GENERACIÓN DE MÁXIMAS AVENIDAS CON HEC- HMS EN LA
CUENCA MEDIA DEL RÍO LOCUMBA, SECTOR POQUERA

TESIS

PRESENTADA POR:
MANDAMIENTO MAMANI ANGEL YIMMY
PARA OPTAR EL TÍTULO PROFESIONAL DE:
INGENIERO AGRÍCOLA
PUNO – PERÚ

2018
UNIVERSIDAD NACIONAL DEL ALTIPLANO
FACULTAD DE INGENIERÍA AGRÍCOLA
ESCUELA PROFESIONAL DE INGENIERÍA AGRÍCOLA

GENERACIÓN DE MÁXIMAS AVENIDAS CON HEC-HMS EN LA CUENCA MÉDIA DEL RÍO LOCUMBA, SECTOR POQUERA

TESIS PRESENTADA POR:

MANDAMIENTO MAMANI ANGEL YIMMY
PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO AGRÍCOLA

APROBADO POR EL JURADO REVISOR CONFORMADO POR:

PRESIDENTE:

M.Sc. TÉOFILO CHIRINOS ORTIZ

PRIMER MIEMBRO:

D.Sc. VICTORIANO ROLANDO APAZA CAMPOS

SEGUNDO MIEMBRO:

M.Sc. ALCIDES HÉCTOR CALDERON MONTALCIO

DIRECTOR / ASESOR:

D.Sc. GERMAN BELIZARIO QUISPE

Tema : GENERACION DE MAXIMAS AVENIDAS CON HEC HMS
Área : INGENIERÍA Y TECNOLOGIA
Línea : RECURSOS HIDRICOS

VEINTISIETE (27) DIAS DEL MES DE DICIEMBRE DEL 2018

Repositorio Institucional UNA-PUNO
No olvide citar esta tesis
DEDICATORIA

A Dios:

Por sobre todas las cosas quien
hizo realidad mis deseos desde niño ya
que todo lo que soy se lo debo a él.

A mis padres:

Dedicado a ellos por su
exigencia comprensión, paciencia y
motivación: Víctor Mandamiento
Sandoval y a mi madre por su apoyo
integral; Ignacia Mamani Mamani
gracias por todo

A mi esposa:

Roció Maribel Mamani
Chambilla por su comprensión y apoyo
constante siendo mi fortaleza durante
toda mi formación profesional.

A mi hija:

Reyna Alessandra Mandamiento
Mamani por ser mi motivación y haber
colmado mi vida de inigualable amor
ÍNDICE GENERAL

DEDICATORIA .. i
INDICE DE FIGURAS .. vi
ÍNDICE DE ACRÓNIMOS ... xii
RESUMEN .. 15
ABSTRACT .. 16
I. INTRODUCCIÓN ... 17
1.1 Planteamiento del problema. .. 18
 1.1.1 Problema general .. 18
 1.1.2 Problemas específicos. .. 19
1.2 Antecedentes. .. 19
1.3 Justificación. ... 20
1.4 Objetivos de la investigación. .. 21
 1.4.1 Objetivo general. .. 21
 1.4.2 Objetivo específico. .. 21
II. REVISIÓN DE LITERATURA .. 21
 2.1 Máximas avenidas... 21
 2.2 Modelo Hec Hms. ... 22
 2.3 Precipitación Máxima 24 horas ... 23
 2.4 Métodos de estimación de máximas avenidas. ... 23
 2.4.1 Método del número de curva (CN). ... 24
 2.4.2 Hidrograma .. 27
 2.4.3 Método del hidrograma unitario. ... 28
 2.4.4 Hidrograma sintético. ... 29
 2.4.5 Hidrograma sintético unitario triangular. .. 30
 2.4.6 Hietograma de diseño. .. 30
2.5 Tiempo de Concentración ... 31
2.6 Periodo de retorno .. 32
2.7 Inundaciones .. 32
2.8 Precipitación media .. 33
2.8.1 Polígono de Thiessen ... 33
2.8.2 Método de Isoyetas ... 34
2.9 Análisis consistencia de precipitación máxima en 24 horas 35
2.9.1 Análisis de consistencia .. 35
2.9.2 Análisis de saltos .. 37
2.9.3 Análisis de tendencia ... 38
2.9.4 Prueba de Ajuste estadístico Kolgomorov Smirnov 38
2.9.5 Prueba de ajuste estadístico Chi-cuadrado 40
2.9.6 Completación y extensión de datos pluviométricos 42
2.10 Métodos de distribución de máximas avenidas 43
2.10.1 Distribución Normal ... 44
2.10.2 Distribución LogNormal de II parámetros 45
2.10.3 Distribución Gumbel o extremo tipo I 47
2.10.4 Distribución Gamma o Pearson de III parámetros 48
2.10.5 Distribución Log Gamma o Logpearson de III parámetros 50
2.11 Proceso de modelado de la superficie de elevación digital 51
2.11.1 Modelo de elevación digital ... 52
2.11.1 Aplicación de los DEM en la modelación hidrológica 52
2.12.2 Dirección de flujo .. 52
2.12.3 Acumulación de flujo ... 53
2.12.4 Cuenca hidrográfica ... 54
2.12.4 Características geomorfológicas ... 55
2.12.5 Parámetro de forma de la cuenca .. 55
2.12.6 Área de la cuenca. .. 56
2.12.7 Perímetro de la cuenca.. 56
2.12.8 Longitud del río principal.. 56
2.12.9 Coeficiente de compacidad... 57
2.13 Sistemas de información geográfica.. 57
2.13.1 Herramientas de sistema de información geográfica............... 59

III. MATERIALES Y MÉTODOS... 59

3.1 Materiales. ... 59
3.1.1 Tipo de investigación.. 59
3.1.2 Descripción de la cuenca... 60
3.1.3 Información del modelo de elevación digital......................... 61
3.1.4 Información pluviométrica... 62
3.1.5 Software a utilizar.. 63

3.2 Metodo... 64
3.2.1 Caracterización fisiográfica del Modelo de elevación digital (DEM) 64
3.2.1.1 metodología para la obtención de imágenes raster. 64
3.2.1.2. Delimitación del modelo de elevación digital.............................. 65
3.2.2 Análisis de consistencia de la precipitación máxima de 24 horas.......... 71
3.2.2.2 Análisis grafico de doble masa... 73
3.2.2.4 Completación y extensión de datos... 74
3.2.2.5 Distribución de máximas avenidas con Hydrognomon.................. 76
3.2.2.7 Distribución de la precipitación máxima.................................... 82
3.2.2.10 Elaboración de curvas IDF.. 83
3.2.3 Modelamiento de máximas avenidas con Hec Hms.......................... 88

IV. RESULTADOS Y DISCUSIÓN... 94
4.1 Resultados del modelo de elevación digital................................. 95
4.1.1 Resultados del mapa de pendientes....................................... 95
4.1.2 Cobertura vegetal y uso de los suelos. ...95

4.2. Resultados del análisis de consistencia de la información pluviométrica97

4.2.1 Hidrogramas de precipitación máxima de 24 horas completadas.98

4.2.2 Resultados del análisis de distribución y estimación de parámetros.............101

4.2.3 Resultados de la prueba de ajuste ...102

4.2.3.1 Resultado del modelo estadístico chí - cuadrado102

4.2.3.2 Resultado del modelo estadístico kolmogorov Smirnov103

4.2.4 Selección de la función de probabilidad ..104

4.2.5 Distribución de la precipitación areal ...106

4.2.6 Cálculo de la curva IDF para diferentes períodos de retorno108

4.2.7 Resultados del análisis de margen de error ..110

4.2.8 Resultados de la abstracción ..111

4.2.9 Hidrograma Unitario adimensional SCS ...112

4.3. Modelo Hec-Hms ...112

V. CONCLUSIONES ...117

VI. RECOMENDACIONES ...119

VII. REFERENCIAS ...120

ANEXOS ..122
INDICE DE FIGURAS

Grafica N° 1: Precipitación efectiva ... 25
Grafico N° 2: Relación lluvia escorrentía según número de curvas. 26
Grafico N° 3: Componentes de un Hidrograma durante una tormenta 29
Grafico N° 4: Curva doble masa ... 35
Grafico N° 5: Mapa de ubicación política .. 61
Grafico N° 6: Curva hipsométrica .. 67
Grafico N° 7: Curva de frecuencia de altitudes. ... 67
Grafico N° 8: Perfil longitudinal del cauce principal ... 69
Grafico N° 9: Serie de datos de precipitación ... 72
Grafico N° 10: Análisis de doble masa .. 73
Grafico N° 11: Límites de confianza, estación Vilacota. 77
Grafico N° 12: Límites de confianza, estación Candarave.............................. 78
Grafico N° 13: Límites de confianza, estación Sitajara 79
Grafico N° 14: Límites de confianza, estación Susapaya 80
Grafico N° 15: Planteamiento para el HEC HMS. .. 89
Grafico N° 16: Hietograma para T=50 .. 91
Grafico N° 17: Hietograma para T=100 años ... 92
Grafico N° 18: Hietograma para T=500 años ... 93
Grafico N° 19: Delimitación del modelo de elevación digital DEM 94
Grafico N° 20: Independencia de la serie de precipitación 98
Grafico N° 22: Hidrógrafo de registro de PP máx 24 horas, estación Susapaya 99
Grafico N° 23: Hidrógrafo de registro de PP máx 24 horas, estación Candarave 99
Grafico N° 24: Hidrógrafo de registro de PP máx 24 horas, estación Sitajara 100
Grafico N° 25: visualización de la función que mejor se justa para diferentes 105
Grafico N° 26: Mapa de distribución método polígono de Thiessen 106
Grafico N° 27: Mapa de distribución, método de isoyetas 107
Grafico 28: Curvas de intensidad de tiempos de duración 110
Grafico N° 29: hidrograma triangular calculado ... 111
Grafico N° 30: Hidrograma efectivo ... 112
Grafico N° 31: Confluencia de crecidas para T=50, 100 y 500 años 113
Grafico N° 32: Generación del caudal máximo para T=50 años 113
Grafico N° 33: Resultados de la serie de tiempo para T=50 años 114
Grafico N° 34: Generación del caudal máximo para T=100 años 114
Grafico N° 35: Resultados de la serie de tiempo para T=100 años 115
Grafico N° 36: Generación de caudal máximo para T=500 años 115
Grafico N° 37: Serie de tiempo para T=500 años ... 116
Grafico N° 38: Caudal total generado para un periodo de 500 años 116
Grafico N° 39: Mapa de la delimitación de la cuenca hidrográfica 127
Grafico N° 40: Mapa de pendientes de la cuenca hidrográfica 128
Grafico N° 41: Mapa de orden de ríos de la cuenca hidrográfica 129
Grafico N° 42: Mapa de capacidad de uso mayor de suelos ... 130
Grafico N° 43: Mapa de ubicación de las estaciones pluviométricas 131
Grafico N° 44: Mapa de isoyetas de precipitación máx. para T =5 132
Grafico N° 45: Mapa de isoyetas para T=10 ... 133
Grafico N° 46: Mapa de isoyetas para T=50 ... 134
Grafico N° 47: Mapa de isoyetas para T=100 ... 135
Grafico N° 48: Mapa de isoyetas para T=500 .. 136
Grafico N° 49 Mapa de polígono de thiessen ... 137
Grafico N° 50: Análisis de doble masa, estación Susapaya ... 138
Grafico N° 51: Hidrograma, estación Susapaya ... 138
Grafico N° 52: Análisis de doble masa, estación Vilacota .. 139
Grafico N° 53: Hidrograma, estación Vilacota ... 139
Grafico N° 54: Análisis de doble masa, estación Candarave ... 140
Grafico N° 55: Hidrograma, estación Candarave ... 140
Grafico N° 56: Análisis de doble masa, estación Sitajara .. 141
Grafico N° 57: Hidrograma, estación Sitajara ... 141
ÍNDICE DE TABLAS

Cuadro N° 1: Numero de curvas de escorrentía .. 27
Cuadro N° 2: Distribución de lluvia SCS. ... 31
Cuadro N° 3: Nivel de significancia - Smirnov Kolmogorov .. 40
Cuadro N° 4: Resumen de las estaciones meteorológicas. ... 62
Cuadro N°5: Cálculos para la obtención de la curva hipsométrica 66
Cuadro N° 6: Precipitaciones máxima anuales de 24 horas .. 72
Cuadro N° 7: Distribución teórica con periodos de retorno, estación Vilacota............ 77
Cuadro N° 8: Distribución teórica con periodos de retorno, estación Candarave 78
Cuadro N° 9: Distribución teórica con periodos de retorno, estación Sitajara 79
Cuadro N° 10: Distribución teórica con periodos de retorno, estación Susapaya 80
Cuadro N° 11: Prueba de Chi-cuadrado ... 81
Cuadro N° 12: Prueba de ajuste Kolmogorov Smirnov .. 82
Cuadro N° 13: Parámetros de la sub cuencas para el análisis del HEC HMS 89
Cuadro N° 14: Metodo de hietograma de diseño y distribución de lluvias 90
Cuadro N° 15: Hietograma de diseño y distribución de lluvias para T=50 años 91
Cuadro N° 16: Hietograma de diseño y distribución de lluvias para T = 100 años 92
Cuadro N° 17: Hietograma de diseño y distribución de lluvias para T = 500 años 93
Cuadro N° 18: Cobertura vegetal del suelo para la cuenca Locumba 95
Cuadro N° 19: Resumen de parámetros geomorfológicos ... 96
Cuadro N° 20: Cuadro de verificación de hipótesis, estación Vilacota 97
Cuadro N° 21: Cuadro de verificación de hipótesis, estación Susapaya 97
Cuadro N° 22: Cuadro de verificación de hipótesis, estación Candarave 97
Cuadro N° 23: Cuadro de verificación de hipótesis, estación Sitajara 97
Cuadro N° 24: Parámetros de la regresión lineal... 98
Cuadro N° 25: Precipitación máxima de 24 horas completadas y extendidas................. 100
Cuadro N° 26: Probabilidad y estimación de parámetros, estación Vilacota 101
Cuadro N° 27: Probabilidad y estimación de parámetros, estación Susapaya................. 101
Cuadro N° 28: Probabilidad y estimación de parámetros, estación Candarave............. 102
Cuadro N° 29: Probabilidad y estimación de parámetros, estación Sitajara 102
Cuadro N° 30: Verificación estadística de la distribución teórica, estación Vilacota .. 102
Cuadro N° 31: Verificación estadística de la distribución teórica, estación Susapaya. 103
Cuadro N° 32: Verificación estadística de la distribución teórica, esta. Candarave….103
Cuadro N° 33: Verificación estadística de la distribución teórica, estación Sitajara ... 103
Cuadro N° 34: Verificación estadística de la distribución teórica, estación Vilacota . 103
Cuadro N° 35: Verificación estadística de la distribución teórica, estación Susapaya . 104
Cuadro N° 36: Verificación estadística de la distribución teórica, estación Candarave 104
Cuadro N° 37: Verificación estadística de la distribución teórica, estación Sitajara .. 104
Cuadro N° 38: Precipitación según la probabilidad de distribución............................ 105
Cuadro N° 39: Resumen de la precipitación areal según el polígono de thiessen....... 106
Cuadro N° 40: Resumen de precipitación areal según el método de Isoyetas.......... 107
Cuadro N° 41: Precipitación máxima 24 h, según Gumbel 108
Cuadro N° 42: Pd, para diferentes periodos de retorno distribuida con thiessen 109
Cuadro N° 43: Intensidad de duración de 24 horas .. 109
Cuadro N° 44: Intensidad de duración .. 110
Cuadro N° 45: Distribución teórica aceptable ... 111
Cuadro N° 46: Registro de precipitación máxima 24 h, estación Susapaya 123
Cuadro N° 47: Registro de precipitación máxima 24 h, estación Vilacota 124
Cuadro N° 48: Registro de precipitación máxima 24h, estación Candarave 125
Cuadro N° 49: Registro de precipitación máxima 24 h, estación Sitajara 126
Cuadro N° 50: Precipitación máxima diaria, estación Susapaya 142
Cuadro N° 51: Precipitación máxima diaria, estación Candarave 142
Cuadro N° 52: Precipitación máxima diaria, estación Vilacota 143
Cuadro N° 53: Precipitación máxima diaria, estación Sitajara 143
ÍNDICE DE ACRÓNIMOS

<table>
<thead>
<tr>
<th>Acrónimo</th>
<th>Significado</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>Autoridad Administrativa del Agua.</td>
</tr>
<tr>
<td>ALA</td>
<td>Autoridad Local del Agua.</td>
</tr>
<tr>
<td>ANA</td>
<td>Autoridad Nacional del Agua.</td>
</tr>
<tr>
<td>CENEPRED</td>
<td>Centro Nacional de Estimación, Prevención y Reducción del Riesgo de Desastres</td>
</tr>
<tr>
<td>DGIAR</td>
<td>Dirección General de Infraestructura Agraria y Riego.</td>
</tr>
<tr>
<td>MINAGRI</td>
<td>Ministerio de Agricultura y Riego.</td>
</tr>
<tr>
<td>SENAMHI</td>
<td>Servicio Nacional de Meteorología e Hidrología.</td>
</tr>
<tr>
<td>SNIRH</td>
<td>Sistema Nacional de Información de Recursos Hídricos.</td>
</tr>
<tr>
<td>SWC</td>
<td>Conservación del suelo y del agua (Soil and water conservation).</td>
</tr>
<tr>
<td>UNI</td>
<td>Universidad Nacional de Ingeniería.</td>
</tr>
<tr>
<td>EGESUR</td>
<td>Empresa de generación eléctrica del sur.</td>
</tr>
<tr>
<td>ArcGIS</td>
<td>Sistema de información geográfico.</td>
</tr>
<tr>
<td>DEM</td>
<td>Modelo de elevación digital.</td>
</tr>
<tr>
<td>UTM</td>
<td>Unidad de medida.</td>
</tr>
<tr>
<td>IDF</td>
<td>Frecuencia de Intensidad.</td>
</tr>
<tr>
<td>SCS</td>
<td>Servicio de conservación de suelos.</td>
</tr>
<tr>
<td>CN</td>
<td>Numero de curva.</td>
</tr>
<tr>
<td>Cp</td>
<td>Coeficiente adimensional.</td>
</tr>
</tbody>
</table>
RESUMEN

El presente estudio se realizó en el sector Poquera del distrito de Ilabaya Provincia de Jorge Basadre del Departamento de Tacna desde el 15 de julio al 27 de diciembre del 2018. Con el objetivo de Generar máximas avenidas utilizando el modelo hidrológico Hec Hms. Para ello se ha planteado una metodología, desarrollada inicialmente con la recopilación de información cartográfica del modelo de elevación digital (DEM), serie de precipitaciones máximas de 24 horas de las estaciones Pluviométricas Candarave, Vilacota, Susapaya, y Sitajara, así como también se hizo uso de softwares como el Hydrognomon, ArcGIS 10.5 y Hec-Hms, luego se analizó la información recopilada con el efecto de obtener la consistencia de las series de precipitación de máximas avenidas, así como el procesamiento de la superficie del modelo de elevación digital y el modelamiento hidrológico. Como resultado de la metodología aplicada en el presente estudio se obtuvo un área total de 1493.806 km², con una longitud de 79.8528 km del cauce principal y una pendiente de 4.77 %, así como también se determinó la función de distribución de probabilidad de máximas avenidas ajustada por Kolmogorov Smirnov el cual muestra un valor Δmax= 0.0593 para la distribución teórica Gamma y LogNormal, un Δmax= 0.0669 para la distribución Weibull y Pearson III, finalmente del modelo Hec Hms se generó una máxima avenida de 78623.3 m³/s para 50 años, 114777.4 m³/s para 100 años y 160849.2 m³/s para 500 años de periodos de retorno, a partir de ello se puede observar que el modelo Hec Hms permite generar las máximas avenidas a partir de una muestra de series de precipitación máxima de 24 horas, además que considera la limitada información pluviométrica existente.

Palabras clave: Avenida máxima, modelamiento hidrológico, modelo de elevación digital, periodo de retorno, poquera.
The present research was conducted in the Poquera sector of the district of Ilabaya Province of Jorge Basadre in the Tacna region from July 15 to December 27, 2018. With the goal of generating maximum avenues using the hydrological model Hec Hms. To this end, a methodology has been proposed. Initially developed with the collection of cartographic information of the digital elevation model (DEM), a 24-hour maximum rainfall series for the Candarave, Vilacota, Susapaya, and Sitajara Pluviometric stations, as well as the use of software such as Hydrognomon, ArcGIS 10.5 and Hec-Hms. The information collected was then analyzed to obtain the consistency of the precipitation series of maximum floods, as well as the surface processing of the digital elevation model and the hydrological modeling. As a result of the methodology applied in the present study, a total area of 1493.806 km² with a length of 79.8528 km of the main channel was obtained and a slope of 4.77%. As well as the probability distribution function of maximum avenues adjusted by Kolmogorov Srminov. Which shows a value $\Delta_{\text{max}} = 0.0593$ for the theoretical distribution Gamma and LogNormal, $\Delta_{\text{Max}} = 0.0669$ for the Weibull and Pearson III distribution, finally for the Hec Hms model a maximum avenue of 78623.3 m³/s was generated for the following 50 years, 114777.4 m³/s for 100 years and 160849.2 m³/s for 500 years of return periods. From which it can be seen that the Hec Hms model allows maximum avenues to be generated from a sample of maximum rainfall series of 24 hours. In addition, it considers the limited existing rainfall information.

Keywords: digital elevation model, hydrological modeling, Maximum flow, return period, poquera.
I. INTRODUCCIÓN

En los últimos años se ha registrado aumento de caudal por las máximas avenidas producidas en el sur del país, causando bloqueo de vías, huaycos, desbordes de los ríos y la activación de quebradas adyacentes a los ríos, por consiguiente, es indispensable realizar un estudio de generación de máximas avenidas, utilizando el modelo HEC HMS.

Existen interesantes estudios de máximas avenidas en las zonas altiplánicas de Bolivia, Chile y la región hidrográfica de Puno y el sur de Tacna, en las cuales se aplicaron el modelo Hec Hms para la generación de máximas avenidas para diferentes periodos de retorno, pero existe muy poca información en cuanto a registros de precipitación máxima de 24 horas, esto se debe a la falta de estaciones pluviométricas, indispensable para la generación de máximas avenidas.

Es por ello que el presente estudio tiene como objetivo generar máximas avenidas con Hec Hms en la cuenca media del rio Locumba en el sector Poquera, ya que es necesario conocer y estimar las máximas avenidas para diferentes periodos de retorno, luego del análisis de consistencia realizado por el software Hydrognomon se evaluó la función de distribución de probabilidad de máximas avenidas ajustada por Kolmogorov Smirnov así como también el procesamiento de la superficie del modelo de elevación digital en la cual se determinó las características fisiográficas, parámetros hidrológicos requeridos para el modelamiento hidrológico.
1.1 Planteamiento del problema.

 Según estudios realizados de máximas avenidas, en gran parte del mundo se ha comprobado que estos fenómenos de máximas avenidas se presentan en los períodos de lluvias aumentando el caudal de los ríos considerablemente. Como consecuencia de ello los cauces pierden capacidad hidráulica, destruyendo la cobertura vegetal erosionando quebradas, produciendo efectos destructivos en los campos de cultivo y en algunos casos viviendas poblacionales.

 Este problema también es evidente en las regiones de nuestro país, donde se observa la presencia de máximas avenidas, afectando de manera directa a la agricultura, viviendas, puentes y estructuras hidráulicas.

 Así mismo, cabe indicar que el problema se encuentra presente en la cuenca del río Locumba, el cual incremento significativamente el caudal del río sobre todo en el sector Poquera, debido a estos eventos de máximas avenidas registrados en los meses de las temporadas de lluvia, de ahí que se realizó un estudio de máximas avenidas con Hec Hms para generar las máximas avenidas en el río poquera.

 Al concluir la presente investigación, me permitiré a responder la siguiente interrogante:

 1.1.1 Problema general

 ¿Cuál es la máxima avenida generado por el modelo Hec Hms en la Cuenca media del río Locumba en el sector Poquera?
1.1.2 Problemas específicos.

¿Cuáles son las características fisiográficas del modelo de elevación Digital?

¿Cuál es el análisis de consistencia de máximas avenidas evaluado por el software Hydrognomon?

¿Cuáles son las máximas avenidas generadas para 50, 100 y 500 años de períodos de retorno?

1.2 Antecedentes.

En el presente estudio de investigación realizado en la cuenca media del río Locumba en el sector Poquera tenemos los siguientes:

Estudio de Análisis de los ríos Sama y Locumba ANA (2008), se realizó el Análisis de los ríos Sama y Locumba utilizando la siguiente metodología; se recopiló la información cartográfica, topográfica, agrológica y meteorológica, a partir de esta información se realizó la evaluación hidrológica realizando el análisis de consistencia de los datos hidrometeorológicos, espectros de thiessen – Isoyetas, para finalmente concluir que se encontró remanentes importantes de agua en la cuenca del río Locumba ya que posee agua durante todo el año y su precipitación media anual es de 360 mm, su concentración de precipitación máxima ocurre durante los meses de Diciembre a Marzo siendo su periodo más húmedo 520 mm durante estos meses.

horas estación Laraqueri), así mismo obtuvo los Hidrograma y caudales de diseño para el río Grande para un periodo de retorno de 50 año es 562.40 m3/seg. y para un periodo de retorno de 100 años un caudal de 782.34 m3/seg.

Tesis “Modelamiento de Máximas Avenidas que genera riesgo de inundación en la ciudad de Ayaviri Puno” de Bach. Hipólito Mamani Paconpia (2014) el objetivo de la investigación fue determinar las zonas de riesgo de inundación por máximas avenidas del río Ayaviri, mediante el modelamiento con caudales máximos para proponer la protección de obras de infraestructura existentes en la zona urbana de la ciudad de Ayaviri margen derecha e izquierda. la metodología que utilizó fue proponer la zonificación en base a los caudales de inundación calculados para diferentes tormentas de diseño, períodos de retorno de 5, 50 y 100 años. Se calculó la escorrentía superficial generada en cada unidad hidrográfica en las tormentas de diseño y se modela hidrológicamente la cuenca para obtener los caudales máximos instantáneos en diferentes puntos de la red de drenaje.

1.3 Justificación.

Los estudios de máximas avenidas son cada vez más importantes debido a que cada año el caudal de los ríos están llegando a niveles cada vez más altos en todo el mundo. En nuestro país se ha registrado huaycos con caudales que sobrepasan la capacidad hidráulica de los ríos y quebradas, provocado derrumbes, desprendimiento de material de las quebradas, cortes de vías, colapso de viviendas por inundación, pese a todo esto se sigue actuando irresponsablemente y desafortunadamente no se cuenta con estaciones meteorológicas en los puntos de estudio donde suceden estos desastres naturales, siendo una información sobresaliente para generar máximas avenidas en los ríos del Perú.
Por ello es que el presente estudio tiene como propósito generar máximas avenidas utilizando el modelo Hec Hms en el río Locumba lo cual viene a ser una herramienta fundamental, para los diseños hidráulicos como el encauzamiento de las máximas avenidas. Tomando en cuenta estos aspectos y considerando que en la actualidad se han desarrollado diversos programas que permiten el modelamiento de máximas avenidas se ha utilizado el modelo hidrológico Hec-Hms.

1.4 Objetivos de la investigación.

1.4.1 Objetivo general.

Generar la máxima avenida con Hec Hms en la cuenca media del río Locumba en el sector Poquera.

1.4.2 Objetivo específico.

- Delimitar las características fisiográficas de la cuenca a partir del modelo de elevación digital e integrando herramientas SIG.
- Realizar el análisis de consistencia de las series de máximas avenidas con el software Hidrognomon.
- Realizar el modelamiento de máximas avenidas con Hec Hms para 50, 100 y 500 años de periodo de retorno.

II. REVISIÓN DE LITERATURA

2.1 Máximas avenidas.

Una avenida (conocida en algunos lugares también como crecida de un río, arroyo, etc. creciente, riada o aguas altas) es la elevación del nivel de un curso de agua
significativamente mayor que el flujo medio de éste. Durante la crecida, el caudal de un curso de agua aumenta en tales proporciones que el lecho del río puede resultar insuficiente para contenerlo. Entonces el agua lo desborda e invade el lecho mayor, también llamado llanura aluvial. (Efrain, García 2017)

Se entiende por avenida a un caudal muy grande de escorrentía superficial que sobrepasan la capacidad de transporte del canal generando la inundación de tierras aledañas. Las inundaciones traen, como es sabido problemas de toda índole en diversas áreas de la actividad humana. Por lo tanto, el objetivo de este texto enfoca al aspecto hidrológico de la determinación de los caudales del proyecto en obras hidráulicas, el que podría ser denominado “predeterminación de descargas máximas”, ya que se trata del cálculo anticipado (en la fase del proyecto) de un caudal crítico que tal vez no haya sucedido o que existe una cierta probabilidad de suceder en el futuro. (Vásquez, Villanueva 2000)

2.2 Modelo Hec Hms.

El modelo hidrológico HMS ha sido desarrollado por la USACE (United States Army Corps of Engineers) como continuación del modelo Hidrológico HEC-2. La versión más actual de HMS es la HMS 4.2.1 en la que se ha mejorado mucho la parte de organización de ventanas y entorno gráfico, el programa HMS permite multitud de metodologías de estimación tanto de Lluvia, escorrentía (Inicial and constant, SCS curve Number) como de propagación de hidrograma (Muskingum, Pulse Method). Es un modelo hidrológico contrastado, de gran validez para estimación de avenidas y aceptado por todas las Administraciones. (Máximo, Villón 2002)

Dentro de las capacidades y restricciones del HEC-HMS se tiene:
- Es un modelo de eventos, sin embargo, incluye una rutina de balance de agua en el suelo para simulaciones continuas (SMA).
- No tiene limitaciones en el tamaño de la cuenca si se consideran subcuencas de dimensiones adecuadas basadas en la geomorfología y el tipo de tormentas.
- No tiene limitaciones en el número de cuencas o tramos de río.
- No tiene limitaciones en relación al intervalo de tiempo (Dt) a considerar. El intervalo debe ser igual o menor que 0.28 del tiempo de retraso TR (relación 7.65) y debe ser igual para todas las cuencas de una misma corrida del modelo.
- En el tránsito de ondas simula ondas naturales suaves, pero no las de fuerte componente inercial (no trabaja con las ecuaciones completas de Saint Vennant).

(Máximo, Villón 2002)

2.3 Precipitación Máxima 24 horas.

Señala que la verdadera precipitación máxima en 24 horas se estima en promedio, 1.13 veces mayor que la máxima de 1 día. Estudios efectuados a partir de millares de años-estación de datos de precipitación de lluvia que, multiplicado por 1.13 las cantidades máximas anuales de lluvia horarias o diarias de un único intervalo de observación fijo comprendido entre 1 y 24 horas, obtendrán valores cercanos a los obtenidos mediante un análisis de máximos verdaderos. (Alexander 2014).

2.4 Métodos de estimación de máximas avenidas.

- Método directo.
- Método empírico.
- Método racional.
- Método mac math
- Método hidrométrico
- Método estadístico o probabilidad.
- Método del Numero de curva (CN)

2.4.1 Método del número de curva (CN).

Este método fue desarrollado por el Servicio de Conservación de Recursos Naturales de EE.UU. (Natural Resources Conservation Service – NRCS), originalmente llamado Servicio de Conservación de Suelos (Soil Conservation Service - SCS) para calcular la precipitación efectiva como una función de la lluvia acumulada, la cobertura del suelo, el uso del suelo y las condiciones de humedad. (Agustín, Cahuana 2009).

La metodología del número de la curva (CN), es la más empleada para transformar la precipitación total en precipitación efectiva, surgió de la observación del fenómeno hidrológico en distintos tipos de suelo en varios estados y para distintas condiciones de humedad antecedente. La representación gráfica de la profundidad de precipitación (P) y la profundidad de exceso de precipitación o escorrentía directa (Pe), permitió obtener una familia de curvas que fueron estandarizadas a partir de un número adimensional de curva CN, que varía de 1 a 100, según sea el grado del escorrentamiento directo. Así un número de la curva CN = 100, indica que toda la lluvia escurre y un CN = 1, indica que toda la lluvia se infiltra. (Agustín, Cahuana 2009)

2.4.1.1 Formula del método CN.

Para la tormenta como un todo, la altura de precipitación efectiva o escorrentía directa Pe es siempre menor o igual a la profundidad de precipitación P; de manera similar, después de que la escorrentía se inicia, la profundidad adicional del agua retenida en la cuenca Fa es menor o igual a alguna retención potencial máxima S; como se aprecia
en la Figura 1. Existe una cierta cantidad de precipitación I_a (Abstracción inicial antes del encharcamiento) para la cual no ocurrirá escorrentía, luego de eso, la escorrentía potencial es la diferencia entre P_e y I_a, la ecuación 3 es la ecuación básica para el cálculo de la profundidad de exceso de precipitación o escorrentía directa de una tormenta utilizando el método SCS. (Agustín, Cahuana 2009)

$$P_e = Q = \frac{(P - 0.25)^2}{P - I_a + S}$$

(2)

Se puede adoptar la relación empírica: $I_a = 0.2^*S$, con base en esto, se tiene:

$$P_e = Q = \frac{(P - 0.25)^2}{P - 0.85}$$

(3)

Grafica N° 1: Precipitación efectiva

Principio de continuidad: $P = P_t + I_a + F_a$

Donde:

I_a = Abstracción inicial.

P_t = Exceso de precipitación.

F_a = Abstracción continuada.
2.4.1.2 Método de abstracción del SCS.

Al representar en gráficas la información de P y Pe para muchas cuencas, el SCS encontró curvas características. Para estandarizar estas curvas, se define un número adimensional de curva CN, tal que $0 \leq CN \leq 100$.

Grafico N° 2: Relación lluvia escorrentía según número de curvas.

“Los números de curva han sido tabulados por el Soil Conservation Service con base en el tipo de suelo y el uso de la tierra. Se definen en cuatro grupos de suelo”.(Ven Te Show 1994).

Grupo A: Arena profunda, suelos profundos depositados por el viento, limos agregados.

Grupo B: Suelos pocos profundos depositados por el viento, marga arenosa.

Grupo C: Margas arcillosas, margas arenosas poco profundas, suelos con bajo contenido orgánico y suelos con altos contenidos de arcilla.

Grupo D: Suelos que se expanden significativamente cuando se mojan, arcillas altamente plásticas y ciertos suelos salinos.
Cuadro N° 1: Numero de curvas de escorrentía

<table>
<thead>
<tr>
<th>DESCRIPCIÓN DEL USO DE LA TIERRA</th>
<th>GRUPO HIDROLOGICO DE SUELO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Tierra cultivada:</td>
<td></td>
</tr>
<tr>
<td>sin tratamiento de conservación</td>
<td>72</td>
</tr>
<tr>
<td>con tratamiento de conservación</td>
<td>62</td>
</tr>
<tr>
<td>Pastizales:</td>
<td></td>
</tr>
<tr>
<td>condiciones pobre</td>
<td>68</td>
</tr>
<tr>
<td>condiciones óptimas</td>
<td>39</td>
</tr>
<tr>
<td>Vegas de ríos:</td>
<td></td>
</tr>
<tr>
<td>condiciones óptimas</td>
<td>30</td>
</tr>
<tr>
<td>Bosques:</td>
<td></td>
</tr>
<tr>
<td>troncos delgados, cubierta pobre</td>
<td>45</td>
</tr>
<tr>
<td>sin hierbas</td>
<td>25</td>
</tr>
<tr>
<td>Areas abiertas, césped, parques, campos de golf, etc.</td>
<td></td>
</tr>
<tr>
<td>óptimas condiciones:</td>
<td></td>
</tr>
<tr>
<td>cubierta de pasto en el 75% o más</td>
<td>39</td>
</tr>
<tr>
<td>condiciones aceptables</td>
<td>49</td>
</tr>
<tr>
<td>cubierta de pasto en el 50 al 75 %</td>
<td>89</td>
</tr>
<tr>
<td>Areas comerciales de negocios (85% impermeables)</td>
<td></td>
</tr>
<tr>
<td>Distrito industriales (72% impermeables)</td>
<td>81</td>
</tr>
<tr>
<td>Residencial:</td>
<td></td>
</tr>
<tr>
<td>Tamaño prom. del lote</td>
<td></td>
</tr>
<tr>
<td>1/8 acre o menos</td>
<td>65</td>
</tr>
<tr>
<td>1/4 acre</td>
<td>38</td>
</tr>
<tr>
<td>1/3 acre</td>
<td>30</td>
</tr>
<tr>
<td>1/2 acre</td>
<td>25</td>
</tr>
<tr>
<td>1 acre</td>
<td>20</td>
</tr>
<tr>
<td>Porcentaje prom. impermeable</td>
<td>77</td>
</tr>
<tr>
<td>Parqueadores pavimentados, techos, accesos, etc.</td>
<td>98</td>
</tr>
<tr>
<td>Calles y carreteras:</td>
<td></td>
</tr>
<tr>
<td>Pavimentos con cunetas y alcantarillado</td>
<td>98</td>
</tr>
<tr>
<td>Grava</td>
<td>76</td>
</tr>
<tr>
<td>Tierra</td>
<td>72</td>
</tr>
</tbody>
</table>

2.4.2 Hidrograma.

a) la estimación de los hidrogramas de crecida se elabora a través de los hidrogramas normales, un hidrograma de caudal es una gráfica o tabla que muestra la tasa de flujo del tiempo en un lugar dado de la corriente. En efecto el hidrograma es una expresión integral de las características fisiográficas y climáticas que rigen las relaciones entre lluvia y escorrentía de una cuenca, dos tipos de hidrogramas son particularmente importantes: el hidrograma anual y el hidrograma de tormenta. (Ven Te Show 1994)
b) El hidrograma de una corriente es la representación gráfica de las variaciones del caudal con respecto al tiempo, arregladas en orden cronológico en un lugar dado de la corriente.

Analizando el hidrograma correspondiente a una tormenta aislada se tiene lo siguiente:

- Curva de concentración, es la parte que corresponde al ascenso del hidrograma
- Pico del hidrograma, es la zona que rodea al caudal máximo
- Curva de descenso, es la zona correspondiente a la disminución progresiva del caudal
- Punto de inicio de la curva de agotamiento, es el momento en que toda la escorrentía directa provocada por esas precipitaciones ya ha pasado. El agua aforada desde ese momento es escorrentía básica que corresponde a escorrentía subterránea.
- Curva de agotamiento, es la parte del hidrograma en que el caudal procede solamente de la escorrentía básica. Es importante notar que la curva de agotamiento, comienza más alto que el punto de inicio del escorrimiento directo eso es debido a que parte de la precipitación que se infiltro esta ahora alimentando el cauce. (Villon, Bejar 2009).

2.4.3 Método del hidrograma unitario.

El hidrograma unitario es la función respuesta de pulso unitario para un sistema hidrológico lineal. Propuesto por primera vez por Sherman (1932), el hidrograma unitario (conocido originalmente como gráfica unitaria) de una cuenca, se define como el hidrograma de escorrentía directa (DRH, por sus siglas en inglés) resultante de 1 pulg
usualmente tomado como 1 cm en unidades del SI) de exceso de lluvia generado uniformemente sobre el área de drenaje a una tasa constante a lo largo de una duración efectiva. Originalmente, Sherman utilizó la palabra "unitario" para denotar un tiempo unitario, pero desde entonces se ha interpretado frecuentemente como una profundidad unitaria de exceso de lluvia. Sherman clasificó la escorrentía en escorrentía superficial y escorrentía de agua subterránea, y definió el hidrograma unitario para ser usado únicamente con la escorrentía superficial. (Ven Te Show 1994)

Grafico Nº 3: Componentes de un Hidrograma durante una tormenta

Fuente: Ven Te Show (1994).

2.4.4 Hidrograma sintético.

La mayor parte de las cuencas, no cuentan con una estación hidrométrica o bien con los registros pluviográficos necesarios. Por ello es conveniente contar con métodos con los que se puedan obtener hidrogramas unitarios usando únicamente datos de características generales de la cuenca. Los hidrogramas así obtenidos se denominan sintéticos. (Máximo, Villón 2002)
La finalidad de un hidrograma sintético es representar o simular un hidrograma representativo del fenómeno hidrológico de la cuenca, para determinar el caudal pico para diseñar. Debido a su importancia, se ha desarrollado una gran cantidad de hidrogramas unitarios sintéticos; siendo la más relevante el hidrograma unitario triangular. (Máximo, Villón 2002)

2.4.5 Hidrograma sintético unitario triangular.

Mockus, desarrolló un hidrograma unitario sintético de forma triangular, lo que usa el Soil Conservation Service (SCS), la cual a pesar de su simplicidad proporciona los parámetros fundamentales del hidrograma: tiempo de recesión (hr), tiempo de retardo (hr) tiempo de concentración (hr) y el caudal en m3 /s.cm. El volumen generado por las separaciones de la lluvia en neta y abstracciones es propagado a través del río mediante el uso del hidrograma unitario.(Máximo, Villón 2002).

2.4.6 Hietograma de diseño.

En ocasiones no es suficiente el dato de que (por ejemplo) la precipitación máxima para las 5 horas más lluviosas es de 100 mm. Es posible que necesitemos conocer la evolución de esos 100 mm. a lo largo de esas 5 horas. (MTC, 2008). Para la distribución de precipitación y construcción de hietogramas de diseño se emplean las tablas del Soil Conservation del U.S Department of Agriculture (1986) citado por Chow (1994). En la Tabla N° 1 se presentan los coeficientes de distribución de lluvias para tormentas de 6 y 24 horas.(Ven Te Show 1994)
2.5 Tiempo de Concentración.

Lo define como el tiempo que tarda el flujo superficial en contribuir al caudal de salida, desde el punto más alejado hasta la desembocadura de la cuenca. López y Mintegui (1987) indican que el tiempo de concentración también depende de la forma de la cuenca. El tiempo de concentración de una cuenca es muy importante porque en los modelos lluvia-escorrentía, la duración de la lluvia se asume igual al tiempo de concentración de la cuenca, puesto que es para esta duración cuando la totalidad de la cuenca está aportando al proceso de escorrentía, por lo cual se espera que se presenten los caudales máximos. (Ven Te Show 1994)
Formula de Kirpich

\[T_c = 0.0663 \left(\frac{L}{S^{0.5}} \right)^{0.77} \](2.5.1)

Donde:

Tc= Tiempo de concentración (hr).

L= Longitud del cauce principal de la cuenca (km)

\(S^{0.5} \) = Pendiente del cauce principal (m/m).

2.6 Periodo de retorno.

El periodo de retorno T de un evento \(X \geq X_r \) es el valor esperado de T, \(E(r) \), su valor promedio medido sobre un número de ocurrencias suficientemente grande.

El periodo de retorno de un evento con una magnitud dada puede definirse como el intervalo de recurrencia promedio entre eventos que igualan o exceden una magnitud especificada. (Ven Te Show 1994)

2.7 Inundaciones.

Las causas más comunes de inundación son las crecientes de corrientes y de ríos y las mareas anormalmente altas que resultan de tormentas severas. La planicie de inundación puede incluir el ancho total de valles angostos o áreas amplias localizadas a lo largo de ríos en valles amplios y planos. (Ven Te Show 1994)
2.8 Precipitación media.

La precipitación media en una zona o en una cuenca es motivo de considerable interés en el diseño hidrológico y su correcta evaluación es muy importante en la modelación de los procesos de lluvia y escorrentía, tanto en modelos de pronóstico como en diseño. Según sean las necesidades del estudio, puede usarse el valor de la precipitación media anual, mensual, diaria o de una tormenta distribuida sobre un área.(Fartorelli 2011).

2.8.1 Polígono de Thiessen.

Este método se emplea para delimitar las subregiones correspondientes a cada pluviómetro, primero se unen las estaciones adyacentes con segmentos de recta, y luego se construyen los bisectores perpendiculares a cada segmento, extendiéndolos hasta que se intersecten, formando polígonos irregulares. Esta metodología es objetiva y entrega resultados satisfactorios si se tiene una red adecuada de pluviómetros.(Sánches, Martínes, Francisco 2008)

Para obtener la precipitación media sobre una cuenca se aplica la siguiente ecuación:

Ecuación N° 1 formula de polígono de Thiessen

\[P = \frac{\sum_{i=1}^{n} (P_i A_i)}{A} = \sum_{i=1}^{n} \left(P_i - \frac{A_i}{A} \right) \] \hspace{0.5cm} (2.8.1.1)

Donde:

\[P_i = \text{Precipitación observada en la Estación "i".} \]

\[A_i = \text{Área del polígono correspondiente a la estación "i".} \]
A = Área Total de la cuenca.

n = Número de estaciones Pluviométricas.

2.8.2 Método de Isoyetas.

Las isoyetas son líneas que unen puntos de una misma precipitación. Su cálculo manual se realiza a partir del sistema de representación de planos acotados, a través de la triangulación de la red de puntos del sistema y su posterior graduación y unión. EL proceso de interpolación que va a emplear ArcGIS va a tratar de obtener los valores de precipitación en las celdas que no disponen de información pluviométrica. (Sánches, Martínes, Francisco 2008).

Spline estima valores usando una función matemática que reduce al mínimo la curvatura de la superficie total, dando como resultado una superficie lisa que pasa a través de los puntos muestreados. Este método es mejor que el anterior para interpolar la precipitación. (Sánches, Martínes, Francisco 2008).

Ecuación N° 2 formula de Isoyetas

\[
Pm = \frac{\sum_{i=1}^{n} ((Pi + 1 + Pi) / 2) * Si + 1, i}{St}
\]

…………………………(2.8.2.1)

Donde:

Pi= Precipitación de la estación i (mm)

Si+1,i= superficie entre dos isoyetas consecutivas (km2)

St= superficie total (km2).
2.9 Análisis consistencia de precipitación máxima en 24 horas.

2.9.1 Análisis de consistencia.

El análisis de consistencia es una técnica que permite detectar, corregir y eliminar errores sistemáticos y aleatorios que se presentan en series hidrométricas; en consecuencia, la serie analizada debe ser homogénea, consistente y confiable. Cualquier cambio en la ubicación como en la exposición de un pluviómetro puede conllevar un cambio relativo en la cantidad de lluvia captada por el pluviómetro. El registro completo publicado representará condiciones inexistentes. Un registro de este tipo se dice que es inconsistente. (Wendor, Chereque 1983)

- Una forma de detectar las inconsistencias es mediante las curvas doble masa.

Una curva doble masa se construye elevando en ordenadas los valores acumulados de la estación en estudio y en abscisas los valores acumulados de un patrón, que consiste en el promedio de varias estaciones índice. (Wendor, Chereque 1983)

Grafico N° 4: Curva doble masa
En la figura N° 4 se observa un quiebre el año 1974. Si se supone que las estaciones que componen el patrón son confiables éste será consistente y por lo tanto el quiebre debe atribuirse a una inconsistencia de la estación en estudio, es necesario ajustar los valores del período más lejano (1967-1973) para reducirlos a las condiciones de ubicación, exposición, etc. imperantes en el período más reciente (1974-1980). En el ejemplo de la, el ajuste o corrección se realiza multiplicando cada precipitación del período 1967 a 1973 por la razón de las pendientes m2/ m1.

Ecuación N° 3 Precipitación corregida

\[pc = \frac{m_2}{m_1} \cdot p \]
\[\text{(2.9.1.1)} \]

Donde:

\(P \) = precipitación observada

\(P_c \) = precipitación corregida

\(m_2 \) = pendiente del periodo más reciente

\(m_1 \) = pendiente del periodo cuando se observó p.

La ecuación 5 corregir la precipitación registrada de manera que la curva doble másica se convierte en una sola recta. Se ha partido de suponer que el patrón es consistente. Sin embargo, se recomienda verificar la consistencia de cada estación índice. Es to se hace dibujando una curva doble másica entre cada estación y el patrón formado por las restantes. Aquellas estaciones que resulten inconsistentes deben ser removidas del patrón.

Al trazar la curva doble másica no se consideran los quiebres que no persisten por más de 5 años, ya que se considera que los quiebres cortos se deben principalmente a la
variabilidad inherente a los datos hidrológicos. A veces un cambio pequeño en la ubicación del pluviómetro, de sólo unos cuantos metros, puede afectar su exposición y provocar inconsistencias en el registro. Además, aunque el pluviómetro no cambie de ubicación su exposición puede verse afectada por el crecimiento de vegetación cercana, o por la construcción de edificios en los alrededores. No se recomienda usar curvas doble másicas en regiones montañosas, porque las diferencias en los registros de estaciones cercanas pueden deberse a eventos meteorológicos diferentes. (Wendor, Chereque 1983)

2.9.2 Análisis de saltos.

 a) Identificación:

 Donde se combinan 3 criterios:

 • Información de campo.
 • Análisis gráfico.
 • Análisis de doble masa.

 b) Evaluación y cuantificación:

 Para evaluar y cuantificar los errores detectados en la forma de saltos se realiza un análisis estadístico, un proceso de inferencia en la media y la desviación estándar de los periodos separados en la etapa anterior, mediante las pruebas de T y F respectivamente. (Máximo, Villón 2002).

 c) Corrección y/o eliminación:

 Sólo si resulta la media y la desviación estándar estadísticamente diferentes, entonces se llega hacer una corrección de datos. (Máximo, Villón 2002).
2.9.3 Análisis de tendencia.

La tendencia se define como un cambio sistemático y continuo sobre una muestra de información meteorológica en cualquier parámetro de la misma. La tendencia por lo general puede ser aproximado por la ecuación de regresión lineal, y se analiza en la media y la desviación estándar.

- Tendencia en la Media

Los parámetros de regresión de estas ecuaciones, pueden ser estimados por el método de mínimos cuadrados, o por el método de regresión lineal múltiple. (Máximo, Villón 2002).

2.9.4 Prueba de Ajuste estadístico Kolgomorov Smirnov.

Para determinar qué tan adecuado es el ajuste de los datos a las distribuciones de probabilidades se han propuesto una serie de pruebas estadísticas que determinan si es adecuado el ajuste. Estos son análisis estadísticos y como tal se deben entender, es decir, no se puede ignorar el significado físico de los ajustes.

El análisis de frecuencia referido a precipitaciones máximas diarias, tiene la finalidad de estimar precipitaciones máximas para diferentes periodos de retorno, mediante la aplicación de modelos probabilísticos, los cuales pueden ser discretos y continuos. (Villon, Bejar 2009)

Para determinar cuál de las distribuciones estudiadas se adapta mejor a la información histórica se utilizó la metodología de Kolgomorov Smirnov.
El estadístico Smirnov Kolmogorov D considera la desviación de la función de distribución de probabilidades de la muestra P(x) de la función de probabilidades teórica, escogida Po(x) tal que

\[D_n = \max(P(x) - Po(x)) \]

\[(2.9.4.1) \]

Para la prueba se requiere que el valor Dn calculado con la expresión anterior sea menor que el valor tabulado Dα para un nivel de probabilidad requerido.

Esta prueba es fácil de realizar y comprende las siguientes etapas:

1. El estadístico Dn es la máxima diferencia entre la función de distribución acumulada de la muestra y la función de distribución acumulada teórica escogida.

2. Se fija el nivel de probabilidad α, valores de 0.05 y 0.01 son los más usuales.

3. El valor crítico Dα de la prueba debe ser obtenido de tablas en función de α y n.

4. Si el valor calculado Dn es mayor que el Dα, la distribución escogida se debe rechazar.

El nivel de significancia α depende directamente del tamaño de la muestra, tal como se aprecia en la que a continuación se muestra en el cuadro N°5
Cuadro N° 3: Nivel de significancia - Smirnov Kolmogorov

<table>
<thead>
<tr>
<th>Tamaño</th>
<th>0.2</th>
<th>0.1</th>
<th>0.05</th>
<th>0.02</th>
<th>0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.09</td>
<td>0.95</td>
<td>0.98</td>
<td>0.99</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>0.68</td>
<td>0.78</td>
<td>0.84</td>
<td>0.9</td>
<td>0.93</td>
</tr>
<tr>
<td>3</td>
<td>0.57</td>
<td>0.64</td>
<td>0.71</td>
<td>0.69</td>
<td>0.83</td>
</tr>
<tr>
<td>4</td>
<td>0.49</td>
<td>0.57</td>
<td>0.62</td>
<td>0.69</td>
<td>0.73</td>
</tr>
<tr>
<td>5</td>
<td>0.48</td>
<td>0.51</td>
<td>0.56</td>
<td>0.63</td>
<td>0.67</td>
</tr>
<tr>
<td>6</td>
<td>0.41</td>
<td>0.47</td>
<td>0.52</td>
<td>0.58</td>
<td>0.62</td>
</tr>
<tr>
<td>7</td>
<td>0.38</td>
<td>0.44</td>
<td>0.48</td>
<td>0.54</td>
<td>0.58</td>
</tr>
<tr>
<td>8</td>
<td>0.36</td>
<td>0.41</td>
<td>0.45</td>
<td>0.51</td>
<td>0.54</td>
</tr>
<tr>
<td>9</td>
<td>0.34</td>
<td>0.39</td>
<td>0.43</td>
<td>0.48</td>
<td>0.51</td>
</tr>
<tr>
<td>10</td>
<td>0.32</td>
<td>0.37</td>
<td>0.41</td>
<td>0.46</td>
<td>0.49</td>
</tr>
<tr>
<td>11</td>
<td>0.31</td>
<td>0.35</td>
<td>0.39</td>
<td>0.44</td>
<td>0.47</td>
</tr>
<tr>
<td>12</td>
<td>0.3</td>
<td>0.34</td>
<td>0.38</td>
<td>0.42</td>
<td>0.45</td>
</tr>
<tr>
<td>13</td>
<td>0.29</td>
<td>0.33</td>
<td>0.36</td>
<td>0.4</td>
<td>0.43</td>
</tr>
<tr>
<td>14</td>
<td>0.28</td>
<td>0.31</td>
<td>0.35</td>
<td>0.39</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Fuente: Hidrología Estadística Móstago Villón

2.9.5 Prueba de ajuste estadístico Chi-cuadrado

La prueba Chi-cuadrado se basa en el cálculo de frecuencias, tanto de valores observados, como valores esperados, para un número determinado de intervalos. Esta prueba es comúnmente usada, para verificar la bondad de ajuste de la distribución empírica a una distribución teórica conocida, fue propuesta por Karl Pearson en 1900.

La expresión general de la prueba Chi-cuadrado está dado por:

\[X^2_c = \sum_{i=1}^{k} \frac{(\theta_i - e_i)}{e_i} \] (2.9.5.1)

Donde:

\[X^2_c = \text{Valor calculado de Chi-cuadrado, a partir de los datos.} \]

\[\theta_i = \text{Número de valores observados en el intervalo de clase } i. \]

\[e_i = \text{Número de valores esperados en el intervalo de clase } i. \]
k = Numero de intervalos de clase.

Asignando probabilidades a la ecuación (2.9.5.1) es decir, asignando igual probabilidad de ocurrencia a cada intervalo de clase, se tiene.

\[X^2_c = \sum_{i=1}^{k} \frac{(N_i - NP_i)^2}{NP_i} \] \hfill (2.9.5.2)

Donde:

\(N_i = \) Número de observaciones que caen dentro de los límites de clases ajustadas del intervalo \(i \).

\(N = \) Tamaño de la muestra.

\(P_i = \) Probabilidad igual para todos los intervalos de clases.

\[P_i = \frac{1}{k} \land e_i = P_iN \] \hfill (2.9.5.3)

Simplificando la ecuación (2.9.5.2), se obtiene la fórmula computacional desarrollada por Markovic (1965):

\[X^2_c = \sum_{i=1}^{k} \frac{N_i^2}{N} - N \] \hfill (2.9.5.4)

El valor de \(X^2_c \) obtenido por la ecuación (2.9.5.4), se compara con el \(X^2_f \) (Villon, Maximo 2002); cuyo valor se determina con:

Nivel de significación: \(\alpha = 0.05 \) o \(\alpha = 0.01 \) y Grados de libertad: \(g.l. = k - 1 - h \)

Donde:

\(h = \) es el número de parámetro a estimarse, así:
h = 2, para distribución normal.

h = 3, para distribución log-normal de 3 parámetros.

Criterios de decisión:

El criterio de decisión se fundamenta en la comprobación del valor calculado de Chi-cuadrado con el valor tabular encontrado, esto es:

- Si el Chi-cuadrado calculado es menor o igual que el valor tabular, es decir: $X^2_c \leq X^2_t$ entonces se acepta la hipótesis que el ajuste es bueno al nivel de significación seleccionado.

- Si el Chi-cuadrado calculado es mayor que el valor tabular, es decir: $X^2_c > X^2_t$, entonces el ajuste es malo y se rechaza la hipótesis, siendo necesario probar con otra distribución teórica.

2.9.6 Completación y extensión de datos pluviométricos.

El tercer requisito para que un registro pluviométrico sea sometido a análisis probabilístico es que sea de extensión suficiente. No es posible precisar cuántos años debe tener un registro pluviométrico. Es evidente, sin embargo, que cuanta mayor extensión tenga es mejor. En la práctica se presentan estaciones con muy pocos años, las mismas que pueden extenderse sólo unos cuantos años también. (Wendor, Chereque 1983)

Una primera forma de extender un registro de corta duración es mediante la recta de regresión. El registro x es más largo que el registro y; los valores extendidos son valores y una segunda forma es mediante la curva doble masa.
En el trabajo de acondicionamiento de una cierta información pluviométrica, las correcciones se aplican en el siguiente orden:

1° Análisis de consistencia. Si hay datos faltantes se hace un relleno provisional aproximado con el método de los promedios.

2° Relleno de datos faltantes. Se emplea el método de la recta de regresión.

3° Extensión del registro. Con cualquiera de las dos formas indicadas.(Wendor, Chereque 1983).

2.10 Métodos de distribución de máximas avenidas.

Para la estimación de una avenida máxima se dispone de variadísimos métodos de cálculo, los mismos que pueden ser agrupados en términos generales en orden de importancia, son los siguientes:(Villon, Maximo 2002)

a) Métodos empíricos
b) Métodos históricos
c) Métodos de correlación hidrológica de cuencas
d) Métodos directos o Hidráulicos
e) Métodos Estadísticos o probabilísticos
f) Métodos Hidrológicos o de relación lluvia escorrentía.

Dentro de los métodos estadísticos de distribución tenemos:

• Distribución normal
• Distribución Log Normal 2 parámetros
• Distribución Log Normal 3 parámetros
• Distribución Gamma 2 parámetros
• Distribución Gamma 3 parámetros
• Distribución Log Pearson tipo III
• Distribución Gumbel
• Distribución Log Gumbel.

2.10.1 Distribución Normal.

La distribución normal es una distribución simétrica en forma de campana, también conocida como la campana de Gauss. Aunque muchas veces no se ajusta a los datos hidrológicos tiene amplia aplicación por ejemplo a los datos transformados que siguen la distribución normal.

Función Densidad

\[
f(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, -\infty < X < \infty, \ldots \ldots
este factor es el mismo de la variable normal estándar

\[K_T = F^{-1} \left(1 - \frac{1}{T_R} \right) \] \hspace{1cm} (2.10.1.5)

2.10.2 Distribución LogNormal de II parámetros.

Si los logaritmos Y de una variable aleatoria X se distribuyen normalmente se dice que X se distribuye normalmente. Esta distribución es muy usada para el cálculo de valores extremos por ejemplo Qmax, Qmín, Pmax, Pmín. Tiene la ventaja que X>0 y que la transformación Log tiende a reducir la asimetría positiva ya que al sacar logaritmos se reducen en mayor proporción los datos mayores que los menores. (Villon, Maximo 2002)

Limitaciones: tiene solamente dos parámetros, y requiere que los logaritmos de la variable estén centrados en la media

Función de densidad:

\[f(x) = \frac{1}{x\sigma\sqrt{2\pi}} e^{-\frac{(y-\mu_y)^2}{2\sigma_y^2}}, x > 0 \] \hspace{1cm} (2.10.2.1)

\[y = \ln x \]

donde:

\[\mu_y : \text{ Media de los logaritmos de la población (parámetro escalar), estimado} \]

\[\sigma_y : \text{ Desviación estándar de los logaritmos de la población, estimado sy.} \]

Estimación de parámetros:

\[\bar{y} = \frac{1}{n} \sum_{i=1}^{n} \ln(x_i) \] \hspace{1cm} (2.10.2.2)

\[s = \frac{1}{n-1} \left[\sum_{i=1}^{n} (\ln(x_i) - \bar{y})^2 \right]^{1/2} \] \hspace{1cm} (2.10.2.3)
Factor de frecuencia:

Puede trabajarse en el campo original y en el campo transformado.

Campo transformado: Si se trabaja en el campo transformado se trabaja con la media y la desviación estándar de los logaritmos, así:

\[\ln(X_{TR}) = x_{TR} + KS_y \]

(2.10.2.4)

De donde:

\[X_{TR} = e^{ln(x_{TR})} \]

(2.10.2.5)

con K con variable normal estandarizada para el Tr dado, xy media de los logaritmos y Sy es la desviación estándar de los logaritmos.

Campo original: Si se trabaja con los X sin transformar el K se calcula como:

\[Kt = \frac{Exp\left(\frac{t(1+Cv^2)^{\frac{1}{2}} - \left(\frac{\ln(1+Cv^2)}{2}\right)}{Cv}\right)}{1} - 1 \]

(2.10.2.6)

K es la variable normal estandarizada para el Tr dado, Cv=S/X es el coeficiente de variación, x media de los datos originales y s desviación estándar de los datos originales. (Villon, Maximo 2002)

Límites de confianza:

\[Ln(X_{TR}) \pm t_{(1-z)}S_r \]

(2.10.2.7)

en donde, n número de datos, Se error estándar, KT variable normal estandarizada.
2.10.3 Distribución Gumbel o extremo tipo I.

Una familia importante de distribuciones usadas en el análisis de frecuencia hidrológico es la distribución general de valores extremos, la cual ha sido ampliamente utilizada para representar el comportamiento de crecientes y sequías (máximos y mínimos). (Villon, Maximo 2002)

Función de densidad:

\[
f(x) = \frac{1}{\alpha} e^{\frac{x-\mu}{\alpha}} - e^{\frac{x-\mu}{\alpha}}
\]

……………………………..(2.10.3.1)

Donde \(\alpha \) y \(\beta \) son parámetros de la distribución.

\(\alpha = \) es el parámetro de escala.

\(\beta = \) es el parámetro de posición

estimación de parámetros.

\[
y = \frac{x-\mu}{\alpha}
\]

……………………….….(2.10.3.2)

los valores de \(x \) e \(y \) están relacionados por:

\[
y = \frac{x-\mu}{\alpha} \delta x = \mu + \alpha y
\]

………………………..(2.10.3.3)

Factor de frecuencia

\[
K_r = -\frac{\sqrt{6}}{\pi} \left\{ 0.5772 + \ln \left[\ln \left(\frac{T_r}{T_r-1} \right) \right] \right\}
\]

……………………………..(2.10.3.4)
Donde T_r es el periodo de retorno. Para la distribución Gumbel se tiene que el caudal para un período de retorno de 500 años es igual a la media de los caudales máximos.

Límites de confianza

$$X_t \pm t_{1-\alpha} S_e$$ (2.10.3.5)

$$S_e = \frac{\delta \cdot s}{\sqrt{n}}$$ (2.10.3.6)

$$\delta = [1 + 1.1396 K_T + 1.1 K_T^2]^\frac{1}{2}$$ (2.10.3.7)

K_T es el factor de frecuencia y $t_{1-\alpha}$ es la variable normal estandarizada para una probabilidad de no excedencia de $1-\alpha$.

2.10.4 Distribución Gamma o Pearson de III parámetros.

La función de distribución Gamma tiene dos o tres parámetros. Esta distribución ha sido una de las más utilizadas en hidrología. Como la mayoría de las variables hidrológicas son sesgadas, la función Gamma se utiliza para ajustar la distribución de frecuencia de variables tales como crecimientos máximos anuales, Caudales mínimos, Volúmenes de flujo anuales y estacionales, valores de precipitaciones extremas parámetros. (Villon, Maximo 2002)

Función de densidad:

$$f(x) = \frac{1}{\Gamma(\beta)} \left(\frac{x - \hat{x}_0}{\alpha} \right)^{\beta-1} \exp\left(- \frac{x - \hat{x}_0}{\alpha} \right)$$ (2.10.4.1)
Donde:

\[x_0 \leq x < \infty \text{ para } \alpha > 0 \]

\[\infty < x \leq x_0 \text{ para } \infty < 0 \]

\(\alpha \) y \(\beta \) son los parámetros de escala y forma, respectivamente, y \(x_0 \) es el parámetro de localización.

Estimación de parámetros:

\[\hat{\beta} = \left(\frac{2}{C_S} \right)^2; \quad \hat{\alpha} = \frac{s}{2}; \quad x_0 = \bar{x} - \alpha \beta \]

\[\text{……….}(2.10.4.2) \]

\(C_S \) es el coeficiente de asimetría, \(\bar{X} \) y \(S \) son la media y la desviación estándar de la muestra respectivamente.

Factor de frecuencia:

\[K \approx z + (z^2 - 1) \frac{C_S}{6} + \frac{1}{3} (z^3 - 6z) \left(\frac{C_S}{6} \right)^2 - (z^2 - 1) \left(\frac{C_S}{6} \right)^3 + z \left(\frac{C_S}{6} \right)^4 + \frac{1}{3} \left(\frac{C_S}{6} \right)^5 \]

\[\text{……….}(2.10.4.3) \]

Donde \(z \) es la variable normal estandarizada, este valor de \(K \) se encuentra tabulado de acuerdo al valor de \(C_S \) calculado con la muestra.

Intervalos de confianza:

\[X_t \pm t(1-\alpha) \text{ Se} \text{……………………………………(2.10.4.4)} \]

\[\text{Se} = \frac{\delta \cdot S}{\sqrt{n}} \text{……………………………………(2.10.4.5)} \]
Donde S es la desviación estándar de la muestra, n es el número de datos y δ se encuentra tabulado en función de Cs y Tr.

2.10.5 Distribución Log Gamma o Logpearson de III parámetros.

Si los logaritmos Y de una variable aleatoria X se ajustan a una distribución Pearson tipo III, se dice que la variable aleatoria X se ajusta a una distribución Log Pearson Tipo III. Esta distribución es ampliamente usada en el mundo para el análisis de frecuencia de Caudales máximos. Esta se trabaja igual que para la Pearson Tipo III pero con X_y y S_y como la media y desviación estándar de los logaritmos de la variable original X. (Villon, Maximo 2002)

Función de densidad:

$$f(x) = \frac{1}{x^\alpha \Gamma(\beta)} \left(\frac{\ln(x) - y_0}{\alpha} \right)^{\beta-1} \exp\left(-\frac{\ln(x) - y_0}{\alpha} \right) \quad(2.10.5.1)$$

Donde:

\[y_0 \leq y < \infty \text{ para } \alpha > 0 \]

\[\alpha < y \leq y_0 \text{ para } \alpha < 0 \]

α y β son los parámetros de escala y forma, respectivamente, y Y_0 es el parámetro de localización.

Estimación de parámetros:

\[\hat{\beta} = \left(\frac{2}{Cs} \right)^2; \quad \hat{\alpha} = s_y \frac{Cs}{2}; \quad \bar{x}_0 = \bar{x}_y - \alpha \hat{\beta} \quad(2.10.5.2) \]
Cs es el coeficiente de asimetría, \bar{x}_y y s_y son la media y la desviación estándar de los logaritmos de la muestra respectivamente.

Factor de frecuencia:

$$\ln(Y_T) = \bar{x}_y + K * s_y \quad \text{............................(2.10.5.3)}$$

$$K \approx z + (z^2 - 1) \frac{C_s}{6} + \frac{1}{3} (z^3 - 6z) \left(\frac{C_s}{6} \right)^2 - (z^2 - 1) \left(\frac{C_s}{6} \right)^3 + z \left(\frac{C_s}{6} \right)^4 + \frac{1}{3} \left(\frac{C_s}{6} \right)^5 \quad \text{(2.10.5.4)}$$

donde z es la variable normal estandarizada

Este valor de K se encuentra tabulado de acuerdo al valor de Cs calculado con la muestra.

Intervalos de confianza:

$$X_t \pm t_{(1-\alpha)} * S_e \quad \text{............................(2.10.5.5)}$$

$$S_e = \frac{\delta \cdot S_y}{\sqrt{n}} \quad \text{............................(2.10.5.6)}$$

Donde S_y es la desviación estándar de los logaritmos de la muestra, n es el número de datos y δ se encuentra tabulado en función de Cs y Tr.

2.11 Proceso de modelado de la superficie de elevación digital.

Las características físicas de la superficie determinan las características del flujo del agua a través de la misma; paralelamente, el flujo del agua tiende a cambiar las características del terreno.
La dirección del flujo es determinada por el "aspecto" o dirección de la pendiente, esto es la dirección donde se produce la mayor velocidad de cambio de elevación en un modelo digital. (Victor, Olaya 2015)

2.11.1 Modelo de elevación digital.

La forma más común de representar digitalmente la forma de la tierra es a través de un modelo basado en celdas, conocido como modelo de elevación digital (DEM). Estos datos son utilizados en ArcGIS para cuantificar las características de la superficie de la tierra. (Fuente: Aplicación de SIG a Recursos Hídricos) Un DEM es una representación gráfica de una superficie continua, usualmente referida como una superficie de la tierra. La precisión de estos datos es determinada primariamente por resolución del modelo y resulta de vital importancia para la determinación de la dirección de flujo del agua.

Los mapas de pendiente (grado o porcentaje), aspecto de la pendiente, relieve de sombras, vistas en perspectiva 3D, son algunos los productos derivados del análisis topográfico a partir de un DEM. (Victor, Olaya 2015)

2.11.2 Aplicación de los DEM en la modelación hidrológica.

Dado que el flujo de las aguas a través de la superficie es siempre en la dirección de máxima pendiente, una vez que la dirección de flujo es conocida es posible determinar cuáles y cuántas celdas fluyen hacia una celda particular. Esta información puede ser utilizada para definir los límites de las cuencas y la red de drenaje. (Victor, Olaya 2014)

2.11.3 Dirección de flujo.

Una de las claves del modelado hidrológico lo constituye la determinación de la dirección de flujo de cualquier punto de una cuenca (cualquier celda). El proceso de
cálculo de la dirección de flujo consiste en determinar la dirección de máxima pendiente hacia abajo de cada celda. Existen ocho direcciones posibles de flujo de una celda considerando las ocho celdas adyacentes (N, NE, E, SE, S, SW, W, NW). (Victor, Olaya 2014)

Esta herramienta permite generar la red de corrientes y los parteaguas de las subcuencas en una estructura de datos hidrológicos que representan la respuesta de la cuenca a la precipitación. A continuación, se definen los procesos utilizados por la herramienta para el análisis del terreno utilizando el DEM.

Fill Sink (corrección de celdas), corrige las celdas del DEM que no fluyen hacia ninguna de las celdas vecinas o con errores de elevaciones menores que sus ocho celdas vecinas, ocasionando durante el proceso de determinación de la dirección de flujo se interrumpa en estas celdas ya que no tienen salidas hacia sus celdas vecinas.

Flow Direction (dirección de flujo), aquí se define la dirección de mayor pendiente, evaluando celda a celda las cotas de las celdas circundantes a cada una de ellas. (Victor, Olaya 2014)

2.11.4 Acumulación de flujo.

Constituye el peso acumulado en una celda determinada de todas celdas que fluyen pendiente abajo hacia la misma. De este modo es posible conocer rápidamente la cantidad de agua que puede recibir una celda determinada. Asimismo, el cálculo de flujos acumulados posibilita también determinar la cantidad de agua de lluvia que puede fluir por una celda dada, asumiendo que toda la lluvia se convierte en escorrentamiento superficial y que no existe infiltración, evapotranspiración u otras pérdidas de agua. (Victor, Olaya 2015)
Flow Accumulation (Acumulación de flujo), determina el número de celdas que drenan hacia una celda dada. En cada nodo se cuantifican las celdas que fluyen hacia él. Le da un valor de cero a la celda donde inicia el flujo, es decir que no recibe flujo de ninguna otra, le da un valor acumulado de tres a la celda que está alimentada por el flujo de tres celdas aguas arriba de ella y así sucesivamente. La corriente principal está compuesta por la ruta que contiene el mayor número de celdas que contribuyen a ella.

Stream Definition y stream segmentation (delineación de subcuencas y corrientes), para evitar tomar la red de drenajes tal y como se obtuvo al estimar el flujo acumulado, se determinan las corrientes de las celdas cuyo flujo acumulado o su equivalente en área están arriba de umbral seleccionado por el usuario, de este modo las celdas con menor aporte no se toman en cuenta. Los segmentos son tramos de cauces situados entre dos uniones de cauces sucesivas, una unión y la salida o una unión y el límite de la cuenca. (Víctor, Olaya 2015)

2.12 Cuenca hidrográfica.

Es el área natural o unidad de territorio, delimitada por una divisoria topográfica (Divortium Acuarium), que capta la precipitación y drena el agua de escorrentía hasta un colector común, denominado río principal. (Vásquez, Villanueva 2000)

Desde el punto de vista hidrológico, una cuenca es una superficie de tierra donde todas las aguas de precipitación se unen para formar un solo curso de agua. El área o superficie de la cuenca está limitada por la divisoria de las aguas que es una línea que separa la superficie de terreno cuyo drenaje fluye hacia el curso del agua. (Vásquez, Villanueva 2000)
2.12.1 Características geomorfológicas.

La geomorfología es la rama de la geografía física que estudia de manera descriptiva y explicativa el relieve de la Tierra, el cual es el resultado de un balance dinámico - que evoluciona en el tiempo - entre procesos constructivos y destructivos, dinámica que se conoce de manera genérica como ciclo geomorfológico. (Vásquez, Villanueva 2000)

Define como La forma de una superficie determina el modo en que el agua pueda fluir a través de la misma. Las herramientas de análisis hidrológico de ArcGIS proveen un método que permite describir las características físicas de una superficie. Utilizando un modelo de elevación digital, es posible delinear un sistema de drenaje y cuantificar las características del sistema. Estas herramientas permiten determinar para cualquier ubicación de la cuenca el área de contribución para cualquier punto de interés y la cantidad de agua que puede recibir dicho punto. Las cuencas y las redes de drenaje creadas a partir de un modelo de elevación digital utilizando ArcGIS son las fuentes primarias para la mayoría de los modelados hidrológicos de superficie. Dichos modelos pueden ser utilizados, entre otros, para determinar la altura, tiempo y magnitud de inundación de un área, localización de área que contribuye a la contaminación de los cursos fluviales o predecir los efectos de alteración del paisaje. (Victor, Olaya 2015)

2.12.2 Parámetro de forma de la cuenca.

La forma superficial de la cuenca hidrográfica es importante debido a que influye en el valor del tiempo de concentración, definido como el tiempo necesario para que toda la cuenca contribuya al flujo en la sección en estudio a partir del inicio de la lluvia o, en otras palabras, tiempo que tarda el agua, desde los límites de la cuenca para llegar a la
salida de la misma. En general las cuencas hidrográficas de grandes ríos presentan la forma de una pera, pero las cuencas pequeñas varían mucho de forma, dependiendo de su estructura geológica. (Mejía Median 2017)

2.12.3 Área de la cuenca.

El área de la cuenca o área de drenaje es el área cerrada que comprendido dentro del límite o divisoria de agua. El área de la cuenca es el elemento básico para el cálculo de las otras características físicas y es determinado normalmente con planímetro y expresado en kilómetros o hectáreas. Es importante mencionar que las cuencas hidrográficas con la misma área pueden tener comportamientos hidrológicos completamente distintos en función de los otros factores que intervienen. (Mejía Median 2017)

2.12.4 Perímetro de la cuenca.

Se refiere al borde de la forma de la cuenca proyectada en un plano horizontal, es de forma muy irregular, se obtiene después de delimitar la cuenca. Es la longitud de la línea de divortio aquarium. Se mide mediante el curvímetro o directamente se obtiene del Software en sistemas digitalizados. (Máximo, Villón 2002).

2.12.5 Longitud del río principal.

Es la longitud mayor de recorrido que realiza el río, desde la cabecera de la cuenca, siguiendo todos los cambios de dirección o sinuosidades, hasta un punto fijo de interés, puede ser una estación de aforo o desembocadura, expresado en unidades de longitud. (Máximo, Villón 2002)
2.12.6 Coeficiente de compacidad.

Relación entre el área de la cuenca y la longitud del cauce principal, cuya expresión es la siguiente: (Máximo, Villón 2002)

\[A_p = \frac{A}{L} \] \hspace{1cm} (2.12.9.1)

Dónde:
- \(A_p \) = ancho promedio de la cuenca (Km).
- \(A \) = área de la cuenca (Km2).
- \(L \) = longitud del cauce principal (Km).

2.13 Sistemas de información geográfica.

Un SIG es como un conjunto de métodos, herramientas y datos que están diseñados para actuar coordinada y lógicamente para capturar, almacenar, analizar, transformar y presentar toda la información geográfica y sus atributos con el fin de satisfacer múltiples propósitos. Los SIG son una nueva tecnología que permite gestionar y analizar la información espacial y que surgió como resultado de la necesidad de disponer rápidamente de información para resolver problemas y contestar a preguntas de modo inmediato. (Velásquez Salgado, 2010)

Hoy en día existen numerosas herramientas SIG libre como GRASS GIS, gvSIG, MapWindow, OpenJUMP, Quantum GIS (QGIS), entre otros, y los comerciales como ArcGis (ESRI), que brindan un conjunto de herramientas robustas que abarcan tanto funcionalidades del lado del servidor como las del lado del cliente.
La integración del SIG con los modelos matemáticos de simulación hidrológica permite llevar a cabo tareas de verificación y visualización de resultados de la modelación con el empleo de más gráficos y visualizaciones tridimensionales. Actualmente existen tres tendencias fundamentales para implementar la conexión entre los SIG y los modelos matemáticos. (Víctor, Olaya 2015)

Garrido Monagas, León Méndez, & Gómez Crespo, (2009), como sigue a continuación:

Tendencia 1. Integrar el SIG con el modelo matemático mediante programas de transferencia de datos. En este caso el modelo matemático o hidrológico y el SIG son autónomos, e incluso el modelo se puede ejecutar sin tener necesidad de utilizar bases de datos. En este caso, los programas convierten datos desde el SIG a un formato de entrada al modelo, y de forma inversa para que los resultados producidos por el modelo puedan ser manejados por el SIG. La principal desventaja es que las entradas y salidas deben ser almacenadas dos veces, en el modelo y el SIG.

Tendencia 2. Integrar las bases de datos del modelo matemático y el SIG, la integración del usuario es solamente con el SIG o con el modelo, mediante una interface previamente definida. Este esquema emplea una sola base de datos con lo cual se gana eficiencia en cuanto a tiempo de cálculo y necesidades de almacenamiento en línea. La principal desventaja de esta tendencia es que requiere un alto nivel de programación para desarrollar finalmente la plataforma que integre ambos productos.

Tendencia 3. Introducir el modelo matemático dentro del SIG. En este caso el modelo está diseñado para utilizar el mismo formato de datos que utiliza el SIG. El usuario interactúa directamente con el SIG y el modelo no está oculto, sino que se puede acceder
a él siempre desde el propio SIG. Tiene la ventaja de que, la geometría de la cuenca y su sistema fluvial, así como las propiedades de ambos pueden ser definidas dentro del SIG y fácilmente transferidas a la plataforma de modelación. Como desventaja, requiere muy alto nivel de programación para implementar extensiones en el SIG para acomodar las funciones del modelo. (Victor, Olaya 2015)

2.13.1 Herramientas de sistema de información geográfica.

Los SIG’s funcionan como una interface entre los datos espaciales crudos y el programa de modelación hidrológica e hidráulica, pues contribuye al procesamiento y almacenamiento de la información de la cuenca utilizada en la modelación. Para el cálculo de las características morfométricas de la cuenca se utiliza herramientas SIG como HEC-GeoHMS y HEC-GeoRAS, las cuales son extensiones de ArcGis. Estas herramientas permiten el pre-procesamiento de la información espacial de las propiedades físicas de la cuenca y los parámetros hidrológicos de la misma, el cual se lleva a cabo dentro de un SIG antes de introducir estos datos al software de modelación hidrológica e hidráulica; y el post-procesamiento de la información resultante de la modelación hidrológica e hidráulica. (Victor, Olaya 2015).

III. MATERIALES Y MÉTODOS

3.1 Materiales.

3.1.1 Tipo de investigación.

El estudio corresponde a una investigación de tipo aplicada y de nivel descriptivo, su diseño de investigación es por objetivos, utilizando el análisis documental como
técnicas de recolección de datos, siendo el instrumento fundamental, la muestra de 48 años de registro de precipitación máxima en 24 horas.

3.1.2 Descripción de la cuenca.

Ubicación de la cuenca del río Locumba, está situada en parte sur del territorio peruano y su ubicación geográfica, demarcación hidrográfica, demarcación política y administrativa es la siguiente:

Ubicación Geográfica

Coord. UTM Norte: 8072872.8 m – 8145008.9 m
Coord. UTM Este: 346527.2 m – 382595.3 m
Latitud Sur: 17°25’37.09” - 16°46’38.06”
Longitud Oeste: 70°24’03.55” - 70°06’16.26”

Demarcación Hidrográfica:

Por el Norte: Cuenca Tambo
Por el Este: Cuenca Maure
Por el Sur: Cuenca del Sama
Por el Oeste: Cuenca Ilo – Moquegua.

Demarcación Política:

Políticamente la cuenca abarca la provincia Candarave y a nivel distrital; los Distritos de Candarave, Quilahuani y Curibaya, como se muestra en el grafico N°5:
3.1.3 Información del modelo de elevación digital.

Para esta etapa se tuvo que apoyar de una fuente gratuita que proporciona la información necesaria para la obtención de imágenes raster de alta calidad, USGS science for a changing world.
3.1.4 Información pluviométrica.

La información hidro-meteorológica utilizada proviene del banco de datos de SENAMHI, ALA Locumba Sama y PET. Se ha recolectado información pluviométrica diaria de 4 estaciones meteorológicas. En la Tabla N° 1 se muestran una de las estaciones ubicadas dentro de la cuenca y 3 estaciones ubicadas fuera de ella.

En base a la información proporcionada por la ALA Locumba Sama, contrastada con la de SENAMHI, las estaciones dentro del ámbito del estudio tienen la Categoría de PLU, siendo la estación Candarave la que registra el parámetro meteorológico de Precipitación máximas, y la Estación cercana a la Cuenca es las de Vilacota, Sitajara y Susapaya, las cuales fueron utilizadas para efectos de la generación de máximas avenidas.

El registro de precipitación máxima en 24 horas tiene un registro histórico desde 1964 hasta 2011, periodo utilizado para el análisis estadístico.

Cuadro N° 4: Resumen de las estaciones meteorológicas.

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>ESTE</th>
<th>NORTE</th>
<th>COTA</th>
<th>DEP</th>
<th>PROV</th>
<th>DISTRITO</th>
<th>TIPO</th>
<th>CUENCA</th>
<th>REGISTRO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUSAPAYA</td>
<td>379578.00</td>
<td>8081264.00</td>
<td>3309.00</td>
<td>Tacna</td>
<td>Tarata</td>
<td>Susapaya</td>
<td>PLU</td>
<td>Sama</td>
<td>1964-2011</td>
</tr>
<tr>
<td>VILACOTA</td>
<td>392000.00</td>
<td>8106000.00</td>
<td>4390.00</td>
<td>Tacna</td>
<td>Tarata</td>
<td>Susapaya</td>
<td>PLU</td>
<td>Maure</td>
<td>1964-2011</td>
</tr>
<tr>
<td>CANDARAVE</td>
<td>366554.00</td>
<td>8098391.00</td>
<td>3415</td>
<td>Tacna</td>
<td>Candarave</td>
<td>Candarave</td>
<td>PLU</td>
<td>Locumba</td>
<td>1964-2011</td>
</tr>
<tr>
<td>SITAJARA</td>
<td>379557.00</td>
<td>8076637.00</td>
<td>3166.00</td>
<td>Tacna</td>
<td>Tarata</td>
<td>Sitajara</td>
<td>PLU</td>
<td>Sama</td>
<td>1964-1911</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propias
3.1.5 Software a utilizar.

Los softwares que se utilizaron para la aplicación del análisis y generación de máximas avenidas son los siguientes.

a). Hec Hms, este modelo hidrológico, obliga llevar a cabo dos tipos de modelación matemática. La primera, una modelación de la morfología y las características fisiográficas de la cuenca del río Locumba y una segunda modelación, más compleja que la anterior, es la representación de los procesos hidrológicos que tienen lugar en la morfología de la cuenca. Para ello no es necesario determinar todos los parámetros fisiográficos y morfológicos, solamente los necesarios para un desarrollo adecuado según nuestro objetivo a estudiar. *(Quispe, Orosco Franco Antony; Valeriano Salcedo 2018)*

Para el modelo hidrológico HEC-HMS se consideran los siguientes parámetros:

- Precipitación; se considerará una distribución espacial no uniforme.
- Pérdidas de precipitación; el programa HEC-HMS contempla diferentes alternativas para cuantificar esta pérdida de agua. Para el estudio se evaluó con el concepto del número de curva (CN), teniendo en cuenta el uso de suelo, el tipo de suelo y los antecedentes de humedad.
- Escorrentía Superficial; El programa HEC-HMS contempla dos modelos del tipo conceptual y empírico. Se seleccionó el modelo empírico del Hidrograma del Servicio de Conservación de Suelos (SCS).
- Flujo Base; no se consideró por tratarse de un valor pequeño comparado con las máximas avenidas registradas y que no afectaran en gran medida el estudio.
- Tránsito de cauce; El modelo HEC-HMS contempla distintos tipos de tránsito de cauce. Se utilizó el modelo quasi-conceptual de Muskingum-Cunge, para representar la transformación que experimenta el Hidrograma entre el punto inicial y final del tramo del cauce.

- b). Hydrognomon, software de análisis estadístico de series de tiempo el cual consta de las siguientes funciones.

- Elabora Hidrograma de frecuencia, histogramas de series temporales y ajuste de funciones de distribución estadística, permite controlar el ajuste de funciones de distribución de la muestra, pronósticos, estimación de intervalos de confianza y pruebas estadísticas de chi-cuadrado y Smirnov-Kolmogorov.

- Análisis de consistencia, visual, doble masa, intensidad de lluvia máximas, curvas de duración de frecuencia (IDF) y la búsqueda de los términos de confianza en las curvas de frecuencia, etc. (Técnica 2009).

3.2 Metodo.

El presente trabajo desarrollado es no experimental. Porque son fenómenos de descargas de máximas instantáneas ocurridos a través del tiempo y no pueden ser manipulados, por lo que sus coeficientes deberían ser ajustados, sin embargo, debido a la correlación que existe entre la magnitud de la cuenca y el gasto máximo, los resultados obtenidos con el modelamiento hidrológico podrían servir para generar máximas avenidas utilizando el modelo Hec Hms.

3.2.1 Caracterización fisiográfica del Modelo de elevación digital (DEM)

3.2.1.1 metodología para la obtención de imágenes raster.

Para esta etapa se utilizó la Fuente USGS que es gratuita y me proporciono
la información necesaria para la obtención de imágenes raster de alta calidad, USGS science for a changing world.

El método de selección para poder obtener la imagen raster se obtiene mediante coordenadas, área, shp y kml, para nuestro proyecto se seleccionó el método de área, luego se identificó el conjunto de datos Raster, seleccionando la opción de elevación digital y la imagen pre visualizada “Shuttle Radar Topography Mission” SRTM imagen tomada a 230 km de altura con un tamaño raster de aproximadamente 25 km, seguidamente se finaliza con la descarga de la imagen raster en formato GeoTIFF de 24.8 MB.

Una vez obtenida las imágenes raster de nuestro punto de interés se procede a corregir las zonas sin datos, mediante una interpolación, apoyadas con áreas cercanas a ellas 15m de radio aproximadamente, utilizando el método estadístico de extensión de datos, FocalStatistics("Mosaico.TIF",NbrCircle(15, "CELL"), "MEAN"), obteniéndose una imagen raster nueva y consistente.

3.2.1.2. Delimitación del modelo de elevación digital.

para esta etapa es necesario crear un mosaico utilizando las herramientas de ArcToolbox – Raster Dataset – Mosaic To New Raster, se seleccionó las cuatro imágenes raster, se verificó el número de píxeles de la imagen, 16 Bit y la zona de georreferenciación WGS_1984_UTM_Zone_19S.

El método mediante el cual se procedió a la delimitación de la cuenca es aplicando el método pfafstetter, apoyándonos con las herramientas del ArcToolbox – Hydrology, se delimito la cuenca utilizando el shp de puntos para el Watershed, una vez delimitada la
cuencia se precedió a transformar la imagen raster resultante a shp de polígonos y polylineas, para su aplicación posterior.

Finalmente, obtenida la cuenca, se determinó los parámetros de la cuenca utilizando las herramientas del ArcToolbox – Spatial Analyst Tools – Reclassify y Tabla de Atributos, para la obtención de la pendiente de la cuenca y demás parámetros como el área de la cuenca, perímetro, etc.

3.2.1.3 Parámetros de forma.

La forma de la cuenca interviene de manera importante en las características del hidrograma de descarga de un río, particularmente en los eventos de avenidas máximas. En general, cuencas de igual área, pero de diferente forma generan hidrogramas diferentes. Para determinar la forma de una cuenca se utilizan los coeficientes que a continuación se describen.

Cuadro N°5: Cálculos para la obtención de la curva hipsométrica

<table>
<thead>
<tr>
<th>Altitud (m.s.n.m.)</th>
<th>Áreas parciales (km²)</th>
<th>Área Acumuladas (km²)</th>
<th>Áreas que quedan (km²)</th>
<th>% del total</th>
<th>% que queda</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>1789</td>
<td>4.2</td>
<td>4.2</td>
<td>314.0</td>
<td>0</td>
<td>100.0</td>
</tr>
<tr>
<td>2107</td>
<td>9.0</td>
<td>13.218014</td>
<td>308</td>
<td>2</td>
<td>98.1</td>
</tr>
<tr>
<td>2424</td>
<td>9.8</td>
<td>22.99196</td>
<td>300</td>
<td>3</td>
<td>95.5</td>
</tr>
<tr>
<td>2742</td>
<td>65.2</td>
<td>88.237312</td>
<td>290</td>
<td>3</td>
<td>92.4</td>
</tr>
<tr>
<td>3059</td>
<td>69.1</td>
<td>157.346714</td>
<td>270</td>
<td>6</td>
<td>86.0</td>
</tr>
<tr>
<td>3377</td>
<td>90.0</td>
<td>247.327301</td>
<td>210</td>
<td>19</td>
<td>66.9</td>
</tr>
<tr>
<td>3694</td>
<td>96.6</td>
<td>343.966224</td>
<td>140</td>
<td>22</td>
<td>44.6</td>
</tr>
<tr>
<td>4012</td>
<td>87.7</td>
<td>431.646567</td>
<td>90</td>
<td>16</td>
<td>28.7</td>
</tr>
<tr>
<td>4329</td>
<td>496.1</td>
<td>927.794925</td>
<td>50</td>
<td>13</td>
<td>15.9</td>
</tr>
<tr>
<td>4647</td>
<td>425.3</td>
<td>1353.07374</td>
<td>30</td>
<td>6</td>
<td>9.6</td>
</tr>
<tr>
<td>5282</td>
<td>132.9</td>
<td>1485.95851</td>
<td>20</td>
<td>3</td>
<td>6.4</td>
</tr>
<tr>
<td>5599</td>
<td>7.8</td>
<td>1493.78028</td>
<td>0</td>
<td>6</td>
<td>0.0</td>
</tr>
<tr>
<td>314</td>
<td></td>
<td></td>
<td></td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

66
3.2.1.4 Parámetros asociados a la longitud.

Para esta etapa se utilizó las herramientas de ArcToolbox – Spatial Analyst Tools – Map Algebra opción Raster Calculator, en el cual se utilizó la ecuación de log10(cuenca poquera), seguido de la herramienta (Stream Link), el río de mayor influencia, luego se ordenó los ríos usando la herramienta Stream Order, finalmente utilizamos la herramienta...
de conversión de raster a polyline para poder determinar las dimensiones en km del río de mayor orden ver. Mapa N°3 Anexos.

3.2.1.5 Capacidad de uso mayor.

Es la primera categoría del sistema, obedece y están definidos de acuerdo al reglamento de clasificación de tierras del Perú y representan la más alta abstracción, agrupando los suelos de acuerdo a su vocación máxima de uso. Comprende cinco grupos de capacidad de uso mayor:

- Tierras aptas para cultivos en limpio (A) de 0% a 4%
- Tierras aptas para cultivos permanentes (C) de 4% a 15%
- Tierras aptas para pastoreo (P) 15% a 25%
- Tierras aptas para producción forestal (F) de 25% a 50%
- Tierras de protección (X) de 50% a más

Para nuestro estudio de determino cinco capacidades de uso mayor los cuales se pueden apreciar mejor en el mapa de capacidad de uso mayor expresado en porcentajes ver mapa N° 4 de capacidad de uso mayor anexos.

3.2.1.6 Altitud media de la cuenca.

\[E_m = \frac{\sum a_e}{A} \]

Donde:
- \(E_m \): Elevación media.
- \(a \): Área entre dos contornos.
- \(e \): Elevación media entre dos contornos.
- \(A \): Área total de la cuenca.

\(E_m = 2450 \text{ m.s.n.m.} \)
3.2.1.7 Pendiente promedio de la cuenca.

La pendiente de una cuenca, es un parámetro muy importante en el estudio de toda cuenca, tiene una relación importante y compleja con la infiltración, la escorrentía superficial, la humedad del suelo, y la contribución del agua subterránea a la escorrentía. El valor de la pendiente de la cuenca se calculó mediante el uso del software ARCGIS.

3.2.1.8 Perfil longitudinal del cauce.

El perfil longitudinal proporciona una idea de las pendientes que tiene el cauce, en diferentes tramos de su recorrido, y que es un factor de importancia para el perfil longitudinal del río Locumba el cual se muestra en el siguiente gráfico.

Grafico N° 9: Perfil longitudinal del cauce principal

Fuente: Elaboración propia

3.2.1.9 Pendiente del cauce principal.

Para determinar la pendiente media del cauce principal fue necesario utilizar los mapas de orden de los ríos y el mapa de pendientes del cual se utilizó la longitud de río
de mayor orden y las cotas máximas y mínimas correspondiente al mapa de pendientes

El conocimiento de la pendiente del cauce principal de una cuenca, es un parámetro
importante, en el estudio del comportamiento del recurso hídrico, como por ejemplo, para
la determinación de las características óptimas de su aprovechamiento hidroeléctrico, o
en la solución de problemas de inundaciones. En general, la pendiente de un tramo de un
cauce de un río, se puede considerar como el cociente:

\[I_c = \frac{(HM - Hm)}{(1,000 \times L)} \]

Donde:

- \(I_c \): Pendiente media del río.
- \(L \): Longitud del río, en km.
- \(HM, Hm \): Altitud máxima y mínima del lecho del río, referidas al nivel
 medio de las aguas del mar, en m.

\[I_c = \frac{(5599 - 1789)}{(1,000 \times 79.853)} \]

\[I_c = 4.77 \% \]

3.2.1.10 Densidad de drenaje \(D_d \).

La expresión de la Densidad de Drenaje, \(D_d \), es:

\[D_d = \frac{L_i}{A} \]

Donde:

- \(D_d \): Densidad de Drenaje, en km/km².
- \(L_i \): Longitud total de los cursos de agua, en km.
- \(A \): Área de la cuenca, en km².

Monsalve, refiere que es usual que \(D_d \) tome los siguientes valores:
Entre 0.5 km/km² para hoyas con drenaje pobre.
Hasta 3.5 km/km² para hoyas excepcionalmente bien drenadas.
En el Plano anexo C, se muestra la jerarquización y orden de ríos.

3.2.1.12 Tiempo de concentración.

Para nuestro estudio el tiempo de concentración es la clave para la aplicación de los distintos modelos de precipitación-escorrentía, existen muchos métodos que permiten la estimación del tiempo de concentración los cuales de mencionan a continuación:

Se consideró el tiempo de concentración más corto ya que en ese tiempo se puede producir fenómenos climáticos que causarían desbordes del río Locumba.

\[T_c = 0.066 \left(\frac{L}{S^{0.55}} \right)^{0.77} \]

\[\text{.......................... (3.2.1.12)} \]

3.2.2 Análisis de consistencia de la precipitación máxima de 24 horas.

Para determinar los parámetros de la distribución teórica a partir de la muestra obtenida de cada estación se aplicó el método de estimación, siendo en orden ascendente de menor a mayor eficiencia y de máxima verosimilitud.

3.2.2.1 Serie de datos.

Según la metodología planteada, se creó 4 series de tiempos especificando la variable de precipitación, unidades en (mm), la zona L(UTC+1100) Lima, para la medida del tiempo se trabajó anual y finalmente el tipo de intervalo utilizado es sum (cumulative variable such as precipitation, etc).
Grafico N° 10: Serie de datos de precipitación

Cuadro N° 6: Precipitaciones máxima anuales de 24 horas
3.2.2.2 Análisis grafico de doble masa.

Grafico N° 11 : Análisis de doble masa

Para el análisis se utilizó modelos probabilísticos, estimación de parámetros y la selección del modelo que mejor se ajuste a la muestra de datos de cada estación pluviométrica; en consecuencia, se evaluó el tipo de prueba estadística para este estudio se trabajó con datos puntuales de precipitación máxima de 24 horas:

- Prueba de Independencia (wald-wolfowitz).
- Prueba de Estacionalidad (kendall).
- Prueba de Homogeneidad a escala Anual Wilcoxon).
3.2.2.4 Completación y extensión de datos.

Para esta etapa se procedió a llenar los vacíos de los datos faltantes de la información y la extensión de la información tomando en cuenta la transferencia de los datos desde una estación con largo periodo de registro histórico a otra con corto periodo de registro. La extensión se realizó antes del primer dato y también en periodos intermedios.

Para la extensión de los datos se utilizó el método de Regresión Lineal Simple.

Para el primer paso se tiene la serie:

\[Y_t = Y_1, Y_2, Y_3, \ldots, Y_n \]

\[X_t = X_1, X_2, X_3, \ldots, X_n, X_{n+1}, \ldots, X_{n_1+n_2} \]

Donde:

\(Y_t \) : serie de registro corto.

\(X_t \) : serie de registro largo.

\(n_1 \) : tamaño del periodo común a ambas series o tamaño del registro corto.

\(n_2 \) : tamaño del periodo no común.

\(n = n_1 + n_2 \) : tamaño del registro largo.

Para el segundo paso se tiene la ecuación de regresión lineal simple

\[Y_t = a + bX_t \]

Donde:
Yt : variable hidrológica dependiente.

Xt : variable hidrológica independiente.

a y b : parámetros del modelo de R.L.S.

Para el tercer paso la estimación de parámetros

Los parámetros a, b y R se calculan con las siguientes ecuaciones:

\[
\begin{align*}
 a &= \bar{Y} - b \bar{X} \\
 b &= \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \\
 R &= \frac{\sum_{i=1}^{n} (Y_i - \bar{Y})(X_i - \bar{X})}{\sum_{i=1}^{n} (X_i - \bar{X})^2 \sum_{i=1}^{n} (Y_i - \bar{Y})^2}^{1/2}
\end{align*}
\]

Donde

\(Y \bar{Y} \bar{X}_1\) : Medias de los periodos comunes de tamaños \(n_1\) de las variables \(Y_t\) y \(X_t\).

S1(y) y S1(x) : Desviaciones estándar de \(Y_t\) y \(X_t\) de los periodos comunes de tamaño \(n_1\).

R : coeficiente de correlación.

Para la cuarta parte la completación y extensión.

Ecuación de completación y extensión

\[
Y_t = Y_i + R \left(\frac{S_{1(Y)}}{S_{1(X)}} \right) (X_t - \bar{X}_1).
\]

Ecuación de la desviación estándar

\[
S_t = \left[\frac{1}{(n-1)} \sum_{i=1}^{n} (t_i - \bar{t})^2 \right]^{1/2}
\]

75
3.2.2.5 Distribución de máximas avenidas con Hydrognomon.

El software analiza y procesa las series hidrológicas desarrollado por el “ITIA Research Group” de la “National Technical University of Athens” (Kozanis et al., 2010).

Este programa, entre otras aplicaciones hidrológicas, permite el ajuste de series de valores extremos a funciones de distribución con distintos métodos de ajuste. Las funciones de distribución que incluye para el análisis de frecuencia son: Normal, LogNormal, Galton, Exponencial, Gamma, Pearson III, LogPearson III, Gumbel-Max, EV2-Max, Weibull, GEV-Max, Pareto, GEV-Max (kappa specified). Para estimar la probabilidad de la muestra puede aplicar también distintos métodos no paramétricos como Weibull, Gringorten, Cunnane y Blom. En este caso se ha aplicado Weibull en todos los casos. La estimación de los parámetros de las funciones de distribución la puede realizar mediante el método de los momentos. Por último, aplica los test de bondad de ajuste de x^2 y de Kolmogorov Smirnov.

Para ello, elegimos el método de estimación de los parámetros (Método de Máxima Verosimilitud, método de momentos).

Para la distribución de probabilidades empírica las que más representan la probabilidad de ocurrencia de una serie datos se escogió dentro del programa HYDROGNOMON lo cual se realizó el análisis de frecuencias ajustándolos con todas las opciones. En la Grafico N° 4 se presenta el ajuste proporcionado por el programa de todas las funciones de distribución.
Cuadro N° 7: Distribución teórica con Periodos de retorno, estación Vilacota

<table>
<thead>
<tr>
<th>T</th>
<th>q</th>
<th>XT</th>
<th>Desv</th>
<th>Límites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mín</td>
</tr>
<tr>
<td>10000</td>
<td>0.9999</td>
<td>64.9</td>
<td>8.14</td>
<td>49.0</td>
</tr>
<tr>
<td>2000</td>
<td>0.9995</td>
<td>55.2</td>
<td>6.80</td>
<td>41.9</td>
</tr>
<tr>
<td>1000</td>
<td>0.999</td>
<td>51.0</td>
<td>6.23</td>
<td>38.8</td>
</tr>
<tr>
<td>200</td>
<td>0.995</td>
<td>41.3</td>
<td>4.90</td>
<td>31.7</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
<td>37.1</td>
<td>4.33</td>
<td>28.6</td>
</tr>
<tr>
<td>50</td>
<td>0.98</td>
<td>32.8</td>
<td>3.79</td>
<td>25.5</td>
</tr>
<tr>
<td>20</td>
<td>0.95</td>
<td>27.2</td>
<td>3.02</td>
<td>21.3</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>22.9</td>
<td>2.46</td>
<td>18.0</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>18.3</td>
<td>1.91</td>
<td>14.6</td>
</tr>
<tr>
<td>3</td>
<td>0.6667</td>
<td>14.7</td>
<td>1.51</td>
<td>11.7</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>11.5</td>
<td>1.23</td>
<td>9.1</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N° 12: Límites de confianza, estación Vilacota.

Fuente: elaboración propia
Cuadro N° 8: Distribución teórica con periodos de retorno, estación Candarave

<table>
<thead>
<tr>
<th>T</th>
<th>q</th>
<th>XT</th>
<th>Desv</th>
<th>Limites</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>min</td>
</tr>
<tr>
<td>10000</td>
<td>0.9999</td>
<td>206</td>
<td>62</td>
<td>84.6</td>
</tr>
<tr>
<td>2000</td>
<td>0.9995</td>
<td>152</td>
<td>41</td>
<td>71.2</td>
</tr>
<tr>
<td>1000</td>
<td>0.999</td>
<td>131</td>
<td>33.7</td>
<td>65.2</td>
</tr>
<tr>
<td>200</td>
<td>0.995</td>
<td>90.7</td>
<td>20.1</td>
<td>51.3</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
<td>75.9</td>
<td>15.6</td>
<td>45.3</td>
</tr>
<tr>
<td>50</td>
<td>0.98</td>
<td>62.4</td>
<td>11.7</td>
<td>39.4</td>
</tr>
<tr>
<td>20</td>
<td>0.95</td>
<td>46.5</td>
<td>7.6</td>
<td>31.6</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>35.8</td>
<td>5.14</td>
<td>25.8</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>26.1</td>
<td>3.23</td>
<td>19.8</td>
</tr>
<tr>
<td>3</td>
<td>0.6667</td>
<td>19.5</td>
<td>2.15</td>
<td>15.2</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>14.3</td>
<td>1.51</td>
<td>11.3</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N° 13: Límites de confianza, estación Candarave.

Fuente: elaboración propia
Cuadro N° 9: Distribución teórica con periodos de retorno, estación Sitajara

<table>
<thead>
<tr>
<th>T</th>
<th>q</th>
<th>XT</th>
<th>Desv</th>
<th>Limites min</th>
<th>Limites max</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.9999</td>
<td>51.30</td>
<td>5.72</td>
<td>40.1</td>
<td>62.5</td>
</tr>
<tr>
<td>2000</td>
<td>0.9995</td>
<td>43.80</td>
<td>4.78</td>
<td>34.4</td>
<td>53.2</td>
</tr>
<tr>
<td>1000</td>
<td>0.999</td>
<td>40.50</td>
<td>4.37</td>
<td>32.0</td>
<td>49.1</td>
</tr>
<tr>
<td>200</td>
<td>0.995</td>
<td>33.00</td>
<td>3.44</td>
<td>26.2</td>
<td>39.7</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
<td>29.70</td>
<td>3.04</td>
<td>23.8</td>
<td>35.7</td>
</tr>
<tr>
<td>50</td>
<td>0.98</td>
<td>26.50</td>
<td>2.64</td>
<td>21.3</td>
<td>31.6</td>
</tr>
<tr>
<td>20</td>
<td>0.95</td>
<td>22.10</td>
<td>2.12</td>
<td>17.9</td>
<td>26.2</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>18.70</td>
<td>1.73</td>
<td>15.3</td>
<td>22.1</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>15.20</td>
<td>1.34</td>
<td>12.6</td>
<td>17.8</td>
</tr>
<tr>
<td>3</td>
<td>0.6667</td>
<td>12.4</td>
<td>1.07</td>
<td>10.3</td>
<td>14.5</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>9.87</td>
<td>0.868</td>
<td>8.2</td>
<td>11.6</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N° 14: Límites de confianza, estación Sitajara.

Fuente: elaboración propia
Cuadro N° 10: Distribución teórica con periodos de retorno, estación Susapaya

<table>
<thead>
<tr>
<th>T</th>
<th>q</th>
<th>XT</th>
<th>Desv</th>
<th>Límites min</th>
<th>Límites max</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>0.9999</td>
<td>70.90</td>
<td>7.53</td>
<td>56.1</td>
<td>85.6</td>
</tr>
<tr>
<td>2000</td>
<td>0.9995</td>
<td>60.30</td>
<td>6.29</td>
<td>48.0</td>
<td>72.6</td>
</tr>
<tr>
<td>1000</td>
<td>0.999</td>
<td>55.70</td>
<td>5.76</td>
<td>44.5</td>
<td>67.0</td>
</tr>
<tr>
<td>200</td>
<td>0.995</td>
<td>45.20</td>
<td>4.53</td>
<td>36.3</td>
<td>54.1</td>
</tr>
<tr>
<td>100</td>
<td>0.99</td>
<td>40.60</td>
<td>4.01</td>
<td>32.7</td>
<td>48.5</td>
</tr>
<tr>
<td>50</td>
<td>0.98</td>
<td>36.00</td>
<td>3.48</td>
<td>29.2</td>
<td>42.8</td>
</tr>
<tr>
<td>20</td>
<td>0.95</td>
<td>29.90</td>
<td>2.80</td>
<td>24.4</td>
<td>35.4</td>
</tr>
<tr>
<td>10</td>
<td>0.9</td>
<td>25.20</td>
<td>2.28</td>
<td>20.7</td>
<td>29.6</td>
</tr>
<tr>
<td>5</td>
<td>0.8</td>
<td>20.20</td>
<td>1.77</td>
<td>16.8</td>
<td>23.7</td>
</tr>
<tr>
<td>3</td>
<td>0.6667</td>
<td>16.30</td>
<td>1.41</td>
<td>13.6</td>
<td>19.1</td>
</tr>
<tr>
<td>2</td>
<td>0.5</td>
<td>12.80</td>
<td>1.15</td>
<td>10.5</td>
<td>15.0</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N° 15: Límites de confianza, estación Susapaya.

3.2.2.6 Prueba de ajuste.

Para esta etapa se utilizó el software hydrognomon el cual nos permitió evaluar mediante la prueba de bondad de ajuste de Smirnov - kolmogorov y Chi cuadrado.

Kolmogorov Smirnov \(\Delta = \text{máx.} \left| F(x) - P(x) \right| \) (3.2.5.1)

80
Donde:

\[\Delta = \text{estadístico de Smirnov - Kolmogorov}. \]

\[F(x) = \text{probabilidad de la distribución teórica}. \]

\[P(x) = \text{probabilidad experimental o empírica de los datos} \]

\[\chi^2 = \sum_{i=1}^{\text{NC}} \frac{(\Theta_i - e_i)^2}{e_i} \] \hspace{1cm} (3.2.5.2)

Donde:

\[\chi^2 = \text{Valor calculado de Chi-cuadrado, a partir de los datos}. \]

\[\Theta_i = \text{Número de valores observados en el intervalo de clase } i. \]

\[e_i = \text{Número de valores esperados en el intervalo de clase } i. \]

\[\text{NC = Número de intervalos de clase.} \]

Se realiza la comparación entre \(\Delta_{\text{máx}} \) de las 8 distribuciones y el \(\Delta_{\text{crítico}} \) con un nivel de 1\%, 5\% y 10\% de verosimilitud para Chi cuadrado se propone Pearson III como se aprecia en el cuadro.

Cuadro N° 11: Prueba de Chi-cuadrado

![Cuadro N° 11: Prueba de Chi-cuadrado](image)
Finalmente se escoge como mejor ajuste por Kolmogorov Smirnov, a la distribución probabilística que muestre el menor valor de “Δmáx”, por tanto: con: Δmáx=0.7 Indica el mejor ajuste de los registros a la Distribución Gumbel para la estación en estudio.

Cuadro N° 12: Prueba de ajuste Kolmogorov Smirnov

<table>
<thead>
<tr>
<th>Distribución</th>
<th>a=1%</th>
<th>a=5%</th>
<th>a=10%</th>
<th>Atained α</th>
<th>Dmax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>21.4578%</td>
<td>0.1414</td>
</tr>
<tr>
<td>LogNormal</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>97.2288%</td>
<td>0.0649</td>
</tr>
<tr>
<td>Gamma</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>78.5720%</td>
<td>0.0899</td>
</tr>
<tr>
<td>Pearson III</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>64.5268%</td>
<td>0.0979</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>33.6592%</td>
<td>0.1259</td>
</tr>
<tr>
<td>EV1-Max (Gumbel)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>94.1485%</td>
<td>0.0708</td>
</tr>
<tr>
<td>EV2-Max</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>17.7974%</td>
<td>0.1468</td>
</tr>
<tr>
<td>EV1-Mn (Gumbel)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>1.50977%</td>
<td>0.2087</td>
</tr>
<tr>
<td>EV2-Mn (Webull)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>34.1336%</td>
<td>0.1254</td>
</tr>
<tr>
<td>Pareto</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>0.00037%</td>
<td>0.3432</td>
</tr>
<tr>
<td>GEV-Max (L-Moments)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>84.1136%</td>
<td>0.0824</td>
</tr>
<tr>
<td>GEV-Mn (L-Moments)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>77.1952%</td>
<td>0.0857</td>
</tr>
<tr>
<td>EV1-Max (Gumbel, L-Moments)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>93.3478%</td>
<td>0.0720</td>
</tr>
<tr>
<td>EV2-Max (L-Moments)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>21.8333%</td>
<td>0.1458</td>
</tr>
<tr>
<td>EV1-Mn (Gumbel, L-Moments)</td>
<td>Accept</td>
<td>Accept</td>
<td>Accept</td>
<td>1.41698%</td>
<td>0.2022</td>
</tr>
<tr>
<td>Pareto (L-Moments)</td>
<td>Reject</td>
<td>Reject</td>
<td>Reject</td>
<td>0.00262%</td>
<td>0.3162</td>
</tr>
</tbody>
</table>

El procedimiento desarrollado de la prueba de bondad de ajuste de Kolmogorov Smirnov anteriormente descritos son evaluados de igual forma con una sindéresis de los procedimientos en cuadros para las demás estaciones pluviométricas.

La distribución elijida es: Pearson Tipo III, por tener el menor Dmax, siendo el dmax tabulado para n=56 de 0.18 Por lo tanto, Dmax<dmax ===> 0.06486 < 0.18, para nivel de significancia α = 0.05.

3.2.2.7 Distribución de la precipitación máxima.

En este caso la precipitación areal anual de las unidades hidrográficas que conforman la cuenca del río Locumba se han determina por el método de Thiessen, e isoyetas siendo su influencia de las estaciones pluviometricas dentro y fuera de la cuenca hidrográfica.
3.2.2.8 Método del polígono de thiessen:

\[P_m = \frac{1}{A_T} \sum_{i=1}^{n} A_i P_i \] (3.2.7.1)

Donde:

\(P_m \) = Precipitación areal de la cuenca.

\(P_i \) = Precipitación registrada en la estación i.

\(A_i \) = Área de influencia de la estación i.

\(A_T \) = Área total de la cuenca.

\(N \) = Número de estaciones de análisis.

3.2.2.9 Método de Isoyetas:

\[P_m = \frac{\sum_{i=1}^{n} ((P_i + 1 + P_i) / 2) * S_{i+1,i}}{S_t} \] (3.2.8.1)

Donde:

\(P_i \) = Precipitación de la estación i (mm)

\(S_{i+1,i} \) = superficie entre dos isoyetas consecutivas (km²)

\(S_t \) = superficie total (km²).

3.2.2.10 Elaboración de curvas IDF.

La metodología utilizada para la generación de las curvas IDF es automatizada, la cual utiliza series anuales de precipitación máxima, siguiendo los siguientes pasos.

- Abrir la serie de tiempo relevante.
• Selección del menú Hydrology Ombros IDF curves y seleccionamos la serie de tiempo.
• Selección de la serie de tiempos para determinar la duración en minutos, horas.
• Especificar el periodo de retorno para poder realizar el cálculo, trazó de la curva y ecuación correspondiente al periodo de retorno.

3.2.2.11 Hidrograma adimensional del SCS

Con base en la revisión de un gran número de HU, el SCS se sugiere este hidrograma donde el tiempo está dado en horas y el caudal en m3/s.cm.

El volumen generado por la separación de la lluvia en neta y abstracciones es propagado a través del río mediante el uso del hidrograma unitario.

El tiempo de recesión, tr, puede aproximarse a:

\[t_{rr} = 1.67T \] \hspace{2cm} (3.2.9.1)

Como el área bajo el HU debe ser igual a una escorrentía de 1 cm, puede demostrarse que:

\[q_{pp} = 2.08AAT\tau p \] \hspace{2cm} (3.2.9.2)

Dónde:

A : es el área de drenaje en Km2
Tp : es el tiempo de ocurrencia del pico en horas

Adicionalmente, un estudio de muchas cuencas ha demostrado que:

\[t_{pp} = 0.6T\tau c \] \hspace{2cm} (3.2.9.3)

Dónde:
tp: Tiempo de retardo (entre el centroide del hietograma y el pico de caudal) (h)

tc: Tiempo de concentración de la cuenca.

El tiempo de ocurrencia del pico, Tp, puede expresarse como:

\[Tp = DD2 + t \]

Donde:

D: duración de la lluvia (h)

3.2.2.12 Calculo de la abstracción.

Para este procedimiento se utilizó el método SCS mediante la siguiente ecuación:

\[\frac{Fa}{S} = \frac{Pe}{P - Ia} \](3.2.11.1)

Donde:

Pe = Exceso de precipitación o escorrentía directa.

P = Profundidad de precipitación.

Fa = Profundidad adicional del agua retenida en la cuenca.

S = Retención potencial máxima.

Ia = Abstracción inicial antes del encharcamiento.

Del principio de continuidad.

\[P = Pe + Ia + Fa \](3.2.11.2)

Combinando las ecuaciones anteriores y resolviendo para Pe se encuentra.
\[Pe = \frac{(P-Ia)^2}{P-Ia+S} \] \hspace{1cm} (3.2.11.3)

La cual es la ecuación básica para el cálculo de la profundidad de precipitación o escorrentía directa de una tormenta utilizando el método SCS.

Al estudiar los resultados obtenidos para muchas cuencas experimentales pequeñas, se desarrolló una relación empírica.

\[Ia = 0.2S \] \hspace{1cm} (3.2.11.4)

Con base en esto:

\[Pe = \frac{(P-0.2S)^2}{P-0.8S} \] \hspace{1cm} (3.2.11.5)

Al representar en gráficas la información de P y Pe para muchas cuencas, el SCS encontró curvas. Para estandarizar estas curvas, se define un número adimensional de curva CN, tal que 0<CN<100. Para superficies impermeables y superficies de agua CN=100; para superficies naturales CN<100.

El número de curva y el S se relacionan por:

\[S = \frac{25400}{CN} - 254 \] \hspace{1cm} (3.2.11.6)

Donde S está en pulgadas. Los números de curva se aplican a condiciones de antecedentes de humedad (AMC, por sus siglas en Ingles), normales (AMC II), para condiciones secas (AMC I) y condiciones húmedas (AMC III), los números de curvas equivalentes se pueden calcularse por:
\[CN(I) = \frac{2.4CN(II)}{10 - 0.058CN(II)} \] ...(3.2.11.7)

\[CN(III) = \frac{2.3CN(II)}{10 - 0.13CN(II)} \] ...(3.2.11.8)

Los valores de CN para varios tipos de uso de tierra en estos tipos de suelos se dan en tablas, para la cuenca de varios tipos de suelo y con diferentes usos de tierra, se calcula un CN compuesto

3.2.2.13 Transformación.

Para la transformación de la lluvia en escorrentía se utilizó métodos como el de Snyder

SCS. Método de Snyder. Requiere los siguientes parámetros

\[Tp = \text{tiempo (hr)} \]

\[Ct = \text{Coeficiente que representa variaciones de los tipos y localizaciones de los ríos varía entre 1.8 y 2.2 se asumirá 2} \]

\[Lca = \text{distancia del centro de gravedad de la subcuenta a su salida (m)} \]

\[L = \text{longitud del curso principal (m).} \]

\[Cp = \text{Coeficiente adimensional varía entre 0.4 y 0.8 se asumirá 0.6} \]

3.2.2.14 Calcular el Tiempo de retardo.

El tiempo de retardo se calcula mediante tiempo de concentración, con la siguiente relación:

\[LagTime = 0.6t_c \] ...(3.2.11.1)

Donde:

Lag Time = Tiempo de retardo (min).

\[tc = \text{Tiempo de concentración.} \]
3.2.3 Modelamiento de máximas avenidas con Hec Hms.

Con el modelo HEC-HMS, se ha generado máximas avenidas en la cuenca media del río Locumba en el sector Poquera, sea utilizado la cuenca como un sistema interconectado de componentes hidrológicos e hidráulicos.

Cada uno de estos componentes ha generado el modelado de un proceso de escurrimiento por precipitaciones dentro de la cuenca en estudio. Para la generación de máximas avenidas modelo se utilizó el software Hec-Hms versión 4.2.1, se utilizó el método de SCS para el cálculo de la precipitación efectiva, CN numero de curva para la transformación de precipitación efectiva en caudal, así mismo se eligió el método del hidrograma unitario sintético SCS ingresando el tiempo de retardo sin flujo base. En el modelo meteorológico se eligió la tormenta hipotética del SCS Tipo II y se ingresó la precipitación areal para toda el área de influencia del trabajo de investigación. Las especificaciones de control para todos los casos son día de inicio 27 de diciembre del 2018 ha horas 00:00 a.m. y el día de termino 27 de diciembre 2018 a hora 09:00 a.m., Así se obtiene los hidrogramas de caudal máximo para los tiempos de retorno de 50, 100 y 500 años, de periodo de retorno.

A continuación, se resume los valores de los parámetros ingresados al modelo HEC HMS en el en el proceso de cálculo de máximas avenidas.
Cuadro N° 13: Parámetros de la sub cuencas para el análisis del HEC HMS

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Sub Cuencas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rio Curibaya</td>
</tr>
<tr>
<td>Área de drenaje</td>
<td>1111.45</td>
</tr>
<tr>
<td>CN AMC I</td>
<td>63</td>
</tr>
<tr>
<td>Abstacciones inciales (mm)</td>
<td>27</td>
</tr>
<tr>
<td>Tc (min)</td>
<td>408</td>
</tr>
<tr>
<td>Duración de la tormenta</td>
<td>540</td>
</tr>
<tr>
<td>T lag (min)</td>
<td>244</td>
</tr>
<tr>
<td>Intervalo de tiempo (min)</td>
<td>15</td>
</tr>
<tr>
<td>Patrón de tormenta</td>
<td>Hietograma de diseño</td>
</tr>
<tr>
<td>Método de estimación de pérdidas</td>
<td>Número de curva SCS</td>
</tr>
<tr>
<td>Método de transformación</td>
<td>Hidrograma Unitario SCS</td>
</tr>
<tr>
<td>Método de estimación de flujo base</td>
<td>Ninguno</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

En el siguiente gráfico se observa el escritorio de trabajo de simulación del software HEC-HMS.

Grafico N° 16: Planteamiento para el HEC HMS
3.2.3.1 Determinación del hietograma de diseño.

Cuadro N° 14: Método de hietograma de diseño y distribución de lluvias

<table>
<thead>
<tr>
<th>Horas t</th>
<th>t/6</th>
<th>pt/p6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>0.50</td>
<td>0.10</td>
<td>0.04</td>
</tr>
<tr>
<td>1.20</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>1.50</td>
<td>0.25</td>
<td>0.14</td>
</tr>
<tr>
<td>1.80</td>
<td>0.30</td>
<td>0.19</td>
</tr>
<tr>
<td>2.10</td>
<td>0.35</td>
<td>0.31</td>
</tr>
<tr>
<td>2.28</td>
<td>0.38</td>
<td>0.44</td>
</tr>
<tr>
<td>2.40</td>
<td>0.40</td>
<td>0.53</td>
</tr>
<tr>
<td>2.52</td>
<td>0.42</td>
<td>0.60</td>
</tr>
<tr>
<td>2.64</td>
<td>0.44</td>
<td>0.63</td>
</tr>
<tr>
<td>2.76</td>
<td>0.46</td>
<td>0.66</td>
</tr>
<tr>
<td>3.00</td>
<td>0.50</td>
<td>0.70</td>
</tr>
<tr>
<td>3.30</td>
<td>0.55</td>
<td>0.75</td>
</tr>
<tr>
<td>3.60</td>
<td>0.60</td>
<td>0.79</td>
</tr>
<tr>
<td>3.90</td>
<td>0.65</td>
<td>0.83</td>
</tr>
<tr>
<td>4.20</td>
<td>0.70</td>
<td>0.86</td>
</tr>
<tr>
<td>4.50</td>
<td>0.75</td>
<td>0.89</td>
</tr>
<tr>
<td>4.80</td>
<td>0.80</td>
<td>0.91</td>
</tr>
<tr>
<td>5.40</td>
<td>0.90</td>
<td>0.96</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Fuente: Hidrología aplicada ven te chow

La distribución temporal que se visualiza en los Cuadros 43 a 45, en el que se presentan las láminas de precipitación para un evento de duración de 540 minutos para 50, 100 y 500 años respectivamente.
Cuadro N° 15: Hietograma de diseño y distribución de lluvias para T=50 años

<table>
<thead>
<tr>
<th>Instante (min)</th>
<th>Int. (mm/h)</th>
<th>Prec. acumulada (mm)</th>
<th>Prec. (mm)</th>
<th>Int. parcial (mm)</th>
<th>Prec. Alternada (mm)</th>
<th>Int. Parcial alternada (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>24.91</td>
<td>6.23</td>
<td>6.23</td>
<td>24.91</td>
<td>0.31</td>
<td>1.23</td>
</tr>
<tr>
<td>30</td>
<td>16.5</td>
<td>8.25</td>
<td>2.02</td>
<td>8.09</td>
<td>0.32</td>
<td>1.28</td>
</tr>
<tr>
<td>45</td>
<td>12.96</td>
<td>9.72</td>
<td>1.47</td>
<td>9.23</td>
<td>0.33</td>
<td>1.33</td>
</tr>
<tr>
<td>60</td>
<td>10.93</td>
<td>10.93</td>
<td>1.1</td>
<td>4.81</td>
<td>0.34</td>
<td>1.38</td>
</tr>
<tr>
<td>75</td>
<td>9.57</td>
<td>11.96</td>
<td>1.04</td>
<td>4.14</td>
<td>0.36</td>
<td>1.44</td>
</tr>
<tr>
<td>90</td>
<td>8.59</td>
<td>12.88</td>
<td>0.92</td>
<td>3.67</td>
<td>0.38</td>
<td>1.51</td>
</tr>
<tr>
<td>105</td>
<td>7.83</td>
<td>13.71</td>
<td>0.83</td>
<td>3.32</td>
<td>0.4</td>
<td>1.59</td>
</tr>
<tr>
<td>120</td>
<td>7.24</td>
<td>14.47</td>
<td>0.76</td>
<td>3.05</td>
<td>0.42</td>
<td>1.68</td>
</tr>
<tr>
<td>135</td>
<td>6.75</td>
<td>15.18</td>
<td>0.71</td>
<td>2.83</td>
<td>0.45</td>
<td>1.78</td>
</tr>
<tr>
<td>150</td>
<td>6.34</td>
<td>15.85</td>
<td>0.66</td>
<td>2.65</td>
<td>0.48</td>
<td>1.91</td>
</tr>
<tr>
<td>165</td>
<td>5.99</td>
<td>16.47</td>
<td>0.62</td>
<td>2.5</td>
<td>0.52</td>
<td>2.06</td>
</tr>
<tr>
<td>180</td>
<td>5.69</td>
<td>17.06</td>
<td>0.59</td>
<td>2.37</td>
<td>0.56</td>
<td>2.25</td>
</tr>
<tr>
<td>195</td>
<td>5.42</td>
<td>17.63</td>
<td>0.56</td>
<td>2.25</td>
<td>0.62</td>
<td>2.5</td>
</tr>
<tr>
<td>210</td>
<td>5.19</td>
<td>18.16</td>
<td>0.54</td>
<td>2.15</td>
<td>0.71</td>
<td>2.83</td>
</tr>
<tr>
<td>225</td>
<td>4.98</td>
<td>18.68</td>
<td>0.52</td>
<td>2.06</td>
<td>0.83</td>
<td>3.32</td>
</tr>
<tr>
<td>240</td>
<td>4.79</td>
<td>19.17</td>
<td>0.5</td>
<td>1.98</td>
<td>1.04</td>
<td>4.14</td>
</tr>
<tr>
<td>255</td>
<td>4.62</td>
<td>19.65</td>
<td>0.5</td>
<td>1.91</td>
<td>1.47</td>
<td>5.9</td>
</tr>
<tr>
<td>270</td>
<td>4.47</td>
<td>20.11</td>
<td>0.6</td>
<td>1.84</td>
<td>2.03</td>
<td>24.91</td>
</tr>
<tr>
<td>285</td>
<td>4.33</td>
<td>20.56</td>
<td>0.65</td>
<td>1.78</td>
<td>2.02</td>
<td>8.09</td>
</tr>
<tr>
<td>300</td>
<td>4.2</td>
<td>20.99</td>
<td>0.65</td>
<td>1.73</td>
<td>1.2</td>
<td>4.81</td>
</tr>
<tr>
<td>315</td>
<td>4.08</td>
<td>21.41</td>
<td>0.62</td>
<td>1.68</td>
<td>0.92</td>
<td>3.67</td>
</tr>
<tr>
<td>330</td>
<td>3.97</td>
<td>21.82</td>
<td>0.61</td>
<td>1.63</td>
<td>0.76</td>
<td>3.05</td>
</tr>
<tr>
<td>345</td>
<td>3.86</td>
<td>22.22</td>
<td>0.59</td>
<td>1.63</td>
<td>0.76</td>
<td>3.05</td>
</tr>
<tr>
<td>360</td>
<td>3.77</td>
<td>22.6</td>
<td>0.39</td>
<td>1.55</td>
<td>0.59</td>
<td>2.37</td>
</tr>
<tr>
<td>375</td>
<td>3.68</td>
<td>22.98</td>
<td>0.38</td>
<td>1.51</td>
<td>0.54</td>
<td>2.15</td>
</tr>
<tr>
<td>390</td>
<td>3.59</td>
<td>23.35</td>
<td>0.37</td>
<td>1.47</td>
<td>0.5</td>
<td>1.98</td>
</tr>
<tr>
<td>405</td>
<td>3.51</td>
<td>23.71</td>
<td>0.36</td>
<td>1.44</td>
<td>0.46</td>
<td>1.84</td>
</tr>
<tr>
<td>420</td>
<td>3.44</td>
<td>24.06</td>
<td>0.35</td>
<td>1.41</td>
<td>0.43</td>
<td>1.73</td>
</tr>
<tr>
<td>435</td>
<td>3.37</td>
<td>24.41</td>
<td>0.34</td>
<td>1.38</td>
<td>0.41</td>
<td>1.63</td>
</tr>
<tr>
<td>450</td>
<td>3.3</td>
<td>24.74</td>
<td>0.34</td>
<td>1.35</td>
<td>0.39</td>
<td>1.55</td>
</tr>
<tr>
<td>465</td>
<td>3.24</td>
<td>25.08</td>
<td>0.33</td>
<td>1.33</td>
<td>0.37</td>
<td>1.47</td>
</tr>
<tr>
<td>480</td>
<td>3.18</td>
<td>25.4</td>
<td>0.33</td>
<td>1.3</td>
<td>0.35</td>
<td>1.41</td>
</tr>
<tr>
<td>495</td>
<td>3.12</td>
<td>25.72</td>
<td>0.32</td>
<td>1.28</td>
<td>0.34</td>
<td>1.35</td>
</tr>
<tr>
<td>510</td>
<td>3.06</td>
<td>26.03</td>
<td>0.31</td>
<td>1.25</td>
<td>0.33</td>
<td>1.3</td>
</tr>
<tr>
<td>525</td>
<td>3.01</td>
<td>26.34</td>
<td>0.31</td>
<td>1.23</td>
<td>0.31</td>
<td>1.25</td>
</tr>
<tr>
<td>540</td>
<td>2.96</td>
<td>26.64</td>
<td>0.3</td>
<td>1.21</td>
<td>0.3</td>
<td>1.21</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N° 17: Hietograma para T=50
Cuadro N° 16: Hietograma de diseño y distribución de lluvias para T = 100 años

<table>
<thead>
<tr>
<th>Instante (min)</th>
<th>Prec. acumulada (mm)</th>
<th>Prec. parcial (mm)</th>
<th>Prec. Alternada (mm)</th>
<th>Int. parcial alternada (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>28.29</td>
<td>7.07</td>
<td>7.07</td>
<td>28.29</td>
</tr>
<tr>
<td>30</td>
<td>18.73</td>
<td>9.37</td>
<td>2.3</td>
<td>9.18</td>
</tr>
<tr>
<td>45</td>
<td>14.72</td>
<td>11.04</td>
<td>1.67</td>
<td>6.7</td>
</tr>
<tr>
<td>60</td>
<td>12.41</td>
<td>12.41</td>
<td>1.37</td>
<td>5.47</td>
</tr>
<tr>
<td>75</td>
<td>10.87</td>
<td>13.58</td>
<td>1.18</td>
<td>4.7</td>
</tr>
<tr>
<td>90</td>
<td>9.75</td>
<td>14.63</td>
<td>1.04</td>
<td>4.17</td>
</tr>
<tr>
<td>105</td>
<td>8.9</td>
<td>15.57</td>
<td>0.94</td>
<td>3.78</td>
</tr>
<tr>
<td>120</td>
<td>8.22</td>
<td>16.44</td>
<td>0.87</td>
<td>3.47</td>
</tr>
<tr>
<td>135</td>
<td>7.66</td>
<td>17.24</td>
<td>0.8</td>
<td>3.22</td>
</tr>
<tr>
<td>150</td>
<td>7.2</td>
<td>18.71</td>
<td>0.75</td>
<td>3.01</td>
</tr>
<tr>
<td>165</td>
<td>6.8</td>
<td>18.71</td>
<td>0.71</td>
<td>2.84</td>
</tr>
<tr>
<td>180</td>
<td>6.46</td>
<td>19.38</td>
<td>0.67</td>
<td>2.69</td>
</tr>
<tr>
<td>195</td>
<td>6.16</td>
<td>20.02</td>
<td>0.64</td>
<td>2.56</td>
</tr>
<tr>
<td>210</td>
<td>5.89</td>
<td>20.63</td>
<td>0.61</td>
<td>2.44</td>
</tr>
<tr>
<td>225</td>
<td>5.66</td>
<td>21.21</td>
<td>0.59</td>
<td>2.34</td>
</tr>
<tr>
<td>240</td>
<td>5.44</td>
<td>21.78</td>
<td>0.56</td>
<td>2.25</td>
</tr>
<tr>
<td>255</td>
<td>5.25</td>
<td>22.32</td>
<td>0.54</td>
<td>2.17</td>
</tr>
<tr>
<td>270</td>
<td>5.08</td>
<td>22.84</td>
<td>0.52</td>
<td>2.09</td>
</tr>
<tr>
<td>285</td>
<td>4.92</td>
<td>23.35</td>
<td>0.51</td>
<td>2.03</td>
</tr>
<tr>
<td>300</td>
<td>4.77</td>
<td>23.84</td>
<td>0.49</td>
<td>1.96</td>
</tr>
<tr>
<td>315</td>
<td>4.63</td>
<td>24.32</td>
<td>0.48</td>
<td>1.91</td>
</tr>
<tr>
<td>330</td>
<td>4.51</td>
<td>24.78</td>
<td>0.46</td>
<td>1.85</td>
</tr>
<tr>
<td>345</td>
<td>4.39</td>
<td>25.23</td>
<td>0.45</td>
<td>1.8</td>
</tr>
<tr>
<td>360</td>
<td>4.28</td>
<td>25.67</td>
<td>0.44</td>
<td>1.76</td>
</tr>
<tr>
<td>375</td>
<td>4.18</td>
<td>26.1</td>
<td>0.43</td>
<td>1.71</td>
</tr>
<tr>
<td>390</td>
<td>4.08</td>
<td>26.52</td>
<td>0.42</td>
<td>1.67</td>
</tr>
<tr>
<td>405</td>
<td>3.99</td>
<td>26.93</td>
<td>0.41</td>
<td>1.64</td>
</tr>
<tr>
<td>420</td>
<td>3.9</td>
<td>27.33</td>
<td>0.4</td>
<td>1.6</td>
</tr>
<tr>
<td>435</td>
<td>3.82</td>
<td>27.72</td>
<td>0.39</td>
<td>1.57</td>
</tr>
<tr>
<td>450</td>
<td>3.75</td>
<td>28.1</td>
<td>0.38</td>
<td>1.54</td>
</tr>
<tr>
<td>465</td>
<td>3.67</td>
<td>28.48</td>
<td>0.38</td>
<td>1.51</td>
</tr>
<tr>
<td>480</td>
<td>3.61</td>
<td>28.85</td>
<td>0.37</td>
<td>1.48</td>
</tr>
<tr>
<td>495</td>
<td>3.54</td>
<td>29.21</td>
<td>0.36</td>
<td>1.45</td>
</tr>
<tr>
<td>510</td>
<td>3.48</td>
<td>29.57</td>
<td>0.36</td>
<td>1.42</td>
</tr>
<tr>
<td>525</td>
<td>3.42</td>
<td>29.92</td>
<td>0.35</td>
<td>1.4</td>
</tr>
<tr>
<td>540</td>
<td>3.36</td>
<td>30.26</td>
<td>0.34</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N°18: Hietograma para T=100 años
Cuadro N° 17: Hietograma de diseño y distribución de lluvias para T = 500 años

<table>
<thead>
<tr>
<th>Instante (min)</th>
<th>Int. (mm/h)</th>
<th>Prec. acumulada (mm)</th>
<th>Prec. (mm)</th>
<th>Int. parcial (mm)</th>
<th>Prec. Alternada (mm)</th>
<th>Int. Parcial alternada (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>32.12</td>
<td>8.03</td>
<td>8.03</td>
<td>32.12</td>
<td>0.4</td>
<td>1.59</td>
</tr>
<tr>
<td>30</td>
<td>21.28</td>
<td>10.64</td>
<td>2.61</td>
<td>10.43</td>
<td>0.41</td>
<td>1.65</td>
</tr>
<tr>
<td>45</td>
<td>16.72</td>
<td>12.54</td>
<td>1.9</td>
<td>7.61</td>
<td>0.43</td>
<td>1.71</td>
</tr>
<tr>
<td>60</td>
<td>14.09</td>
<td>14.09</td>
<td>1.55</td>
<td>6.21</td>
<td>0.44</td>
<td>1.78</td>
</tr>
<tr>
<td>75</td>
<td>12.34</td>
<td>15.43</td>
<td>1.34</td>
<td>5.34</td>
<td>0.46</td>
<td>1.86</td>
</tr>
<tr>
<td>90</td>
<td>11.08</td>
<td>16.61</td>
<td>1.18</td>
<td>4.74</td>
<td>0.49</td>
<td>1.95</td>
</tr>
<tr>
<td>105</td>
<td>10.11</td>
<td>17.68</td>
<td>1.07</td>
<td>4.29</td>
<td>0.51</td>
<td>2.05</td>
</tr>
<tr>
<td>120</td>
<td>9.33</td>
<td>18.67</td>
<td>0.98</td>
<td>3.94</td>
<td>0.54</td>
<td>2.16</td>
</tr>
<tr>
<td>135</td>
<td>8.7</td>
<td>19.58</td>
<td>0.91</td>
<td>3.65</td>
<td>0.58</td>
<td>2.3</td>
</tr>
<tr>
<td>150</td>
<td>8.18</td>
<td>20.44</td>
<td>0.86</td>
<td>3.42</td>
<td>0.62</td>
<td>2.46</td>
</tr>
<tr>
<td>165</td>
<td>7.73</td>
<td>21.24</td>
<td>0.81</td>
<td>3.22</td>
<td>0.66</td>
<td>2.66</td>
</tr>
<tr>
<td>180</td>
<td>7.34</td>
<td>22.01</td>
<td>0.76</td>
<td>3.05</td>
<td>0.73</td>
<td>2.91</td>
</tr>
<tr>
<td>195</td>
<td>6.99</td>
<td>22.73</td>
<td>0.73</td>
<td>2.91</td>
<td>0.81</td>
<td>3.22</td>
</tr>
<tr>
<td>210</td>
<td>6.69</td>
<td>23.43</td>
<td>0.69</td>
<td>2.78</td>
<td>0.91</td>
<td>3.65</td>
</tr>
<tr>
<td>225</td>
<td>6.42</td>
<td>24.09</td>
<td>0.66</td>
<td>2.66</td>
<td>1.07</td>
<td>4.29</td>
</tr>
<tr>
<td>240</td>
<td>6.18</td>
<td>24.73</td>
<td>0.64</td>
<td>2.56</td>
<td>1.34</td>
<td>5.34</td>
</tr>
<tr>
<td>255</td>
<td>5.96</td>
<td>25.35</td>
<td>0.62</td>
<td>2.46</td>
<td>1.9</td>
<td>7.61</td>
</tr>
<tr>
<td>270</td>
<td>5.76</td>
<td>25.94</td>
<td>0.59</td>
<td>2.38</td>
<td>8.03</td>
<td>32.12</td>
</tr>
<tr>
<td>285</td>
<td>5.58</td>
<td>26.52</td>
<td>0.58</td>
<td>2.3</td>
<td>2.61</td>
<td>10.43</td>
</tr>
<tr>
<td>300</td>
<td>5.41</td>
<td>27.07</td>
<td>0.56</td>
<td>2.23</td>
<td>1.55</td>
<td>6.21</td>
</tr>
<tr>
<td>315</td>
<td>5.26</td>
<td>27.62</td>
<td>0.54</td>
<td>2.16</td>
<td>1.18</td>
<td>4.74</td>
</tr>
<tr>
<td>330</td>
<td>5.12</td>
<td>28.14</td>
<td>0.53</td>
<td>2</td>
<td>0.98</td>
<td>3.94</td>
</tr>
<tr>
<td>345</td>
<td>4.98</td>
<td>28.65</td>
<td>0.51</td>
<td>2.05</td>
<td>0.86</td>
<td>3.42</td>
</tr>
<tr>
<td>360</td>
<td>4.86</td>
<td>29.15</td>
<td>0.5</td>
<td>2</td>
<td>0.76</td>
<td>3.05</td>
</tr>
<tr>
<td>375</td>
<td>4.74</td>
<td>29.64</td>
<td>0.49</td>
<td>1.95</td>
<td>0.69</td>
<td>2.78</td>
</tr>
<tr>
<td>390</td>
<td>4.63</td>
<td>30.12</td>
<td>0.48</td>
<td>1.9</td>
<td>0.64</td>
<td>2.56</td>
</tr>
<tr>
<td>405</td>
<td>4.53</td>
<td>30.58</td>
<td>0.46</td>
<td>1.86</td>
<td>0.59</td>
<td>2.38</td>
</tr>
<tr>
<td>420</td>
<td>4.43</td>
<td>31.03</td>
<td>0.45</td>
<td>1.82</td>
<td>0.56</td>
<td>2.23</td>
</tr>
<tr>
<td>435</td>
<td>4.34</td>
<td>31.48</td>
<td>0.44</td>
<td>1.78</td>
<td>0.53</td>
<td>2.1</td>
</tr>
<tr>
<td>450</td>
<td>4.26</td>
<td>31.92</td>
<td>0.44</td>
<td>1.74</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>465</td>
<td>4.17</td>
<td>32.34</td>
<td>0.43</td>
<td>1.71</td>
<td>0.48</td>
<td>1.9</td>
</tr>
<tr>
<td>480</td>
<td>4.1</td>
<td>32.76</td>
<td>0.42</td>
<td>1.68</td>
<td>0.45</td>
<td>1.82</td>
</tr>
<tr>
<td>495</td>
<td>4.02</td>
<td>33.17</td>
<td>0.41</td>
<td>1.65</td>
<td>0.44</td>
<td>1.74</td>
</tr>
<tr>
<td>510</td>
<td>3.95</td>
<td>33.58</td>
<td>0.4</td>
<td>1.62</td>
<td>0.42</td>
<td>1.68</td>
</tr>
<tr>
<td>525</td>
<td>3.88</td>
<td>33.97</td>
<td>0.4</td>
<td>1.59</td>
<td>0.4</td>
<td>1.62</td>
</tr>
<tr>
<td>540</td>
<td>3.82</td>
<td>34.37</td>
<td>0.39</td>
<td>1.56</td>
<td>0.39</td>
<td>1.56</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N°19: Hietograma para T=500 años
IV. RESULTADOS Y DISCUSIÓN.

4.1 Resultados del modelo de elevación digital.

Finalmente obtenemos un DEM resultante a partir del cual se determinó las características fisiográficas generadas por el software ArcGIS 10.5 para la cuenca locumba en el sector Poquera, los cuales se muestran en el grafico N° 19.

Grafico Nº 20: Delimitación del modelo de elevación digital DEM

La Cuenca del río Locumba tiene un área de 1493.806 km2 con un perímetro de 269.5513 km., su parte más elevada está en la cota 5599 msnm y su parte más baja se
ubica en la cota 1789 msnm, las características fisiográficas de la cuenca se puede
observar en el (Cuadro Nº 6) La longitud total del río principal es de 79.8528 Km
resultando una pendiente de 47.71%. Presenta una dirección Noreste a Suroeste, y su
altura media es de 4067 msnm. La cuenca presenta una densidad de drenaje 5.39%
rectangular según observación realizada en el Plano Hidrológico en Anexo de mapas a
escala 1:100,000. Los ríos principales de la cuenca del río Locumba son: Callazas, Salado
y Locumba.

4.1.1 Resultados del mapa de pendientes.

La cuenca en gran parte se encuentra con pendientes entre 0 y 4.77 % para la parte
media y baja de la cuenca, en la parte alta de la cuenca se evidencia pendientes entre 7 y
47.71 %, es decir, fuertemente ondulado, con alturas sobre el nivel del mar desde 1789 m
hasta 5599 m, como se puede observar en el mapa de pendientes anexo B.

4.1.2 Cobertura vegetal y uso de los suelos.

De acuerdo al Mapa D, la zona media de la cuenca del Río Locumba se caracteriza
por tener gran extensión de Pastos con un área aproximada de 1493.7187 kilómetros
cuadrados que representa el 50.2 % de ocupación del suelo, también encontramos dentro
de esta área de estudio la presencia de cultivos permanentes como la cebolla y cultivos
transitorios, ver tabla 9.

<table>
<thead>
<tr>
<th>Clase</th>
<th>Área (km²)</th>
<th>% ocupado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cultivo en limpio</td>
<td>248.21</td>
<td>16.62</td>
</tr>
<tr>
<td>Cultivos permanentes</td>
<td>652.59</td>
<td>44.02</td>
</tr>
</tbody>
</table>

Cuadro N° 18: Cobertura vegetal del suelo para la cuenca Locumba
<table>
<thead>
<tr>
<th>Parámetros</th>
<th>Micro Cuenca Locumba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área de la cuenca (km²)</td>
<td>1493.806</td>
</tr>
<tr>
<td>Perímetro (km)</td>
<td>269.5513</td>
</tr>
<tr>
<td>Longitud del cauce (km)</td>
<td>79.8528</td>
</tr>
<tr>
<td>Longitud de la cuenca (km)</td>
<td>75.4562</td>
</tr>
<tr>
<td>Ancho promedio de la cuenca</td>
<td>41.0211</td>
</tr>
<tr>
<td>Índice de compacidad (kc)</td>
<td>1.967</td>
</tr>
<tr>
<td>Factor de forma (Ff)</td>
<td>0.234</td>
</tr>
<tr>
<td>Radio de elongación (Re)</td>
<td>0.577</td>
</tr>
<tr>
<td>Radio de circularidad (Re)</td>
<td>0.258</td>
</tr>
<tr>
<td>Altitud máxima (m.s.n.m.)</td>
<td>5599</td>
</tr>
<tr>
<td>Altitud mínima (m.s.n.m.)</td>
<td>1789</td>
</tr>
<tr>
<td>Altitud media (m.s.n.m.)</td>
<td>4067</td>
</tr>
<tr>
<td>Pendiente del cauce (%)</td>
<td>4.77</td>
</tr>
<tr>
<td>Pendiente de la cuenca (%)</td>
<td>47.71</td>
</tr>
<tr>
<td>Densidad de drenaje (%)</td>
<td>5.39</td>
</tr>
<tr>
<td>Tiempo de concentración (hr.)</td>
<td>14.5</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
4.2. Resultados del análisis de consistencia de la información pluviométrica.

En los cuadros 20, 21, 22 y 23 se muestran las probabilidades de ocurrencia para la prueba de independencia, tenemos el de Wald-wolfowitz.

Para la Prueba de estacionalidad, se observa que no presenta tendencia según la prueba de estacionalidad de Kendall Finalmente.

Para la prueba de homogeneidad se utilizó la prueba de escala anual de Wilcoxon se comprobó el promedio de un subconjunto de la muestra difiere significativamente del promedio de un segundo subconjunto de la muestra.

Cuadro N° 20: Cuadro de verificación de hipótesis, estación Vilacota

<table>
<thead>
<tr>
<th>Tipo de Prueba</th>
<th>Ho</th>
<th>H1</th>
<th>U</th>
<th>P</th>
<th>Grupos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independencia (wald- wolfowitz)</td>
<td>5%</td>
<td>0.47</td>
<td>0.64</td>
<td>1965</td>
<td>2010</td>
</tr>
<tr>
<td>Estacionalidad (kendall)</td>
<td>5%</td>
<td>0.74</td>
<td>0.45</td>
<td>1965</td>
<td>2010</td>
</tr>
<tr>
<td>Homogeneidad a (escala anual wilcoxon)</td>
<td>5%</td>
<td>1.70</td>
<td>0.09</td>
<td>1965</td>
<td>1977</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 21: Cuadro de verificación de hipótesis, estación Susapaya

<table>
<thead>
<tr>
<th>Tipo de Prueba</th>
<th>Ho</th>
<th>H1</th>
<th>U</th>
<th>P</th>
<th>Grupos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independencia (wald- wolfowitz)</td>
<td>5%</td>
<td>0.03</td>
<td>0.97</td>
<td>1965</td>
<td>2010</td>
</tr>
<tr>
<td>Estacionalidad (kendall)</td>
<td>5%</td>
<td>0.72</td>
<td>0.05</td>
<td>1965</td>
<td>2010</td>
</tr>
<tr>
<td>Homogeneidad a (escala anual wilcoxon)</td>
<td>5%</td>
<td>1.28</td>
<td>0.20</td>
<td>1965</td>
<td>2005</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 22: Cuadro de verificación de hipótesis, estación Candarave

<table>
<thead>
<tr>
<th>Tipo de Prueba</th>
<th>Ho</th>
<th>H1</th>
<th>U</th>
<th>P</th>
<th>Grupos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independencia (wald- wolfowitz)</td>
<td>0%</td>
<td>3.23</td>
<td>0.00</td>
<td>1965</td>
<td>2010</td>
</tr>
<tr>
<td>Estacionalidad (kendall)</td>
<td>5%</td>
<td>0.09</td>
<td>0.93</td>
<td>1965</td>
<td>2010</td>
</tr>
<tr>
<td>Homogeneidad a (escala anual wilcoxon)</td>
<td>5%</td>
<td>0.24</td>
<td>0.81</td>
<td>1965</td>
<td>1985</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 23: Cuadro de verificación de hipótesis, estación Sitajara

<table>
<thead>
<tr>
<th>Tipo de Prueba</th>
<th>Ho</th>
<th>H1</th>
<th>U</th>
<th>P</th>
<th>Grupos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independencia (wald- wolfowitz)</td>
<td>5%</td>
<td>1.47</td>
<td>0.14</td>
<td>1965</td>
<td>2011</td>
</tr>
<tr>
<td>Estacionalidad (kendall)</td>
<td>5%</td>
<td>3.32</td>
<td>0.02</td>
<td>1965</td>
<td>2011</td>
</tr>
<tr>
<td>Homogeneidad a (escala anual wilcoxon)</td>
<td>5%</td>
<td>1.90</td>
<td>0.06</td>
<td>1965</td>
<td>1992</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia
4.3 Completacion y extensión de datos estación Vilacota.

Cuadro N° 24: Parámetros de la regresión lineal.

<table>
<thead>
<tr>
<th>N</th>
<th>R</th>
<th>R²</th>
<th>Dur.</th>
<th>a0</th>
<th>a1</th>
<th>a2</th>
<th>a3</th>
<th>a4</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>0.628</td>
<td>0.396</td>
<td>0.083</td>
<td>8.269</td>
<td>-0.037</td>
<td>0.049</td>
<td>0.020</td>
<td>0.592</td>
</tr>
</tbody>
</table>

Grafico N° 21: Independencia de la serie de precipitación

4.2.1 Hidrogramas de precipitación máxima de 24 horas completadas.

En las figuras 22, 23, 24, 25 se presentan los registros de precipitación Máxima de 24 Horas anual para los períodos desde 1964 hasta 2011 los cuales fueron utilizados para la completacion y extensión de datos, en el cuadro N° 25 se muestra las precipitaciones máximas de las diferentes estaciones hidrológicas que se encuentran en la cuenca del Río Locumba.
Grafico N° 22: Hidrógrafo de registro de PP máx 24 horas, estación Vilacota

Fuente: SENAMHI – 2018

Grafico N° 23: Hidrógrafo de registro de PP máx 24 horas, estación Susapaya

Fuente: SENAMHI – 2018

Grafico N° 24: Hidrógrafo de registro de PP máx 24 horas, estación Candarave

Fuente: SENAMHI – 2018
Grafico N° 25: Hidrógrafo de registro de PP máx 24 horas, estación Sitajara

Fuente: SENAMHI – 2018

Cuadro N° 25: Precipitación máxima de 24 horas completadas y extendidas
4.2.2 Resultados del análisis de distribución y estimación de parámetros.

Cuadro N° 26: probabilidad y estimación de parámetros, estación Vilacota

Método	P	x²	GL	Ho=5%	μ	α	c	σ	m	λ	NC	
Gumbel	0.8278	2.15	5	Aceptamos	9.26	6.05						95%
weibull	0.3033	6.03	5	Aceptamos	13.90	1.80						95%
Normal	0.1187	7.48	5	Aceptamos	12.54	6.76						95%
LongNormal	0.0006	16.21	5	Rechasa	2.27	0.96					95%	
LongNormal III	0.3300	5.85	4	Aceptamos	3.69	0.16	27.282	95%				
Gama	0.1900	7.48	5	Aceptamos	0.17					2.10	95%	
Person Tipo III	0.5200	4	5	Aceptamos	0.58	-13.67	15.24	95%				

Fuente: Elaboración propia

Cuadro N° 27: probabilidad y estimación de parámetros, estación Susapaya

<table>
<thead>
<tr>
<th>Método</th>
<th>P</th>
<th>x²</th>
<th>GL</th>
<th>Ho=5%</th>
<th>μ</th>
<th>α</th>
<th>c</th>
<th>σ</th>
<th>m</th>
<th>λ</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumbel</td>
<td>0.7306</td>
<td>3.60</td>
<td>6</td>
<td>Aceptamos</td>
<td>10.39</td>
<td>6.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>weibull</td>
<td>0.6227</td>
<td>4.40</td>
<td>6</td>
<td>Aceptamos</td>
<td>15.77</td>
<td>1.65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Normal</td>
<td>0.1626</td>
<td>9.20</td>
<td>6</td>
<td>Aceptamos</td>
<td>14.18</td>
<td>8.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>LongNormal</td>
<td>0.0100</td>
<td>16.80</td>
<td>6</td>
<td>Rechasa</td>
<td>2.41</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>LongNormal III</td>
<td>0.6700</td>
<td>3.20</td>
<td>5</td>
<td>Aceptamos</td>
<td>3.83</td>
<td>0.35</td>
<td>-9.03</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gama</td>
<td>0.3800</td>
<td>6.40</td>
<td>6</td>
<td>Aceptamos</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.20</td>
<td>95%</td>
</tr>
<tr>
<td>Person Tipo III</td>
<td>0.5500</td>
<td>4</td>
<td>5</td>
<td>Aceptamos</td>
<td>0.26</td>
<td>-3.64</td>
<td>4.64</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
Cuadro N° 28: probabilidad y estimación de parámetros, estación Candarave

<table>
<thead>
<tr>
<th>Método</th>
<th>P</th>
<th>(x^2)</th>
<th>GL</th>
<th>Ho=5%</th>
<th>(\mu)</th>
<th>(\alpha)</th>
<th>(c)</th>
<th>(\sigma)</th>
<th>(m)</th>
<th>(\lambda)</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumbel</td>
<td>0.6649</td>
<td>4.09</td>
<td>6</td>
<td>Aceptamos</td>
<td>12.86</td>
<td>8.02</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>weibull</td>
<td>0.0417</td>
<td>13.09</td>
<td>6</td>
<td>Rechasa</td>
<td>19.86</td>
<td>1.48</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Normal</td>
<td>0.0022</td>
<td>20.52</td>
<td>6</td>
<td>Aceptamos</td>
<td>17.83</td>
<td>0.14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>LongNormal</td>
<td>0.9200</td>
<td>0.95</td>
<td>6</td>
<td>Rechasa</td>
<td>2.66</td>
<td>0.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>LongNormal III Parámetros</td>
<td>0.1800</td>
<td>7.61</td>
<td>5</td>
<td>Aceptamos</td>
<td>2.99</td>
<td>0.48</td>
<td>-4.66</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Gama</td>
<td>0.0400</td>
<td>13.48</td>
<td>6</td>
<td>Rechasa</td>
<td>0.14</td>
<td></td>
<td>2.41</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Person Tipo III</td>
<td>0.0600</td>
<td>10.74</td>
<td>5</td>
<td>Aceptamos</td>
<td>0.18</td>
<td>1</td>
<td>2.26</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro N° 29: Cuadro de probabilidad y estimación de parámetros, estación Sitajara

<table>
<thead>
<tr>
<th>Método</th>
<th>P</th>
<th>(x^2)</th>
<th>GL</th>
<th>Ho=5%</th>
<th>(\mu)</th>
<th>(\alpha)</th>
<th>(c)</th>
<th>(\sigma)</th>
<th>(m)</th>
<th>(\lambda)</th>
<th>NC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gumbel</td>
<td>0.5494</td>
<td>4</td>
<td>5</td>
<td>Aceptamos</td>
<td>8.15</td>
<td>4.69</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>weibull</td>
<td>0.1173</td>
<td>8.80</td>
<td>5</td>
<td>Aceptamos</td>
<td>12.33</td>
<td>1.98</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Normal</td>
<td>0.1355</td>
<td>8.40</td>
<td>5</td>
<td>Aceptamos</td>
<td>10.89</td>
<td>5.91</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>LongNormal</td>
<td>0.6083</td>
<td>3.60</td>
<td>5</td>
<td>Aceptamos</td>
<td>2.23</td>
<td>0.60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>LongNormal III Parámetros</td>
<td>0.4100</td>
<td>4</td>
<td>4</td>
<td>Aceptamos</td>
<td>2.62</td>
<td>0.39</td>
<td>-3.94</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Gama</td>
<td>0.5500</td>
<td>4</td>
<td>5</td>
<td>Aceptamos</td>
<td>0.30</td>
<td></td>
<td>3.31</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
<tr>
<td>Person Tipo III</td>
<td>0.4100</td>
<td>4</td>
<td>4</td>
<td>Aceptamos</td>
<td>0.30</td>
<td>0.16</td>
<td>3.18</td>
<td></td>
<td></td>
<td></td>
<td>95%</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

4.2.3 Resultados de la prueba de ajuste

4.2.3.1 Resultado del modelo estadístico chí - cuadrado.

Cuadro N° 30: Verificación estadística de la distribución teórica, estación Vilacota

<table>
<thead>
<tr>
<th>Chi - Cuadrado</th>
<th>5%</th>
<th>10%</th>
<th>F(%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>61.75%</td>
<td>0.96</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>25.28%</td>
<td>2.75</td>
</tr>
<tr>
<td>Exponential</td>
<td>REJECT</td>
<td>REJECT</td>
<td>0.59%</td>
<td>10.25</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>67.51%</td>
<td>0.79</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>43.59%</td>
<td>0.61</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>10.88%</td>
<td>2.57</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>25.28%</td>
<td>2.75</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia
Cuadro N° 31: Verificación estadística de la distribución teórica, estación Susapaya

<table>
<thead>
<tr>
<th>Chi - Cuadrado</th>
<th>5%</th>
<th>10%</th>
<th>F(%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>90.98%</td>
<td>1.00</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>1.74%</td>
<td>12.00</td>
</tr>
<tr>
<td>Exponential</td>
<td>REJECT</td>
<td>REJECT</td>
<td>0.52%</td>
<td>14.75</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>44.09%</td>
<td>3.75</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>REJECT</td>
<td>28.98%</td>
<td>3.75</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>REJECT</td>
<td>REJECT</td>
<td>0.00%</td>
<td>34.00</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>37.32%</td>
<td>4.25</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 32: Verificación estadística de la distribución teórica, estación Candarave

<table>
<thead>
<tr>
<th>Chi - Cuadrado</th>
<th>5%</th>
<th>10%</th>
<th>F(%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>43.20%</td>
<td>1.68</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>61.75%</td>
<td>0.96</td>
</tr>
<tr>
<td>Exponential</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>25.28%</td>
<td>2.75</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>36.14%</td>
<td>2.04</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>REJECT</td>
<td>7.79%</td>
<td>3.11</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>ACCEPT</td>
<td>REJECT</td>
<td>7.79%</td>
<td>3.11</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>39.51%</td>
<td>1.86</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 33: Verificación estadística de la distribución teórica, estación Sitajara

<table>
<thead>
<tr>
<th>Chi - Cuadrado</th>
<th>5%</th>
<th>10%</th>
<th>F(%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>REJECT</td>
<td>REJECT</td>
<td>3.28%</td>
<td>10.50</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>13.59%</td>
<td>7.00</td>
</tr>
<tr>
<td>Exponential</td>
<td>REJECT</td>
<td>REJECT</td>
<td>0.52%</td>
<td>14.75</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>28.73%</td>
<td>5.00</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>10.01%</td>
<td>6.25</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>REJECT</td>
<td>REJECT</td>
<td>1.66%</td>
<td>10.25</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>19.91%</td>
<td>6.00</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

4.2.3.2 Resultado del modelo estadístico kolmogorov Smirnov.

Cuadro N° 34: Verificación estadística de la distribución teórica, estación Vilacota

<table>
<thead>
<tr>
<th>Smirnov Kolmogorov</th>
<th>5%</th>
<th>10%</th>
<th>F(%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>81.72%</td>
<td>0.08</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>83.72%</td>
<td>0.08</td>
</tr>
<tr>
<td>Exponential</td>
<td>REJECT</td>
<td>REJECT</td>
<td>4.16%</td>
<td>0.19</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>87.59%</td>
<td>0.08</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>85.94%</td>
<td>0.08</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>76.80%</td>
<td>0.09</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>82.25%</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

103
Cuadro N° 35: Verificación estadística de la distribución teórica, estación Susapaya

<table>
<thead>
<tr>
<th>Distribución</th>
<th>5%</th>
<th>10%</th>
<th>F (%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>85.08%</td>
<td>0.08</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>81.64%</td>
<td>0.08</td>
</tr>
<tr>
<td>Exponential</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>24.93%</td>
<td>0.14</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>87.52%</td>
<td>0.08</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>83.80%</td>
<td>0.08</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>REJECT</td>
<td>REJECT</td>
<td>0.01%</td>
<td>0.30</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>93.80%</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 36: Verificación estadística de la distribución teórica, estación Candarave

<table>
<thead>
<tr>
<th>Distribución</th>
<th>5%</th>
<th>10%</th>
<th>F (%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>79.37%</td>
<td>0.09</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>86.82%</td>
<td>0.08</td>
</tr>
<tr>
<td>Exponential</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>37.54%</td>
<td>0.12</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>93.18%</td>
<td>0.07</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>95.20%</td>
<td>0.07</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>89.07%</td>
<td>0.08</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>84.55%</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Cuadro N° 37: Verificación estadística de la distribución teórica, estación Sitajara

<table>
<thead>
<tr>
<th>Distribución</th>
<th>5%</th>
<th>10%</th>
<th>F (%)</th>
<th>DMAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>21.46%</td>
<td>0.14</td>
</tr>
<tr>
<td>LogNormal</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>97.23%</td>
<td>0.06</td>
</tr>
<tr>
<td>Exponential</td>
<td>ACCEPT</td>
<td>REJECT</td>
<td>35.29%</td>
<td>0.12</td>
</tr>
<tr>
<td>Gamma</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>76.57%</td>
<td>0.09</td>
</tr>
<tr>
<td>Pearson III</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>64.53%</td>
<td>0.10</td>
</tr>
<tr>
<td>Log Pearson III</td>
<td>REJECT</td>
<td>REJECT</td>
<td>33.66%</td>
<td>0.13</td>
</tr>
<tr>
<td>Gumbel</td>
<td>ACCEPT</td>
<td>ACCEPT</td>
<td>94.15%</td>
<td>0.07</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

4.2.4 Selección de la función de probabilidad.

a partir de la información histórica encontrada de registros de precipitación máxima 24h, se ha mostrado que los datos de precipitación en las estaciones Susapaya Vilacota, Candarave y Sitajara presentan un mejor ajuste a la función de Gumbel. Se determinó que la mayor precipitación para un periodo de retorno de 500 años se encuentra...
en la estación Candarave, con una precipitación de 49.743 mm y la más baja en la estación Vilacota con una precipitación de 28.292 mm, como se observa en el cuadro N° 30.

Cuadro N° 38: Precipitación según la probabilidad de distribución

<table>
<thead>
<tr>
<th>Estaciones</th>
<th>Modelo de Distribución</th>
<th>N° de parámetros</th>
<th>Prueba de Bondad de Ajuste</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chi-cuadrado</td>
</tr>
<tr>
<td>Vilacota</td>
<td>Gamma</td>
<td>2</td>
<td>5.43</td>
</tr>
<tr>
<td>Candarave</td>
<td>Person III</td>
<td>2</td>
<td>7.71</td>
</tr>
<tr>
<td>Sitajara</td>
<td>LogNormal</td>
<td>2</td>
<td>4.00</td>
</tr>
<tr>
<td>Susapaya</td>
<td>Weibull</td>
<td>2</td>
<td>3.00</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Grafico N° 26: visualización de la función que mejor se justa para diferentes periodos de retorno

Fuente: elaboración propia
4.2.5 Distribución de la precipitación areal

4.2.5.1 Distribución de la precipitación, método del polígono de thiessen.

Grafico N° 27: Mapa de distribución de la precipitación método polígono de Thiessen

Cuadro N° 39: Resumen de la precipitación areal según el polígono de thiessen

<table>
<thead>
<tr>
<th>T=2</th>
<th>T=5</th>
<th>T=10</th>
<th>T=25</th>
<th>T=50</th>
<th>T=100</th>
<th>T=200</th>
<th>T=500</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>20.5</td>
<td>24.8</td>
<td>29.8</td>
<td>33.6</td>
<td>37.0</td>
<td>41.3</td>
<td>46.6</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
4.2.5.2 Distribución de la precipitación, método de la isoyetas.

Grafico N° 28: Mapa de distribución, método de isoyetas

Fuente: elaboración propia

Cuadro N° 40: Resumen de precipitación areal según el método de Isoyetas

<table>
<thead>
<tr>
<th>Isoyetas</th>
<th>T=2</th>
<th>T=5</th>
<th>T=10</th>
<th>T=25</th>
<th>T=50</th>
<th>T=100</th>
<th>T=200</th>
<th>T=500</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25.11</td>
<td>25.39</td>
<td>55.38</td>
<td>72.45</td>
<td>85.19</td>
<td>84.11</td>
<td>89.29</td>
<td>102.40</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia
4.2.6 Calculo de la curva IDF para diferentes periodos de retorno.

Para el cálculo de las curvas IDF, se calculó las precipitaciones diarias máxima probable para distintas frecuencias, luego se determinó la precipitación máxima diaria para un tiempo de duración de lluvias de 24 horas, resultados que podemos observar en el cuadro N° 44 y el grafico N° 29 para las diferentes estaciones.

<table>
<thead>
<tr>
<th>Tiempo de duración</th>
<th>Candarave</th>
<th>Susapaya</th>
<th>Sitajara</th>
<th>Vilacora</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>49.743</td>
<td>40.599</td>
<td>29.391</td>
<td>28.292</td>
</tr>
<tr>
<td>20</td>
<td>46.26099</td>
<td>37.75707</td>
<td>27.33363</td>
<td>26.31156</td>
</tr>
<tr>
<td>18</td>
<td>44.7687</td>
<td>36.5391</td>
<td>26.4519</td>
<td>25.4628</td>
</tr>
<tr>
<td>16</td>
<td>43.27641</td>
<td>35.32113</td>
<td>25.57017</td>
<td>24.61404</td>
</tr>
<tr>
<td>14</td>
<td>41.28669</td>
<td>33.69717</td>
<td>24.39453</td>
<td>23.48236</td>
</tr>
<tr>
<td>12</td>
<td>39.29697</td>
<td>32.07321</td>
<td>23.21889</td>
<td>22.35068</td>
</tr>
<tr>
<td>10</td>
<td>36.31239</td>
<td>29.63727</td>
<td>21.45543</td>
<td>20.65316</td>
</tr>
<tr>
<td>8</td>
<td>31.83552</td>
<td>25.98336</td>
<td>18.81024</td>
<td>18.10688</td>
</tr>
<tr>
<td>6</td>
<td>27.85608</td>
<td>22.73544</td>
<td>16.45896</td>
<td>15.84352</td>
</tr>
<tr>
<td>4</td>
<td>21.88692</td>
<td>17.86356</td>
<td>12.93204</td>
<td>12.44848</td>
</tr>
<tr>
<td>3</td>
<td>18.90234</td>
<td>15.42762</td>
<td>11.16858</td>
<td>10.75096</td>
</tr>
<tr>
<td>2</td>
<td>15.42033</td>
<td>12.58569</td>
<td>9.11121</td>
<td>8.77052</td>
</tr>
<tr>
<td>1</td>
<td>12.43575</td>
<td>10.14975</td>
<td>7.34775</td>
<td>7.073</td>
</tr>
</tbody>
</table>

Fuente: elaboración propia

Calculo de precipitación máxima diaria probables para distintas frecuencias, distribuida.
Cuadro N° 42: Pd, para diferentes periodos de retorno distribuida con thiessen

<table>
<thead>
<tr>
<th>Tiempo de Precipitación Máxima Pd (mm)</th>
<th>2 años</th>
<th>5 años</th>
<th>10 años</th>
<th>25 años</th>
<th>50 años</th>
<th>100 años</th>
<th>200 años</th>
<th>500 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr</td>
<td>16.99</td>
<td>23.62</td>
<td>28.01</td>
<td>33.56</td>
<td>37.68</td>
<td>41.76</td>
<td>45.83</td>
<td>51.21</td>
</tr>
<tr>
<td>22 hr</td>
<td>16.48</td>
<td>22.91</td>
<td>27.17</td>
<td>32.55</td>
<td>36.55</td>
<td>40.51</td>
<td>44.46</td>
<td>49.67</td>
</tr>
<tr>
<td>20 hr</td>
<td>15.80</td>
<td>21.97</td>
<td>26.05</td>
<td>31.21</td>
<td>35.04</td>
<td>38.84</td>
<td>42.63</td>
<td>47.62</td>
</tr>
<tr>
<td>18 hr</td>
<td>15.29</td>
<td>21.26</td>
<td>25.21</td>
<td>30.21</td>
<td>33.91</td>
<td>37.59</td>
<td>41.25</td>
<td>46.08</td>
</tr>
<tr>
<td>16 hr</td>
<td>14.78</td>
<td>20.55</td>
<td>24.37</td>
<td>29.20</td>
<td>32.78</td>
<td>36.33</td>
<td>39.88</td>
<td>44.55</td>
</tr>
<tr>
<td>14 hr</td>
<td>14.10</td>
<td>19.61</td>
<td>23.25</td>
<td>27.86</td>
<td>31.27</td>
<td>34.66</td>
<td>38.04</td>
<td>42.50</td>
</tr>
<tr>
<td>12 hr</td>
<td>13.42</td>
<td>18.66</td>
<td>22.13</td>
<td>26.51</td>
<td>29.77</td>
<td>32.99</td>
<td>36.21</td>
<td>40.45</td>
</tr>
<tr>
<td>10 hr</td>
<td>12.40</td>
<td>17.24</td>
<td>20.45</td>
<td>24.50</td>
<td>27.50</td>
<td>30.49</td>
<td>33.46</td>
<td>37.38</td>
</tr>
<tr>
<td>8 hr</td>
<td>10.87</td>
<td>15.12</td>
<td>17.93</td>
<td>21.48</td>
<td>24.11</td>
<td>26.73</td>
<td>29.33</td>
<td>32.77</td>
</tr>
<tr>
<td>6 hr</td>
<td>9.51</td>
<td>13.23</td>
<td>15.69</td>
<td>18.79</td>
<td>21.10</td>
<td>23.39</td>
<td>25.67</td>
<td>28.68</td>
</tr>
<tr>
<td>5 hr</td>
<td>8.49</td>
<td>11.81</td>
<td>14.01</td>
<td>16.78</td>
<td>18.84</td>
<td>20.88</td>
<td>22.92</td>
<td>25.60</td>
</tr>
<tr>
<td>3 hr</td>
<td>6.46</td>
<td>8.98</td>
<td>10.64</td>
<td>12.75</td>
<td>14.32</td>
<td>15.87</td>
<td>17.42</td>
<td>19.46</td>
</tr>
<tr>
<td>2 hr</td>
<td>5.27</td>
<td>7.32</td>
<td>8.68</td>
<td>10.40</td>
<td>11.68</td>
<td>12.95</td>
<td>14.21</td>
<td>15.87</td>
</tr>
<tr>
<td>1 hr</td>
<td>4.25</td>
<td>5.91</td>
<td>7.00</td>
<td>8.39</td>
<td>9.42</td>
<td>10.44</td>
<td>11.46</td>
<td>12.80</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Intensidad de lluvia para tiempos de duración de 24 horas, para diferentes periodos de retorno

Cuadro N° 43: Intensidad de duración de 24 horas

<table>
<thead>
<tr>
<th>Tiempo</th>
<th>T=5</th>
<th>T=10</th>
<th>T=20</th>
<th>T=50</th>
<th>T=100</th>
<th>T=200</th>
<th>T=500</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 min</td>
<td>337.72</td>
<td>402.97</td>
<td>469.44</td>
<td>561.65</td>
<td>635.80</td>
<td>714.47</td>
<td>826.32</td>
</tr>
<tr>
<td>10 min</td>
<td>169.45</td>
<td>202.18</td>
<td>235.54</td>
<td>281.80</td>
<td>319.00</td>
<td>358.47</td>
<td>414.60</td>
</tr>
<tr>
<td>20 min</td>
<td>84.89</td>
<td>101.29</td>
<td>117.99</td>
<td>141.17</td>
<td>159.81</td>
<td>179.58</td>
<td>207.70</td>
</tr>
<tr>
<td>30 min</td>
<td>56.63</td>
<td>67.57</td>
<td>78.72</td>
<td>94.18</td>
<td>106.62</td>
<td>119.81</td>
<td>138.56</td>
</tr>
<tr>
<td>1 h</td>
<td>28.34</td>
<td>33.82</td>
<td>39.39</td>
<td>47.13</td>
<td>53.36</td>
<td>59.96</td>
<td>69.34</td>
</tr>
<tr>
<td>2 h</td>
<td>14.18</td>
<td>16.92</td>
<td>19.71</td>
<td>23.58</td>
<td>26.69</td>
<td>30.00</td>
<td>34.69</td>
</tr>
<tr>
<td>6 h</td>
<td>4.73</td>
<td>5.64</td>
<td>6.57</td>
<td>7.87</td>
<td>8.90</td>
<td>10.01</td>
<td>11.57</td>
</tr>
<tr>
<td>8 h</td>
<td>3.55</td>
<td>4.23</td>
<td>4.93</td>
<td>5.90</td>
<td>6.68</td>
<td>7.51</td>
<td>8.68</td>
</tr>
<tr>
<td>12 h</td>
<td>2.37</td>
<td>2.82</td>
<td>3.29</td>
<td>3.93</td>
<td>4.45</td>
<td>5.01</td>
<td>5.79</td>
</tr>
<tr>
<td>18 h</td>
<td>1.58</td>
<td>1.88</td>
<td>2.19</td>
<td>2.62</td>
<td>2.97</td>
<td>3.34</td>
<td>3.86</td>
</tr>
<tr>
<td>24 h</td>
<td>1.18</td>
<td>1.41</td>
<td>1.64</td>
<td>1.97</td>
<td>2.23</td>
<td>2.50</td>
<td>2.90</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

\[I = \frac{K T^m}{t^n} \]
4.2.7 Resultados del análisis de margen de error.

Para determinar el ajuste de los datos a una distribución de probabilidad se han propuesto una serie de pruebas estadísticas que se menciona anteriormente se determinó si es adecuado el ajuste. En la teoría estadística las pruebas de bondad de ajuste más
conocidas son las de Smirnov – Kolmogorov y Chi – Cuadrado, las cuales son las que se están utilizando en nuestro análisis, para encontrar la función de mejor ajuste se utilizó el, software y Hydrognomon, los resultados se pueden apreciar en el cuadro Nº 45 Al aplicar la funciones de distribución Gumbel a los datos de los registros de la estación en estudio es posible que se observen que existen diferencias que son apreciables entre las mismas.

Cuadro Nº 45: Distribución teórica aceptable

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>Función distribuida</th>
<th>Periodos de retorno</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>T=5 años</td>
</tr>
<tr>
<td>VILACOTA</td>
<td>Gumbel</td>
<td>26.87</td>
</tr>
<tr>
<td>SUSAPAYA</td>
<td>Gumbel</td>
<td>19.32</td>
</tr>
<tr>
<td>CANDARAVE</td>
<td>Log Pearson III</td>
<td>27.85</td>
</tr>
<tr>
<td>SITAJARA</td>
<td>Gumbel</td>
<td>15.15</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

4.2.8 Resultados de la abstracción

Grafico Nº 30: hidrograma triangular calculado

Fuente: elaboración propia
4.2.9 Hidrograma Unitario adimensional SCS.

Grafic N° 31: Hidrograma efectivo

Fuente: elaboración propia

Siendo la precipitación pico 27 m³/s y el tiempo pico 1.58 horas

4.3. Modelo Hec-Hms.

El siguiente gráfico muestra el hidrograma de crecida obtenido como resultado de la simulación realizada con el software HEC-HMS, para un periodo de retorno (T) de 50, 100 y 500 años en la confluencia.
Grafico N° 32: Confluencia de crecidas para T=50, 100 y 500 años

Fuente: Elaboración propia

Grafico N° 33: Generación del caudal máximo para T=50 años

<table>
<thead>
<tr>
<th>Elemento Hidrológico</th>
<th>Área de Drenaje (KM²)</th>
<th>Caudal Máximo (M³/S)</th>
<th>Tiempo del Pico</th>
<th>Volumen (MM³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Río Curibaye</td>
<td>111245,00</td>
<td>78356,3</td>
<td>27 dic 2018, 09:00</td>
<td>5,10</td>
</tr>
<tr>
<td>Río Shintari</td>
<td>382,36</td>
<td>267,1</td>
<td>27 dic 2018, 09:00</td>
<td>5,45</td>
</tr>
<tr>
<td>Río Poquera</td>
<td>111627,36</td>
<td>78623,3</td>
<td>27 dic 2018, 09:00</td>
<td>5,10</td>
</tr>
<tr>
<td>Poquera</td>
<td>111027,36</td>
<td>78023,3</td>
<td>27 dic 2018, 09:00</td>
<td>5,10</td>
</tr>
</tbody>
</table>
Grafico N° 34: Resultados de la serie de tiempo para T=50 años

Fuente: elaboración propia

Grafico N° 35: Generación del caudal máximo para T=100 años
Grafico N° 36: Resultados de la serie de tiempo para T=100 años

Grafico N° 37: Generación de caudal máximo para T=500 años
Grafico N° 38: Serie de tiempo para T=500 años

Como se aprecia en el gráfico, considerando un periodo de retorno (T) de 500 años, los resultados son de 160840.2 m³/s.

Grafico N° 39: Caudal total generado para un periodo de 500 años
V. CONCLUSIONES.

El estudio realizado sobre la determinación del caudal máximo en la cuenca media del río Locumba nos permite confeccionar la siguiente conclusión:

El modelo HEC HMS nos permitió trabajar con las sub cuencas de manera puntual y detallada, es importante resaltar la correcta aplicación del modelo ya que las variables que exige son específicas si son mal aplicadas podrían dar resultados no concordantes, fuera de la realidad, las máximas avenidas generadas para los periodo de retorno de 500 años es de 160840.2 m³/s, 114777.4 m³/s para 100 años y 78623.3 m³/s para 50 años de periodo de retorno estos valores puede ser usado para diseñar estructuras de encausamiento y obras viales.

También se debe mencionar la falta de información de precipitación, en cuanto a las estaciones meteorológicas que se encuentran dentro del ámbito de estudio.

5.1. Análisis de los resultados obtenidos del modelo hidrológico Hec Hms.

Utilizándose de forma muy especial las funciones de distribución de máximas avenidas, cuyos resultados son más confiables para obtener probabilidades de eventos excedentes y no excedentes en la obtención del periodo de retorno, no todas las distribuciones de probabilidad se pueden utilizar en determinados eventos o para un periodo de retorno, sino se tiene que escoger las funciones que se ajusten a los datos históricos mediante métodos de ajuste lo cual se puede apreciar en el cuadro Nº 33

La utilización de esta metodología es mucho más objetiva para determinar caudales máximos por la menor cantidad de variables que se utiliza, siendo estas netamente del tipo matemático, el modelo HEC HMS está dentro de los márgenes de
seguridad, el especialista en el área de Hidrología puede realizar trabajos con este modelo y compararlos con otros métodos y utilizar el método más conveniente en la utilización de variables.

De las precipitaciones máximas acumuladas Generalmente en nuestro País, las estaciones meteorológicas y pluviométricas en realidad casi siempre carece de cierta información, el SENAHI solamente nos proporciona información de precipitaciones máximas de 24 horas, o caudales de aforo, este es el caso de la información de la cuenca Locumba, esta información es muy útil en el diseño de tormentas para una determinada estructura, obligándonos a obtener la precipitación total diaria con una intensidades máximas de 51.21 mm/h para un periodo de retorno de 500 años.

Con la información obtenida también se puede construir las curvas de Intensidad Duración Frecuencia, para diferentes periodos de retorno, obteniendo de esta forma la información necesaria para cualquier diseño de tormenta para una cuenca determinada.
VI. RECOMENDACIONES

- se recomienda utilizar otros métodos para determinar la metodología más adecuada para la determinación de máximas avenidas: pero sin embargo sus resultados deben tomarse con mucho cuidado, puesto que los autores consultados recomiendan no usar registros de menos de 20 años, para análisis estadístico.

- En caso del análisis realizado en este estudio el mayor número de registros en la estación estudiada abarca 48 años, datos suficientes para la realización del análisis estadístico, con los cuales se han determinado precipitaciones máximas anuales para periodos de retorno 5, 10, 25, 50, 100, 200 y 500 años

- Se recomienda, para futuros cálculos de caudales por formulas del SCS y el modelo HEC–HMS actualizar los valores del coeficiente de escurrimiento C y el Numero de curva CN, puesto que las coberturas van cambiando con el tiempo

- Evaluar de nuevo los resultados de los análisis realizados con dos estaciones hidrométricas para poder realizar la calibración, pues sería conveniente compararlos los caudales observados con los cuales simulados, para determinar si el modelo seleccionado es confiable y es el más apropiados para el cálculo de caudales máximos.
VII. REFERENCIAS.

ANEXOS
ANEXO 1

Cuadro N° 46: Registro de precipitación máxima 24 h, estación Susapaya

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>SUSAPAYA</th>
<th>CODIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPARTAMENTO</td>
<td>Tacna</td>
<td>ALITUD</td>
</tr>
<tr>
<td>PROVINCIA</td>
<td>Tarata</td>
<td>NOE</td>
</tr>
<tr>
<td>DISTRITO</td>
<td>Susapaya</td>
<td>ESTE</td>
</tr>
<tr>
<td>NO ° AÑO</td>
<td>1961</td>
<td>1964</td>
</tr>
<tr>
<td>ENE</td>
<td>12.4</td>
<td>14.2</td>
</tr>
<tr>
<td>FEB</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAR</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ABR</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAY</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUN</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>JUL</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>AGO</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SET</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OCT</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NOV</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>DIC</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MAX</td>
<td>5.6</td>
<td>14.2</td>
</tr>
</tbody>
</table>

Fuente: SENAMHI – 2011
ANEXO 2
Cuadro N° 47: Registro de precipitación máxima 24 h, estación Vilacota

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>VILACOTA</th>
<th>CODIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROVINCIA</td>
<td>Tarata</td>
<td>810600</td>
</tr>
<tr>
<td>DEPARTAMENTO</td>
<td>Tacna</td>
<td>4390</td>
</tr>
<tr>
<td>AÑO</td>
<td>ENE</td>
<td>FEB</td>
</tr>
<tr>
<td>1.0</td>
<td>1991</td>
<td>12.7</td>
</tr>
<tr>
<td>2.0</td>
<td>1972</td>
<td>14.7</td>
</tr>
<tr>
<td>3.0</td>
<td>1973</td>
<td>22.1</td>
</tr>
<tr>
<td>4.0</td>
<td>1974</td>
<td>26.4</td>
</tr>
<tr>
<td>5.0</td>
<td>1975</td>
<td>18.2</td>
</tr>
<tr>
<td>6.0</td>
<td>1976</td>
<td>34.2</td>
</tr>
<tr>
<td>7.0</td>
<td>1977</td>
<td>15.0</td>
</tr>
<tr>
<td>8.0</td>
<td>1978</td>
<td>12.0</td>
</tr>
<tr>
<td>9.0</td>
<td>1979</td>
<td>23.4</td>
</tr>
<tr>
<td>10.0</td>
<td>1980</td>
<td>18.6</td>
</tr>
<tr>
<td>11.0</td>
<td>1981</td>
<td>0.0</td>
</tr>
<tr>
<td>12.0</td>
<td>1982</td>
<td>22.3</td>
</tr>
<tr>
<td>13.0</td>
<td>1983</td>
<td>9.5</td>
</tr>
<tr>
<td>14.0</td>
<td>1984</td>
<td>14.0</td>
</tr>
<tr>
<td>15.0</td>
<td>1985</td>
<td>5.3</td>
</tr>
<tr>
<td>16.0</td>
<td>1986</td>
<td>8.2</td>
</tr>
<tr>
<td>17.0</td>
<td>1987</td>
<td>13.0</td>
</tr>
<tr>
<td>18.0</td>
<td>1988</td>
<td>15.8</td>
</tr>
<tr>
<td>19.0</td>
<td>1989</td>
<td>4.8</td>
</tr>
<tr>
<td>20.0</td>
<td>1990</td>
<td>8.7</td>
</tr>
<tr>
<td>21.0</td>
<td>1991</td>
<td>7.7</td>
</tr>
<tr>
<td>22.0</td>
<td>1992</td>
<td>18.1</td>
</tr>
<tr>
<td>23.0</td>
<td>1993</td>
<td>28.3</td>
</tr>
<tr>
<td>24.0</td>
<td>1994</td>
<td>13.8</td>
</tr>
<tr>
<td>25.0</td>
<td>1995</td>
<td>7.7</td>
</tr>
<tr>
<td>26.0</td>
<td>1996</td>
<td>9.8</td>
</tr>
<tr>
<td>27.0</td>
<td>1997</td>
<td>14.4</td>
</tr>
<tr>
<td>28.0</td>
<td>1998</td>
<td>12.5</td>
</tr>
<tr>
<td>29.0</td>
<td>1999</td>
<td>9.5</td>
</tr>
<tr>
<td>30.0</td>
<td>2000</td>
<td>12.0</td>
</tr>
<tr>
<td>31.0</td>
<td>2001</td>
<td>15.0</td>
</tr>
<tr>
<td>32.0</td>
<td>2002</td>
<td>34.9</td>
</tr>
<tr>
<td>33.0</td>
<td>2003</td>
<td>20.0</td>
</tr>
<tr>
<td>34.0</td>
<td>2004</td>
<td>9.4</td>
</tr>
<tr>
<td>35.0</td>
<td>2005</td>
<td>16.8</td>
</tr>
<tr>
<td>36.0</td>
<td>2006</td>
<td>16.5</td>
</tr>
<tr>
<td>37.0</td>
<td>2007</td>
<td>15.2</td>
</tr>
<tr>
<td>38.0</td>
<td>2008</td>
<td>23.2</td>
</tr>
<tr>
<td>39.0</td>
<td>2009</td>
<td>14.2</td>
</tr>
<tr>
<td>40.0</td>
<td>2010</td>
<td>4.1</td>
</tr>
<tr>
<td>41.0</td>
<td>2011</td>
<td>16.3</td>
</tr>
<tr>
<td>PROMEDIO</td>
<td>15.0</td>
<td>16.4</td>
</tr>
<tr>
<td>STD</td>
<td>7.1</td>
<td>7.9</td>
</tr>
<tr>
<td>MAX</td>
<td>34.9</td>
<td>37.2</td>
</tr>
<tr>
<td>MIN</td>
<td>4.1</td>
<td>3.5</td>
</tr>
</tbody>
</table>

Fuente: SENAMHI – 2011
ANEXO 3

Cuadro N° 48: Registro de precipitación máxima 24h, estación Candarave

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>CANDARAVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>AÑO</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>1964</td>
</tr>
<tr>
<td>2</td>
<td>1965</td>
</tr>
<tr>
<td>3</td>
<td>1966</td>
</tr>
<tr>
<td>4</td>
<td>1967</td>
</tr>
<tr>
<td>5</td>
<td>1968</td>
</tr>
<tr>
<td>6</td>
<td>1969</td>
</tr>
<tr>
<td>7</td>
<td>1970</td>
</tr>
<tr>
<td>8</td>
<td>1971</td>
</tr>
<tr>
<td>9</td>
<td>1972</td>
</tr>
<tr>
<td>10</td>
<td>1973</td>
</tr>
<tr>
<td>11</td>
<td>1974</td>
</tr>
<tr>
<td>12</td>
<td>1975</td>
</tr>
<tr>
<td>13</td>
<td>1976</td>
</tr>
<tr>
<td>14</td>
<td>1977</td>
</tr>
<tr>
<td>15</td>
<td>1978</td>
</tr>
<tr>
<td>16</td>
<td>1979</td>
</tr>
<tr>
<td>17</td>
<td>1980</td>
</tr>
<tr>
<td>18</td>
<td>1981</td>
</tr>
<tr>
<td>19</td>
<td>1982</td>
</tr>
<tr>
<td>20</td>
<td>1983</td>
</tr>
<tr>
<td>21</td>
<td>1984</td>
</tr>
<tr>
<td>22</td>
<td>1985</td>
</tr>
<tr>
<td>23</td>
<td>1986</td>
</tr>
<tr>
<td>24</td>
<td>1987</td>
</tr>
<tr>
<td>25</td>
<td>1988</td>
</tr>
<tr>
<td>26</td>
<td>1989</td>
</tr>
<tr>
<td>27</td>
<td>1990</td>
</tr>
<tr>
<td>28</td>
<td>1991</td>
</tr>
<tr>
<td>29</td>
<td>1992</td>
</tr>
<tr>
<td>30</td>
<td>1993</td>
</tr>
<tr>
<td>31</td>
<td>1994</td>
</tr>
<tr>
<td>32</td>
<td>1995</td>
</tr>
<tr>
<td>33</td>
<td>1996</td>
</tr>
<tr>
<td>34</td>
<td>1997</td>
</tr>
<tr>
<td>35</td>
<td>1998</td>
</tr>
<tr>
<td>36</td>
<td>1999</td>
</tr>
<tr>
<td>37</td>
<td>2000</td>
</tr>
<tr>
<td>38</td>
<td>2001</td>
</tr>
<tr>
<td>39</td>
<td>2002</td>
</tr>
<tr>
<td>40</td>
<td>2003</td>
</tr>
<tr>
<td>41</td>
<td>2004</td>
</tr>
<tr>
<td>42</td>
<td>2005</td>
</tr>
<tr>
<td>43</td>
<td>2006</td>
</tr>
<tr>
<td>44</td>
<td>2007</td>
</tr>
<tr>
<td>45</td>
<td>2008</td>
</tr>
<tr>
<td>46</td>
<td>2009</td>
</tr>
<tr>
<td>47</td>
<td>2010</td>
</tr>
<tr>
<td>48</td>
<td>2011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROVINCIA</th>
<th>Candarave</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°</td>
<td>ESTE</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>8.6</td>
</tr>
<tr>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>3.8</td>
</tr>
<tr>
<td>5</td>
<td>9.4</td>
</tr>
<tr>
<td>6</td>
<td>8.9</td>
</tr>
<tr>
<td>7</td>
<td>5.1</td>
</tr>
<tr>
<td>8</td>
<td>10.2</td>
</tr>
<tr>
<td>9</td>
<td>8.4</td>
</tr>
<tr>
<td>10</td>
<td>14.2</td>
</tr>
<tr>
<td>11</td>
<td>7.8</td>
</tr>
<tr>
<td>12</td>
<td>8.3</td>
</tr>
<tr>
<td>13</td>
<td>7.0</td>
</tr>
<tr>
<td>14</td>
<td>5.0</td>
</tr>
<tr>
<td>15</td>
<td>4.8</td>
</tr>
<tr>
<td>16</td>
<td>5.7</td>
</tr>
<tr>
<td>17</td>
<td>2.0</td>
</tr>
<tr>
<td>18</td>
<td>8.7</td>
</tr>
<tr>
<td>19</td>
<td>5.6</td>
</tr>
<tr>
<td>20</td>
<td>7.6</td>
</tr>
<tr>
<td>21</td>
<td>10.7</td>
</tr>
<tr>
<td>22</td>
<td>10.5</td>
</tr>
<tr>
<td>23</td>
<td>7.3</td>
</tr>
<tr>
<td>24</td>
<td>10.8</td>
</tr>
<tr>
<td>25</td>
<td>7.2</td>
</tr>
<tr>
<td>26</td>
<td>2.8</td>
</tr>
<tr>
<td>27</td>
<td>4.5</td>
</tr>
<tr>
<td>28</td>
<td>10.3</td>
</tr>
<tr>
<td>29</td>
<td>3.1</td>
</tr>
<tr>
<td>30</td>
<td>6.4</td>
</tr>
<tr>
<td>31</td>
<td>17.4</td>
</tr>
<tr>
<td>32</td>
<td>11.3</td>
</tr>
<tr>
<td>33</td>
<td>9.0</td>
</tr>
<tr>
<td>34</td>
<td>5.4</td>
</tr>
<tr>
<td>35</td>
<td>16.1</td>
</tr>
<tr>
<td>36</td>
<td>7.9</td>
</tr>
<tr>
<td>37</td>
<td>11.1</td>
</tr>
<tr>
<td>38</td>
<td>8.5</td>
</tr>
<tr>
<td>39</td>
<td>6.9</td>
</tr>
<tr>
<td>40</td>
<td>8.1</td>
</tr>
<tr>
<td>41</td>
<td>8.1</td>
</tr>
<tr>
<td>42</td>
<td>10.4</td>
</tr>
<tr>
<td>43</td>
<td>15.4</td>
</tr>
<tr>
<td>44</td>
<td>10.6</td>
</tr>
<tr>
<td>45</td>
<td>2.0</td>
</tr>
<tr>
<td>46</td>
<td>2.3</td>
</tr>
<tr>
<td>47</td>
<td>2.9</td>
</tr>
<tr>
<td>48</td>
<td>10.2</td>
</tr>
</tbody>
</table>

STD	3.6
MAX	17.4
MIN	2.0

Fuente: SENAMEH – 2011
ANEXO 4

Cuadro N° 49: Registro de precipitación máxima 24 h, estación Sitajara

<table>
<thead>
<tr>
<th>ESTACION</th>
<th>CODIGO</th>
</tr>
</thead>
<tbody>
<tr>
<td>SITAJARA</td>
<td>19111106</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRITO</th>
<th>PROVINCIA</th>
<th>DEPARTAMENTO</th>
<th>EST</th>
<th>CUENCA</th>
<th>TIPO DE ESTACION</th>
<th>ALTITUD</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>AÑO</td>
<td>1999</td>
<td>2007</td>
<td>10.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>NOV</td>
<td>15.4</td>
<td>9.0</td>
<td>1.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1972</td>
<td>6.4</td>
<td>12.6</td>
<td>5.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1978</td>
<td>6.4</td>
<td>12.6</td>
<td>5.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1979</td>
<td>3.1</td>
<td>7.2</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1980</td>
<td>6.8</td>
<td>8.9</td>
<td>10.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1986</td>
<td>9.8</td>
<td>12.0</td>
<td>3.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1987</td>
<td>10.4</td>
<td>12.7</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1989</td>
<td>15.3</td>
<td>25.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1990</td>
<td>5.2</td>
<td>7.1</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1991</td>
<td>8.4</td>
<td>13.1</td>
<td>9.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1992</td>
<td>1.5</td>
<td>2.6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1993</td>
<td>9.0</td>
<td>13.1</td>
<td>0.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1994</td>
<td>5.3</td>
<td>4.5</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1995</td>
<td>6.8</td>
<td>9.8</td>
<td>2.1</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1996</td>
<td>3.5</td>
<td>4.5</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1997</td>
<td>4.1</td>
<td>22.5</td>
<td>6.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1998</td>
<td>15.1</td>
<td>16.0</td>
<td>6.5</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>1999</td>
<td>12.5</td>
<td>18.1</td>
<td>7.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2000</td>
<td>17.1</td>
<td>17.8</td>
<td>9.7</td>
<td>2.9</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2001</td>
<td>15.6</td>
<td>16.0</td>
<td>8.5</td>
<td>0.6</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2002</td>
<td>11.1</td>
<td>11.3</td>
<td>10.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2003</td>
<td>2.4</td>
<td>7.0</td>
<td>6.9</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2004</td>
<td>5.9</td>
<td>12.2</td>
<td>0.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2005</td>
<td>17.2</td>
<td>20.2</td>
<td>9.2</td>
<td>0.5</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2006</td>
<td>5.2</td>
<td>11.6</td>
<td>5.9</td>
<td>0.2</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2007</td>
<td>9.0</td>
<td>8.9</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2008</td>
<td>24.2</td>
<td>5.8</td>
<td>4.3</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2009</td>
<td>1.0</td>
<td>16.3</td>
<td>18.7</td>
<td>0.0</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2010</td>
<td>1.3</td>
<td>5.9</td>
<td>0.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Tacna</td>
<td>Tacna</td>
<td>Tacna</td>
<td>2011</td>
<td>8.7</td>
<td>7.6</td>
<td>0.0</td>
<td>5.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROMEDIO</th>
<th>STD</th>
<th>MAX</th>
<th>MIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>4.9</td>
<td>24.2</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Fuente: SENAMHI – 2011
ANEXO 5
Grafico N° 40: Mapa de la delimitación de la cuenca hidrográfica

Fuente: Elaboración propia
ANEXO 6
Grafico N° 41: Mapa de pendientes de la cuenca hidrográfica

Fuente: Elaboración propia
ANEXO 7

Grafico N° 42: Mapa de orden de ríos de la cuenca hidrográfica

Fuente: Elaboración propia
ANEXO 8

Grafico N° 43: Mapa de capacidad de uso mayor de suelos de la cuenca hidrográfica

Fuente: Elaboración propia
ANEXO 9
Grafico N° 44: Mapa de ubicación de las estaciones pluviométricas

Fuente: Elaboración propia
ANEXO 10
Grafico N° 45: Mapa de isoyetas de precipitación máx. para $T = 5$

Legenda

- estaciones
- precipitación

500 ppm

< all other values>

ppm

- 200
- 320
- 100
- 125
- 150
- 175
- 225
- 275
- 250
- 300
- 325
- 375
- 50
- 75

Fuente: Elaboración propia
ANEXO 11
Grafico N° 46: Mapa de isoyetas para T=10

Fuente: elaboración propia
ANEXO 12
Grafico N° 47: Mapa de isoyetas para T=50

Fuente: elaboración propia
ANEXO 13
Grafico N° 48: Mapa de isoyetas para T=100

Cuenca Tambo
Cuenca llave
Cuenca Sama
Cuenca Locumba
VILACOTA
SUSAPAYA
SITAJARA

Legenda
- estaciones
- porciones
- 500T ppmmax
- <@ other values>
- ppmmax
 - 200
 - 325
 - 0
 - 100
 - 125
 - 150
 - 175
 - 225
 - 250
 - 275
 - 300
 - 325
 - 350
 - 50
 - 75

Fuente: elaboración propia
ANEXO 14
Grafico N° 49: Mapa de isoyetas para T=500

Legenda
- estaciones
- pequeña

500 T_{ppmax}
- <all other values>

ppmax
- 200
- 325
- 0
- 100
- 125
- 150
- 175
- 200
- 225
- 250
- 275
- 300
- 325
- 50
- 75

Cuenca llave
Cuenca Tambo
Cuenca Locumba
Cuenca Sama
Cuenca Moquegua
VELACOTA
SUSAPAYA
SITAJARA

Fuente: elaboración propia
ANEXO 15
Grafico N° 50 Mapa de polígono de thiessen

Legenda

POLÍGONO DE THIessen
area

-20.000867036111
44.995962155714
135.78999301719
224.21404227915
306.5706118644
CUENCAS_HIDROGRAFICAS

Fuente: Elaboración propia
ANEXO 16
Grafico N° 51: Análisis de doble masa, estación Susapaya

Grafico N° 52: Hidrograma, estación Susapaya
ANEXO 17

Grafico N° 53: Análisis de doble masa, estación Vilacota

Homogeneous line, slope l=1.376 Determination factor=.998

Grafico N° 54: Hidrograma, estación Vilacota

Probability Density Functions (PDF) - Histogram
PearsonIII

Repositorio Institucional UNA-PUNO
No olvide citar esta tesis
ANEXO 18
Grafico N° 55: Análisis de doble masa, estación Candarave

Grafico N° 56: Hidrograma, estación Candarave
ANEXO 19
Grafico N° 57: Análisis de doble masa, estación Sitajara

Homogeneous line, slope l=.797 Determination factor=.996

Grafico N° 58: Hidrograma, estación Sitajara
ANEXO 20

Cuadro N° 50: Precipitación máxima diaria, estación Susapaya

<table>
<thead>
<tr>
<th>Tiempo de duración</th>
<th>2 años</th>
<th>5 años</th>
<th>10 años</th>
<th>25 años</th>
<th>50 años</th>
<th>100 años</th>
<th>200 años</th>
<th>500 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr</td>
<td>18.70</td>
<td>28.46</td>
<td>34.93</td>
<td>43.10</td>
<td>49.17</td>
<td>55.18</td>
<td>61.18</td>
<td>69.09</td>
</tr>
<tr>
<td>22 hr</td>
<td>18.14</td>
<td>27.61</td>
<td>33.88</td>
<td>41.81</td>
<td>47.69</td>
<td>53.53</td>
<td>59.34</td>
<td>67.02</td>
</tr>
<tr>
<td>20 hr</td>
<td>17.39</td>
<td>26.47</td>
<td>32.49</td>
<td>40.09</td>
<td>45.72</td>
<td>51.32</td>
<td>56.90</td>
<td>64.25</td>
</tr>
<tr>
<td>18 hr</td>
<td>16.83</td>
<td>25.62</td>
<td>31.44</td>
<td>38.79</td>
<td>44.25</td>
<td>49.66</td>
<td>55.06</td>
<td>62.18</td>
</tr>
<tr>
<td>16 hr</td>
<td>16.27</td>
<td>24.76</td>
<td>30.39</td>
<td>37.50</td>
<td>42.77</td>
<td>48.01</td>
<td>53.22</td>
<td>60.11</td>
</tr>
<tr>
<td>14 hr</td>
<td>15.52</td>
<td>23.63</td>
<td>28.99</td>
<td>35.78</td>
<td>40.81</td>
<td>45.80</td>
<td>50.78</td>
<td>57.34</td>
</tr>
<tr>
<td>12 hr</td>
<td>14.77</td>
<td>22.49</td>
<td>27.60</td>
<td>34.05</td>
<td>38.84</td>
<td>43.59</td>
<td>48.33</td>
<td>54.58</td>
</tr>
<tr>
<td>10 hr</td>
<td>13.65</td>
<td>20.78</td>
<td>25.50</td>
<td>31.47</td>
<td>35.89</td>
<td>40.28</td>
<td>44.66</td>
<td>50.43</td>
</tr>
<tr>
<td>8 hr</td>
<td>11.97</td>
<td>18.22</td>
<td>22.36</td>
<td>27.59</td>
<td>31.47</td>
<td>35.32</td>
<td>39.15</td>
<td>44.22</td>
</tr>
<tr>
<td>6 hr</td>
<td>10.47</td>
<td>15.94</td>
<td>19.56</td>
<td>24.14</td>
<td>27.59</td>
<td>30.59</td>
<td>34.26</td>
<td>38.69</td>
</tr>
<tr>
<td>5 hr</td>
<td>9.35</td>
<td>14.23</td>
<td>17.47</td>
<td>21.55</td>
<td>24.58</td>
<td>27.59</td>
<td>30.59</td>
<td>34.54</td>
</tr>
<tr>
<td>4 hr</td>
<td>8.23</td>
<td>12.52</td>
<td>15.37</td>
<td>18.97</td>
<td>21.63</td>
<td>24.28</td>
<td>26.92</td>
<td>30.40</td>
</tr>
<tr>
<td>3 hr</td>
<td>7.10</td>
<td>10.82</td>
<td>13.27</td>
<td>16.38</td>
<td>18.68</td>
<td>20.97</td>
<td>23.25</td>
<td>26.25</td>
</tr>
<tr>
<td>2 hr</td>
<td>5.80</td>
<td>8.82</td>
<td>10.83</td>
<td>13.36</td>
<td>15.24</td>
<td>17.11</td>
<td>18.97</td>
<td>21.42</td>
</tr>
<tr>
<td>1 hr</td>
<td>4.67</td>
<td>7.12</td>
<td>8.73</td>
<td>10.78</td>
<td>12.29</td>
<td>13.80</td>
<td>15.29</td>
<td>17.27</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro N° 51: Precipitación máxima diaria, estación Candarave

<table>
<thead>
<tr>
<th>Tiempo de duración</th>
<th>2 años</th>
<th>5 años</th>
<th>10 años</th>
<th>25 años</th>
<th>50 años</th>
<th>100 años</th>
<th>200 años</th>
<th>500 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr</td>
<td>15.62</td>
<td>21.77</td>
<td>25.85</td>
<td>30.99</td>
<td>34.81</td>
<td>38.60</td>
<td>42.38</td>
<td>47.36</td>
</tr>
<tr>
<td>22 hr</td>
<td>15.15</td>
<td>21.12</td>
<td>25.07</td>
<td>30.06</td>
<td>33.77</td>
<td>37.44</td>
<td>41.11</td>
<td>45.94</td>
</tr>
<tr>
<td>20 hr</td>
<td>14.53</td>
<td>20.25</td>
<td>24.04</td>
<td>28.82</td>
<td>32.37</td>
<td>35.90</td>
<td>39.41</td>
<td>44.04</td>
</tr>
<tr>
<td>18 hr</td>
<td>14.06</td>
<td>19.60</td>
<td>23.26</td>
<td>27.89</td>
<td>31.33</td>
<td>34.74</td>
<td>38.14</td>
<td>42.62</td>
</tr>
<tr>
<td>16 hr</td>
<td>13.59</td>
<td>18.94</td>
<td>22.49</td>
<td>26.96</td>
<td>30.29</td>
<td>33.58</td>
<td>36.87</td>
<td>41.20</td>
</tr>
<tr>
<td>14 hr</td>
<td>12.97</td>
<td>18.07</td>
<td>21.45</td>
<td>25.72</td>
<td>28.89</td>
<td>32.04</td>
<td>35.17</td>
<td>39.31</td>
</tr>
<tr>
<td>12 hr</td>
<td>12.34</td>
<td>17.20</td>
<td>20.42</td>
<td>24.48</td>
<td>27.50</td>
<td>30.49</td>
<td>33.48</td>
<td>37.41</td>
</tr>
<tr>
<td>10 hr</td>
<td>11.40</td>
<td>15.89</td>
<td>18.87</td>
<td>22.62</td>
<td>25.41</td>
<td>28.18</td>
<td>30.93</td>
<td>34.57</td>
</tr>
<tr>
<td>8 hr</td>
<td>10.00</td>
<td>13.93</td>
<td>16.54</td>
<td>19.84</td>
<td>22.28</td>
<td>24.70</td>
<td>27.12</td>
<td>30.31</td>
</tr>
<tr>
<td>6 hr</td>
<td>8.75</td>
<td>12.19</td>
<td>14.47</td>
<td>17.36</td>
<td>19.49</td>
<td>21.62</td>
<td>23.73</td>
<td>26.52</td>
</tr>
<tr>
<td>5 hr</td>
<td>7.81</td>
<td>10.89</td>
<td>12.92</td>
<td>15.50</td>
<td>17.41</td>
<td>19.30</td>
<td>21.19</td>
<td>23.68</td>
</tr>
<tr>
<td>4 hr</td>
<td>6.87</td>
<td>9.58</td>
<td>11.37</td>
<td>13.64</td>
<td>15.32</td>
<td>16.98</td>
<td>18.65</td>
<td>20.84</td>
</tr>
<tr>
<td>3 hr</td>
<td>5.94</td>
<td>8.27</td>
<td>9.82</td>
<td>11.78</td>
<td>13.23</td>
<td>14.67</td>
<td>16.10</td>
<td>18.00</td>
</tr>
<tr>
<td>2 hr</td>
<td>4.84</td>
<td>6.75</td>
<td>8.01</td>
<td>9.61</td>
<td>10.79</td>
<td>11.97</td>
<td>13.14</td>
<td>14.68</td>
</tr>
<tr>
<td>1 hr</td>
<td>3.91</td>
<td>5.44</td>
<td>6.46</td>
<td>7.75</td>
<td>8.70</td>
<td>9.65</td>
<td>10.59</td>
<td>11.84</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
ANEXO 21

Cuadro N° 52: Precipitación máxima diaria, estación Vilacota

<table>
<thead>
<tr>
<th>Tiempo de duración</th>
<th>2 años</th>
<th>5 años</th>
<th>10 años</th>
<th>25 años</th>
<th>50 años</th>
<th>100 años</th>
<th>200 años</th>
<th>500 años</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 hr</td>
<td>22.69</td>
<td>29.91</td>
<td>34.68</td>
<td>40.72</td>
<td>45.19</td>
<td>49.64</td>
<td>54.06</td>
<td>59.90</td>
</tr>
<tr>
<td>22 hr</td>
<td>22.01</td>
<td>29.01</td>
<td>33.64</td>
<td>39.49</td>
<td>43.84</td>
<td>48.15</td>
<td>52.44</td>
<td>58.11</td>
</tr>
<tr>
<td>20 hr</td>
<td>21.10</td>
<td>27.81</td>
<td>32.25</td>
<td>37.87</td>
<td>42.03</td>
<td>46.16</td>
<td>50.28</td>
<td>55.71</td>
</tr>
<tr>
<td>18 hr</td>
<td>20.42</td>
<td>26.92</td>
<td>31.21</td>
<td>36.64</td>
<td>40.67</td>
<td>44.67</td>
<td>48.66</td>
<td>53.91</td>
</tr>
<tr>
<td>16 hr</td>
<td>19.74</td>
<td>26.02</td>
<td>30.17</td>
<td>35.42</td>
<td>39.32</td>
<td>43.18</td>
<td>47.03</td>
<td>52.12</td>
</tr>
<tr>
<td>14 hr</td>
<td>18.83</td>
<td>24.82</td>
<td>28.79</td>
<td>33.79</td>
<td>37.51</td>
<td>41.20</td>
<td>44.87</td>
<td>49.72</td>
</tr>
<tr>
<td>12 hr</td>
<td>17.93</td>
<td>23.63</td>
<td>27.40</td>
<td>32.17</td>
<td>36.70</td>
<td>39.21</td>
<td>42.71</td>
<td>47.32</td>
</tr>
<tr>
<td>10 hr</td>
<td>16.57</td>
<td>21.83</td>
<td>25.32</td>
<td>29.72</td>
<td>32.99</td>
<td>36.23</td>
<td>39.47</td>
<td>43.73</td>
</tr>
<tr>
<td>8 hr</td>
<td>14.52</td>
<td>19.14</td>
<td>22.20</td>
<td>26.06</td>
<td>29.82</td>
<td>32.77</td>
<td>36.40</td>
<td>38.34</td>
</tr>
<tr>
<td>6 hr</td>
<td>12.71</td>
<td>16.75</td>
<td>19.42</td>
<td>22.80</td>
<td>25.31</td>
<td>27.80</td>
<td>30.28</td>
<td>33.55</td>
</tr>
<tr>
<td>5 hr</td>
<td>11.35</td>
<td>14.95</td>
<td>17.34</td>
<td>20.36</td>
<td>23.60</td>
<td>26.82</td>
<td>29.03</td>
<td>29.95</td>
</tr>
<tr>
<td>4 hr</td>
<td>9.98</td>
<td>13.16</td>
<td>15.26</td>
<td>17.91</td>
<td>19.88</td>
<td>21.84</td>
<td>23.79</td>
<td>26.36</td>
</tr>
<tr>
<td>3 hr</td>
<td>8.62</td>
<td>11.36</td>
<td>13.18</td>
<td>15.47</td>
<td>17.17</td>
<td>18.86</td>
<td>20.54</td>
<td>22.76</td>
</tr>
<tr>
<td>2 hr</td>
<td>7.03</td>
<td>9.27</td>
<td>10.75</td>
<td>12.62</td>
<td>14.01</td>
<td>15.39</td>
<td>16.76</td>
<td>18.57</td>
</tr>
<tr>
<td>1 hr</td>
<td>5.67</td>
<td>7.48</td>
<td>8.67</td>
<td>10.18</td>
<td>11.30</td>
<td>12.41</td>
<td>13.52</td>
<td>14.98</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia

Cuadro N° 53: Precipitación máxima diaria, estación Sitajara

<table>
<thead>
<tr>
<th>TIEMPOS DE DURACION</th>
<th>PRECIPITACION MAXIMA Pd (mm) POR TIEMPO DE DURACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 años</td>
<td>5 años</td>
</tr>
<tr>
<td>24 hr</td>
<td>13.30</td>
</tr>
<tr>
<td>22 hr</td>
<td>12.90</td>
</tr>
<tr>
<td>20 hr</td>
<td>12.37</td>
</tr>
<tr>
<td>18 hr</td>
<td>11.97</td>
</tr>
<tr>
<td>16 hr</td>
<td>11.57</td>
</tr>
<tr>
<td>14 hr</td>
<td>11.04</td>
</tr>
<tr>
<td>12 hr</td>
<td>10.51</td>
</tr>
<tr>
<td>10 hr</td>
<td>9.71</td>
</tr>
<tr>
<td>8 hr</td>
<td>8.51</td>
</tr>
<tr>
<td>6 hr</td>
<td>7.45</td>
</tr>
<tr>
<td>5 hr</td>
<td>6.65</td>
</tr>
<tr>
<td>4 hr</td>
<td>5.85</td>
</tr>
<tr>
<td>3 hr</td>
<td>5.05</td>
</tr>
<tr>
<td>2 hr</td>
<td>4.12</td>
</tr>
<tr>
<td>1 hr</td>
<td>3.33</td>
</tr>
</tbody>
</table>

Fuente: Elaboración propia
ANEXO 22
Caudal observado en época de máxima avenidas tomada el 26 de diciembre del 2018

Efectos de erosión producidos por máximas avenidas en las vías de acceso al centro poblado de Poquera.