ERPE, INIA, IICA y GTZ. (2001). Taxonomía y morfología de planta. En: Manual de producción de quinua de calidad en el Ecuador.
- FAO (Organización de las Naciones Unidas para la Agricultura y la Alimentación, IT). (2001). El cultivo de quinua.

- Franco, T. e Hidalgo, R. (eds.). (2003). In Análisis Estadístico de Datos de caracterización Morfológica de Recursos Fitogenéticos. Boletín técnico Nº 8, Instituto Internacional de Recursos Fitogenéticos (IPGRI). Cali, Colombia. 89 p.
- Fuentes, F.; Maughan, P. y Jellen, R. (2009). Diversidad genética y recursos genéticos para el mejoramiento de la quinoa (*Chenopodium quinoa* Willd.). Rev. Geogr. Valpso. 42: 20-33.
- Gamarra, M.; Bonifacio, A. y Peralta, E. (2001). Mejoramiento genético y participativo en quinua al mildeu en Perú, Bolivia y Ecuador. In Conferencia Internacional sobre: Futuras Estrategias para Implementar Mejoramiento Participativo en los Cultivos de las Zonas Altas en la Región andina. Memorias. Quito, Ecuador. 119-138 p.
- Gandarillas, H. (1979). La quinua y la kañiwa. Cultivos andinos. Bogotá, CO, IICA. 120 p.
- Gandarillas, H. (1984). Obtención experimental de *Chenopodium quinoa* Willd. MACA, IBTA. La Paz, Bolivia. 21 p.
- Gandarillas, H. y Bonifacio, A. (1991). Herencia de tiempo de madurez, altura de planta y tamaño del grano en la quinua. En: Actas del VII Congreso Internacional sobre Cultivos Andinos. Morales, D. y Vacher, J. (eds). La Paz, Bolivia. 3-10 p.
- Gangopadhyay, G.; Das, S. y Mukherjee, K.K. (2002). Speciation in *Chenopodium* in West Bengal, India. Genet. Res. Crop Evol. 49, 503–510.
- García, M.; Raes, D. y Jacobsen, S. (2003). Evapotranspiration analysis and irrigation requirements of quinoa (*Chenopodium quinoa* Willd.) in the Bolivian highlands. Agric. Water Manage. 60: 119-134.
- Glenn, S.; Jones, C.; Twardowski, M.; Bowers, L. y Kerfoot J. (2008). Glider observations of sediment resuspension in a Mid-Atlantic Bight fall transition storm. Limnol Oceanogr. 53 (5.2): 2180–2196.
- Grace, B. (1985). El Clima del Altiplano, Departamento de Puno, Perú. INIPA, CIPA XV, Convenio Perú- Canadá. Puno, Perú. 183 p.

- Hena, A.; Daniel, H.; Choukr, R.; Rao, N.; Hirich, A.; Shahid, M. y Rahman, K. (2016). Quinoa for Marginal Environments: Toward Future Food and Nutritional Security in MENA and Central Asia Regions. Plant Sci, 7(7).
- Hodgkin T. (1995). Some current issues in the conservation and use of plant genetic resources. Report of IPGRI workshop 9-11. Roma, Italy. 3-22 pp.
- Inguilán, J. y C. Pantoja. (2007). Evaluación y selección de 16 selecciones promisorias de quinua dulce (*Chenopodium quinua* Willd.) en el municipio de Córdoba, departamento de Nariño. (Tesis de grado). Facultad de Ciencias Agrícolas, Universidad de Nariño. Pasto, Colombia.
- Jacobsen, S. (2000). QUINOA Research and development at the International Potato Center (CIP). Síntesis preparada para la Reunión Anual del Consejo Directivo del CONDESAN (noviembre del 2000). Reg 005/2000.
- Jacobsen E. y Mujica A. (2002). Memorias del primer taller internacional en quinua:

 Recursos genéticos y sistemas de producción 10-14 de mayo 1999. La Molina Perú.

 Proyecto Quinua CIP.
- Jacobsen, S. (2003). The worldwide potential of quinoa (*Chenopodium quinoa* Willd.). Food Rev. Int. 19 (1–2), 167–177.
- Johannsen, W. (1903). Teoría de las líneas puras. En: Genética Cuantitativa.
- Kolano, B.; Pando, L. y Maluszynska, J. (2001). Molecular cytogenetic studies in *Chenopodium quinoa* Willd. and *Amaranthus caudatus*. Acta Societalis Botanicorum Poloniae. 70, 85–90.
- Kole, C. (2007). Genome mapping and molecular breeding in plants: Pulses, sugar and tuber crops. Vol 3. Springer. USA. 306 pp.
- Lashermes, P.; Combes, M.; Prakash, N.; Trouslot, P.; Lorieux, M. y Charrier, A. (2001). Genetic linkage map of Coffea canephora: effect of segregation distortion and analysis of recombination rate in male and female meioses. Genome. 44:589–596.
- León, J. (2006). Hibridación y comparación de la F1 con sus progenitores en tres cultivares de quinua (*Chenopodium quinoa* Willd.) en Puno. (Tesis Ing. Agro). FCA-UNA. Puno, Perú. 34- 36 pp.

- Lescano, J. (1994). Genética y mejoramiento de cultivos andinos. Programa Interinstitucional de waru waru. Puno, Perú. 459 p.
- Maughan, P.; Saghai, M. y Buss G. (2004). Microsatellite and amplified sequence length polymorphisms in cultivated and wild soybean. Genome. 38. 715-723 p.
- Mazón, N.; Peralta, E.; Monar, C.; Subia, C. y Rivera, M. (2013). INIAP Pata de Venado (Taruka Chaki). 2 ed. Quito, EC. INIAP. Estación Experimental Santa Catalina, Programa Nacional de Leguminosas y Granos Andinos. Plegable N° 261. 6 p.
- Mujica, A. (1988). Parámetros genéticos e índices de selección en quinua (*Chenopodium quinoa* Willd.). (Tesis de Doctor en Ciencias). Colegio de Postgraduados, Centro de Genética. Montecillos, México. 122p.
- Mujica, A.; Canahua, A. (1989). Faces fenológicas del cultivo de quinua (*Chenopodium quinoa* Willd.). En: Curso Taller, Fenología de cultivos andinos y uso de la información agro meteorológica. Salcedo, 7-10 agosto, INIAA, EEZA-ILLPA, PICA, PISA. Puno, Perú. 23-27 pp.
- Mújica A. y Jacobsen E. (2001). Biodiversidad un desafío en la región centro oeste de Sudamérica en agricultura andina. Puno. Perú.
- Mujica, A.; Canahua, A y Saravia, R. (2001). Quinua (*Chenopodium quinoa* Willd.) ancestral cultivo andino, alimento del presente y futuro. (En línea). Capítulo 2: Agronomía del cultivo de la quinua.
- Mujica, A.; Izquierdo, J. y Marathe, J. (2004). Quinua Ancestral cultivo andino, alimento del presente y futuro. Origen y distribución de la Quinua. Cap. Santiago, Chile 1 24 pp.
- Mujica, A. y Jacobsen, S. (2006). La quinua (*Chenopodium quinoa* Willd.) y sus parientes silvestres. Botánica Económica de los Andes Centrales. 449-457.
- Mujica, A.; Suquilanda, M.; Chura, E.; Ruiz, E.; León, A.; Cutipa, S. y Ponce C. (2013).
 Producción orgánica de quinua (*Chenopodium quinoa* Willd.). Primera Edición.
 Universidad Nacional del Altiplano FINCAGRO. 118 p.
- Ortiz, R.; Ruiz, T. y Mujica A. (1998). Sampling strategy for a core collection of Peruvian quinoa germplasm. Theoretical and Applied Genetics. 96: 475-483.

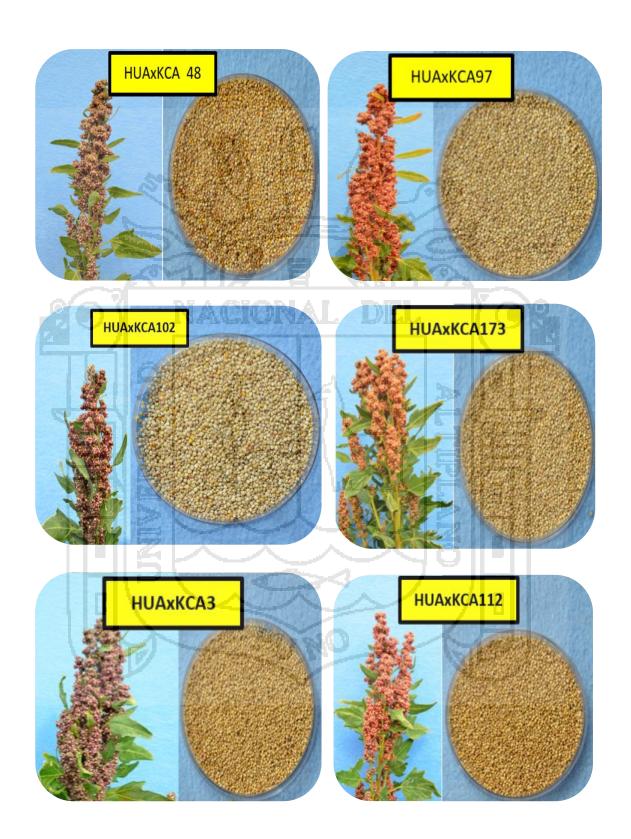
- Peralta, E.; Mazón, N.; Murillo, A.; Villacrés, E.; Rivera, M. y Subia, C. (2012). Catálogo de variedades mejoradas de granos andinos: chocho, quinua y amaranto, para la Sierra ecuatoriana. Quito, EC. INIAP. Estación Experimental Santa Catalina, Programa Nacional de Leguminosas y Granos Andinos. Publicación Miscelánea N° 151. 24 p.
- Perez, E.; De La Cruz Torres, C.; Mapes, J. y Andrade, G. (2005). Las comunidades campesinas: un importante reservorio de recursos.
- Peterson, A.; Jacobsen, S.; Bonifacio, A. y Murphy, K. (2015). A crossing method for Quinoa. Sustain. 7: 3230–3243.
- Pickersgill, B. (2007). Domestication of plants in the Americas: insights from Mendelian and molecular genetics. Annals of Botany. 100: 925 940.
- Pinto, J. (2014). Caracterización morfológica y agronómica de progenies F1 de cruzas simples de quinua (*Chenopodium quinoa* Willd.), en condiciones de invernadero. (Tesis para optar el título de Ing. Agrónomo). Arequipa, Perú. 127 p.
- PROINPA (Promoción e investigación de Productos Andinos). (2005). Módulo 2: Manejo Agronómico de la Quinua Orgánica. Fascículo 2: Manejo de semilla. La Paz, Bolivia. Ed. Fundación PROINPA. 41 p.
- Puenguenan, J. y Vitery, J. (1996). Estudio Fenológico de Diez Variedades de Quinua (*Chenopodium quinoa* Willd.) en Obonuco Municipio de Pasto. (Tesis de grado Ingeniero Agrónomo), Universidad de Nariño, Facultad de Ciencias Agrícolas. Pasto. 68 p.
- Ramírez, L. y Egaña, V. (2003). Guía de conceptos de genética cuantitativa. En: Departamento de Producción Agraria, Universidad Pública de Navarra.
- Ramírez, V.; Guerrero, R. y Piedras, G. (2016). Morphoagronomic response and protein quality of three accessions of quinoa(*Chenopodium quinoa* Willd.) in the northern Sabana Of Bogota. *AAct. Y Div. Cient*, 19(2), 325–332.
- Reinoso, J. y Paredes, S. (1998). Post-producción de productos andinos en el altiplano: Inventario y demanda. CONDESAN, CIRNMA. Lima, Perú. 1-136 pp.
- Reyes, P. (1985). Fitogenotécnia básica y aplicada 1. ed: A.G.T.Editor. México. 460 p.

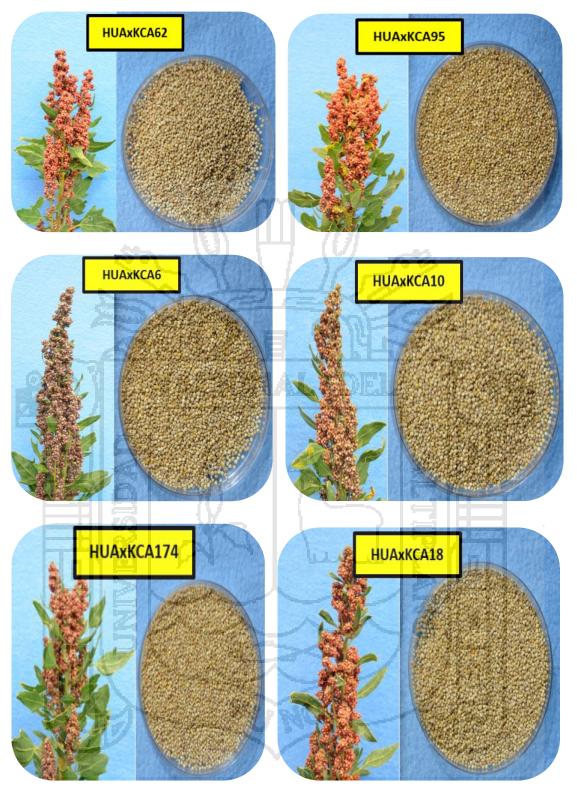
- ROBLES, R. (1991). Genética Elemental y Fitomejoramiento Práctico. Impreso en México. 263 273 pp.
- Rodríguez, J.; Sahagún, J.; Villaseñor, H.; Molina, J. y Martínez, A. (2002). Estabilidad de siete variedades comerciales de trigo (*Triticum aestivum* L.) de temporal. Rev. Fitotec. Mex., 25: 143-151.
- Rojas, W. (2003). Multivariate analysis of genetic diversity of Bolivian quinoa germplasm. Food Review International 19: 9-23.
- Rojas, W.; Soto, J.; Pinto, M. y Jäger, M. (2010). Granos, Andinos. Avances, logros y experiencias en quinua, cañahua y amaranto en Bolivia. La Paz, Bolivia. Padulosi. 178 p.
- Rojas, W.; Padulosi, S. (2013). Descriptores para quinua y sus parientes silvestres.

 Bioversity International, FAO, La Fundación PROINPA, INIAF y el FIDA.Z.

 Roma, Italia. 31-39 pp.
- Rojas, W.; Risi, J.; Bonifacio, A. y Gandarillas H. (2014). Consultoría Estudio de la Producción y Mercado de la Quinua. La Paz, Bolivia. 26 p.
- Sánchez, M.; Espinoza, P.; Zurita, A. y Herrera, J. (2009). Las variedades Aymaras del altiplano chileno y el uso de la selección genética para generar nuevas variedades. Iquique, S.E. 16 p.
- Sañudo, B.; Arteaga, G.; Betancourth, C.; Zambrano, J. y Burbano, E. (2005).

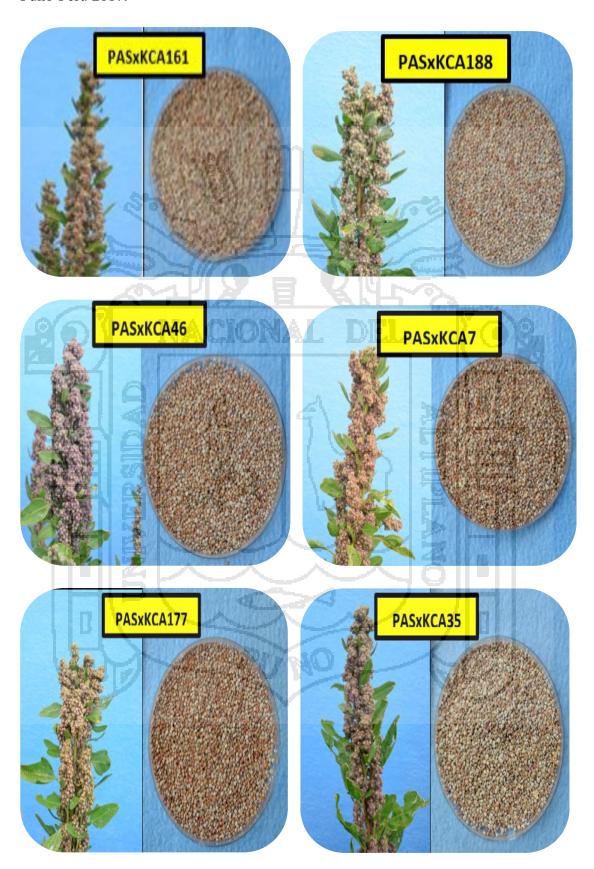
 Perspectivas de la quinua dulce para la región andina de Nariño. Pasto: Unigraf, 74 p.
- Shawn, A. (2005). Assessment of *Chenopodium quinoa* Willd. Genetic diversity in the USDA and CIP-FAO collections using SSR's and SNP's. 85 p.
- Silvestri, V., y Gil, F. (2000). Alogamia en quinua. Tasa en Mendoza (Argentina). Revista de la facultad de Ciencias Agrarias. Universidad Nacional de Cuyo. 32 (1), 71–76.
- Simmonds, N. (1971). The breeding system of *Chenopodium quinoa* Willd. I. Male sterility. Heredity. 27, 73–82.

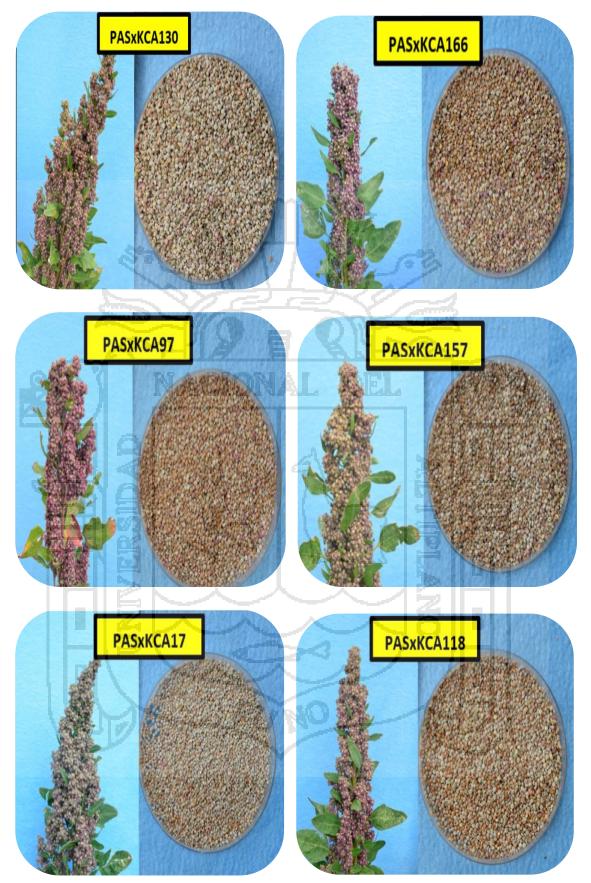

- SINGH, S. (1996). Progreso, Problemas y el futuro del Mejoramiento de Frijoles Mesoamericanos y la Mejora Genética Integrada en Taller de Mejoramiento de Frijol para el siglo XXI. Cali, CO. s.e. 34349 p.
- Tapia, M. (ed). (1979). La quinua y la kañiwa, cultivos andinos. IICA, Bogotá, 227 pp.
- Tapia, M. (2000). Cultivos Andinos subexplotados y su aporte a la alimentación:
 Agronomía de los cultivos andinos. Cultivos Andinos. FAO [CD ROM] Chile.
 Cap. III VALLEJO, F. y ESTRADA, E. 2002. Mejoramiento Genético de Plantas.
 Palmira: Universidad Nacional de Colombia. 402 p.
- Tapia M. y Fries A. (2007). Guía de campo de los cultivos Andinos. FAO y ANPE. Lima, Perú. 222 pp.
- Ward, S. (2000). Allotetraploid segregation for single-gene morphological characters in quinoa (*Chenopodium quinoa* Willd.). Euphytica. 116: 11 16.
- Wilson, H. (1990). Quinua and Relatives (Chenopodium sect. Chenopodium subsect.
- Yan, W. y Rajcan, I. (2002). Biplot evaluation of test sites and trait relations of soybean in Ontario. Crop Sci. 42: 11-20.
- Zurita, A.; Fuentes, F.; Zamora, P.; Jacobsen, S. y Schwember, A. (2014) Breeding quinoa (*Chenopodium quinoa* Willd.): potential and perspectives. Molecular Breeding, 34(1), p.13-30 p.



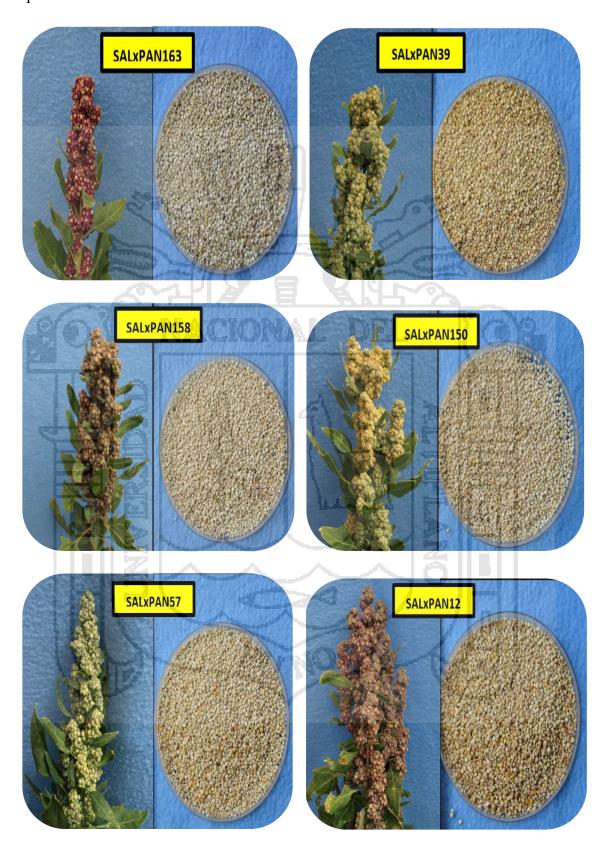
Anexo 1. Líneas seleccionadas de la cruza simples Huariponcho x Kcancolla de quinua. Puno-Perú 2017.

Anexo 2. Líneas seleccionadas de la cruza simples Salcedo INIA x Huariponcho de quinua. Puno-Perú 2017.

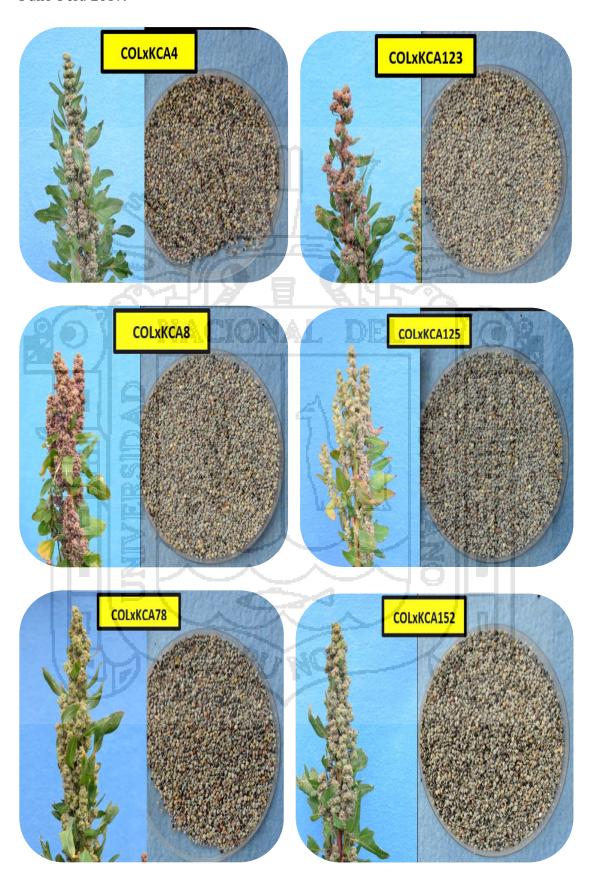


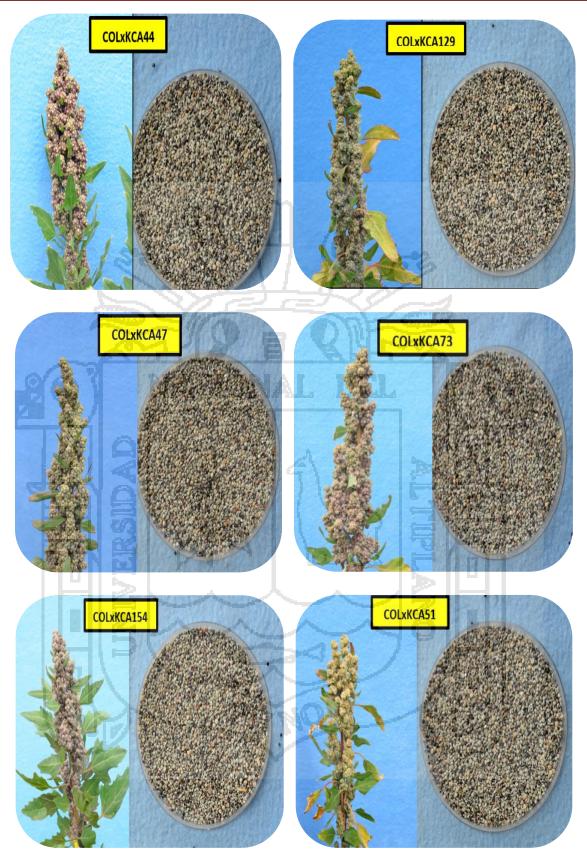


Anexo 3. Líneas seleccionadas de la cruza simples Pasankalla x Kcancolla de quinua. Puno-Perú 2017.

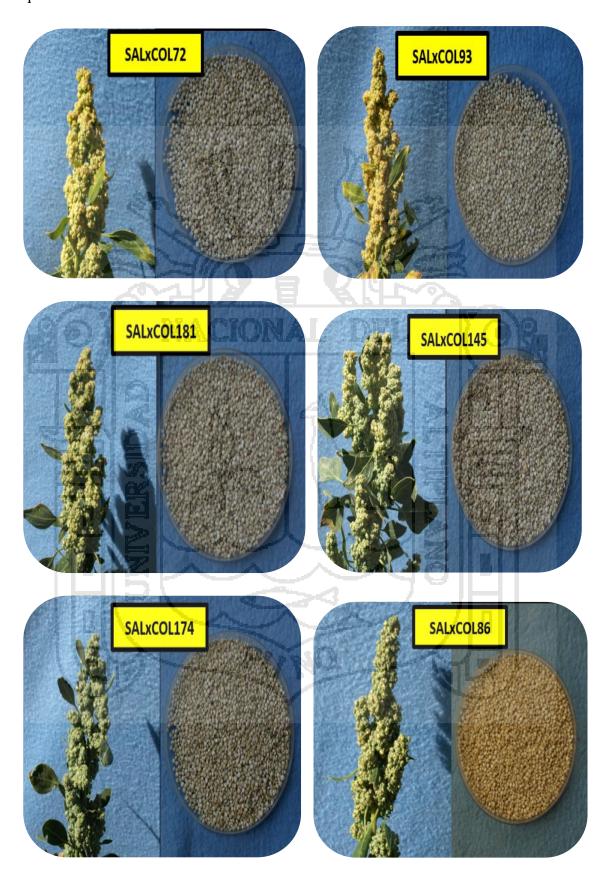


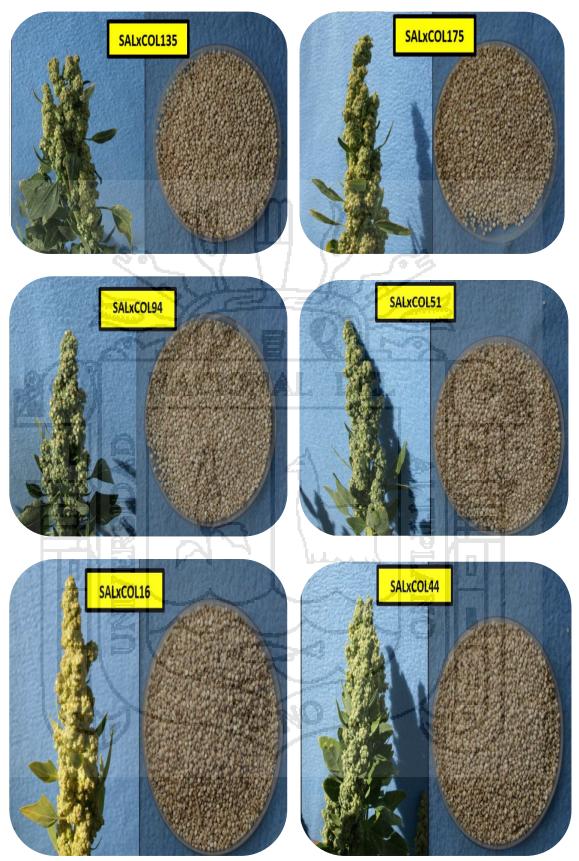
Anexo 4. Líneas seleccionadas de la cruza simples Salcedo INIA x Pandela rosada de quinua. Puno-Perú 2017.





Anexo 5. Líneas seleccionadas de la cruza simples Negra collana x Kcancolla de quinua. Puno-Perú 2017.





Anexo 6. Líneas seleccionadas de la cruza simples Salcedo INIA x Negra collana de quinua. Puno-Perú 2017.

Anexo 7. Marcado de parcelas para la instalación de la investigación de cruzas simples de quinua. Puno, Perú-2017.

Anexo 8. Siembra a chorro continuo de la investigación de cruzas simples de quinua. Puno, Perú-2017.

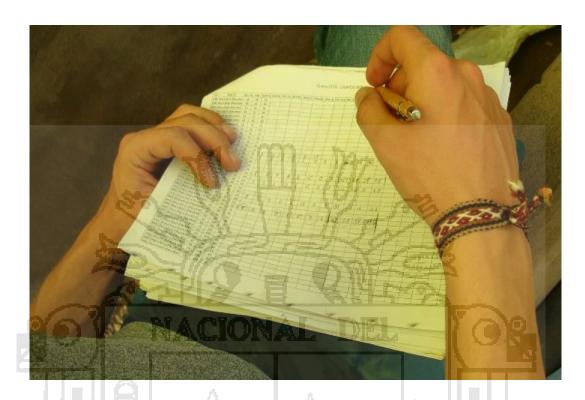
Anexo 9. Tapado de los surcos de la investigación de cruzas simples de quinua. Puno, Perú-2017.

Anexo 10. Emergencia de las plántulas en el campo experimental de cruzas simples. Puno, Perú-2017.

Anexo 11. Fase fenológica de ramificación de las plantas en el campo experimental de cruzas simples. Puno, Perú-2017.

Anexo 12. Fase fenológica de panojamiento de las plantas en el campo experimental de cruzas simples. Puno, Perú-2017.

Anexo 13. Densidad de plantas en el campo experimental de cruzas simples de quinua. Puno, Perú-2017.

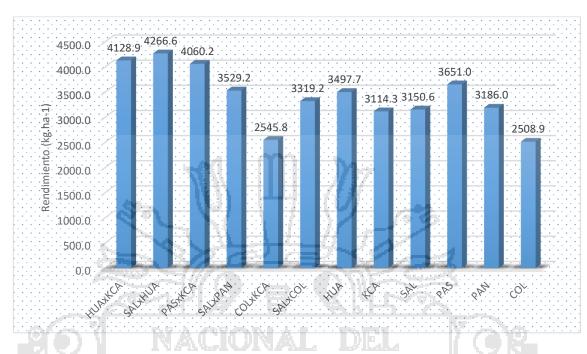


Anexo 14. Vista de los supervisores del proyecto KWS al campo experimental de CIP Camacani, Puno, Perú-2017.

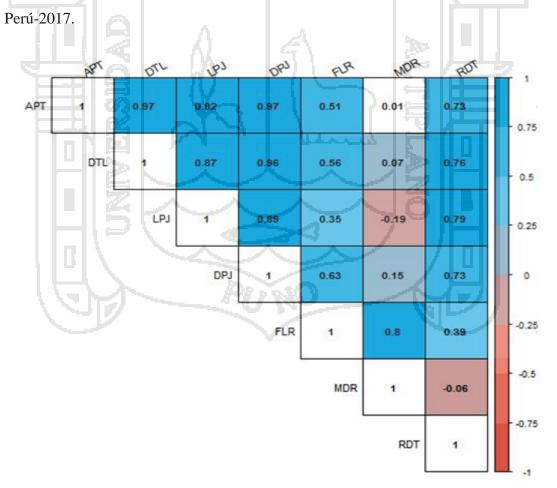
Anexo 15. Libro de campo de las evaluaciones de las líneas de cruzas simples. Puno, Perú-2017.

Anexo 16. Etiquetado de las plantas en evaluación en el campo experimental. Puno, Perú-2017.

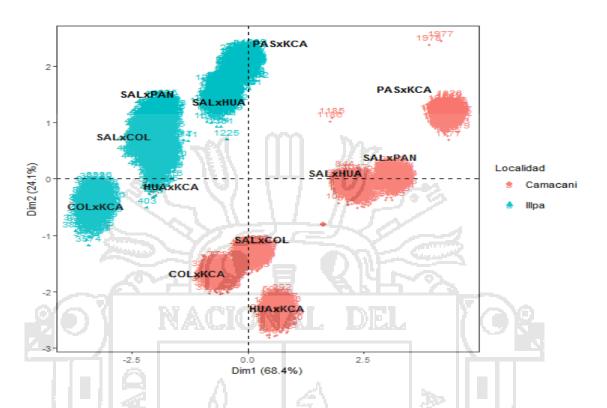
Anexo 17. Etiquetado de los sobres de manila para la cosecha de las líneas de cruzas simples. Puno, Perú-2017.



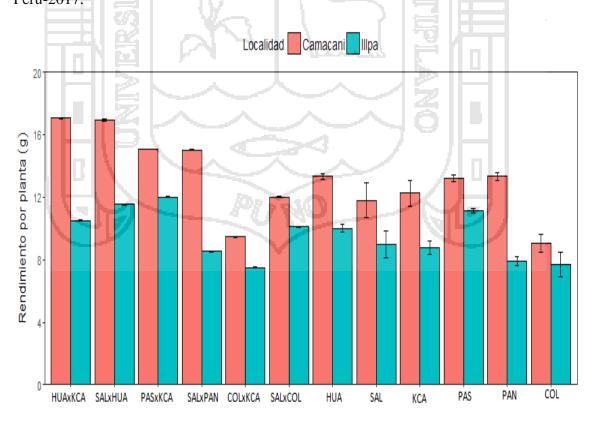
Anexo 18. Medias de las variables evaluadas en cruzas y sus genitores. Puno, Perú-2017.


1		(2)	1A	M	EDIAS		7/	
GENOTIPOS	Altura de planta (cm)	Diámetro de tallo (mm)	Longitud de panoja (cm)	Diámetro de panoja (cm)	Floración (días)	Madurez fisiólogica (días)	Rendimiento por planta (g)	Rendimiento por hectarea (kg/ha)
HUAxKCA	64.27	9.52	21.25	5.12	85	183	13.76	4128.90
SALxHUA	69.26	11.01	22.85	6.01	91	190	14.22	4266.60
PASxKCA	78.54	11.97	24.24	7.20	94	195	13.53	4060.20
SALxPAN	73.78	10.99	22.26	6.12	90	190	11.76	3529.20
COLxKCA	61.27	9.12	18.75	4.75	83	182	8.49	2545.80
SALxCOL	62.71	9.65	18.99	5.14	87	185	11.06	3319.20
HUA	62.59	9.72	20.96	5.16	88	186	11.66	3497.70
KCA	62.57	9.70	20.43	5.07	87	186	10.38	3114.30
SAL	64.79	10.66	20.72	5.55	91	192	10.50	3150.60
PAS	75.00	11.96	22.92	7.14	96	197	12.17	3651.00
PAN	71.46	11.03	20.61	5.90	90	191	10.62	3186.00
COL	56.96	9.17	17.19	4.87	85	184	8.36	2508.90

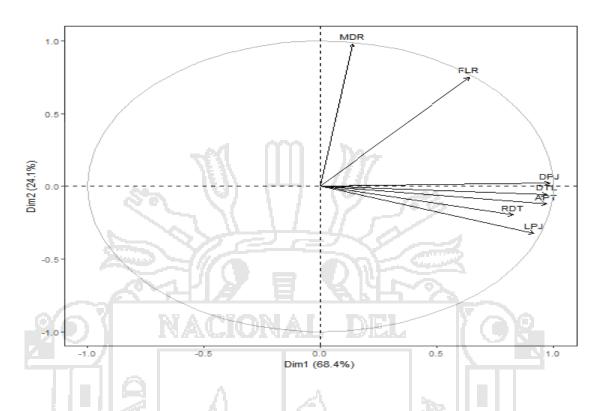
Anexo 19. Rendimiento por hectárea de las cruzas simples y los genitores. Puno, Perú-2017.



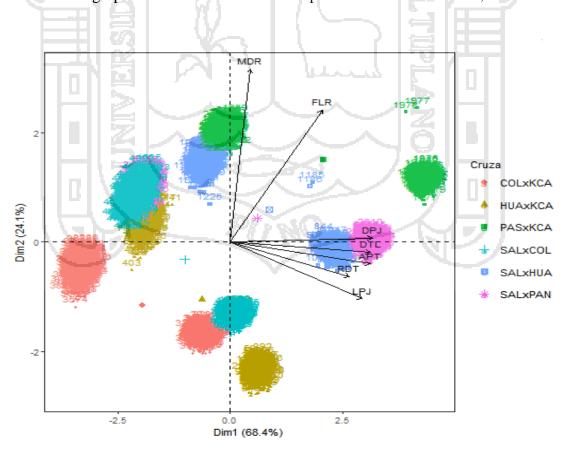
Anexo 20. Correlación de Pearson para las variables agronómicas en evaluación. Puno,



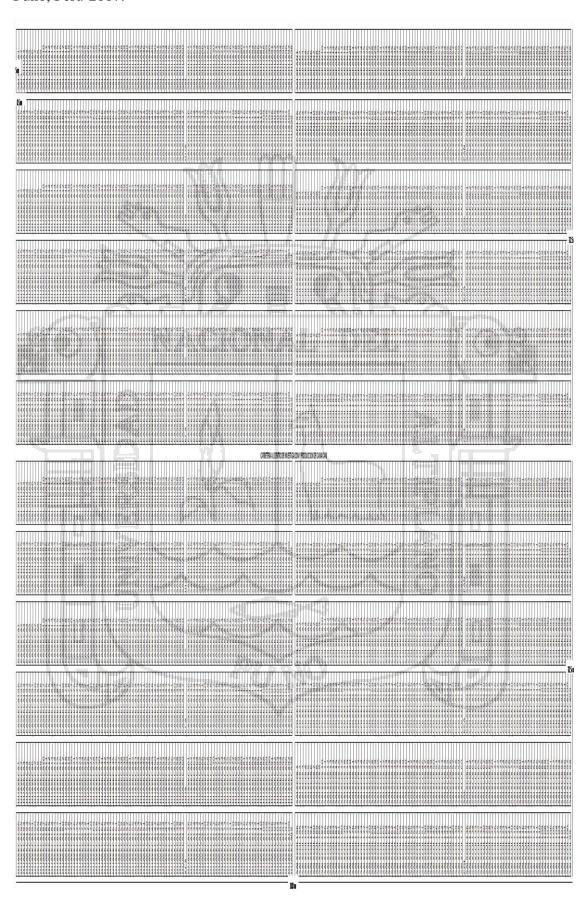
Anexo 21. Comportamiento agronómico de las cruzas simples en Camacani e Illpa. Puno, Perú-2017.



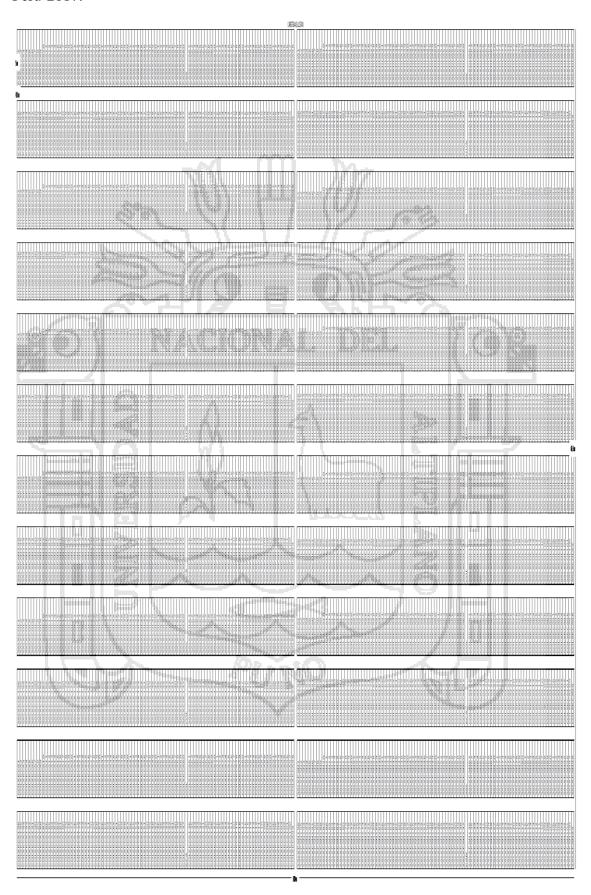
Anexo 22. Comportamiento de rendimiento de genotipos en Camacani e Illpa. Puno, Perú-2017.



Anexo 23. Biplot de las variables agronómicas en las cruzas simples de quinua. Puno, Perú-2017.



Anexo 24. Agrupamiento de las seis cruzas respecto a las variables. Puno, Perú-2017.



Anexo 25. Croquis experimental en el Centro de Investigación y Producción - Camacani. Puno, Perú-2017.

Anexo 26. Croquis experimental en el Centro de Investigación y Producción Illpa. Puno, Perú-2017.

Anexo 27. Datos del análisis físico-químico del suelo del CIP-Camacani. Puno, Perú-2017.

PERÚ

Ministerio de Agricultura

Instituto Nacional de Innovación Agraria EEA Santa Rita Arequipa

NOMBRE O RAZO	ON SOCIAL DEL SO	LICITANTE	JOSE DAVID	APAZA CALCINA	-LINIA		
PROCEDENCIA	NA SOCIAL DEL SC	LIGHTANTE	CAMACANI-PU		FONA		
MUESTRA			SUELO	NO			
MOLOTIVA			GOLLO	111			
CODIGO DE LABORATORIO	FECHA DE INGRESO	PROCEDENCIA DE LA MUESTRA	Lo	OTE	TIPO	E ANALISIS	N° DE INFORME
7437	02/01/2017	CAMACANI		1	CARAC	TERIZACION	7415
ANALISIS FISIO	00		7=27	=7~			A
ARENA (%)	LIMO (%)	ARCILLA(%)	TEXTURA	POROSIDAD (%)	CAPACIDAD DE CAMPO(%)	AGUA DISPONIBLE (%)	PUNTO MARCHITE. PERMANENTE (%)
55.6	20.8	23.6	FRANCO ARCILLO ARENOSO	45.0	19.8	11.9	7.9
1 4/-							_
ANALISIS QUIN	/ICO	NAT			16		12
ELEMENTO	UNIDAD	VALOR	DEFICIENTE	ВАЈО	NORMAL	ALTO	EXCESIVO
Materia Organica	%	3.38					-
Nitrogeno : C/N	%	0.17					
Fosforo : P	ppm	48.90					
Potasio : K		300.00					
CO3Ca	%	0.00	-	Ke l		32	
		11/4	NO SALINO	DEBILMENTE	MODERAD. SALINO	SALINO	MUY SALINO
			NO O/ILINO	- ONE INC	G/ALIIVO	GALINO	WIOT SALINO
C.E	dS/m extr. 1:2.5	0.46		-	1		
0.2	GO/III CXU. 1.2.0	0.40				MODERAD	
			ACIDO	MODERAD ACIDO	NEUTRO	ALCALINO	ALCALINO
pH	EXTR. 1:2:5	6.86					
BORO	mg/Kg						
	_	CAPACIDAD DE	INTERCAMBIO	CATIONICO (med	q/100gr de suelo))	
Calcio(Ca)	Magnesio(Mg)	Sodio(Na)	Potasio(k)	cie	suma de bases	PSI	latamenta sian Old
20.000	2.000	0.087	0.590	22.677	22.677	0.384	Interpretacion CIC
20.000	2.000	0.007	0.590	22.077	22.077	0.364	Medio
							-
ANALISIS FISICO	I TIPO DE SUELO	N					
CULTIVO	REQUERIDO			INTERF	PRETACION		
		Suelo de textu adicion de mate	ra ligeramente eria organica de	media, adecuad e acuerdo al cul	do para instala Itivo a instalar.	cion de mayori <mark>a</mark>	de cultivos previ
ANALISIS QUIMIC	O : INTERPRETAC	IONES	4 7 7 7	70			
CULTIVO	OPTIMOS			INTERF	PRETACION	W	
		normal en co ligeramente alto adicionar mate	ntenido de ma o en potasio r ria organica y	teria orgánica y espectivamente fertilizantes en	nitrogeno, al e; Para efectua n base de calc	salino en conducto en concentra ar la recomendac io de acuerdo a ationico CIC, la	cion de fosforo ; ion de nutrientes los resultados de

MINISTERIO DE AGRICULTURA INSTITUTO NACIONAL DE INMÓVACIÓN AGRARIA

ENC. LABORATORIO DE AGUAS Y SUELOS EE. AREQUIPA - INIA INSTITUTO NASIONALDE INNOVACIÓN AGRARIA

ING. JAVIER JAIME RAIMOS TELLO

DIRECTOR

EEA. SANTA RITA - AREQUIPA

Anexo 28. Datos del análisis físico-químico del suelo del CIP-Illpa. Puno, Perú-2017.

PERÚ

Ministerio de Agricultura Instituto Nacional de Innovación Agraria EEA Santa Rita Arequipa

NOMBBE O BAZOL	N SOCIAL DEL SO	LICITANTE	JOSE DAVID A	PAZA CALCINA-I	JNA		
PROCEDENCIA	N SOCIAL DEL SO	LIOTANTE	ILLPA-PUNO	7427 071201111			
MUESTRA			SUELO				
WOLOTTA							
CODIGO DE LABORATORIO	FECHA DE INGRESO	PROCEDENCIA DE LA MUESTRA	LO	TE	TIPO DE	ANALISIS	N° DE INFORME
7438	02/01/2017	ILLPA		2	CARACTE	RIZACION	7416
ANALISIS FISIC	0	(2)		=5<			Taura magnirea
ARENA (%)	LIMO (%)	ARCILLA(%)	TEXTURA		CAPACIDAD DE / CAMPO(%)	AGUA DISPONIBLE (%)	PUNTO MARCHITEZ PERMANENTE (%)
15.6	38.8	45.6	ARCILLO LIMOSO	48.0	21.5	11.3	10.2
~/=				44.4			
ANALISIS QUIN	7			5440	NORMAL	ALTO	EXCESIVO
ELEMENTO	UNIDAD	VALOR	DEFICIENTE	BAJO	NORMAL	ALTO	EXCESIVO
Materia Organica	%	3.20				-	
Nitrogeno : C/N	%	0.16					
Fosforo : P	ppm	41.91					
Potasio : K		374.98			1		-
CO3Ca	%	0.75		DEBILMENTE	MODERAD		-
		17	NO SALINO	SALINO	SALINO	SALINO	MUY SALINO
		11					
C.E	dS/m extr. 1:2.5	0.35			7 5	MODERAD	
	- 3	Mar.	ACIDO	MODERAD ACIDO	NEUTRO	ALCALINO	ALCALINO
рН	EXTR. 1:2:5	7.50			-		
BORO	mg/Kg			Lilan			
		CAPACIDAD DE	INTERCAMBIO	CATIONICO (med	/100gr de suelo)		
						201	
Calcio(Ca)	Magnesio(Mg)	Sodio(Na)	Potasio(k)	CIC	suma de bases	PSI	Interpretacion CIO
28.000	2.400	0.348	0.949	31.697	31.697	1.098	Alto
ANALISIS FISICO	: INTERPRETAC	ION					
CULTIVO	REQUERIDO				PRETACION	_/	
	1	de rentencion	de humedad;	media (fina), de para mejorar I del suelo de ac	la calidad de	suelo agricola	o, buena capacida adicionar mater
	O: INTERPRETA	CIONES		<u> </u>		717	_
CULTIVO	OPTIMOS	electrica, non fosforo y p considerar ad	mal en conter otasio respec icion de mater con referencia	n ligeramente a nido de materia tivamente; Par ia organica al s	orgánica y nitr a efectuar la uelo y fertiliza	ogeno, alto er recomendac ntes de acuer	en conductivida concentracion d ion de nutriente do a los resultado la interpretacion e

MINISTERIO DE AGRICULTURA INSTITUTO NACIONAL DE MINOVACION AGRARIA

ENC. LABORATORIO DE AGUAS Y SUELOS EE. AREQUIPA - INIA INSTITUTO NACIONAL DE INNOVACIÓN AGRAPIA

ING. JAVIER JAIME RAMOS TELLO
DIRECTOR
EEA. SANTA RITA - AREQUIPA

Anexo 29. Datos meteorológicos obtenidos del Senamhi para Camacani. Desde setiembre de 2015 a abril de 2016.

SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA SENAMHI - PUNO

"SENAMHI ORGANO OFICIAL Y RECTOR DEL SISTEMA HIDROMETEOROLOGICO NACIONAL AL SERVICIO DEL DESARROLLO SOCIO ECONOMICO DEL PAIS"

ESTACION: CO. 11/CO. 115052 LATITUD DEPARTAMENTO PUNO

LONGITUD PROVINCIA PUNO

RINCON DE LA CRUZ - ACORA ALTITUD DISTRITO ACORA

PARAMETRO: PROMEDIO MENSUAL DE TEMPERATURA MAXIMA EN °C

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015								16.1	16.4	17.4	17.2
2016	17.3	16.1	17.0	15.7	DNA			l.			

PARAMETRO: PROMEDIO MENSUAL DE TEMPERATURA MINIMA EN °C

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015	Ė	-2		134		Т		2.5	3.1	4.3	5.0
2016	5.8	6.4	5.0	3.5		N.					

PARAMETRO: PRECIPITACION TOTAL MENSUAL EN mm.

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015			1	\	{	_/	J	29.5	83.2	51.3	46.6
2016	74.5	169.6	26.8	90.0	h	h.		1			

PARAMETRO: PROMEDIO MENSUAL DE HUMEDAD RELATIVA EN %

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015	7			A	D8 5 35			49	50	49	56
2016	59	68	50	58	A 14						

RCC

VALIDO SOLO EN ORIGINAL

INFORMACION PROCESADA PARA: JOSE DAVID APAZA CALCINA (TESISTA)

Puno 10 de Enero del 2017

Anexo 30. Datos meteorológicos obtenidos del Senamhi para Illpa. Desde setiembre de 2015 a abril de 2016.

SERVICIO NACIONAL DE METEOROLOGIA E HIDROLOGIA DEL PERU

"SENAMHI ORGANO OFICIAL Y RECTOR DEL SISTEMA HIDROMETEOROLOGICO NACIONAL AL SERVICIO DEL DESARROLLO SOCIO ECONOMICO DEL PAIS"

ESTACION: CO. 115060 JULIACA

LATITUD LONGITUD 15°26'39" 70°12'28,2" DEPARTAMENTO

PUNO SAN ROMAN

ALTITUD

3826

PROVINCIA DISTRITO

JULIACA

PARAMETRO: PROMEDIO MENSUAL DE TEMPERATURA MAXIMA EN °C

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015			Į						18.7	19.2	20.4	19.1
2016	19.5	17.6	19.8	18.4			RI					
		1					400		-			

RCC.

PARAMETRO: PROMEDIO MENSUAL DE TEMPERATURA MINIMA EN °C

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015		B							-0.4	0.4	2.4	3.2
2016	4.2	6.3	2.6	1.8		- 1			h-			
		-46		41		5			122			

PARAMETRO: PRECIPITACION TOTAL MENSUAL EN mm.

								_				
AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015		L		X	Į	1			52.7	41.2	29.8	95.7
2016	75.3	197.7	45.4	63.0		п		7.5	7			

PARAMETRO: PROMEDIO MENSUAL DE HUMEDAD RELATIVA EN %

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015		ì		-		į	5		75	70	71	74
2016	82	86	78	78			\wedge					

PARAMETRO: PROMEDIO MENSUAL DE HORAS Y DECIMAS DE SOL

AÑOS	ENE.	FEB.	MAR.	ABRL.	MAY.	JUN.	JUL.	AGOT.	SET.	OCT.	NOV.	DIC.
2015									8.2	7.6	8.2	6.9
2016	7.6	5.1	8.8	6.8								

RCC.

INFORMACION PROCESADA PARA : JOSE DAVID APAZA CALCINA (TESISTA)

Puno 10 de Enero de 2017