UNIVERSIDAD NACIONAL DEL ALTIPLANO
FACULTAD DE INGENIERÍA MECANICA ELECTRICA
ELECTRONICA Y SISTEMAS
ESCUELA PROFESIONAL DE INGENIERIA MECANICA
ELECTRICA

OPTIMIZACIÓN, FABRICACIÓN Y PRUEBAS DE UNA
CALDERA A LEÑA A PARTIR DE UN DISEÑO TRADICIONAL
DE LA REGIÓN PUNO

TESIS

PRESENTADA POR:
BRAULIO ISAAC TORRES PAREDES

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO MECANICO ELECTRICISTA

PUNO – PERÚ

2019
UNIVERSIDAD NACIONAL DEL ALTIPLANO - PUNO
FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA,
ELECTRÓNICA Y SISTEMAS

ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

OPTIMIZACIÓN, FABRICACIÓN Y PRUEBAS DE UNA CALDERA A LEÑA A PARTIR DE UN DISEÑO TRADICIONAL DE LA REGIÓN PUNO

TESIS PRESENTADA POR:

BRAULIO ISAAC TORRES PAREDES

PARA OPTAR EL TÍTULO PROFESIONAL DE:

INGENIERO MECÁNICO ELECTRICISTA

APROBADO POR EL JURADO REVISOR CONFORMADO POR:

PRESIDENTE: Mg. OLGER ALEJANDRINO ORTEGA ACHATA

PRIMER MIEMBRO: Dr. NORMAN JESUS BELTRAN CASTAÑON

SEGUNDO MIEMBRO: M.Sc. HENRY SHUTA LLOCILLA

DIRECTOR DE TESIS: M.Sc. ARMANDO TITO CRUZ CABRERA

TEMA: Calderas.
ÁREA: Ingeniería Mecánica.

FECHA DE SUSTENTACIÓN 27 DE DICIEMBRE DEL 2019
ÍNDICE GENERAL

<table>
<thead>
<tr>
<th>ÍNDICE DE FIGURAS</th>
<th>ÍNDICE DE TABLAS</th>
<th>ANEXOS</th>
<th>ÍNDICE DE ACRÓNIMOS Y ABREVIATURAS</th>
<th>RESUMEN</th>
<th>ABSTRACT</th>
<th>INTRODUCCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>13</td>
<td>15</td>
</tr>
</tbody>
</table>

CAPITULO I

1. PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACIÓN 16
 1.1. Descripción del Problema ... 16
 1.2. Formulación del Problema .. 17
 1.2.1. Problema General ... 17
 1.2.2. Problemas Específicos .. 17
 1.3. Justificación de la Investigación .. 18
 1.4. Objetivos de la Investigación .. 19
 1.4.1. Objetivo General ... 19
 1.4.2. Objetivos Específicos .. 19

CAPITULO II

2. REVISIÓN DE LITERATURA .. 20
 2.1. Antecedentes de la Investigación .. 20
 2.2. Conceptos Generales ... 21
 2.2.1. Calderas .. 21
 2.2.2. Funcionamiento .. 22
 2.2.3. Clasificación ... 23
 2.2.4. Caldera de Tubos de Humo ... 23
 2.2.5. Calderas de Tubos de Agua ... 28

CAPITULO III

3. MATERIALES Y MÉTODOS ... 32
 3.1. Antecedentes .. 32
 3.1.1. Pruebas de la Caldera Tradicional de la Región 36
 3.2. Diseño Térmico de la Caldera ... 39
 3.2.1. Calcular el Consumo de Leña .. 40
 3.2.2. Cálculo de la Relación Aire-Combustible 46
 3.2.3. Cálculo del Flujo de Aire .. 51
CAPÍTULO III

3.2.4. **Dimensionamiento de la Chimenea** .. 55
3.2.5. **Balance de Energía** .. 56
3.3. **Diseño Y Fabricación de la Caldera** ... 62
3.3.1. **Simulación del Tanque de Agua** ... 62
3.3.2. **Presión del Tanque en Diseño** .. 62
3.3.3. **Elección del Material** .. 65
3.3.4. **Tubos Intercambiador de Calor** ... 69
3.3.5. **Cilindro Contenedor** .. 70
3.3.6. **Dimensiones de la Caldera** ... 70
3.3.7. **Ensamblaje del Calentador de Agua** ... 71
3.3.8. **Base de Caldera y Parrilla** .. 76
3.3.9. **Presupuesto** .. 78
3.3.10. **Instalación y Condiciones de Operación de la Caldera** 80
3.3.11. **Pruebas** .. 82

CAPÍTULO IV

4. **RESULTADOS Y DISCUSIÓN** .. 87
CONCLUSIONES .. 91
RECOMENDACIONES ... 92
REFERENCIAS .. 93
ANEXOS ... 95
ÍNDICE DE FIGURAS

Figura N.º 2.1: Caldera tubular vertical. (a) Diseño de parte superior seca. b) Diseño de parte superior húmeda... 26

Figura N.º 3.1. Caldero comercial de la ciudad de Juliaca instalado y en pleno trabajo 34

Figura N.º 3.2. Corte transversal de un caldero comercial de la ciudad de Juliaca 34

Figura N.º 3.3. Gráfico de evolución de la temperatura en el agua y en el horno - primera prueba... 37

Figura N.º 3.4. Gráfico de evolución de la temperatura en el agua y en el horno - segunda prueba ... 39

Figura N.º 3.5. Moisture Meter MD4G Digital ... 45

Figura N.º 3.6. Variación de la densidad de aire y gases de combustión con las temperaturas... 54

Figura N.º 3.7. Simulación. Enmallado cilindro del cuerpo del caldero 63

Figura N.º 3.8. Simulación. Tanque contenedor de agua con una presión de 30 psi..... 63

Figura N.º 3.9. Simulación.. 64

Figura N.º 3.10. Partes a cortar en plancha de acero ... 66

Figura N.º 3.11. Interior del caldero antes de soldar el cuerpo cilíndrico 72

Figura N.º 3.12. Trabajo en soldadura del cuerpo cilíndrico del caldero 73

Figura N.º 3.13. Chimenea.. 74

Figura N.º 3.14. Vista superior del caldero. Se muestra el aislante térmico y las orejas de izaje... 75

Figura N.º 3.15. Parrilla antes de ser acabada... 76

Figura N.º 3.16. Diseño de la base con parrilla del horno del caldero............... 76

Figura N.º 3.17. Esquema de funcionamiento de la caldera.............................. 81

Figura N.º 3.18. Válvula de seguridad... 82

Primera prueba... 84

Figura N.º 3.20. Gráfico de evolución de la temperatura del agua del caldero mejorado.

Segunda Prueba... 85

Figura N.º 3.21. Manómetro .. 86

Figura N.º 4.1. Comparación del cambio de temperatura del agua en los calderos mejorado y tradicional ... 88
ÍNDICE DE TABLAS

Tabla N.º 2.1. Tabla comparativa entre una caldera pirotubular y una caldera acuotubular ... 31
Tabla N.º 3.1. Datos de pruebas de caldero de diseño tradicional de la Región Puno ... 35
Tabla N.º 3.2. Datos de pruebas de la caldera tradicional primera prueba 37
Tabla N.º 3.3. Datos de pruebas de la caldera tradicional segunda prueba 38
Tabla N.º 3.4. Resultado de pruebas de la caldera Tradicional 39
Tabla N.º 3.5. Mediciones de temperatura de un tanque de agua de 1100 litros 40
Tabla N.º 3.6. Tabla comparativa de la eficiencia de combustión.............................. 42
Tabla N.º 3.7. Poder calorífico de la leña seca .. 43
Tabla N.º 3.8. Poder calorífico inferior de la leña eucalipto en función del contenido de humedad ... 44
Tabla N.º 3.9. Porcentaje de humedad medida en una muestra de 15 trozos de leña en la ciudad de Juliaca .. 44
Tabla N.º 3.10. Datos obtenidos .. 46
Tabla N.º 3.11. Composición química porcentual de la leña en función del contenido de humedad ... 48
Tabla N.º 3.12. Transferencia de calor a lo largo de un tubo de la caldera 53
Tabla N.º 3.13. Tapa superior de la caldera e intercambiador de calor 67
Tabla N.º 3.15. Base de intercambiador de calor .. 68
Tabla N.º 3.16. Pared de hogar .. 69
Tabla N.º 3.17. Disposición de los tubos intercambiadores de calor 69
Tabla N.º 3.18. Cilindro contenedor ... 70
Tabla N.º 3.19. Lista de materiales ... 78
Tabla N.° 3.20. Costos directos mano de obra... 79
Tabla N.° 3.21. Costos indirectos.. 79
Tabla N.° 3.22. Pruebas de la caldera mejorada. Primera prueba................................. 83
Tabla N.° 3.23. Pruebas de la caldera mejorada. Segunda prueba................................. 85
Tabla N.° 3.24. Resultado de las pruebas de la caldera mejorada 86
Tabla N.° 4.1. Comparación entre el rendimiento de la caldera mejorada y la tradicional
.. 87
Tabla N.° 4.2. Tabla comparativa del presupuesto de fabricación y tiempo de vida a 15 años .. 89
ANEXOS

ANEXO A. Cotización de materiales inoxidables... 95
ANEXO B. Calor específico del agua a temperaturas desde 0 a 100 96
ANEXO C. Características xilohigrómetro del Moisture Meter MD4G Digital 97
ANEXO D. Características del pirómetro ... 98
ANEXO E. Medición de la humedad de la leña con el xilohigrómetro digital MD-G4 99
ANEXO F. Conformación de la caldera .. 101
ANEXO G. Preparación del material .. 102
ANEXO H. Soldadura TIG .. 103
ANEXO I. Vista antes del ensamblaje y traslado para instalación 104
ANEXO J. Medición de la presión de trabajo de la caldera y ventilador 105
ANEXO K. Fotos del hogar en el horno de la caldera ... 106
ANEXO L. Fotos Termostato stc 1000 e instrucciones de operación 107
ANEXO M. Termocupla y transductor de temperatura y data sheet 110
ANEXO N. Data sika boom ... 111
ANEXO O. Planos .. 113
ÍNDICE DE ACRÓNIMOS Y ABREVIATURAS

°C. Grados centígrados
A. Área
C. Carbono
H₂. Gas hidrógeno
Kcal. Kilocalorías
kJ. Kilo Joule
Kmol. Kilo mol, Kilo mol
KW. Kilowatts
lb. Libras
m. Metros
m². Metros cuadrados
m³. Metros cúbicos
min. Minutos
mm. Milímetros
O₂. Gas oxígeno
PC. Poder Calorífico
s. Segundo
S. Azufre
ΔT. Diferencia de temperatura
AGRADECIMIENTOS

Gracias a mi universidad, por haberme permitido formarme en ella, gracias a todas las personas de trabajo que fueron participes de este proceso, ya sea de manera directa o indirecta, a toda mi familia por haber puesto su confianza en mí, y que el día de hoy puedan apreciar la culminación de mi paso por la universidad.
DEDICATORIA

A mi padre Delfín Torres y a mi madre Rafaela Paredes
RESUMEN

Las calderas comerciales de instalaciones de consumo masivo de agua para el aseo personal en duchas públicas, son fabricadas en las mismas ciudades de la región Puno, donde las mencionadas, considero, son fabricadas sin evaluaciones técnicas adecuadas y están priorizadas los aspectos económicos a corto plazo. Se muestra la necesidad de la mejora de las calderas en cuanto a rendimiento y eficiencia, considerando además el aspecto económico al mediano y largo plazo. Las calderas comerciales de la región se fabrican de hierro negro, con hornos de ladrillos, que tienen una gran demanda en el mercado local, precisamente por tener desgaste considerablemente rápido debido al material con que se fabrican. Pensando en la mejora de los problemas evidentes que presentan, o los no tan evidentes; se ha realizado una serie de experimentos, tanto con materiales, como con diseños, buscando mejoras que permitan mayor eficiencia en las calderas, mucha mayor seguridad en las mismas, y el mayor aprovechamiento de la energía tratando de que los costes de su elaboración, y por consiguiente su precio, sean lo más accesible posible: Elaborar un punto intermedio entre las calderas de marca, y las fabricadas en la región. Los experimentos y los cálculos llevaron a conclusiones interesantes de mejora en diferentes aspectos de la fabricación que permite comparar también económicamente, aunque a largo plazo, los costes de mantenimiento y sustentabilidad de las calderas en sus instalaciones.

Palabras Clave: Caldera, transferencia de calor, leña, combustión.
ABSTRACT

Commercial boilers of facilities of mass consumption of water for personal hygiene in public showers, are manufactured in the same cities of the Puno region, where those mentioned, I consider, are manufactured without adequate technical evaluations and short-term economic aspects are prioritized. The need for boiler improvement in performance and efficiency is shown, also considering the economic aspect in the medium and long term. Commercial boilers in the region are made of black iron, with brick kilns, which are in great demand in the local market, precisely because they have considerably rapid wear due to the material with which they are manufactured. Thinking about the improvement of the obvious problems they present, or not so obvious ones; a series of experiments have been carried out, both with materials, as with designs, looking for improvements that allow greater efficiency in the boilers, much greater safety in them, and the greater use of energy trying to make the costs of its elaboration, and therefore its price, be as accessible as possible: Develop an intermediate point between the boilers brand, and those manufactured in the region. The experiments and the calculations led to interesting conclusions of improvement in different aspects of the manufacturing that also allows to compare economically although in the long term the costs of maintenance and sustainability of the boilers in their facilities.

Keywords: Boiler, heat transfer, firewood, combustion.
INTRODUCCIÓN

El departamento de Puno es una zona donde buena parte de su extensión integra la meseta del Collao y se encuentra a gran altura a partir de los 3800 msnm., donde aqueja el frío constantemente, y según ha evolucionado las mejoras de las condiciones de vida de la mayoría de las personas, es necesario también mejorar aspectos de esas condiciones en esta región. Un aspecto de esas mejoras de condiciones es la salubridad por aseo personal, la que es más fácil, con agua caliente, natural en un ambiente frío como son las condiciones en la región altiplánica.

En el Capítulo I se describe el problema de la investigación, los problemas específicos y su justificación, además se aclara el objetivo general y los objetivos específicos del mismo. En el Capítulo II se muestra el marco teórico, donde se precisa los antecedentes de la investigación y se detalla cada uno de los conceptos que se utilizaron. En el Capítulo III se detalla los materiales y métodos que se utiliza, además se calcula, simula y optimiza los materiales de fabricación de la nueva caldera. En el Capítulo IV se obtiene los resultados de la fabricación y pruebas para luego hacer una comparación de eficiencias entre la caldera tradicional y la caldera mejorada, llegando a las conclusiones y así respondiendo al objetivo general y específicos.
CAPITULO I

1. PLANTEAMIENTO DEL PROBLEMA DE INVESTIGACIÓN

1.1. Descripción del Problema

Se han puesto ya de manifiesto las necesidades de agua temperada para el aseo personal en la Región Puno, debido a las bajas temperaturas a las que puede llegar el clima en esta región; por ello los ciudadanos se las han ingeniado para tener equipos de calentamiento de agua, aunque con materiales y diseños poco eficientes.

Los equipos de calentamiento de agua, se han convertido en una necesidad, es por ello que se han multiplicado las adquisiciones de calentadores de agua de diferentes tipos, pero la mayoría de uso personal; para el caso de los calentadores de mayor demanda, se comercializan en el mercado local, calderos fabricados en la misma ciudad de Juliaca, hechos no precisamente con los mejores materiales, y sin la eficiencia que quisiera uno, pero económicos. El problema surge cuando tenemos que ver el tiempo de vida del caldero y la rentabilidad que puede proporcionar en esa vida útil, restando las pérdidas en eficiencia y desgaste de material.

Los calderos de fabricación local están elaborados de acero A36, más comúnmente denominado hierro negro o fierro negro, el cual es fácilmente oxidable, sobre todo al contacto con agua, y que crea problemas adicionales a la rentabilidad del uso de ese caldero. La oxidación que acumula, puede llegar a notarse si se mantiene mucho tiempo el agua en el caldero sin circulación, es decir, cuando no se está usando el agua caliente. La instalación requiere equipos de carga de alta capacidad, ya que como debe prevenirse el desgaste, son de material de mucho espesor, por tanto, de mucha masa,
y tienen un tiempo de vida útil muy limitado; quizá la única ventaja sea lo económico, aunque a largo plazo hasta eso llega a ser relativo.

Los calderos de marca, tienen precios demasiado elevados que limita las posibilidades de su adquisición y aunque tengan garantizada su vida útil, los factores económicos son los que se priorizan en este caso, lo que podría impactar directamente en la rentabilidad del producto, por lo cual no es masivamente usado en nuestra localidad.

1.2. Formulación del Problema

1.2.1. Problema General

¿ES POSIBLE MEJORAR, FABRICAR Y REALIZAR LAS PRUEBAS DE UNA CALDERA A LEÑA A PARTIR DE UN DISEÑO TRADICIONAL DE LA REGIÓN PUNO?

1.2.2. Problemas Específicos

− ¿En qué medida sería posible un diseño mejorado de una caldera a partir de un diseño comercial de la Región Puno?

− ¿Es posible la fabricación de un diseño óptimo realizado a partir de un diseño comercial actualmente de la Región Puno?

− ¿Será posible obtener datos objetivos que nos permitan saber si se ha mejorado la eficiencia en las diferentes fases de trabajo del caldero mejorado?
1.3. Justificación de la Investigación

En la Región Puno se tienen diferentes proveedores de calderos, que los comercializan con las mismas características, que se fabrican en la misma Región, y luego de observarse los problemas que ya generan dichos calderos, como la estabilidad, el peso, la oxidación y, el bajo rendimiento y eficiencia que muestran, se ve necesario realizar actualizaciones en los diseños comercializados, donde se mejore las características de material, rendimiento, eficiencia y rentabilidad del nuevo diseño, incluyendo los métodos de fabricación, de modo que pueda ser un producto que garantice una vida útil que satisfaga las necesidades de los usuarios de la Región Puno.

Existen varios tipos de calentadores de agua; aunque para muchos consumidores de una sola fuente de agua caliente, suelen usarse de preferencia calderas para ese fin y aunque también se comercializan calderas fabricadas en la misma ciudad de Juliaca, éstas no tienen las mejores condiciones para su rendimiento y rentabilidad; pero como los calderos de marca son prácticamente imposibles de adquirir por su elevado precio, se requiere quizá de un punto medio, en el que se use material adecuado para su fabricación de modo que su costo total sea accesible al entorno de la Región Puno.

Es sabido que en la región Puno, por ser una zona geográfica de altura, son necesarias ciertas condiciones de habitabilidad, para no arriesgar la salud en el proceso. Una de esas condiciones es el aseo personal de forma segura con agua caliente, pero no hay fuentes de agua caliente al natural, así que se debe realizar el trabajo necesario para tenerlo.
1.4. Objetivos de la Investigación

1.4.1. Objetivo General

OPTIMIZAR, FABRICAR Y REALIZAR PRUEBAS DE UNA CALDERA A LEÑA A PARTIR DE UN DISEÑO TRADICIONAL DE LA REGIÓN PUNO.

1.4.2. Objetivos Específicos

− Mejorar el funcionamiento de una caldera comercial a leña y rediseñarla.
− Fabricar una caldera a leña rediseñada.
− Realizar pruebas de la caldera fabricada.
CAPITULO II

2. REVISIÓN DE LITERATURA

2.1. Antecedentes de la Investigación

(Layseca García, 2011). La tesis se realizó para diseñar, fabricar y probar un equipo que permita calentar agua usando como combustible la leña. Este equipo debe permitir disminuir la falta de higiene de pobladores altoandinos del Perú. La tesis elabora instrucciones de fabricación que permiten construir el calentador de agua, donde tiene la descripción del mismo, los parámetros de soldadura, la prueba hidrostática y una evaluación económica. El calentador es de forma cilíndrica, es versátil, pues se puede usar para calentar bañeras, piscinas o jacuzzis aprovechando el efecto termosifón. Tiene una eficiencia del 33.74%. Tiene un diseño en el tiro de la chimenea que minimiza la emisión de gases contaminantes al medio ambiente. Se estima que este diseño logrará un impacto positivo al despertar la curiosidad inventiva de las personas demandantes de tecnología, viendo la facilidad y los materiales reciclados que se usan para desarrollar estas máquinas.

(Suasnabar Dávila, 2014). También se trata de un trabajo que se ocupa del uso de calentadores de agua, en este caso la caldera para su uso en las zonas altoandinas del Perú usando como combustible la bosta. La caldera es de tipo pirotubular vertical, y su consumo energético es de 11.2 kW, que calienta agua desde 5°C hasta 80°C. El diseño térmico está basado en la correlación de convección de Dittus Boelter. Para el diseño mecánico, se ha tomado como referencia las secciones IV y VIII del código ASME. El peso de la caldera vacía es de 195 kg, tiene 25 tubos A-53 de 1” de diámetro y 1.2 m de longitud, tiene 4 bridas de material A-36 para su correcto ensamblaje. El casco está hecho
de material A-36, la evacuación de los gases será por medio de una chimenea de tiro natural.

(García Pacheco & Pañi Riera, 2013). Trata de las ladrilleras de Cuenca, y realiza un estudio de las características que debe tener la leña para que pueda realizar una combustión óptima, tratando así de disminuir las emisiones de gases de contaminación. En este estudio se evalúa el tamaño adecuado que debe tener la leña y el porcentaje de humedad más adecuado.

2.2. Conceptos Generales

2.2.1. Calderas

Las múltiples aplicaciones que tienen las calderas industriales, las condiciones variadas de trabajo y las innumerables exigencias de orden técnico y práctico que deben cumplir para que ofrezcan el máximo de garantías en cuanto a solidez, seguridad en su manejo, durabilidad y economía en su funcionamiento, ha obligado a los fabricantes de estos equipos a un perfeccionamiento constante a fin de encarar los problemas. La búsqueda de soluciones ha originado varios tipos existentes agrupados según sus características más importantes. (Abarca Bahamondes, 2014, pág. 3).

Una caldera es un aparato de transferencia térmica que convierte combustible fósil, energía eléctrica o nuclear, a través de un medio de trabajo como agua, o fluidos orgánicos como el Dowtherm, y así dirige esta energía hacia un aparato externo de transferencia de calor, como los utilizados para calefacción de edificios o de utilización en proceso. Esta energía puede también convertirse para producir energía mecánica. (Lawrence kohan, 2000)
Según (Abarca Bahamondes, 2014) La Caldera es un recipiente metálico, cerrado, destinado a producir vapor o calentar agua, mediante la acción del calor a una temperatura superior a la del ambiente y presión mayor que la atmosférica.

Se llama generador de vapor al conjunto o sistema formado por una caldera y sus accesorios.

Las calderas o generadores de vapor son dispositivos cuyo objetivo es:

a. Generar agua caliente para calefacción y uso general.

b. Generar vapor para plantas de fuerza, procesos industriales o calefacción.

2.2.2. **Funcionamiento**

Funcionan mediante la transferencia de calor, producido generalmente al quemarse un combustible, el que se le entrega al agua contenida o que circula dentro de un recipiente metálico.

En toda caldera se distinguen dos zonas importantes:

a. Zona de liberación de calor u hogar o cámara de combustión:

Es el lugar donde se quema el combustible. Puede ser interior o exterior con respecto al recipiente metálico.

Interior: El hogar se encuentra dentro del recipiente metálico o rodeado de paredes refrigeradas por agua.

Exterior: Hogar construido fuera del recipiente metálico. Está parcialmente rodeado o sin paredes refrigeradas por agua. La transferencia de calor en esta zona se realiza principalmente por radiación (llama - agua).
b. **Zona de tubos:**

Es la zona donde los productos de la combustión (gases o humos) transfieren calor al agua principalmente por convección (gases - agua). Está constituida por tubos dentro de los cuales pueden circular los humos o el agua. (Abarca Bahamondes, 2014, pág. 4).

2.2.3. Clasificación

Se tiene dos tipos generales de calderas:

- **Pirotubulares o de tubos de humos**

 En estas calderas, los humos pasan dentro de los tubos, cediendo su calor al agua que los rodea.

- **Acuotubulares o de tubos de agua**

 El agua circula por dentro de los tubos, captando calor de los gases calientes que pasan por el exterior.

2.2.4. Caldera de Tubos de Humo

Caldera de tubos de humos o pirotubular (de tubos de fuego) es la caldera que más prevalece y se utiliza para aplicaciones de calentamiento de procesos y aplicaciones industriales y comerciales. Las calderas antiguas requerían grandes esfuerzos. Las configuraciones de caldera están influídas por las necesidades de transferencia térmica de modo que se puede extraer del combustible y del material la mayor parte del calor que las condiciones económicas permitan. El efecto de la forma es de inmensa importancia para las tensiones y requerimientos de esfuerzo de una caldera. Es bien conocida la ley científica de que la presión de un fluido se transmite con igual intensidad en todas las direcciones. Siguiendo esta ley, un recipiente de forma irregular sujeto a presión interna.
siempre tiende en sus esfuerzos y distribución de los mismos hacia una forma esférica perfecta. (Lawrence kohan, 2000, pág. 47).

La caldera vertical de tubos de humos se utiliza cuando apremia y es precaria la superficie en planta y los requisitos de presión y capacidad entran dentro del alcance de este tipo de caldera. La caldera tubular vertical (TV) es una unidad caldeada interiormente por tubos de gases. Es una unidad autocontenida que precisa poca o ninguna obra de refractario. Al necesitar poco espacio es muy popular para servicios portátiles o transponibles, tales como grúas, martinetes o hinca pilotes o dragalinas, motor de grúas y equipos de construcción similar. Las calderas tubulares verticales se utilizan para servicio estacionario que requiere presiones y capacidades de producción medias para procesos tales como prensas, aplicaciones de secado y planchado en lavanderías industriales y en la industria del plástico. La caldera de tubos de agua de tipo serpentín es un competidor de toda caldera tubular vertical en pequeñas capacidades y presiones bajas de hasta 10.5 kg/cm². Pero la caldera tubular vertical está limitada en capacidad y presión incluso más que la caldera de hogar interior horizontal tubular. Por esta razón, la mayoría de las calderas tubulares verticales del tipo pirotubular a menudo exceden de 300 HP, alrededor de 4.500 kg/hora de capacidad de producción con una presión máxima de 14 kg/cm². (Lawrence kohan, 2000, pág. 70)

Existen cinco grupos generales o clasificaciones:

1. De virola normal recta con la parte superior seca
2. De virol a normal recta con la parte superior húmeda
3. Caldera «Manning» con hogar aumentado.
4. Fondo estrechado gradualmente con hogar aumentado.
5. Unidad vertical sin tubos para las capacidades incluso menores.
La caldera tipo Manning y la de fondo estrechado proporcionan una mayor superficie de parrilla y volumen de hogar, o que permite una mayor eficiencia o rendimiento de combustión. La unidad del tipo de cabezal inverso fue desarrollada para evitar el sobrecalentamiento de los finales de la parte superior de los tubos que están en la zona o espacio del vapor en la caldera vertical pirotubular. Daños y recalentamiento son, a veces, el resultado de forzar esta última caldera o cuando el fuego se mantiene demasiado fuerte en el arranque. Un fuego suave, baja, es esencial hasta que comience la vaporización. Entonces los tramos finales de los tubos pueden ser «refrigerados» por el vapor. (Lawrence kohan, 2000, pág. 70)

Las ventajas de las calderas pirotubulares verticales son:

1. compacidad y manejabilidad;
2. bajo coste inicial;
3. muy poca superficie requerida por HP de caldera;
4. no se precisa un asentamiento especial; y
5. instalación rápida y sencilla.

Las desventajas son:

1. El interior no es fácilmente accesible para limpieza, inspección o reparación;
2. la capacidad en agua es pequeña, haciéndose difícil mantener una correcta presión de vapor bajo variaciones de carga;
3. la caldera es propensa a los arrastres (Llevados por el vapor) cuando se trabaja a plena carga a causa del pequeño espacio de vapor; y
4. la eficiencia o rendimiento es bajo en los tamaños pequeños porque los gases o humos tienen un corto recorrido, y directo, a la chimenea, de forma que se desperdicia mucho calor.
Los depósitos y lodos se depositan en las cámaras de agua de 4" (100 mm, máximo permitido por el Código), ya que tienen una circulación muy restringida. (Abarca Bahamondes, 2014, pág. 9-10)

Figura N.º 2.1: Caldera tubular vertical. (a) Diseño de parte superior seca. b) Diseño de parte superior húmeda.

Fuente: (Lawrence kohan, 2000, pág. 71)

Las aberturas de limpieza deberían abrirse periódicamente y circunferencialmente en las cámaras de agua y parte inferior de la placa de tubos, de forma que todas las superficies queden accesibles para limpieza. Algunas unidades tienen un drenaje continuo en la parte inferior de las cajas de agua. Cuando esta caldera se abre para limpieza, se puede trabajar con una cadena alrededor de la circunferencia para conseguir que el lodo y depósitos pueden eliminarse desde las aberturas de limpieza. La normativa no indica un nivel específico de agua para la caldera de parte superior seca excepto constatar que...
«deberá» ser un nivel en el cual no haya peligro de sobrecalentamiento de ninguna parte de la caldera cuando esté trabajando con ese nivel. Pero el nivel se forma generalmente como mínimo en un punto sito a 2/3 de la altura de la virola, debajo del cabezal o parte superior de la caldera o placa de tubos o bóveda de tubos. Este es el mismo requerimiento mínimo que para las calderas miniatura verticales de tubos de humos. Para las de parte superior sumergida (inundada) de tipo húmedo, el nivel mínimo de agua ha de estar al menos 2” (50,8 mm) por encima de la parte final de los tubos, excepto para las calderas miniatura, donde estará a 1” (25.4 mm). (Lawrence kohan, 2000, pág. 71)

La corrosión interna y externa normalmente tendrá lugar en una caldera vertical de tubos en las siguientes zonas:

1. En la línea de nivel de agua, normalmente sobre los tubos. Esto es debido al oxígeno y materiales orgánicos que se desprenden durante el proceso de ebullición.
2. En la proximidad de la descarga de agua de alimentación, como consecuencia del desprendimiento de oxígeno.
3. En la parte superior de la placa inferior de tubos, debido a la formación de depósitos.
4. Sobre y alrededor de los finales de las riestras. como resultado de las tensiones impuestas y la consiguiente dilatación y contracción (esto conduce a corrosión por tensiones).
5. En las cajas de agua, especialmente en la inferior, donde puede haber entalladuras adicionales al picado bajo los depósitos.

La corrosión exterior tiene lugar en los siguientes puntos:
1. En la parte superior de la placa de tubos y finales de los mismos, a causa de la formación de ácido por la humedad del hollín al contacto de los productos o gases de combustión.

2. Alrededor de todos los agujeros de hombre, agujeros de mano y aberturas de limpieza. Aquí la corrosión es debida a las perdidas por falta de estanqueidad de las empaquetaduras o cierres, inadecuada instalación de La tapa del agujero de hombre y expansión y contracción térmicas que hacen perder la estanqueidad a los cierres de cada clase, de aberturas.

3. En la parte inferior de la virola, cajas de agua y chapa del hogar, como resultado del ataque del hollín.

4. Alrededor de todas las conexiones, incluyendo manómetros, válvulas de seguridad, salida de vapor, conexión del agua de alimentación, conexión de purga y conexión de columnas de agua, a causa de las pérdidas o fugas.

2.2.5. **Calderas de Tubos de Agua**

La diferencia fundamental entre, las calderas de tubos de agua y las de tubos de humos es que en las primeras el agua circula por dentro de los tubos en vez de alrededor de ellas (calderas de tubos de humos). Los gases calientes pasan alrededor de los tubos en las primeras. Las calderas de tubos de fuego (o de humos) se diseñan con los tubos sometidos dentro de la envolvente o cascara de la caldera. Los tubos de la mayor parte de las calderas de tubos de agua están situados en el exterior del calderín (o calderines) de vapor. (Lawrence kohan, 2000, pág. 83)
Las dos ventajas de la modalidad de caldera de tubos de agua son:

1. Puede obtenerse mayor capacidad aumentando el número de tubos. independientemente del diámetro del calderín de vapor.
2. El calderín no está expuesto al calor radiante de la llama.

La mayor ventaja sobre las calderas de tubos de humos (o calderas pirotubulares) es la libertad para incrementar las capacidades y presiones. Esto es imposible con las calderas de tubos de humos ya que el espesor de la chapa exterior delimitante de la caldera y otros requisitos estructurales pueden hacerlas prohibitivas por encima de las 21 toneladas/hora de capacidad y por encima de los 21 \(kg/cm^2 \) de presión de vapor. Las elevadas capacidades y presiones de las calderas de tubos de agua han hecho posible los modernos generadores de vapor grandes de las centrales térmicas. (Lawrence kohan, 2000, pág. 83)

La construcción modular de grandes calderas de tubos de agua permite el montaje en fabrica de los paneles de tubos de agua del hogar y de los paneles del sobre calentador y recalentadores que se sitúan en obra y después se conectan a los calderines o cabezales. Esto facilita el montaje en obra mediante grúa y, después de situados, se conectan los muros o paneles pantalla a los calderines de vapor. Esto facilita el montaje, da mayor control de calidad en fabricación y es más económico. Sin embargo, las pequeñas calderas compactas de tubos de agua también se diseñan y desarrollan para competir con las calderas de tubos de humo. y para cubrir el gran mercado existente para las calderas más pequeñas. (Lawrence kohan, 2000, pág. 83)

Las ventajas son las siguientes:
Ventajas

- Menor peso por unidad de potencia generada.
- Por tener pequeño volumen de agua en relación a su capacidad de evaporación, puede ser puesta en marcha rápidamente.
- Mayor seguridad para altas presiones.
- Mayor eficiencia.
- Son inexplosivas.

Desventajas

- Su costo es mayor.
- Deben ser alimentadas con agua de gran pureza, ya que las incrustaciones en el interior de los tubos son, a veces, inaccesibles y pueden provocar roturas de los mismos.
- Debido al pequeño volumen de agua, le es más difícil ajustarse a las grandes variaciones el consumo de vapor, siendo necesario trabajarlas a mayor presión que la necesaria en las industrias. (Abarca Bahamondes, 2014, pág. 12)
Tabla N.° 2.1: Tabla comparativa entre una caldera pirotubular y una caldera acuotubular

<table>
<thead>
<tr>
<th>Criterios</th>
<th>Calderas pirotubulares</th>
<th>Calderas acuotubulares</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad del agua</td>
<td>Menores exigencias, posible funcionamiento con salinidad del agua</td>
<td>Mayores exigencias, es necesario un bajo nivel de salinidad para su funcionamiento</td>
</tr>
<tr>
<td>mantenimiento</td>
<td>Fácil de limpiar</td>
<td>Más costoso</td>
</tr>
<tr>
<td>Revisiones periódicas</td>
<td>Inspección ordinaria, seguida de una prueba hidrostática, raramente son necesarias otras pruebas de carácter no destructivo, como por ejemplo las mediciones con ultrasonidos, en caso contrario se efectúan en zonas muy reducidas</td>
<td>Son necesarias mediciones con ultrasonidos además de prueba hidrostática; es decir, pruebas costosas en tiempo y dinero</td>
</tr>
<tr>
<td>Costos para niveles comparables de gastos de fabricación y calidad</td>
<td>Menores</td>
<td>mayores</td>
</tr>
<tr>
<td>rendimiento</td>
<td>Mayor, de fácil mantenimiento</td>
<td>Menor, es más difícil realizar su mantenimiento</td>
</tr>
<tr>
<td>Características de la carga parcial</td>
<td>Puede aprovecharse el control del quemador; cuando caiga por debajo de la carga mínima, el quemador puede apagarse sin problemas</td>
<td>En el caso de determinados diseños, debe limitarse la carga parcial; el quemador no puede apagarse manualmente</td>
</tr>
<tr>
<td>Contenido de agua</td>
<td>Mayor, debido a su diseño</td>
<td>menor</td>
</tr>
<tr>
<td>Capacidad de acumulación</td>
<td>Debido al alto volumen de agua, o es susceptible a las fluctuaciones de presión y carga</td>
<td>Susceptible a las fluctuaciones de presión y carga resultantes del proceso</td>
</tr>
<tr>
<td>Plazo de entrega</td>
<td>Más corto</td>
<td>Más largo</td>
</tr>
<tr>
<td>Necesidades de espacio</td>
<td>Reducidas</td>
<td>Elevadas</td>
</tr>
<tr>
<td>Tiempo necesario para el montaje y puesta en marcha inicial</td>
<td>reducido</td>
<td>Más prolongado</td>
</tr>
</tbody>
</table>

Fuente: (Franz, 2012, pág. 3)
3. MATERIALES Y MÉTODOS

3.1. Antecedentes

Debido a los precios inaccesibles de calderos industriales del mercado nacional e internacional, en el departamento de Puno, la mayoría de la población que adquiere un caldero, lo hace por parte de fabricantes locales, los cuales elaboran estos productos con un coste mucho más accesible, pero que implican otras desventajas propias de los materiales usados en dicha fabricación. Como es expuesto, en esta investigación se busca elaborar un diseño de calderos de coste accesible, pero con mejoras respecto a las desventajas de los calderos comerciales en esta región, buscando mejoras en eficiencia y rendimiento para disminuir el coste de combustibles, y mejoras en la durabilidad para superar la relación tiempo de vida del caldero vs precio de venta.

Se realiza un análisis básico de rendimiento y eficiencia del caldero en un taller de fabricación de calderas local de la ciudad de Juliaca, tomando en cuenta los materiales que se requieren para la fabricación de las mencionadas calderas. Esto sirve como base para realizar un diseño mejor de la caldera de manera que tenga mejor rendimiento y eficiencia, conservando las cualidades económicas de los actuales calderos fabricados de manera local, por lo menos con la relación entre tiempo de duración y costo de fabricación.

Para la optimización es muy importante también evaluar los materiales de fabricación, tanto por mejoras en salubridad como en el rendimiento mismo de la caldera, pues al realizar las pruebas se ha detectado contaminación por residuos de óxido, que incluso cambian de color al agua, por lo cual, en actividad, no se puede usar el caldero
como reservorio de agua caliente, tiene que vaciarse completamente para evitar la acumulación de óxidos y colorar el agua. Es evidente que este hecho también afecta en el tiempo de vida del caldero, y por tanto es importante tener consideraciones con el material a elegir para el nuevo diseño.

Varias de las pruebas se realizaron en el taller de estructuras metálicas METAL-C ubicado en la av. Circunvalación este N° 1240, de la ciudad de Juliaca, donde se viene trabajando y fabricando diversos proyectos, y en el cual soy partícipe, en el que centro mi atención al trabajo de calderas o calentadores de agua. En la ¡Error! No se encuentra el origen de la referencia, muesto una caldera comercial en pleno trabajo y funcionando para dar servicio de duchas calientes, donde se maneja una temperatura del agua de entre 50 a 60°C.
Figura N.º 3.1: Caldero comercial de la ciudad de Juliaca instalado y en pleno trabajo

Elaboración Propia

Figura N.º 3.2: Corte transversal de un caldero comercial de la ciudad de Juliaca

Elaboración Propia
Tabla N.° 3.1.: Datos de pruebas de caldero de diseño tradicional de la Región

<table>
<thead>
<tr>
<th>Datos de la caldera</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cilindro de contenedor de agua</td>
<td>A: 1.80 m², perímetro: 3 m</td>
</tr>
<tr>
<td></td>
<td>Diámetro: 095 metros, espesor 3/8”</td>
</tr>
<tr>
<td></td>
<td>Plancha de acero A-36, tiene una densidad de 7860 kg/m³ (0.28 lb/in³)</td>
</tr>
<tr>
<td>Base de caldera e intercambiador</td>
<td>De calor</td>
</tr>
<tr>
<td></td>
<td>Plancha de espesor de 3/8” De acero A-36, tiene una densidad de 7860 kg/m³ (0.28 lb/in³)</td>
</tr>
<tr>
<td>Cantidad de tubos 6</td>
<td>Tubo de Acero LAC ASTM A500 para Estructuras</td>
</tr>
<tr>
<td>Cantidad de leña</td>
<td>30 kg de leña con 12.46 % de humedad</td>
</tr>
<tr>
<td>chimenea</td>
<td>Espesor de 2mm, de acero A-36, tiene una densidad de 7860 kg/m³ (0.28 lb/in³)</td>
</tr>
<tr>
<td>Sombrero de chimenea</td>
<td>Espesor de 2mm, de acero A-36, tiene una densidad de 7860 kg/m³ (0.28 lb/in³)</td>
</tr>
<tr>
<td>Temperatura del agua</td>
<td>50- 60 °C</td>
</tr>
<tr>
<td>Cantidad de agua</td>
<td>1000 litros aproximadamente</td>
</tr>
<tr>
<td>Tiempo de calentamiento de agua</td>
<td>1h:40-50 min aproximadamente</td>
</tr>
</tbody>
</table>

Elaboración propia

La ¡Error! No se encuentra el origen de la referencia. muestra en los datos de un caldero de fabricación local de la ciudad de Juliaca, al cual llamamos, “caldero tradicional”, que tiene ciertas características, algunas, que tenemos como un dato estático, como la temperatura a alcanzar y el volumen a calentar, y otras, que tenemos como base para la mejora y optimización de un nuevo diseño, como el tiempo de calentamiento y el combustible por hora requerido.

El material del cilindro principal del caldero tradicional, el cuerpo del caldero que estará en contacto con el agua que contenga, es de fierro negro, de 10 mm de espesor el
cual presenta un desgaste relativamente alto a lo largo de su uso, por lo cual, entre las recomendaciones de utilización de éste está el de mantenerlo vacío mientras no se use, sobre todo para períodos medios y largos de tiempo en que no se usan. Las noches donde seguramente no habrá uso, aunque son períodos cortos de tiempo, pueden llegar a desprender del cuerpo del caldero pequeños fragmentos de óxido, que influyen en la calidad de salubridad del agua, e incluso que pueden llegar a colorar el agua, que en una descarga rápida puede llegar a notarse en las salidas de las duchas.

Los tubos intercambiadores de calor son del mismo material, por lo que su espesor también debe ser muy alto, evitando así que su desgaste sea muy rápido. Como es evidente, y aunque el acero tenga una buena conductividad del calor, la transferencia de calor en estos casos, será menor, lo cual resultará en una menor eficiencia del equipo.

En algunas instalaciones, se ha aplicado una capa de yeso directamente al cuerpo externo del caldero, con el objetivo de mantener la temperatura del agua, y no desperdiciar el calor logrado en el contacto con el aire del exterior.

3.1.1. **Pruebas de la Caldera Tradicional de la Región**

Se realizaron pruebas con mediciones de temperatura de forma progresiva mientras la caldera hace que el agua alcance la temperatura requerida que es de 60 °C, también se realizaron mediciones a la temperatura que alcanza el horno, y se muestra también los diferentes momentos en los que se alimenta el horno.
Tabla N° 3.2: Datos de pruebas de la caldera tradicional primera prueba

<table>
<thead>
<tr>
<th>Tiempo (horas)</th>
<th>Temperatura del agua (°C)</th>
<th>Temperatura del horno (°C)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>17.0</td>
<td>16.7</td>
<td>se enciende el horno con 10kg de leña</td>
</tr>
<tr>
<td>0:08</td>
<td>17.8</td>
<td>280.0</td>
<td></td>
</tr>
<tr>
<td>0:16</td>
<td>20.0</td>
<td>312.0</td>
<td></td>
</tr>
<tr>
<td>0:24</td>
<td>23.5</td>
<td>352.0</td>
<td>se alimenta 6.5 kg de leña</td>
</tr>
<tr>
<td>0:32</td>
<td>27.2</td>
<td>374.0</td>
<td></td>
</tr>
<tr>
<td>0:40</td>
<td>30.7</td>
<td>381.0</td>
<td></td>
</tr>
<tr>
<td>0:48</td>
<td>35.4</td>
<td>399.0</td>
<td>se alimenta 6.5 kg de leña</td>
</tr>
<tr>
<td>0:56</td>
<td>39.2</td>
<td>410.0</td>
<td></td>
</tr>
<tr>
<td>1:04</td>
<td>42.7</td>
<td>413.0</td>
<td></td>
</tr>
<tr>
<td>1:12</td>
<td>46.6</td>
<td>413.0</td>
<td></td>
</tr>
<tr>
<td>1:20</td>
<td>49.9</td>
<td>415.0</td>
<td>se alimenta leña 7 kg de leña</td>
</tr>
<tr>
<td>1:28</td>
<td>53.6</td>
<td>417.0</td>
<td></td>
</tr>
<tr>
<td>1:36</td>
<td>57.1</td>
<td>398.0</td>
<td></td>
</tr>
<tr>
<td>1:44</td>
<td>60.1</td>
<td>402.0</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración Propia

Figura N° 3.3: Gráfico de evolución de la temperatura en el agua y en el horno - primera prueba
Tabla N° 3.3: Datos de pruebas de la caldera tradicional segunda prueba

<table>
<thead>
<tr>
<th>Tiempo horas</th>
<th>Temperatura del agua (°C)</th>
<th>Temperatura del horno (°C)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>17.0</td>
<td>18.1</td>
<td>se enciende el horno con 10 kg</td>
</tr>
<tr>
<td>00:08</td>
<td>18.9</td>
<td>199</td>
<td></td>
</tr>
<tr>
<td>00:16</td>
<td>22.6</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>00:24</td>
<td>26.6</td>
<td>380</td>
<td></td>
</tr>
<tr>
<td>00:32</td>
<td>30.0</td>
<td>373</td>
<td>se alimenta 6.5 kg de leña</td>
</tr>
<tr>
<td>00:40</td>
<td>33.3</td>
<td>381</td>
<td></td>
</tr>
<tr>
<td>00:48</td>
<td>35.0</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>00:56</td>
<td>38.2</td>
<td>411</td>
<td></td>
</tr>
<tr>
<td>01:04</td>
<td>41.9</td>
<td>418</td>
<td>se alimenta 6.5 kg de leña</td>
</tr>
<tr>
<td>01:12</td>
<td>44.2</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>01:20</td>
<td>48.3</td>
<td>413</td>
<td></td>
</tr>
<tr>
<td>01:28</td>
<td>52.8</td>
<td>419</td>
<td>se alimenta 6.5 kg de leña</td>
</tr>
<tr>
<td>01:36</td>
<td>54.1</td>
<td>417</td>
<td></td>
</tr>
<tr>
<td>01:44</td>
<td>58.0</td>
<td>417</td>
<td>se alimenta 2.5 kg de leña</td>
</tr>
<tr>
<td>01:52</td>
<td>60.8</td>
<td>415</td>
<td></td>
</tr>
</tbody>
</table>
3.2. Diseño Térmico de la Caldera

Lo primero a considerar será una serie de cálculos teóricos, que tendrán como finalidad elegir el mejor material y hacer un diseño de la morfología y estructura del nuevo caldero, para lo cual empezaré con los datos de combustión: Como el combustible usado es leña; hacemos una serie de cálculos respecto esta.
Considerando los datos obtenidos de la caldera del taller de fabricación, y considerando también los materiales que se comercializan en el país, se obtienen los datos de materiales adecuados, y a la vez económicos, para el trabajo específico que buscamos, el calentar agua hasta unos 60°C. Los materiales en algunos casos son fabricados específicamente para trabajo térmico, aunque procuraré aprovechar sobre todo sus cualidades en la transferencia de calor más que sus cualidades en trabajos de alta presión, pues se realizará un caldero que no requerirá mayor presión que la que permita la circulación del agua a unas duchas de agua caliente.

3.2.1. Cálculo del Consumo de Leña

Para realizar el trabajo del calentamiento del agua, asumiremos la temperatura inicial, como la que se mantiene en un tanque de almacenamiento, ya sea que la fuente del agua sea de la red pública o del subsuelo, para ello se realizaron una serie de mediciones que nos dan un promedio de temperatura a lo largo del día, y de diferentes épocas del año. Es de suponer que de madrugada y en invierno, la temperatura del agua será menor que en los días de verano.

<table>
<thead>
<tr>
<th>Tabla N.° 3.5: Mediciones de temperatura de un tanque de agua de 1100 litros</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018/ mes del año</td>
</tr>
<tr>
<td>Marzo 05/10:00 am</td>
</tr>
<tr>
<td>Junio 10/10:00 am</td>
</tr>
<tr>
<td>Setiembre 10/10:00 am</td>
</tr>
<tr>
<td>Diciembre 05/10:00 am</td>
</tr>
</tbody>
</table>
Elaboración Propia

La ¡Error! No se encuentra el origen de la referencia. muestra las mediciones de temperatura realizadas a lo largo del año en horas de la mañana, aunque estos valores son relativos, pues evidentemente depende del tiempo que queda almacenado el agua sin usarse donde influirá la temperatura ambiente, es importante obtener un promedio de temperatura desde donde se empezará a aumentar hasta llegar al calor esperado.

De la ¡Error! No se encuentra el origen de la referencia., el promedio de la temperatura del agua medida a lo largo del año 2018 en la ciudad de Juliaca, en un tanque de almacenamiento, es de 18°C y según los datos obtenidos de calderas en trabajo o la caldera tradicional, la temperatura a alcanzar es de 60°C.

\[
\begin{align*}
T_{\text{inicial}} &= 18^\circ C \\
T_{\text{final}} &= 60^\circ C
\end{align*}
\]

El calor específico, que es la cantidad de calor que se debe suministrar a una masa para que aumente su temperatura en un grado Celsius, el calor a suministrar estará dado por cierta energía, que para este caso según la tabla B.1 del anexo B es:

\[
C_{p\text{agua}18^\circ C} = 4.183 \frac{KJ}{K\cdot Kg}
\]

(3.1)

Como nuestro objetivo es calentar 1000 litros de agua, éste será nuestro volumen de trabajo:

\[
Volumen\text{detrabajo} = 1000\text{litros de agua}
\]

Por los datos obtenidos de los diseños anteriores, el flujo a lograr calentar a la temperatura establecida es:
\[m_{agua} = \frac{1000}{3600} = \frac{0.2777\, kg}{s} \]

Luego el flujo de calor necesario que se entrega a la masa de agua:

\[\dot{Q} = \dot{m} \times C_p \times \Delta T \quad (3.2) \]

\[\dot{Q} = 0.2777 \times 4.183 \times (60 - 18) = 48.788\, kW \]

Si consideramos una eficiencia ideal del 100%, será esta la potencia que requeriremos para calentar el agua hasta 60°C, como esto no se da en ningún intercambio de energía real, debemos calcular la eficiencia real y también la eficiencia del combustible que usaremos, la cual será la leña de eucalipto.

Tabla N.º 3.6: Tabla comparativa de la eficiencia de combustión

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Poder calorífico inferior</th>
<th>Eficiencia de combustión</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>KJ/Kg</td>
<td></td>
</tr>
<tr>
<td>Gas licuado</td>
<td>46065.84</td>
<td>95%</td>
</tr>
<tr>
<td>Diesel</td>
<td>42396.47</td>
<td>85%</td>
</tr>
<tr>
<td>Leña eucaliptus</td>
<td>19228.00</td>
<td>60%</td>
</tr>
<tr>
<td>Electricidad en (KW)</td>
<td>-</td>
<td>100%</td>
</tr>
<tr>
<td>Energía solar</td>
<td>-</td>
<td>100%</td>
</tr>
</tbody>
</table>

Fuente: (CREAPOR S.A., 2006)

Inicialmente no conocemos el valor de la eficiencia de la caldera de nuevo diseño, ni tan siquiera el diseño mismo, aunque sabemos que será de tipo pirotubular, y tomando
en cuenta ello y para iniciar los cálculos asumiremos un valor común en este tipo de calderas; En este caso una eficiencia del 60%:

$$\eta = \frac{\dot{Q}_{util}}{\dot{Q}_{total}} \hspace{1cm} (3.3)$$

$$0.6 = \frac{48.788}{\dot{Q}_{total}}$$

$$\dot{Q} = 81.3133KW = 69916.88 \frac{kcal}{h}$$

El poder calorífico de un combustible es la cantidad de energía desprendida en la reacción de combustión, referida a la unidad de masa de combustible; en dimensiones, es la cantidad de calor que entrega un kilogramo, o un metro cúbico, de combustible al oxidarse en forma completa.

Al utilizarse la leña de eucalipto como combustible del caldero, hacemos la comparación con otros, en la siguiente tabla:

<table>
<thead>
<tr>
<th>Tabla N.º 3.7: Poder calorífico de la leña seca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especie</td>
</tr>
<tr>
<td>Eucalipto</td>
</tr>
<tr>
<td>Pino</td>
</tr>
<tr>
<td>Cedro</td>
</tr>
<tr>
<td>Ciprés</td>
</tr>
<tr>
<td>Encino</td>
</tr>
<tr>
<td>Media</td>
</tr>
</tbody>
</table>

Fuente: (Antoninho Dalpasquale, Marques Pereira, Sinício, & Oliveira Filho, 1991)

En la ¡Error! No se encuentra el origen de la referencia. se muestra un valor del poder calorífico de la leña seca, pero la leña siempre tiene algún porcentaje de humedad, eso se ve en la ¡Error! No se encuentra el origen de la referencia. , la cual n
os muestra un valor aproximado del poder calorífico de la leña según el porcentaje de
humedad de la misma.

**Tabla N.º 3.8: Poder calorífico inferior de la leña eucalipto en función del contenido
de humedad**

<table>
<thead>
<tr>
<th>Contenido de humedad</th>
<th>(KJ/Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19228</td>
</tr>
<tr>
<td>10</td>
<td>17644</td>
</tr>
<tr>
<td>20</td>
<td>15412</td>
</tr>
<tr>
<td>30</td>
<td>13180</td>
</tr>
<tr>
<td>40</td>
<td>10947</td>
</tr>
<tr>
<td>50</td>
<td>8715</td>
</tr>
<tr>
<td>60</td>
<td>6483</td>
</tr>
</tbody>
</table>

Fuente: (Antoninho Dalpasquale, Marques Pereira, Sinicio, & Oliveira Filho, 1991)

Con el fin de obtener datos objetivos del porcentaje de humedad que suele tener
la leña de eucalipto en esta región, se toma una muestra para medir su porcentaje de
humedad, para ello utilizaremos un xilohigrómetro, instrumento fabricado con este fin,
con el cual elaboro la tabla y obtengo un promedio:

**Tabla N.º 3.9: Porcentaje de humedad medida en una muestra de 15 trozos de leña
en la ciudad de Juliaca**

<table>
<thead>
<tr>
<th>Leña</th>
<th>Valor en %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>17</td>
</tr>
<tr>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
</tr>
<tr>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>7</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>09</td>
</tr>
<tr>
<td>9</td>
<td>11</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>11</td>
<td>09</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>promedio</td>
<td>12.46</td>
</tr>
</tbody>
</table>

Elaboración Propia

Las pruebas se realizaron en la ciudad de Juliaca el 15 de julio del 2018 con un xilohigrómetro:

Figura N.º 3.5: Moisture Meter MD4G Digital

Elaboración Propia

Entonces de la tabla anterior interpolando se obtiene
Tabla N° 3.10: Datos obtenidos

<table>
<thead>
<tr>
<th>CONTENIDO DE HUMEDAD</th>
<th>PC (KJ/KG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>19228</td>
</tr>
<tr>
<td>10</td>
<td>17644</td>
</tr>
<tr>
<td>20</td>
<td>15412</td>
</tr>
<tr>
<td>30</td>
<td>13180</td>
</tr>
<tr>
<td>40</td>
<td>10947</td>
</tr>
<tr>
<td>50</td>
<td>8715</td>
</tr>
<tr>
<td>60</td>
<td>6483</td>
</tr>
</tbody>
</table>

CONTENIDO DE HUMEDAD 12.46

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>17644</td>
</tr>
<tr>
<td>20</td>
<td>15412</td>
</tr>
</tbody>
</table>

PC 17094.928 KJ/kg

Elaboración Propia

Luego:

\[\dot{Q}_{\text{leña}} = \dot{m}_{\text{leña}} \times P_{C_{\text{leña}}} \] \hspace{1cm} (3.4)

81.3133 = \dot{m}_{\text{leña}} \times 17094.9285

\[\dot{m}_{\text{leña}} = 0.005664838132Kg/s \]

\[\dot{m}_{\text{leña}} = 17.123Kg/h \]

3.2.2. Cálculo de la Relación Aire-Combustible
Es importante realizar estos cálculos, para tenerlos en cuenta al momento de realizar el diseño del horno del caldero, de modo que tengamos mayores referencias sobre el uso adecuado de los recursos y las condiciones adecuadas para su trabajo.

a) Combustión del carbono

\[\text{C} + \text{O}_2 \rightarrow \text{CO}_2 \quad (3.5) \]

Fuente: (Postigo Barrio de Mendoza & Cruz, 1991, pág. 8)

\[1\text{Kmol} + 1\text{Kmol} \rightarrow 1\text{Kmol} \]

\[12\text{Kg} + 32\text{Kg} \rightarrow 44\text{Kg} \]

\[1\text{Kg} + \frac{32}{12} \rightarrow \frac{44}{12} \text{Kg} \]

\[1\text{Kg} + 1.87\text{m}^3 \rightarrow 1.85\text{m}^3 \]

b) Combustión del hidrógeno

\[2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \quad (3.6) \]

Fuente: (Postigo Barrio de Mendoza & Cruz, 1991, pág. 8)

\[\text{Kmol} + 1\text{Kmol} \rightarrow 2\text{Kmol} \]

\[4\text{Kg} + 32\text{Kg} \rightarrow 36\text{Kg} \]

\[1\text{Kg} + 8\text{Kg} \rightarrow 9\text{Kg} \]

\[2\text{m}^3 + 1\text{m}^3 \rightarrow 2\text{m}^3 \]

c) Combustión del azufre
\[S + O_2 \rightarrow SO_2 \] (3.7)

Fuente: (Postigo Barrio de Mendoza & Cruz, 1991, pág. 8)

\[1Kmol + 1Kmol \rightarrow 1Kmol \]

\[32Kg + 32Kg \rightarrow 64Kg \]

\[1Kg + 1Kg \rightarrow 2Kg \]

\[2m^3 + 0.7m^3 \rightarrow 0.7m^3 \]

Tabla N.º 3.11: Composición química porcentual de la leña en función del contenido de humedad

<table>
<thead>
<tr>
<th>Compuesto químico</th>
<th>Contenido de humedad (% b.h.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Carbono</td>
<td>50,30</td>
</tr>
<tr>
<td>Hidrógeno</td>
<td>6,20</td>
</tr>
<tr>
<td>Oxígeno</td>
<td>43,08</td>
</tr>
<tr>
<td>Nitrógeno</td>
<td>0,04</td>
</tr>
<tr>
<td>Azufre</td>
<td>0,00</td>
</tr>
<tr>
<td>Cenizas</td>
<td>0,37</td>
</tr>
<tr>
<td>Total</td>
<td>100,00</td>
</tr>
</tbody>
</table>

Fuente: (CREAPOR S.A., 2006)

De la ¡Error! No se encuentra el origen de la referencia. se puede obtener el análisis gravimétrico de la leña con diferentes % de humedad, sólo con interpolar o
extrapolar y en nuestro caso tenemos el análisis gravimétrico de la leña eucalipto de la zona con un 12.46% de humedad.

Interpolando de la tabla obtenemos: 44.033%C, 5.43%H, 37.71%O

Despreciamos el 1% de azufre, nitrógeno y cenizas.

Podemos concluir que en cada Kg de combustible tenemos:

44.03KgC, 5.43%H, 37.71KgO

El número de moles de cada uno es:

\[C = \frac{44.03}{12} = 3.669 \text{kmol} \]

\[H_2 = \frac{5.43}{2} = 2.715 \text{kmol} \]

\[O_2 = \frac{37.71}{32} = 1.178 \text{kmol} \]

Relación con aire estequiométrico

\[[3.669C + 2.715H_2 + 1.178O_2] + b[O_2 + 3.76N_2] \rightarrow dCO_2 + eH_2O + fN_2 \quad (3.8) \]

Balance del carbono: \(d = 3.669 \)

Balance del hidrógeno \(e = 2.715 \)

Balance del oxígeno \[1.178 \cdot 2 + b \cdot 2 = 3.669 \cdot 2 + 2.715 \]

\(b = 3.8485 \)

Balance del nitrógeno
$2f = 3.8485 \times 3.76 \times 2$

$f = 14.47$

Luego la reacción nos queda así:

$$[3.669C + 2.715H_2 + 1.178O_2] + 3.8485[O_2 + 3.76N_2] \rightarrow 3.669CO_2 + 2.715H_2O + 14.47N_2$$

Luego la relación aire/combustible estequiométrica

$$AC = \frac{3.8485 \times (32 + 3.76 \times 28)}{3.669 \times 12 + 2.715 \times 2 + 1.178 \times 32}$$

$$AC = 6.062 kg/air/kgcombustible$$

Este cálculo es una reacción estequiométrica en donde se entiende una combustión completa con 100% de aire teórico, lo cual no funciona realmente así en la práctica, pues la combustión real necesita un porcentaje de exceso de aire para que facilite la combustión.

Considerando información como “... (por cada 1% de humedad, en la práctica se necesitan el 2% de exceso de aire)” (Thomasset, 2004), considero una combustión con 100% de exceso de aire:

$$AC_{real} = \frac{2 \times 3.8485(32 + 3.76 \times 28)}{3.669 \times 12 + 2.715 \times 2 + 1.178 \times 32}$$

$$AC_{real} = 12.1238 kg/air/kgcombustible$$

Masa del aire
\(m_{aire} = AC \times m_{combustible} \)

\[m_{aire} = 6.062 \frac{kg_{aire}}{kg_{combustible}} \times 17.123 \frac{kg_{combustible}}{h} \]

\[m_{aire} = 207.6 \frac{kg_{aire}}{h} \]

3.2.3. Cálculo del Flujo de Aire

En las chimeneas del calentador se tiene un flujo de gas combustible:

\[m_{combustion} = (m_{leña}m_{aire_{real}} - m_{cenizas}) \]

(Jimenez Ugarte, 1986)

De la tabla x interpolando para 12.46% de humedad se tiene que el % de cenizas es 0.33262 para 1 kg de leña, entonces se tiene:

\[m_{combustion} = (1 + 12.1238 \times 2.0 - 0.33262)Kg \]

\[m_{combustion} = 24.915Kg \]

\(r \): la relación de masa de leña y masa de gases de combustión es:

\[r = \frac{m_{combustion}}{m_{leña}} \]

\[r = \frac{24.915}{1} \]

\[r = 24.915 \]

Flujo de masa de los gases
\[
\dot{m}_{\text{gases}} = \dot{m}_{\text{aire}} + \dot{m}_{\text{combustible}} \tag{3.12}
\]

\[
\dot{m}_{\text{gases}} = 2 \times 207.6 + 17.123
\]

\[
\dot{m}_{\text{gases}} = 224.723 \frac{Kg}{h}
\]

Temperatura de los gases de la entrada del intercambiador

Para la temperatura de la entrada de los gases de combustión al haz tubular de la caldera (intercambiador de calor) nos apoyamos en estudios que se han realizado a la bosta y leña en diferentes proyectos del sector rural el cual nos da como un valor de temperatura de los gases de combustión de 800°C. (Álvares Pablo, 2009)

\[
T_{\text{entrada gases}} \approx 800^\circ C
\]

Temperatura de los gases a la salida del intercambiador

La temperatura a la cual deben salir los gases de combustión debe ser la mínima necesaria para que no lleguen a condensarse (temperatura de condensación del SO₂ → 130°C – 160°C), como regla práctica pondremos como requerimiento de nuestra caldera que los gases de combustión salgan de la chimenea a 200°C. (Bueno Zárate)

\[
T_{\text{salida gases}} \approx 200^\circ C
\]

La energía que transfieren los gases de combustión será igual a la energía que transfieren al agua para elevarla a la temperatura de 60°C, agua caliente que transfiere su energía a la vivienda para el proceso de calefacción

\[
\dot{Q}_{\text{gas}} = \dot{Q}_{\text{agua}} = \dot{Q}_{\text{util}} = 48.788 KW
\]
Esta energía es transferida por los gases producto de la combustión enriándose estos desde \(T_{g1} = entrada\ g\ gases \) hasta \(T_{g2} = salida\ g\ gases \), entonces la energía transferida por los gases se podría representar en el siguiente esquema.

\[Q_{\dot{gas}} = m_{gas} \times C_{pgas} \times (T_{g1} - T_{g2}) \]

Despejando \(T_{g2} \) obtenemos la siguiente relación

\[T_{g2} = T_{g1} - \frac{Q_{gas}}{m_{gas} \times C_{pgas}} \]

\[T_{g2} = 1073.15^\circ K - \frac{48.788KW}{224.723\frac{Kg}{h} \times 1.136\frac{kJ}{Kg^\circ K}} \]

\[T_{g2} = 1073.15^\circ K - \frac{175636.8\frac{kJ}{h}}{224.723\frac{Kg}{h} \times 1.136\frac{kJ}{Kg^\circ K}} \]

\[T_{g2} = 1070.64 - 688.002 \]

\[T_{g2} = 382.638^\circ K \]

Entonces la temperatura de los gases hasta la salida de los tubos será \(T_{g2} = 382.638^\circ K \)
Por otro lado, se tiene que la densidad aproximada de los gases de combustión a 250°C (temperatura asumida de acuerdo a los datos recogidos de los gases de escape de las cocinas mejoradas “GRUPO PUCP”) de temperatura es de \(0.606\, Kg/m^3\) tomando como referencia el comportamiento del carbón, ya que no contamos con la gráfica de la leña con lo que se obtiene un flujo volumétrico de los gases de combustión.

Figura N.º 3.6: Variación de la densidad de aire y gases de combustión con las temperaturas

[Diagrama de densidad de aire y gases de combustión]

Fuente: (Morse M, 1971, pág. 708)

\[
\dot{V}_{gc} = \frac{224.723\, Kg/h}{0.606\, Kg/m^3}
\]

\[
\dot{V}_{gc} = 370.83\, m^3/h
\]

\[
\dot{V}_{gc} = 0.103\, m^3\, degasesdecomb./s
\]

De la misma figura podemos obtener la densidad aproximada del aire a 250°C de temperatura que es \(1.08\, Kg/m^3\) con lo que podemos obtener el flujo del aire necesario en la admisión.
\[\dot{V}_{\text{aire}} = \frac{\% \text{deexesoaire} \times r_a/c \times m_{\text{comb/hora}}}{\rho_{\text{aire}}} \quad (3.15) \]

\[\dot{V}_{\text{aire}} = \frac{2 \times 6.062 \times 17.123Kg/h}{1.08Kg/m^3} \]

\[\dot{V}_{\text{aire}} = 192.221m^3\text{aire/hora} \]

\[\dot{V}_{\text{aire}} = 0.0534m^3\text{aire/s} \]

3.2.4. Dimensionamiento de la Chimenea

Se trata a la chimenea como productor de tiro, para no usar ventiladores que succionen los gases de combustión. El diseño de nuestro calentador contempla como única fuente de energía la leña o también puede ser la bosta.

Para la obtención de tiro determinaremos la altura adecuada de nuestra chimenea por medio de las siguientes recomendaciones.

Tenemos que para equipos que utilizan briquetas de antracita, se recomienda que la altura de la chimenea sea como mínimo de 2.5 metros, debido a que la antracita es un combustible sólido que tiene un comportamiento muy parecido a la leña, utilizaremos esta recomendación para nuestro caso. (Jimenez Ugarte, 1986).

El tiro, \(Z \) en mm de columna de agua, que produce una chimenea puede ser relacionado con la altura de la chimenea, \(H \) en metros. (Huite)

\[Z = 0.4H \]

\[Z = 0.4 \times 2.5 \]

\[Z = 1mm \]
Donde concluimos que nuestra chimenea tendrá 2.5 metros de alto como mínimo con un tiro de $1\text{mm de columna de agua} \rightarrow 10\text{Pa}$ de tiro.

Para determinar la el diámetro del ducto de los gases de combustión se considerará que la ecuación de la velocidad es la misma que para el caso de la entrada de aire.

$$D_{gcomb} = \sqrt[3]{\frac{4 \times V_{gcomb}}{C \times \pi \times \sqrt{\frac{Z}{P_A}}}} \quad (3.16)$$

$$D_{gcomb} = 0.1796m$$

$$D_{gcomb} = 179.6mm$$

Donde C=coeficiente de flujo, ya que asumiremos que el flujo es unidimensional y que el diferencial de presión (ΔP) será nulo por ser un tubo abierto [C=1 manual del ingeniero mecánico tubos de Pitot mecánica de fluidos p á g. 3-72]

3.2.5. Balance de Energía

$$\dot{Q}_{\text{entra}} = \dot{Q}_{\text{sale}} = \dot{Q}_{\text{comb}} + \dot{Q}_{\text{aire}} \quad (3.17)$$

$$\dot{Q}_{\text{sale}} = \dot{Q}_{\text{paredes}} + \dot{Q}_{\text{aberturas}} + \dot{Q}_{\text{inquemados}} + \dot{Q}_{\text{chimenea}} + \dot{Q}_{\text{neto}} \quad (3.18)$$

Potencia calorífica del horno

Fuente: (Auces & Rodriguez, 2003)

Calor del combustible
\[\dot{Q}_{\text{comb}} = \dot{m}_{\text{comb}} \times P_{\text{cinferior}} \]
(3.19)

Fuente: (Auces & Rodriguez, 2003)

\[\dot{Q}_{\text{comb}} \rightarrow \text{Potencia calorífica del combustible} \]

\[\dot{m}_{\text{comb}} \rightarrow \text{Flujo másico del combustible} \]

\[P_{\text{combustible}} \rightarrow \text{Poder calorífico del combustible} \]

Potencia generada por el aire en la combustión

\[\dot{Q}_{\text{aire}} = \dot{m}_{\text{aire}} \times C_{\text{aire}} \times T_{\text{aire}} \]
(3.20)

\[\dot{Q}_{\text{aire}} = \dot{m}_{\text{aire}} \times h_{\text{aire}} \]
(3.21)

Potencia calorífica del horno

Fuente: (Auces & Rodriguez, 2003)
\(\dot{Q}_{\text{aire}} \rightarrow \text{Potencial calorífico del aire} \\
\dot{m}_{\text{aire}} \rightarrow \text{Flujo másico del aire} \\
C_{P\text{aire}} \rightarrow \text{Calor específico del aire} \\
T_{\text{aire}} \rightarrow \text{Temperatura del aire} \\
h_{\text{aire}} \rightarrow \text{entalpía del aire} \\
\text{Calor que entra al horno} \\
\dot{Q}_{\text{entrada}} = \dot{Q}_{\text{comb}} + \dot{Q}_{\text{aire}} \quad (3.22) \\
\text{Pérdida de calor por las paredes} \\
\dot{Q}_{\text{paredes}} = \dot{Q}_{\text{convección}} + \dot{Q}_{\text{radición}} \quad (3.23) \\
\text{Potencia calorífica del horno} \\
\text{Fuente: (Auces & Rodriguez, 2003)} \\
h_{\text{convección}} = A_s \times (T_{\text{ep}} - T_{\infty}) + \varepsilon \times \sigma \times (T_{\text{ep}}^{\frac{4}{}} - T_{\text{alrededor}}^{\frac{4}{}}) \quad (3.24) \\
\text{Donde:} \\
h_{\text{convección}} \rightarrow \text{Coeficiente de convección} \\
T_{\text{ep}} \rightarrow \text{Temperatura externa del panel} \\
T_{\infty} \rightarrow \text{Temperatura del fluido (aire del ambiente)} \\
A_s \rightarrow \text{Area transversal de las paredes} \\
\varepsilon \rightarrow \text{Emisividad del material} \\
\sigma \rightarrow \text{Constante de Stefan-Boltzmann} \left(5.67 \times 10^{-8} \frac{\text{W}}{\text{m}^2\text{K}^4} \right) \\
T_{\text{alrededor}} \rightarrow \text{Temperatura alrededor del material} \\
\text{Pérdida de calor por convección paredes laterales} \\
\text{Temperatura de película} \\
T_p = \frac{T_{\text{ep}} + T_{\infty}}{2} \quad (3.25)
Número de Rayleigh

\[Ra = \frac{g \times \beta \times (T_{ep} + T_{\infty}) \times L_c^3}{v \times P_r} \tag{3.26} \]

Se obtiene el número adimensional de Rayleigh (Cengel, 2007, pág. 860)

\(k \rightarrow \text{Conductividad térmica} \)
\(\beta \rightarrow \text{Coeficiente de expansión volumétrica} \)
\(v \rightarrow \text{Viscosidad cinemática del fluido} \)
\(P_r \rightarrow \text{Número de Prandtl} \)
\(Ra \rightarrow \text{Número de Rayleigh} \)
\(g \rightarrow \text{Gravedad} \)
\(L_c \rightarrow \text{Longitud del característico de las superficies analizadas} \) (Cengel, 2007, pág. 511)

Número de Nusselt

\[Nu = \left(0.825 + \frac{0.387 (Ra)^{1/6}}{1 + \left[\frac{0.492}{P_r} \right]^{9/16}} \right)^2 \]

\[Nu = \frac{h \times L_c}{k}, \text{de esta relación se despeja el coeficiente de convección} \]

Perdida de calor por radiación

\[\dot{Q}_{Pradiación} = \varepsilon \times \sigma \times A_s \times (T_{ep}^4 - T_{alrededor}^4) \tag{3.27} \]

Pérdidas de calor por radiación

Fuente: (Auces & Rodriguez, 2003)

Perdida de calor por las aberturas

\[\dot{Q}_{aberturas} = \sigma \times A_s \times (T_{ep}^4 - T_{alrededor}^4) \tag{3.28} \]

Pérdida de calor por las aberturas

Fuente: (Auces & Rodriguez, 2003)

Pérdida de calor por los inquemados (cenizas)

\[\dot{Q}_{inquemados} = \text{cantidad de ceniza} \times P_{ci} \]

Pérdida de calor por inquemados

Fuente: (Trossero & Horta Nogueira, 2001)
Contenido de ceniza

Otro factor importante del contenido de energía del biocombustible es el contenido de ceniza, que se mide siempre con referencia al producto en seco y se refiere al residuo sólido que persiste tras una combustión total. Si bien el contenido de ceniza de la leña es generalmente del 1 por ciento, algunas especies de agrocombustibles pueden tener un contenido de ceniza muy elevado. Esto influye en el valor energético de los biocombustibles, dado que las sustancias que forman las cenizas no tienen, por lo general, valor energético. Así, los combustibles de madera con un contenido de ceniza del 4 por ciento tienen un 3 por ciento menos de energía que la biomasa cuyo contenido de ceniza es del 1 por ciento.

Pérdida de calor por la chimenea

\[CO_2, CO, N_2, O_2, SO_2 \text{ y } H_2O \rightarrow \text{vapor} \]
\[\dot{Q}_{\text{chimenea}} = \dot{m}_{\text{comb}} \times \Delta T \times \sum \left(\frac{R_{\text{gas}}}{R_{\text{comb}}} \times C_{p_{\text{gas}}} \right) \]

Pérdida de calor por la chimenea

Fuente: (Auces & Rodriguez, 2003)

\[\Delta T = (T_{\text{chimenea}} - T_{\text{ambiente}}) \]

Calor perdido por los siguientes gases:

\[\frac{RCO_2}{R_{\text{comb}}} = \frac{0.2888 \text{kmol} \left(\frac{44 \text{Kg}}{\text{kmol}} \right)}{1 \text{kmol} \left(\frac{7.8884 \text{Kg}}{\text{kmol}} \right)} = 1.6109 \]

\[\frac{RCO}{R_{\text{comb}}} = \frac{0.0323 \text{kmol} \left(\frac{28 \text{Kg}}{\text{kmol}} \right)}{1 \text{kmol} \left(\frac{7.8884 \text{Kg}}{\text{kmol}} \right)} = 0.1147 \]
\[\frac{RN_2}{R_{comb}} = \frac{4.6394 \text{kmol} \left(\frac{28 \text{Kg}}{\text{kmol}}\right)}{1 \text{kmol} \left(\frac{7.8884 \text{kh}}{\text{kmol}}\right)} = 16.4676 \]

\[\frac{RO_2}{R_{comb}} = \frac{0.9211 \text{kmol} \left(\frac{32 \text{Kg}}{\text{kmol}}\right)}{1 \text{kmol} \left(\frac{7.8884 \text{kh}}{\text{kmol}}\right)} = 3.7365 \]

\[\frac{RSO_2}{R_{comb}} = \frac{0.0003 \text{kmol} \left(\frac{64 \text{Kg}}{\text{kmol}}\right)}{1 \text{kmol} \left(\frac{7.8884 \text{kh}}{\text{kmol}}\right)} = 0.0025 \]

\[\frac{RH_2O}{R_{comb}} = \frac{0.2305 \text{kmol} \left(\frac{18 \text{Kg}}{\text{kmol}}\right)}{1 \text{kmol} \left(\frac{7.8884 \text{kh}}{\text{kmol}}\right)} = 0.526 \]

El calor específico de los gases según la tabla (Cengel, 2007)

\[Cp_{CO_2} = 0.846 \frac{\text{kJ}}{\text{KgK}} \]

\[Cp_{CO} = 1.04 \frac{\text{kJ}}{\text{KgK}} \]

\[Cp_{N_2} = 1.039 \frac{\text{kJ}}{\text{KgK}} \]

\[Cp_{O_2} = 0.918 \frac{\text{kJ}}{\text{KgK}} \]

\[Cp_{SO_2} = 0.632 \frac{\text{kJ}}{\text{KgK}} \]

\[Cp_{H_2O} = 1.8723 \frac{\text{kJ}}{\text{KgK}} \]

Calor neto

\[\dot{Q}_{\text{neto}} = \dot{Q}_{\text{entra}} - \dot{Q}_{\text{pérdidas}} \]
3.3. Diseño Y Fabricación de la Caldera

3.3.1. Simulación del Tanque de Agua

La caldera mejorada tiene una presión de trabajo de 10 PSI. Y la presión de diseño es de 30 PSI. El cual de la simulación se puede deducir que el material utilizado para el calentador de agua es suficientemente bueno. Se puede usar materiales más delgados para el cilindro contenedor y así optimizar mejor económicamente la fabricación, pero la tecnología de soldadura que se cuenta en el taller no es lo suficientemente computarizado o de última tecnología para hermetizar la caldera.

Ya que en los materiales delgados se tendría que utilizar la soldadura por costura y así no perder las propiedades del material a trabajar.

3.3.2. Presión del Tanque en Diseño

Según ASME sección IV

El valor que se usa en las ecuaciones para el cálculo de las partes del tanque es el siguiente.

- Para Po > 300psi (2.07 Mpa), entonces P=1.1Po
- Para Po < 300psi (2.07 Mpa), entonces P=Po+30psi;
- Entonces tenemos como se tiene una presión de trabajo de 15 psi , se tiene una presión de diseño de 45 psi

Enmallado
Figura N.º 3.7: Simulación. Enmallado cilindro del cuerpo del caldero

Figura N.º 3.8: Simulación. Tanque contenedor de agua con una presión de 30 psi
En la imagen anterior se puede apreciar la simulación del tanque contenedor de agua, diseñado con una presión de diseño de 45 psi, pues la deformación está en las placas porta tubos.

Pues la zona azul representa que el material es lo suficientemente resistente a la presión ejercida o es sobre estructurada, la zona verde es la parte recomendada de trabajo para el material, la zona roja es donde el material sufre la deformación y no es recomendada.

Figura N.° 3.9: Simulación

Elaboración Propia
3.3.3. Elección del Material

Tomando en cuenta el funcionamiento de una caldera comercial de la ciudad de Juliaca, se decide elegir un material mejor para evitar el desgaste del cilindro, donde se corre un riesgo grande cuando se está cerca al fin de la vida útil de la caldera. Las consideraciones para la instalación también deben dar razones para elegir el material, pues la instalación en el caso del caldero tradicional de la región, se realiza en el mismo lugar donde trabajará y no se puede trasladar posteriormente, convirtiéndose en una máquina estacionaria.

Se cotizó el precio de los materiales de construcción del calentador de agua, se optó por usar un material inoxidable del tipo A 240 – C 304L para el cuerpo del caldero y hogar, A249- C 321 para el intercambiador de calor y ASTM 1008 para recubrir el aislante y pintarlo.

Los materiales de construcción tienen un precio elevado a comparación del acero común A 36 o ASTM 1008 por tanto en el diseño mecánico se optó por economizar al máximo el material adquirido, y según a las medidas de los materiales que se comercializan vienen en medidas de 4’*8’ (1219.2*2438.4) y los tubos de 6.10mts de longitud.

Usaremos como guía el código ASME sección IV, que trata de calderas de calefacción por ser de bajas presiones, también las dimensiones de la caldera se basan optimizando las medidas de los materiales comerciales y aproximando el volumen del contenido a 1000 litros de agua.
Elaboración Propia

En la ¡Error! No se encuentra el origen de la referencia. se puede apreciar la distribución de las partes que se cortarán sobre la plancha de acero de 1219.2*2438.4 mm, la tapa de caldera e intercambiador de calor, la base de caldera, la base de intercambiador de calor, pared lateral del hogar, lados de la puerta, orejas de izaje, y el sobrante se usa para cortar retazos ya sea para cuñas, espaciadores, virotillos, etc.
Tabla N.º 3.13: Tapa superior de la caldera e intercambiador de calor

<table>
<thead>
<tr>
<th>TAPA SUPERIOR DE LA CALDERA E INTERCAMBIADOR DE CALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro de la tapa: 750 mm</td>
</tr>
<tr>
<td>diámetro de los agujeros: 50.8 mm</td>
</tr>
<tr>
<td>resistencia a la tracción mín.: 70ksi (485 Mpa)</td>
</tr>
<tr>
<td>fuerza de producción mín.: 25 ksi (170 Mpa)</td>
</tr>
</tbody>
</table>

- plancha acero inox. a-240 c-304L 6mm de espesor

Elaboración Propia

Tabla N.º 3.14: Base inferior de la caldera

<table>
<thead>
<tr>
<th>BASE INFERIOR DE LA CALDERA</th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro exterior: 750 mm</td>
</tr>
<tr>
<td>diámetro interior: 600mm</td>
</tr>
<tr>
<td>resistencia a la tracción mín.: 70ksi (485 Mpa)</td>
</tr>
<tr>
<td>fuerza de producción mín.: 25 ksi (170 Mpa)</td>
</tr>
</tbody>
</table>

- plancha acero inox. a-240 c-304L 6mm de espesor

Elaboración Propia

67
Tabla N.° 3.15: Base de intercambiador de calor

<table>
<thead>
<tr>
<th>BASE DEL INTERCAMBIADOR DE CALOR</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro: 600mm</td>
<td></td>
</tr>
<tr>
<td>diámetro de los huecos: 50.8mm</td>
<td></td>
</tr>
<tr>
<td>resistencia a la tracción mín.: 70ksi (485 Mpa)</td>
<td></td>
</tr>
<tr>
<td>fuerza de producción mín.: 25 ksi (170Mpa)</td>
<td></td>
</tr>
</tbody>
</table>

| plancha acero inox. a-240 c-304L 6mm de espesor | límite de elasticidad 190-210 gpa |

Elaboración Propia

La pared del hogar se trabaja con acero inox, haciendo el corte de un rectángulo 420 mm de altura y 1922 mm de largo, pasándolo por la roladora de planchas hasta tener un diámetro de 600 mm, más adelante una vez ensamblado se hace el corte para la puerta.
Tabla N.° 3.16: Pared de hogar

<table>
<thead>
<tr>
<th></th>
<th>Pared del hogar</th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro:</td>
<td>600mm</td>
</tr>
<tr>
<td>Altura:</td>
<td>420mm</td>
</tr>
<tr>
<td>resistencia a la tracción mín.:</td>
<td>70ksi (485 Mpa)</td>
</tr>
<tr>
<td>fuerza de producción mín.:</td>
<td>25 ksi (170Mpa)</td>
</tr>
<tr>
<td>plancha acero inox. a-240 c-304L 6mm de espesor</td>
<td>límite de elasticidad 190-210 gpa</td>
</tr>
</tbody>
</table>

Elaboración Propia

3.3.4. **Tubos Intercambiador de Calor**

Los tubos de intercambiador de calor son de diferente material y de espesor más delgado ya que tienen que transferir calor al agua, se trabaja un tubo de acero inox de 6000 mm de largo, cortándolo a 3 partes iguales de 2000 mm

Tabla N.° 3.17: Disposición de los tubos intercambiadores de calor

<table>
<thead>
<tr>
<th></th>
<th>Intercambiador de calor</th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro:</td>
<td>600mm</td>
</tr>
<tr>
<td>Altura:</td>
<td>420mm</td>
</tr>
<tr>
<td>resistencia a la tracción mín.:</td>
<td>75ksi (515 Mpa)</td>
</tr>
<tr>
<td>fuerza de producción mín.:</td>
<td>30 ksi (205Mpa)</td>
</tr>
<tr>
<td>plancha acero inox. a-249 c-321 1.5mm de espesor</td>
<td>límite de elasticidad 190-210 gpa</td>
</tr>
</tbody>
</table>

Elaboración Propia
3.3.5. **Cilindro Contenedor**

El cilindro contenedor se trabaja con 2 planchas enteras de acero inox, pasando por roladora y obteniendo un diámetro de 750 mm, luego juntándolo con un proceso de soldadura TIG.

Tabla N.º 3.18: Cilindro contenedor

<table>
<thead>
<tr>
<th></th>
<th>Cilindro contenedor</th>
</tr>
</thead>
<tbody>
<tr>
<td>diámetro:</td>
<td>600mm</td>
</tr>
<tr>
<td>Altura:</td>
<td>420mm</td>
</tr>
<tr>
<td>resistencia a la tracción mín.:</td>
<td>70ksi (485 Mpa)</td>
</tr>
<tr>
<td>fuerza de producción mín.:</td>
<td>25 ksi (170Mpa)</td>
</tr>
<tr>
<td>plancha acero inox. a-240 c-304L 2.0mm de espesor</td>
<td>límite de elasticidad 190-210 gpa</td>
</tr>
</tbody>
</table>

Elaboración Propia

3.3.6. **Dimensiones de la Caldera**

En el dimensionamiento de la caldera se trata de optimizar al máximo los materiales que conforma toda la caldera

Capacidad de almacenamiento 1000 litros

Temperatura de trabajo 60º C

Presión de operación 10 psi

Presión de diseño 45 psi
Soldadura

Para el análisis de las soldaduras, se siguen los lineamientos de la sección uw, en la que la eficiencia de la soldadura está en función de la inspección de la misma (tintas penetrantes o rayos X) donde el valor máximo es 1. Para este caso, el valor de la eficiencia es 0.7 por que no se cuenta con inspecciones calificadas tanto en las tapas como en el cuerpo e intercambiador. [ASME, sección viii div 1 UW,2015].

3.3.7. Ensamblaje del Calentador de Agua

Una vez preparado el material las uniones de todo material en acero inoxidable es mediante proceso de soldadura TIG, todo lo que hay contacto con agua y contacto con fuego es de material inoxidable. El forro que cubre la caldera y su aislante térmico puede ser de acero común pintado, o también de acero inoxidable ya que, es puramente estético.

Se comenzó con hacer el armado del intercambiador de calor, uniendo primeramente solo con puntos de soldadura y una vez armado todo el intercambiador de calor se empieza con el remate de soldadura en forma intercalada para no deformar la placa porta tubos.

Luego mediante una roladora se da forma cilíndrica al horno, una vez hecho se ensambla con el intercambiador de calor y la base de la caldera. Se suelda las orejas de izaje y la puerta.

La puerta de la caldera es de 250 mm de ancho por 300 mm de largo una medida para alimentar con leña el hogar de la caldera.
Para el cilindro contenedor de agua se juntan dos planchas enteras de acero inoxidable mediante un proceso de soldadura TIG, siempre uniéndolo con puntos primeramente y luego hacer el remate de soldadura.

Figura N.º 3.11: Interior del caldero antes de soldar el cuerpo cilíndrico

![Imagen del cilindro contenedor de agua](image.png)

Elaboración Propia
Figura N.º 3.12: Trabajo en soldadura del cuerpo cilíndrico del caldero

Elaboración Propia

Soldeo de tubos de salida, entrada y purga de agua hechas de tubos de acero inoxidable de 1 1/4 de pulgada

Armado de la puerta para alimentar leña, hechas de material inoxidable también las orejas de izaje.

El forro de la caldera se hizo con un material de acero común A 36 o ASTM 1008 de espesor de .09mm que luego se pintó para que no oxide. El forro se agarra a la caldera mediante virotillos la cual lo fija.

Se fabrica la chimenea de acero astm240 a-201 de .06 mm de espesor. Y toda la chimenea se une solo con puntos de soldadura ya que, la plancha es muy delgada y al
calentarlo mucho se va deformando. El cono se fabrica usando como referencia el programa para calderería CaldSoft.

Figura N.° 3.13: Chimenea

Elaboración Propia
Como aislante térmico se une el poliuretano expandido, que rellena un espacio entre la caldera y la carcasa exterior. Mide 5 cm aproximadamente.

Figura N.º 3.14: Vista superior del caldero. Se muestra el aislante térmico y las orejas de izaje

Elaboración Propia
3.3.8. Base de Caldera y Parrilla

Se fábrica de un acero común A 36 o ASTM 1008 el cual componen las patas, la parrilla, el cenicero, el tubo soplador. El quemador es de acero inoxidable ASTM 240 C-304L por para que tenga una duración mayor.

Figura N.º 3.15: Parrilla antes de ser acabada

Elaboración Propia
Figura N.° 3.16: Diseño de la base con parrilla del horno del caldero

Elaboración Propia
3.3.9. Presupuesto

Tabla N.° 3.19: Lista de materiales

<table>
<thead>
<tr>
<th>DECRIPCION</th>
<th>CANTIDAD</th>
<th>PESO</th>
<th>P. UNIT.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANCHA ACERO INOX. A-240 C-304 L 6.0MM X 4’X8’ 2B (PLUS) A ACABADO 2B MATE</td>
<td>1</td>
<td>121</td>
<td>S/. 2,006.00</td>
<td>S/. 2,006.00</td>
</tr>
<tr>
<td>PLANCHA ACERO INOX. A-240 C-304 L 2.0MM X 4’X8’ 2B P ACABADO 2B MATE</td>
<td>2</td>
<td>47</td>
<td>S/. 888.00</td>
<td>S/. 1,776.00</td>
</tr>
<tr>
<td>PLANCHA ACERO INOX. A-240 C-201 L 0.6MM X 4’X8’ 2B A ACABADO 2B MATE</td>
<td>2</td>
<td>14.1</td>
<td>S/. 80.00</td>
<td>S/. 160.00</td>
</tr>
<tr>
<td>PLANCHA DE ACERO ASTM 1008 0.9MM X 4’X8’</td>
<td>3</td>
<td>27.23</td>
<td>S/. 65.00</td>
<td>S/. 195.00</td>
</tr>
<tr>
<td>PLANCHA DE ACERO ASTM 1008 3.0MM X 4’X8’</td>
<td>1</td>
<td>90.788</td>
<td>S/. 250.00</td>
<td>S/. 250.00</td>
</tr>
<tr>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-249</td>
<td>11</td>
<td>14.274</td>
<td>S/. 312.00</td>
<td>S/. 3,432.00</td>
</tr>
<tr>
<td>PERFIL ANGULO A-36 1” X 1/8” X 6MT</td>
<td>1</td>
<td>S/. 25.00</td>
<td>S/. 25.00</td>
<td></td>
</tr>
<tr>
<td>PERFIL ORNAMENTAL A-36 1/2” X 6 MT</td>
<td>4</td>
<td>S/. 23.00</td>
<td>S/. 92.00</td>
<td></td>
</tr>
<tr>
<td>GAS ARGON</td>
<td>4</td>
<td>S/. 45.00</td>
<td>S/. 180.00</td>
<td></td>
</tr>
<tr>
<td>ELECTRODO 6011</td>
<td>5</td>
<td>5</td>
<td>S/. 13.50</td>
<td>S/. 67.50</td>
</tr>
<tr>
<td>ELECTRODO INOX. AINSI 304 L</td>
<td>1</td>
<td>1</td>
<td>S/. 60.00</td>
<td>S/. 60.00</td>
</tr>
<tr>
<td>VARILLAS DE SOLDADURA AINSI 304 L</td>
<td>3</td>
<td>3</td>
<td>S/. 110.00</td>
<td>S/. 330.00</td>
</tr>
<tr>
<td>VENTILADOR</td>
<td>1</td>
<td>2</td>
<td>S/. 90.00</td>
<td>S/. 90.00</td>
</tr>
<tr>
<td>TABLERO DE CONTROL Y ACSEORIOS</td>
<td>1</td>
<td>3</td>
<td>S/. 150.00</td>
<td>S/. 150.00</td>
</tr>
<tr>
<td>PINTURA</td>
<td>2</td>
<td>S/. 45.00</td>
<td>S/. 90.00</td>
<td></td>
</tr>
<tr>
<td>REMACHES</td>
<td>1</td>
<td>S/. 7.00</td>
<td>S/. 7.00</td>
<td></td>
</tr>
<tr>
<td>ESPUMA DE POLIURETANO</td>
<td>15</td>
<td>S/. 44.00</td>
<td>S/. 660.00</td>
<td></td>
</tr>
<tr>
<td>COSTO TOTAL</td>
<td></td>
<td></td>
<td>328.392</td>
<td>S/. 9,570.50</td>
</tr>
</tbody>
</table>

Elaboración Propia
Tabla N.° 3.20: Costos directos mano de obra

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>S/</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>MANIPULEO INTERNO</td>
<td>30</td>
<td>6.00</td>
<td>180.00</td>
</tr>
<tr>
<td>CORTE DE MESA</td>
<td>30</td>
<td>6.00</td>
<td>180.00</td>
</tr>
<tr>
<td>ROLADO</td>
<td>8</td>
<td>6.00</td>
<td>48.00</td>
</tr>
<tr>
<td>ENSAMBLE</td>
<td>120</td>
<td>6.00</td>
<td>720.00</td>
</tr>
<tr>
<td>SOLD. TIG MANUAL</td>
<td>40</td>
<td>6.00</td>
<td>240.00</td>
</tr>
<tr>
<td>SOLD. SMAW MANUAL</td>
<td>24</td>
<td>6.00</td>
<td>144.00</td>
</tr>
<tr>
<td>PRUEBA HIDROSTATICANA</td>
<td>16</td>
<td>6.00</td>
<td>96.00</td>
</tr>
<tr>
<td>ENSAMBLAJE Y DESPACHO</td>
<td>30</td>
<td>6.00</td>
<td>180.00</td>
</tr>
<tr>
<td>TRANSPORTE</td>
<td>1</td>
<td>500.00</td>
<td>500.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>2,288.00</td>
</tr>
</tbody>
</table>

Elaboración Propia

Tabla N.° 3.21: Costos indirectos

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>S/</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>COSTOS POR INGENIERIA</td>
<td>1</td>
<td>450.00</td>
<td>450.00</td>
</tr>
<tr>
<td>COSTOS INDIRECTOS DE FABRICACION</td>
<td>1</td>
<td>200.00</td>
<td>200.00</td>
</tr>
<tr>
<td>COSTOS POR IIMPREVISTOS</td>
<td>1</td>
<td>200.00</td>
<td>200.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td>850.00</td>
</tr>
</tbody>
</table>

Costos Totales

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>S/ 12,708.50</th>
</tr>
</thead>
</table>

Elaboración Propia
3.3.10. Instalación y Condiciones de Operación de la Caldera

3.3.10.1. La Instalación de la Caldera.

La instalación de la caldera tiene que ser verificado por un técnico, ya que la caldera tiene una altura de 240 cm aproximadamente con contenido de agua y necesariamente tiene que estar instalado con un nivel o plomada. O si es posible fijar la caldera, si se tiene muros cerca.

En cuanto a la instalación de gasfitería, se debe tener en cuenta; la salida del agua caliente y el respiradero o aliviador que se encuentra en la parte superior de la caldera. Y la entrada de agua fría y purga por la parte inferior o base de la caldera.

El respiradero o aliviador tiene que tener una altura de 1m más que el tanque de alimentación de agua fría.

3.3.10.2. Operación

Antes de encender la caldera abrir la llave de ingreso de agua fría y llenar toda la caldera.

Para encender la caldera se utilizan pequeños trozos de leña o cartones. Y si es necesario encender el ventilador de aire.

Una vez encendido la caldera y tener buena brasa en el horno se alimenta con más leña si se está usando el agua caliente.

Para el apagado de caldera, solo apagar el ventilador, no es necesario cerrar llaves, solo se deja de quemar y que se agote la leña.
3.3.10.3. Mantenimiento

- El mantenimiento se debe efectuar cuando la caldera se encuentra apagada.
- Se debe drenar todo el líquido por la válvula de purga.
- Por la válvula de salida de agua, se puede inyectar agua en cantidad para drenar lodos o sarro que se acumula en el interior de la caldera.
- Desmontar la chimenea para tener acceso a la parte superior de la caldera.
- Limpia los tubos de humo con una escobilla de acero blando para sacar todo el hollín acumulado en ellas.
3.3.11. Pruebas

Se realiza las pruebas del nuevo caldero fabricado, para ver si se obtienen mejores resultados que los hechos al caldero tradicional

3.3.11.1. Prueba Hidrostática

Según ASME PW-54 Todos los tambores soldados y otras partes soldadas sometidas a presión deben estar sujetos a la presión de un a prueba hidrostática no inferior a 1.5 veces la máxima presión de trabajo admisible. La prueba hidrostática se puede realizar en la planta del fabricante o en el campo. Cuando se realizan reparaciones, se deben volver a probar.

En nuestro calentador de agua se hizo pruebas de presión hidrostática, Finalmente se tiene la caldera ya acabada y se hace la prueba hidrostática, con agua a una presión de 20 psi en el manómetro y una válvula de seguridad de 20 psi.

La simulación de presión hidrostática de la caldera es de 45 PSI lo cual si cumple en la práctica al estar la presión de trabajo muy por debajo de esta.

Figura N.º 3.18. Válvula de seguridad

![Válvula de seguridad](image)

Elaboración Propia
3.3.11.2. Pruebas de Funcionamiento

En las pruebas se coloca un manómetro en la parte de ingreso de agua de la caldera el cual registra una presión de trazo de 8 PSI aproximadamente esto debido a que el tanque de alimentación de agua se encuentra a una altura de 6 metros aproximadamente.

<table>
<thead>
<tr>
<th>Tiempo (horas)</th>
<th>Temperatura del agua (°C)</th>
<th>Temperatura del horno (°C)</th>
<th>Temperatura de la puerta (°C)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>17.5</td>
<td>16.6</td>
<td>18.0</td>
<td>Se enciende el horno con 9kg de leña</td>
</tr>
<tr>
<td>0:08</td>
<td>18.8</td>
<td>250.0</td>
<td>20.0</td>
<td>Se enciende el ventilador de aire</td>
</tr>
<tr>
<td>0:16</td>
<td>22.6</td>
<td>311.0</td>
<td>33.0</td>
<td></td>
</tr>
<tr>
<td>0:24</td>
<td>26.8</td>
<td>390.0</td>
<td>36.0</td>
<td>Se alimenta 6kg de leña</td>
</tr>
<tr>
<td>0:32</td>
<td>31.2</td>
<td>450.0</td>
<td>39.0</td>
<td></td>
</tr>
<tr>
<td>0:40</td>
<td>36.2</td>
<td>489.0</td>
<td>40.6</td>
<td></td>
</tr>
<tr>
<td>0:48</td>
<td>42.1</td>
<td>559.0</td>
<td>47.0</td>
<td>Se alimenta 6kg de leña</td>
</tr>
<tr>
<td>0:56</td>
<td>50.7</td>
<td>573.0</td>
<td>59.8</td>
<td></td>
</tr>
<tr>
<td>1:04</td>
<td>55.1</td>
<td>591.0</td>
<td>61.8</td>
<td></td>
</tr>
<tr>
<td>1:12</td>
<td>58.2</td>
<td>619.0</td>
<td>63.0</td>
<td></td>
</tr>
<tr>
<td>1:20</td>
<td>62.3</td>
<td>600.0</td>
<td>69.0</td>
<td>Se apaga el ventilador de aire</td>
</tr>
</tbody>
</table>

Tabla N.º 3.22: Pruebas de la caldera mejorada. Primera prueba

Elaboración Propia
Figura N.° 3.19: Gráfico de evolución de la temperatura del agua del caldero mejorado. Primera prueba

Elaboración Propia
Tabla N.º 3.23: Pruebas de la caldera mejorada. Segunda prueba

<table>
<thead>
<tr>
<th>Tiempo (horas)</th>
<th>Temperatura del agua (°C)</th>
<th>Temperatura del horno (°C)</th>
<th>Temperatura de la puerta (°C)</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td>17.5</td>
<td>17.9</td>
<td>19.0</td>
<td>se enciende el horno con 8 kg de leña</td>
</tr>
<tr>
<td>0:08</td>
<td>19.0</td>
<td>284.0</td>
<td>20.3</td>
<td></td>
</tr>
<tr>
<td>0:16</td>
<td>25.6</td>
<td>390.0</td>
<td>29.0</td>
<td></td>
</tr>
<tr>
<td>0:24</td>
<td>32.1</td>
<td>412.0</td>
<td>30.9</td>
<td>se alimenta 7 kg de leña</td>
</tr>
<tr>
<td>0:32</td>
<td>37.3</td>
<td>460.0</td>
<td>44.0</td>
<td></td>
</tr>
<tr>
<td>0:40</td>
<td>42.2</td>
<td>515.0</td>
<td>50.0</td>
<td></td>
</tr>
<tr>
<td>0:48</td>
<td>48.1</td>
<td>580.0</td>
<td>58.0</td>
<td>se alimenta 7 kg de leña</td>
</tr>
<tr>
<td>0:56</td>
<td>54.7</td>
<td>589.0</td>
<td>64.0</td>
<td></td>
</tr>
<tr>
<td>1:04</td>
<td>58.1</td>
<td>600.0</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>1:12</td>
<td>61.2</td>
<td>623.0</td>
<td>73.0</td>
<td>se apaga el ventilador de aire</td>
</tr>
</tbody>
</table>

Elaboración Propia

Figura N.º 3.20: Gráfico de evolución de la temperatura del agua del caldero mejorado. Segunda Prueba

Elaboración Propia
Tabla N.º 3.24: Resultado de las pruebas de la caldera mejorada

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T agua inicial</td>
<td>(°C)</td>
<td>17.50</td>
</tr>
<tr>
<td>T agua final</td>
<td>(°C)</td>
<td>60.75</td>
</tr>
<tr>
<td>Tiempo</td>
<td>(minutos)</td>
<td>71.00</td>
</tr>
<tr>
<td>T gases de combustión</td>
<td>(°C)</td>
<td>443.29</td>
</tr>
<tr>
<td>T de la puerta tapa</td>
<td>(°C)</td>
<td>44.96</td>
</tr>
<tr>
<td>Masa de combustible</td>
<td>(kg)</td>
<td>21.50</td>
</tr>
<tr>
<td>Flujo de combustible</td>
<td>(kg/h)</td>
<td>18.17</td>
</tr>
<tr>
<td>Calor aportado por la leña</td>
<td>(kJ)</td>
<td>367540.95</td>
</tr>
<tr>
<td>PC de la leña</td>
<td>(kJ/kg)</td>
<td>17094.93</td>
</tr>
<tr>
<td>Calor ganado por el agua</td>
<td>(kJ)</td>
<td>180914.75</td>
</tr>
<tr>
<td>Eficiencia de la caldera</td>
<td>(%)</td>
<td>49.22</td>
</tr>
</tbody>
</table>

Elaboración Propia

Figura N.º 3.21: Manómetro

Elaboración Propia
CAPITULO IV

4. RESULTADOS Y DISCUSIÓN

Se realiza las comparaciones en el rendimiento entre los resultados de las pruebas realizadas en las dos calderas, para ello, elaboro una tabla con los datos anteriormente obtenidos de las tablas de rendimiento elaboradas para la caldera tradicional y para la caldera mejorada.

Tabla N.º 4.1: Comparación entre el rendimiento de la caldera mejorada y la tradicional

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Masa del agua (litros)</th>
<th>Consumo de leña (kg)</th>
<th>T. inicial del agua (°C)</th>
<th>T. final del agua (°C)</th>
<th>Calor ganado por el agua (KJ)</th>
<th>rendimiento (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>caldera mejorada</td>
<td>1000</td>
<td>21.5</td>
<td>17.5</td>
<td>60.75</td>
<td>180914.75</td>
<td>49.22</td>
</tr>
<tr>
<td>caldera tradicional</td>
<td>1000</td>
<td>31.0</td>
<td>17.0</td>
<td>60.45</td>
<td>181751.35</td>
<td>34.30</td>
</tr>
</tbody>
</table>

Elaboración Propia
La Figura N.° 4.1. muestra la comparación de la evolución en la temperatura respecto al tiempo en minutos, en naranja la de la caldera tradicional y en azul la de la caldera mejorada, donde hasta la primera media hora la caldera tradicional muestra una evolución sutilmente mayor, quizá por el material de construcción usado en el horno, que es de ladrillo y barro, donde la caldera se encuentra sólo por encima del horno. La caldera mejorada tiene el horno prácticamente dentro del cuerpo de la caldera, donde el fuego puede ser debilitado por ese ambiente frío, pero que en el futuro ayuda a aprovechar de la mejor forma posible el calor generado en el horno, pues detrás de las paredes del horno, se encuentra el agua de la caldera, así que no desperdicia calor en las paredes.

Luego, el agua logra la misma temperatura a la media hora de trabajo, donde obtiene una temperatura de uno 30°C, y a partir de ese momento, la temperatura del agua de la caldera mejorada sube más rápidamente que en la caldera tradicional, hasta lograr
una temperatura incluso mayor a la deseada en 1 hora con 20 minutos, mientras la temperatura del agua de la caldera tradicional no ha acelerado su aumento de temperatura y evidentemente mantiene la misma rapidez de cambio de temperatura.

Respecto al tiempo de vida de las calderas, el tiempo de vida promedio de una caldera tradicional fabricado en la ciudad de Juliaca es de 3 años, y su costo de fabricación a precio de venta es de S/. 4500.00; mientras la caldera actual mejorada considero un costo a la venta de S/. 12708.50, en la cual se incluye la mano de obra en su elaboración, tiene un tiempo de vida mayor que asumimos alrededor de los 15 años.

Tabla N.° 4.2: Tabla comparativa del presupuesto de fabricación y tiempo de vida a 15 años

<table>
<thead>
<tr>
<th></th>
<th>Caldera tradicional</th>
<th>Caldera Mejorada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duración en trabajo</td>
<td>3 años</td>
<td>15 años</td>
</tr>
<tr>
<td>Precio</td>
<td>S/. 4500.00</td>
<td>S/. 12708.50</td>
</tr>
<tr>
<td>Tiempo comparativo</td>
<td>15 años</td>
<td>15 años</td>
</tr>
<tr>
<td>TOTAL</td>
<td>S/. 22500.00</td>
<td>S/. 12708.50</td>
</tr>
</tbody>
</table>

Elaboración Propia

Según la tabla mostrada, la recuperación de lo financiado o invertido, es mejor en la caldera mejorada, rediseñada, pues, aunque en un primer momento, el costo de fabricación hace que sea más alto al inicio, conforme pasan los años van igualando e incluso mejorando ampliamente las ventajas económicas por la adquisición de una caldera mejorada.

Se consideraron también de importancia alta, el tema de la seguridad, tanto en la instalación como durante su trabajo ordinario. Si consideramos el caso de la caldera tradicional, ésta al momento de su instalación, se ensambla, pero a la vez se suelda el cilindro contenedor de agua, con la base y los tubos intercambiadores de calor; es decir,
prácticamente parte de la fabricación se lleva a cabo en el momento de la instalación, quedando un caldero completamente estacionario. El otro problema es el gran peso que conlleva el instalar un cilindro de un espesor en promedio de 1 pulgada, que genera requerimientos de equipos de seguridad mucho más caros, así que gran parte de su costo es simplemente instalación, aunque muchas veces se realizan instalaciones inseguras, llevando la seguridad a un segundo plano y actuando con negligencia.

La caldera mejorada es portable, (claro que requiere de una buena grúa), lo cual significa que no necesariamente se realiza una instalación estacionaria e inamovible como el caso anterior, sino que se puede trasladar luego de su instalación, según lo requiera el usuario. En las pruebas anteriores, se había realizado con materiales de espesor más fino; pero la experiencia hizo cambiarlos por que las soldaduras resultaban más débiles, y para el traslado y mantenimiento mostraban sus defectos filtrando agua en el momento del trabajo. La caldera mejorada, está montada con materiales mucho más robustos, considerando las simulaciones y la experiencia para elaborarlas de modo que son más seguras para el trabajo y robustas para traslados de forma íntegra sin necesidad de soldaduras en el lugar de instalación.
CONCLUSIONES

- Se ha realizado mejoras en el funcionamiento de la nueva caldera, obteniendo mejores características en cuanto a rendimiento, que asegura las exigencias de demanda de agua caliente; y eficiencia, aprovechando mejor la energía invertida en el equipo. Se ha realizado cambios en el diseño original de la caldera logrando una morfología que aprovecha mejor la energía liberada por los combustibles.

- Se logró fabricar un prototipo de caldera donde se ha aprovechado el cambio de materiales de construcción, que permitió ampliar sustancialmente el tiempo de vida útil de la misma, que a su vez permitió mejoras al aspecto económico en el mediano y largo plazo.

- Se realizaron pruebas que permitieron observar mejoras en el nuevo caldero, obteniendo una eficiencia de 49.223 %, muy superior a la anterior (caldera tradicional), en la cual se obtuvo una eficiencia de 34.3 %.

- Mediante las pruebas se pudo observar que la caldera fabricada en material inoxidable es más salubre respecto a las fabricadas con fierro negro, pues el agua no muestra ningún rastro de coloración, común en los calderos fabricados en material oxidable.
RECOMENDACIONES

- En el transcurso de la simulación se puede observar que se pueden usar planchas de acero, más delgadas que las que se usa en esta tesis, usando un proceso de soldadura por costura y así, optimizar económicamente, y en la transferencia de calor.

- En las pruebas, se usa una sola termocupla para medir la temperatura en el horno, pues de observo que la temperatura dentro del hogar varía según las zonas, ya que la combustión no es uniforme como en teoría. Aquí se pueden usar varias termocuplas y así tener un resultado más preciso del hogar de combustión.

- Así mismo poder medir la temperatura de entrada y salida del intercambiador de calor, si es posible en cada tubo, ya que también varía según la zona donde se encuentre el tubo.

- También se pueden fabricar mecanismos de limpieza de hollín para cada tubo, esto para tener limpio los tubos del intercambiador y poder tener una transferencia de calor constante.

- Automatizar el ventilador con sensores de temperatura de agua, poder apagar automáticamente el ventilador o usando válvulas solenoide, desfogar el agua caliente en caso vaya a hervir
REFERENCIAS

García Pacheco, G., & Pañi Riera, L. (2013). Optimización de la eficiencia energética de la leña (Eucaliptus Globulus) como combustible en un modelo de horno de
ladrillo artesanal, a través del análisis y modificación de las características del combustible. *(Tesis)*. Universidad Politécnica Salesiana, Cuenca.

ANEXOS

ANEXO A. Cotización de materiales inoxidables

<table>
<thead>
<tr>
<th>ITEM</th>
<th>CÓDIGO</th>
<th>CANT.</th>
<th>U.M.</th>
<th>DESCRIPCIÓN</th>
<th>Peso</th>
<th>P. UNI.</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>125473</td>
<td>1.000</td>
<td>PZA</td>
<td>PLANCHAS ACERO INOX. A-240 C-304 L 3.0MM X 4’’ X 8’’ 2B (PLS) ACABADO 2B MATE</td>
<td>71.440</td>
<td>228.20</td>
<td>228.20</td>
</tr>
<tr>
<td>2</td>
<td>125400</td>
<td>1.000</td>
<td>PZA</td>
<td>PLANCHAS ACERO INOX. A-240 C-304 L 2.0MM X 4’’ X 8’’ 2B (PLS) ACABADO 2B MATE</td>
<td>47.630</td>
<td>152.14</td>
<td>152.14</td>
</tr>
<tr>
<td>3</td>
<td>120857</td>
<td>6.000</td>
<td>MTS</td>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-354 C-201 OD 1 1/2’’ X 1.5MM BRILLANTE ACABADO BRILLANTE</td>
<td>6.840</td>
<td>2.35</td>
<td>15.30</td>
</tr>
<tr>
<td>4</td>
<td>120826</td>
<td>6.000</td>
<td>MTS</td>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-354 C-201 OD 2’’ X 1.5MM BRILLANTE ACABADO BRILLANTE</td>
<td>11.160</td>
<td>4.17</td>
<td>24.39</td>
</tr>
<tr>
<td>5</td>
<td>19710</td>
<td>5.000</td>
<td>MTS</td>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-354 C-304 DD 1 1/4’’ X 1.5MM BRILLANTE ACABADO BRILLANTE</td>
<td>6.840</td>
<td>4.09</td>
<td>24.53</td>
</tr>
<tr>
<td>6</td>
<td>19762</td>
<td>6.000</td>
<td>MTS</td>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-354 C-304 DD 2’’ X 1.5MM BRILLANTE ACABADO BRILLANTE</td>
<td>11.160</td>
<td>6.66</td>
<td>39.98</td>
</tr>
<tr>
<td>7</td>
<td>19765</td>
<td>6.000</td>
<td>MTS</td>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-354 C-304 DD 2 1/2’’ X 1.5MM BRILLANTE ACABADO BRILLANTE</td>
<td>14.040</td>
<td>8.38</td>
<td>30.34</td>
</tr>
<tr>
<td>8</td>
<td>8155</td>
<td>1.000</td>
<td>PZA</td>
<td>PLANCHAS ACERO INOX. C-201/LJ 2.0MM X 4’’ X 8’’ 2B ACABADO 2B MATE</td>
<td>47.630</td>
<td>52.60</td>
<td>92.00</td>
</tr>
<tr>
<td>9</td>
<td>110568</td>
<td>1.000</td>
<td>PZA</td>
<td>PLANCHAS ACERO INOX. C-201/LJ 2.0MM X 4’’ X 5’’ 2B ACABADO 2B MATE</td>
<td>71.440</td>
<td>128.89</td>
<td>198.92</td>
</tr>
<tr>
<td>10</td>
<td>125403</td>
<td>6.100</td>
<td>MTS</td>
<td>TUBO REDONDO CON COSTURA ACERO INOX. A-240 C-304 (OD) 2 1/2’’ X 1.5MM AP-AR PARA INTERCAMBIADORES</td>
<td>14.274</td>
<td>15.30</td>
<td>63.33</td>
</tr>
</tbody>
</table>

Nota:
- Subtotal: 590.20
- Impuesto: 154.36
- Total a Pagar: 744.56

Sin otro Particular, y a la espera de una pronta respuesta nos despedimos de ustedes.
ANEXO B. Calor específico del agua a temperaturas desde 0 a 100

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kJ K·kg</td>
<td></td>
<td>kJ K·kg</td>
<td></td>
<td>kJ K·kg</td>
</tr>
<tr>
<td>0 (hielo)</td>
<td>1,960 0,488</td>
<td>34</td>
<td>4,178 0,999</td>
<td>68</td>
<td>4,189 1,001</td>
</tr>
<tr>
<td>0</td>
<td>4,217 1,008</td>
<td>35</td>
<td>4,178 0,999</td>
<td>69</td>
<td>4,189 1,001</td>
</tr>
<tr>
<td>1</td>
<td>4,213 1,007</td>
<td>36</td>
<td>4,178 0,999</td>
<td>70</td>
<td>4,190 1,001</td>
</tr>
<tr>
<td>2</td>
<td>4,210 1,006</td>
<td>37</td>
<td>4,178 0,999</td>
<td>71</td>
<td>4,190 1,001</td>
</tr>
<tr>
<td>3</td>
<td>4,207 1,005</td>
<td>38</td>
<td>4,178 0,999</td>
<td>72</td>
<td>4,191 1,002</td>
</tr>
<tr>
<td>4</td>
<td>4,205 1,005</td>
<td>39</td>
<td>4,179 0,999</td>
<td>73</td>
<td>4,192 1,002</td>
</tr>
<tr>
<td>5</td>
<td>4,202 1,004</td>
<td>40</td>
<td>4,179 0,999</td>
<td>74</td>
<td>4,192 1,002</td>
</tr>
<tr>
<td>6</td>
<td>4,200 1,004</td>
<td>41</td>
<td>4,179 0,999</td>
<td>75</td>
<td>4,193 1,002</td>
</tr>
<tr>
<td>7</td>
<td>4,198 1,003</td>
<td>42</td>
<td>4,179 0,999</td>
<td>76</td>
<td>4,194 1,002</td>
</tr>
<tr>
<td>8</td>
<td>4,196 1,003</td>
<td>43</td>
<td>4,179 0,999</td>
<td>77</td>
<td>4,194 1,002</td>
</tr>
<tr>
<td>9</td>
<td>4,194 1,002</td>
<td>44</td>
<td>4,179 0,999</td>
<td>78</td>
<td>4,195 1,003</td>
</tr>
<tr>
<td>10</td>
<td>4,192 1,002</td>
<td>45</td>
<td>4,179 0,999</td>
<td>79</td>
<td>4,196 1,003</td>
</tr>
<tr>
<td>11</td>
<td>4,191 1,002</td>
<td>46</td>
<td>4,180 0,999</td>
<td>80</td>
<td>4,196 1,003</td>
</tr>
<tr>
<td>12</td>
<td>4,189 1,001</td>
<td>47</td>
<td>4,180 0,999</td>
<td>81</td>
<td>4,197 1,003</td>
</tr>
<tr>
<td>13</td>
<td>4,188 1,001</td>
<td>48</td>
<td>4,180 0,999</td>
<td>82</td>
<td>4,198 1,003</td>
</tr>
<tr>
<td>14</td>
<td>4,187 1,001</td>
<td>49</td>
<td>4,181 0,999</td>
<td>83</td>
<td>4,199 1,004</td>
</tr>
<tr>
<td>15</td>
<td>4,186 1,000</td>
<td>50</td>
<td>4,181 0,999</td>
<td>84</td>
<td>4,200 1,004</td>
</tr>
<tr>
<td>16</td>
<td>4,185 1,000</td>
<td>51</td>
<td>4,181 0,999</td>
<td>85</td>
<td>4,200 1,004</td>
</tr>
<tr>
<td>17</td>
<td>4,184 1,000</td>
<td>52</td>
<td>4,182 1,000</td>
<td>86</td>
<td>4,201 1,004</td>
</tr>
<tr>
<td>18</td>
<td>4,183 1,000</td>
<td>53</td>
<td>4,182 1,000</td>
<td>87</td>
<td>4,202 1,004</td>
</tr>
<tr>
<td>19</td>
<td>4,182 1,000</td>
<td>54</td>
<td>4,182 1,000</td>
<td>88</td>
<td>4,203 1,005</td>
</tr>
<tr>
<td>20</td>
<td>4,182 1,000</td>
<td>55</td>
<td>4,183 1,000</td>
<td>89</td>
<td>4,204 1,005</td>
</tr>
<tr>
<td>21</td>
<td>4,181 0,999</td>
<td>56</td>
<td>4,183 1,000</td>
<td>90</td>
<td>4,205 1,005</td>
</tr>
<tr>
<td>22</td>
<td>4,181 0,999</td>
<td>57</td>
<td>4,183 1,000</td>
<td>91</td>
<td>4,206 1,005</td>
</tr>
<tr>
<td>23</td>
<td>4,180 0,999</td>
<td>58</td>
<td>4,184 1,000</td>
<td>92</td>
<td>4,207 1,005</td>
</tr>
<tr>
<td>24</td>
<td>4,180 0,999</td>
<td>59</td>
<td>4,184 1,000</td>
<td>93</td>
<td>4,208 1,006</td>
</tr>
<tr>
<td>25</td>
<td>4,180 0,999</td>
<td>60</td>
<td>4,185 1,000</td>
<td>94</td>
<td>4,209 1,006</td>
</tr>
<tr>
<td>26</td>
<td>4,179 0,999</td>
<td>61</td>
<td>4,185 1,000</td>
<td>95</td>
<td>4,210 1,008</td>
</tr>
<tr>
<td>27</td>
<td>4,179 0,999</td>
<td>62</td>
<td>4,186 1,000</td>
<td>96</td>
<td>4,211 1,006</td>
</tr>
<tr>
<td>28</td>
<td>4,179 0,999</td>
<td>63</td>
<td>4,186 1,000</td>
<td>97</td>
<td>4,212 1,007</td>
</tr>
<tr>
<td>29</td>
<td>4,179 0,999</td>
<td>64</td>
<td>4,187 1,001</td>
<td>98</td>
<td>4,213 1,008</td>
</tr>
<tr>
<td>30</td>
<td>4,178 0,999</td>
<td>65</td>
<td>4,187 1,001</td>
<td>99</td>
<td>4,214 1,007</td>
</tr>
<tr>
<td>31</td>
<td>4,178 0,999</td>
<td>66</td>
<td>4,188 1,001</td>
<td>100</td>
<td>4,216 1,008</td>
</tr>
<tr>
<td>32</td>
<td>4,178 0,999</td>
<td>67</td>
<td>4,188 1,001</td>
<td>100 (gas)</td>
<td>2,080 0,497</td>
</tr>
</tbody>
</table>

Fuente: (www.vaxasoftware.com)
ANEXO C. Características xilohigrómetro del Moisture Meter MD4G Digital

![Foto de xilohigrómetro](image)

<table>
<thead>
<tr>
<th>Característica</th>
<th>Detalle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capable of reading moisture of wide range of sawn</td>
<td>Capable of reading moisture of wide range of sawn timbers / natural</td>
</tr>
<tr>
<td>timbers / natural woods.</td>
<td>woods.</td>
</tr>
<tr>
<td>Measuring patterns for specific wood species</td>
<td>Measuring patterns for specific wood species ensures the high accurate</td>
</tr>
<tr>
<td>ensures the high accurate result.</td>
<td>result.</td>
</tr>
<tr>
<td>Easy to operate, quick response; High accuracy &</td>
<td>Easy to operate, quick response; High accuracy & resolution.</td>
</tr>
<tr>
<td>resolution.</td>
<td></td>
</tr>
<tr>
<td>Brand Name: OEM</td>
<td>Brand Name: OEM</td>
</tr>
<tr>
<td>Model Number: MD4G</td>
<td>Model Number: MD4G</td>
</tr>
<tr>
<td>Display: LCD Display</td>
<td>Display: LCD Display</td>
</tr>
<tr>
<td>Operation temperature: 0°C40°C 070%RH</td>
<td>Operation temperature: 0°C40°C 070%RH</td>
</tr>
<tr>
<td>Accuracy: ±1%</td>
<td>Accuracy: ±1%</td>
</tr>
<tr>
<td>Type: 2pins Sensor</td>
<td>Type: 2pins Sensor</td>
</tr>
<tr>
<td>Power supply: 9V battery</td>
<td>Power supply: 9V battery</td>
</tr>
<tr>
<td>Battery life: about 150 hours of continuous use</td>
<td>Battery life: about 150 hours of continuous use</td>
</tr>
<tr>
<td>Application: Analysis Wood Moisture</td>
<td>Application: Analysis Wood Moisture</td>
</tr>
<tr>
<td>Resolution: 1%</td>
<td>Resolution: 1%</td>
</tr>
<tr>
<td>Test Range: 5% to 40%</td>
<td>Test Range: 5% to 40%</td>
</tr>
</tbody>
</table>
ANEXO D. Características del pirómetro

CARACTERÍSTICAS:

• Modelo: GM320.
• Rango de medición: entre -50 °C y 400 °C (entre -58 °F y 752 °F).
• Precisión:
 - 0 °C ~ 400 °C (32 °F ~ 752 °F): ± 1.5 °C (± 2.7 °F).
 - -50 °C ~ 0 °C (-58 °F ~ 32 °F): ± 3 °C (± 5 °F)
• Repetibilidad: ± 1% ó ± 1 °C.
• Resolución: 0.1 °C o 0.1 °F.
• Tiempo de respuesta: 500 mSec.
• Distancia a la talla: 12: 1.
• Resposta Espectral: 5 - 14 um.
• Temperatura de almacenamiento: entre -20 °C y 60 °C (entre -4 °F y 140 °F).
• Temperatura de funcionamiento: entre 0 °C y 40 °C (entre 32 °F y 104 °F).
• Humedad de funcionamiento: 10 - 95% HR sin condensación, hasta 30 °C (86 °F).
• Energía: batería de 1.5V AAA x 2 (No Incluida).
• Apagado automático
ANEXO E. Medición de la humedad de la leña con el xilohigrómetro digital MD-G4

Foto de medición de humedad de leña 1

Foto de medición de humedad de leña 2
Foto de medición de humedad de leña 3

Foto de medición de humedad de leña 4
ANEXO F. Conformación de la caldera

Diagrama de distribución de tubos en el cilindro de la caldera
ANEXO G. Preparación del material

Fotos de corte de la plancha inox. Abajo: Tubos intercambiadores de calor
ANEXO H. Soldadura TIG

Fotos de soldaduras TIG
ANEXO I. Vista antes del ensamblaje y traslado para instalación

Arriba: Foto de los cuerpos antes de su ensamblaje. Abajo: Elevación con grúa para traslado.
ANEXO J. Medición de la presión de trabajo de la caldera y ventilador

Foto manómetro midiendo presión

Foto del ventilador
ANEXO K. Fotos del hogar en el horno de la caldera

Hogar del horno y su puerta

Hogar del horno a pleno trabajo
ANEXO L. Fotos Termostato stc 1000 e instrucciones de operación

Termostato STC 1000
Main function
Switch the modes between cool and heat; Control temperature by setting the temperature set value and the difference value; Temperature calibration; Refrigerating control output delay protection; Alarm when temperature exceeds temperature limit or when sensor error.

Specification and size
- Front panel size: 75(L)×34.5(W)(mm)
- Product size: 75(L)×34.5(W)×85(D)(mm)
- Mounting size: 71(L)×29(W)(mm)
- Sensor length: 2m(include the probe)

Technical parameters
- Temperature measuring range: -50℃～99℃
- Accuracy: ±1℃(-50℃～70℃)
- Power supply: 220VAC±10%, 50/60Hz
- Sensor: NTC sensor (1PC)
- Relay contact capacity: Cool(10A/250VAC); Heat(10A/250VAC)
- Ambient temperature: 0℃～60℃
- Relative humidity: 20～85%(No condensate)
- Storage temperature: -30℃～75℃
- Resolution: 0.1℃
- Sensor error delay: 1 minute
- Power consumption: <3W

Panel instruction
Display instruction: Three-digit LED + Minus digit + Status indicator light
(Status indicator light (Cool, Heat) + Set indicator light (Set))
Key instruction: "S" key: the key to set; "▲" key: Up key;
"▼" key: Down key; "○": the key to turn on and off the power

Indicator light status instruction
<table>
<thead>
<tr>
<th>Indicator light</th>
<th>Function</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cool indicator light</td>
<td>On: Refrigeration starts; Off: Refrigeration stops; Flash: compressor delay</td>
<td>Cool, Heat indicator light can not be "on" status simultaneously</td>
</tr>
<tr>
<td>Heat indicator light</td>
<td>On: heating starts; Off: heating stops</td>
<td></td>
</tr>
<tr>
<td>Set indicator light</td>
<td>On: parameter setting status</td>
<td></td>
</tr>
</tbody>
</table>

Key operation instruction
1. The way to check parameter:
 Under normal working status, press and release "▲" key once instantly, it displays temperature setting value; press and release "▼" key once instantly, it displays the difference value. It back to display the normal temperature display status in 2s.
2. The way to set parameter:
 Under controller normal working status, press "S" key for 3s or more to enter parameter modifying mode, and the "Set" indicator light on, screen displays the first menu code "F1".
 Press "▲" key or "▼" key to adjust up and down and display the menu item and the code of the menu item. Press "S" key to display the parameter value of the current menu. Press both "S" key and hold "▲" key or "▼" key simultaneously to choose and adjust the parameter value of the current menu value promptly. After finishing the setting, press and release the "○" key instantly to save the parameter modified value and return to display the normal temperature value. If no key operation within 10 seconds, system won't save modified parameter, screen back to display normal temperature.
 Screen display "Er" if error appears during parameter saving, and back to normal working status in 3 seconds.
3. Restore system data
 When electrified, system will check itself, screen will display "Er" if error exit, please press any key at this time, and it restores default value and enter into normal working mode. It is advised to reset the parameter value under such conditions.
Under controller normal working status, press and hold “○” key for 3s can turn off the controller; Under controller “off” status, press and hold “△” key for 3s can turn on the controller.

Under the controller normal working status, screen displays the current measuring temperature value; also the controller can also switch the working mode between heating and cooling.

Controller starts refrigerating with cool indicator light on when the measuring temperature value ≥ temperature set value + difference value, and the refrigerating relay is connected; If the “Cool” indicator light flashes, it indicates the refrigerating equipment is under compressor delay protect status; when the measuring temperature values ≤ temperature set value, the Cool indicator light on, and refrigerating relay disconnects.

System starts heating when the measuring temperature value ≤ the temperature set value-difference value, and the “Heat” indicator light on, the heat relay connects; When the measuring temperature ≥ temperature set value, the “Heat” indicator light is off, and the heat relay disconnects.

<table>
<thead>
<tr>
<th>Menu instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code</td>
</tr>
<tr>
<td>F1</td>
</tr>
<tr>
<td>F2</td>
</tr>
<tr>
<td>F3</td>
</tr>
<tr>
<td>F4</td>
</tr>
</tbody>
</table>

Error description

Alarm when sensor error: Controller activate the sensor error alarm mode when sensor open circuit or short circuit, all the running status is closed off with the buzzer alarms, and the nixie tube displays “EE”. press any key can cancel alarm sound, system back to display the normal temperature when the error and the fault is cleared.

Alarm when the measuring temperature exceeds temperature measuring range: Controller activates the error alarm function when the measuring temperature exceeds the temperature measuring range, all the running status is closed off with the buzzer alarms, and the nixie tube displays “HH”. Press any key can cancel alarm sound, system back to display the normal working mode when the temperature restore to normal measuring range.

Safety Regulations

★Danger:
1. Strictly distinguish the sensor down-lead, power wire and output relay interface from one another, and prohibit wrong connections or overloading the relay.
2. Dangers: Prohibit connecting the wire terminals without electricity cut-off.
★Warning:
1. Prohibit using the machine under the environment of over damp, high temp., strong electromagnetism interference or strong corrosion.
2. NOTICE:
3. The power supply should conform to the voltage value indicated in the instruction.
4. To avoid the interference, the sensor down-lead and power wire should be kept a proper distance.

Wiring diagram

```
+----------------+ +-----------------+ +-----------------+
| 1 2 3 4        | 5 6 7 8          |
| Power supply   | Heating           |
| 220VAC         | Cooling           |
| Sensor         |                  |
```
ANEXO M. Termocupla y transductor de temperatura y data sheet

Termocupla

Transductor de temperatura
ANEXO N. Data sika boom

HOJA TÉCNICA DE PRODUCTO

Sika®Boom

ESPUMA EXPANSIVA DE POLIURETANO, MONOCOMPONENTE

<table>
<thead>
<tr>
<th>DATOS TÍPICOS DEL PRODUCTO</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Rendimiento (totalmente endurecido) expansión libre</td>
<td>20-30 veces el volumen inicial</td>
</tr>
<tr>
<td>Densidad aparente</td>
<td>Aprox. 0.025 kg/L (DIN 53420)</td>
</tr>
<tr>
<td>Resistencia a la tensión</td>
<td>A +20 °C: 1.1 kg/cm² (DIN 53571)</td>
</tr>
<tr>
<td></td>
<td>A -20 °C: 1.7 kg/cm² (DIN 53571)</td>
</tr>
<tr>
<td>Adherencia a hormigón, tejas, madera</td>
<td>2.3 kg/cm²</td>
</tr>
<tr>
<td>Resistencia a flexión</td>
<td>3.5 kg/cm² (DIN 53423)</td>
</tr>
<tr>
<td>Alargamiento de ruptura</td>
<td>A +20 °C: 28 % (DIN 53571)</td>
</tr>
<tr>
<td>Módulo E</td>
<td>12 kg/cm² (DIN 53457)</td>
</tr>
<tr>
<td>Conductibilidad térmica a +10 °C</td>
<td>0.031 W cm/°C (DIN 52612)</td>
</tr>
<tr>
<td>Estabilidad dimensional a</td>
<td>+50 °C: 1.7 % alargamiento</td>
</tr>
<tr>
<td></td>
<td>A + 20 °C: ningún alargamiento</td>
</tr>
<tr>
<td></td>
<td>-20 °C: 0.6 % de retracción</td>
</tr>
<tr>
<td>Permeabilidad al vapor de agua</td>
<td>70 g/m²/d (DIN 53429)</td>
</tr>
<tr>
<td>Absorción de sonido a</td>
<td>500 Hz: 10 % (DIN 53215-63)</td>
</tr>
<tr>
<td></td>
<td>A 2000 Hz: 26 %</td>
</tr>
<tr>
<td></td>
<td>A 3000 Hz: 67 %</td>
</tr>
<tr>
<td>Condiciones de almacenamiento</td>
<td>En lugar fresco y seco</td>
</tr>
<tr>
<td>Vida del producto</td>
<td>9 meses, desde su fabricación, ensus envases de origen bien cerrados y no deteriorados</td>
</tr>
</tbody>
</table>

DESCRIPCIÓN

Sika®Boom es una espuma expansiva de poliuretano, monocomponente, que se presenta con el aspecto de una masa de células cerradas y endurece entre 7 y 15 horas según la temperatura y humedad, formando una espuma semimirigida a 20 °C de temperatura y con humedad relativa del 65 %. La primerapelicula se forma en la superficie del material a los 20 ó 30 minutos.

BENEFICIOS DEL PRODUCTO

- Resistente al envejecimiento.
- Buena adherencia sobre la mayoría de los materiales.
- Totalmente endurecido se recorta, se lía, etc., con facilidad.
- Una vez endurecido, no le afectan las variaciones de la humedad del aire.
- Constituye un aislamiento térmico y acústico perfecto.
- Un centímetro de Sika®Boom equivale madamente a: 40 cm de hormigón, 20 cm de ladrillo o 4 cm de madera de pino.
- Disminuye la transmisión de sonidos y ruidos de golpes, entre el 10 % y más del 60 % según la intensidad de aquellos.
- Aísla eléctricamente (buena rígidez dielectrónica del material seco).

ÁREAS DE APLICACIÓN

Sika®Boom resuelve la mayoría de los problemas de aislamiento eléctrico y acústico, a impactos, olores, corrientes de aire, etc. Protección y aislamiento de instalaciones de climatización y de ventilación. Relleno de cavidades en los cascos de los barcos. Relleno de carpintería metálica (fuentes eléctricos). Relleno de cavidades de vehículos.

RENDIMIENTO

En condiciones óptimas de humedad y temperatura aumenta entre 20 y 30 veces su volumen inicial. Se recomienda ejecutar siempre ensayos preliminares para verificar consumo en cada proyecto.
MÉTODO DE APLICACIÓN
Humedecer ligeramente, si es posible, el soporte o la cavidad a llenar antes de la aplicación del Sika®Boom, con el fin de obtener la máxima expansión y adherencia. Colocar el tubo alargador en la boquilla del aerosol. Agitar energicamente el aerosol (colocar boca abajo) y extraer la espuma presionando suavemente la válvula, manteniendo el aerosol en posición vertical. En caso de que rebose el material, limpiar inmediatamente con un disolvente. La espuma polimerizada, solamente se puede eliminar mecánicamente. Después de su utilización, limpiar la válvula, y el tubo alargador con un disolvente (acetona o tricloetileno), ayudándose de un alambre para facilitar la eliminación del tapón de la espuma.

LIMITANTES
• Aplicar el Sika®Boom entre +5 °C y +25 °C.
• No llenar las cavidades más del 60% de su volumen, pues la espuma expande por la acción de la humedad ambiente.
• No aplicar en presencia de fuego o sobre superficies calientes.
• El envase está sometido a presión.
• No pulsar la válvula energicamente.
• No calentar por encima de +50 °C.
• Evitar la exposición al sol.
• No desechar el envase hasta que esté totalmente vacío.
• Cuando se utilicen disolventes, adoptar las medidas de precaución necesarias.
• Evitar el contacto de Sika®Boom con la piel o las mucosas. Utilizar guantes y gafas protectoras durante su manipulación. En caso de contacto con los ojos lavarlos con abundante agua limpia y acudir rápidamente a un médico.
• Para cualquier aclaración consulte con nuestro Departamento Técnico.

PRESENTACIÓN

Aerosol 250 y 500 cm³

BASE DE LOS DATOS DE PRODUCTO
Todos los datos mencionados en la presente Hoja Técnica están basados en ensayos de laboratorio. Valores medidos en otras circunstancias pueden variar debido a condiciones fuera de nuestro control.

INFORMACIÓN DE SEGURIDAD Y SALUD
Para la información y las recomendaciones sobre la correcta manipulación, almacenamiento y eliminación de residuos de los productos químicos, los usuarios deben referirse a la actual hoja de seguridad que contiene datos físicos, toxicológicos y otros datos relativos.

NOTA
La información y, en particular, las recomendaciones sobre la aplicación y uso final de los productos Sika son proporcionadas de buena fe, basados en el conocimiento y experiencia actuales de Sika respecto a sus productos, siempre y cuando estos sean adecuadamente almacenados y manipulados, así como aplicados en condiciones normales. En la práctica, las diferencias en los materiales, sustratos y condiciones de la obra son tan particulares que de esta información, cualquier recomendación escrita o cualquier otro consejo no se puede deducir garantía alguna respecto a la comercialización o adaptabilidad del producto a una finalidad en particular, así como responsabilidad alguna que surja de cualquier relación legal. Se deben respetar los derechos de propiedad de terceros. Todas las órdenes de compra son aceptadas de acuerdo con nuestras actuales condiciones de venta y despacho. Los usuarios deben referirse siempre a la edición más reciente de la Hoja Técnica, cuyas copias serán facilitadas a solicitud del cliente.

Sika Colombia S.A.S.
Vereda Canavita
Km. 20.5, Autopista Norte
Tocancipá - Cundinamarca
PBX: (1) 878 6333
Fax: (1) 878660
E-mail: sika_colombia@co.sika.com
web: col.sika.com
ANEXO O. Planos
contenedor de agua
<table>
<thead>
<tr>
<th>NOMBRE</th>
<th>FIRMA</th>
<th>FECHA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TÍTULO</th>
</tr>
</thead>
</table>

| CHIMENEA |

<table>
<thead>
<tr>
<th>ACABADO</th>
<th>REVISIÓN</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dibujo</th>
<th>Lote</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>ENSAC. FOS.</th>
<th>N° DE DIBUJO</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>ESCALA 1:100</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PESO</th>
<th>HOJA 1 DE 1</th>
</tr>
</thead>
</table>

115