TESIS UNA-PUNO

UNIVERSIDAD NACIONAL DEL ALTIPLANO PUNO

FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA, ELECTRÓNICA Y SISTEMAS

ESCUELA PROFESIONAL DE INGENIERÍA ELECTRÓNICA

TESIS

“DISEÑO E IMPLEMENTACIÓN DE UN SISTEMA DE VIDEO VIGILANCIA Y CONTROL DE ASISTENCIA BIOMÉTRICO DE LA EMPRESA AUTOACCESORIOS LOS GEMELOS S.A.C. DE LA CIUDAD DE JULIACA”

PRESENTADO POR:
JULIO CESAR CCAM NA NIN.

PARA OPTAR EL TÍTULO PROFESIONAL DE:
INGENIERO ELECTRÓNICO

PUNO – PERÚ
2014
ÁREA: Telecomunicaciones
TEMA: Aplicaciones en telecomunicaciones
Dedicatoria:

Dedico la presente tesis a toda mi familia, compañeros y docentes.
Agradecimiento:

Agradezco a todas las personas que hicieron posible la presente tesis.
ÍNDICE

RESUMEN .. 13

CAPÍTULO I: PLANTEAMIENTO DEL PROBLEMA, INVESTIGACION 17

1.1. PLANTEAMIENTO DEL PROBLEMA ... 18

1.1.1. Descripción de la Realidad Problemática ... 18

1.1.2. Definición del Problema .. 18

1.1.3. Delimitación del Problema .. 18

1.2. ANTECEDENTES DE LA INVESTIGACION ... 19

1.3. OBJETIVOS DE LA INVESTIGACION ... 21

1.3.1. OBJETIVO GENERAL .. 21

1.3.2. OBJETIVOS ESPECÍFICOS ... 21

CAPÍTULO II: MARCO TEORICO E HIPOTESIS DE LA INVESTIGACION ... 23

2.1. MARCO TEORICO .. 24

2.1.1. Sistemas de circuito cerrado de TV analógicos usando VCR: 24

2.1.2. Sistemas de circuito cerrado de TV analógicos usando DVR: 25

2.1.3. Sistemas de circuito cerrado de TV analógicos usando DVR de red: 26

2.1.4. Sistemas de video IP que utilizan servidores de video: 26

2.1.5. Sistemas de video IP que utilizan cámaras IP ... 27

2.1.6. TIPOS DE CÁMARAS ... 28

2.1.7. Cámaras fijas: ... 29

2.1.8. Cámaras domo fijas ... 29

2.1.9. Cámara PTZ .. 30

2.1.9.1. Cámara PTZ Mecánica .. 33

2.1.9.2. Cámaras PTZ no Mecánica ... 34
<table>
<thead>
<tr>
<th>Sección</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1.9.3. Cámara domo PTZ</td>
<td>35</td>
</tr>
<tr>
<td>2.1.10. Cámara con visión diurna/nocturna</td>
<td>36</td>
</tr>
<tr>
<td>2.1.11. Cámaras con resolución megapíxel</td>
<td>39</td>
</tr>
<tr>
<td>2.1.12. COMPONENTES QUE CONSTITUYEN UNA CÁMARA.</td>
<td>40</td>
</tr>
<tr>
<td>2.1.13. CONTROL DE ASISTENCIA BIOMÉTRICO</td>
<td>41</td>
</tr>
<tr>
<td>2.1.14. Tipos de sensores biométricos</td>
<td>45</td>
</tr>
<tr>
<td>2.1.15. Reconocimiento de huella dactilar</td>
<td>46</td>
</tr>
<tr>
<td>2.2. HIPÓTESIS DE LA INVESTIGACIÓN</td>
<td>52</td>
</tr>
<tr>
<td>2.2.1. Hipótesis</td>
<td>52</td>
</tr>
<tr>
<td>2.2.2. Variables e Indicadores</td>
<td>52</td>
</tr>
<tr>
<td>2.3. OPERACIONALIZACION DE VARIABLES</td>
<td>53</td>
</tr>
<tr>
<td>CAPÍTULO III: DISEÑO METODOLÓGICO DE INVESTIGACION</td>
<td>55</td>
</tr>
<tr>
<td>3.1. TIPO Y DISEÑO DE INVESTIGACIÓN</td>
<td>56</td>
</tr>
<tr>
<td>3.1.1. Tipo de Investigación</td>
<td>56</td>
</tr>
<tr>
<td>3.1.2. Diseño de Investigación</td>
<td>56</td>
</tr>
<tr>
<td>3.2. POBLACIÓN Y MUESTRA</td>
<td>56</td>
</tr>
<tr>
<td>3.2.1. Población</td>
<td>56</td>
</tr>
<tr>
<td>3.2.2. Muestra</td>
<td>56</td>
</tr>
<tr>
<td>3.2.3. Técnicas de Procesamiento y Análisis de Datos</td>
<td>56</td>
</tr>
<tr>
<td>CAPITULO IV ANALISIS E INTERPRETACION DE RESULTADOS DE LA INVESTIGACION</td>
<td>57</td>
</tr>
<tr>
<td>4.1. DESCRIPCION DE LA EMPRESA</td>
<td>58</td>
</tr>
<tr>
<td>4.2. DESCRIPCION DE LAS INSTALACIONES</td>
<td>59</td>
</tr>
</tbody>
</table>
4.3. DIRECCION EMPRESARIAL... 61
4.4. MAPA GEOGRÁFICO... 62
4.5. ORGANIZACIÓN EMPRESARIAL ... 62
4.6. INTERPRETACIÓN DE RESULTADOS.. 63

CONCLUSIONES .. 114

SUGERENCIAS .. 116

BIBLIOGRAFÍA .. 117

ANEXOS ... 121
INDICE DE TABLAS

Tabla Nº01: Operacionalización de Variables................................. 53
Tabla Nº02: Técnicas e Instrumentos... 56
Tabla Nº03: Consumo de potencia de los equipos utilizados.............. 63
Tabla Nº04: Numero de cámaras a instalar.................................. 91
Tabla Nº05: Presupuesto requerido para su implementación........... 98
ÍNDICE DE FIGURAS

<table>
<thead>
<tr>
<th>Figura N°</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>N°1</td>
<td>Circuito cerrado de TV analógica usando VCR</td>
<td>24</td>
</tr>
<tr>
<td>N°2</td>
<td>Circuito cerrado de TV analógica usando DVR</td>
<td>25</td>
</tr>
<tr>
<td>N°3</td>
<td>Sistema de circuito cerrado de TV analógico usando DVR de red</td>
<td>26</td>
</tr>
<tr>
<td>N°4</td>
<td>Sistema de video IP que utiliza servidor de video</td>
<td>26</td>
</tr>
<tr>
<td>N°5</td>
<td>Sistema de video IP que utiliza cámaras IP</td>
<td>27</td>
</tr>
<tr>
<td>N°6</td>
<td>Cámaras fijas.</td>
<td>29</td>
</tr>
<tr>
<td>N°7</td>
<td>Cámaras domo fijas.</td>
<td>30</td>
</tr>
<tr>
<td>N°8</td>
<td>Cámaras PTZ</td>
<td>33</td>
</tr>
<tr>
<td>N°9</td>
<td>Cámaras PTZ mecánica</td>
<td>34</td>
</tr>
<tr>
<td>N°10</td>
<td>Cámaras PTZ no mecánica</td>
<td>34</td>
</tr>
<tr>
<td>N°11</td>
<td>Cámaras domo PTZ</td>
<td>36</td>
</tr>
<tr>
<td>N°12</td>
<td>Respuesta del sensor de imagen frente a la luz infrarroja visible y a la luz próxima al espectro infrarrojo</td>
<td>36</td>
</tr>
<tr>
<td>N°13</td>
<td>Cámara con visión diurna y nocturna</td>
<td>37</td>
</tr>
<tr>
<td>N°14</td>
<td>Comparación entre una imagen con ilustración infrarrojo y sin ilustración infrarrojo</td>
<td>38</td>
</tr>
<tr>
<td>N°15</td>
<td>Componentes de una cámara</td>
<td>40</td>
</tr>
<tr>
<td>N°16</td>
<td>Características de la huella digital</td>
<td>43</td>
</tr>
<tr>
<td>N°17</td>
<td>Procedimiento de lectura de huella digital</td>
<td>44</td>
</tr>
<tr>
<td>N°18</td>
<td>Huella dactilar con minucias</td>
<td>47</td>
</tr>
<tr>
<td>N°19</td>
<td>Proceso común de escaneo de la huella digital</td>
<td>48</td>
</tr>
<tr>
<td>N°20</td>
<td>(a) Huella original (b) Huella normalizada</td>
<td>50</td>
</tr>
<tr>
<td>N°21</td>
<td>(a) Huella orientada (b) Campos re alineados</td>
<td>50</td>
</tr>
<tr>
<td>N°22</td>
<td>(a) Variaciones de la huella (b) Región importante</td>
<td>51</td>
</tr>
<tr>
<td>N°23</td>
<td>Primera planta</td>
<td>59</td>
</tr>
<tr>
<td>N°24</td>
<td>Área de diseño 1er piso y 2do piso</td>
<td>60</td>
</tr>
<tr>
<td>N°25</td>
<td>Mapa Geográfico</td>
<td>62</td>
</tr>
<tr>
<td>N°26</td>
<td>Organigrama.</td>
<td>62</td>
</tr>
<tr>
<td>N°27</td>
<td>Localización de Cámaras 1 y 2</td>
<td>64</td>
</tr>
<tr>
<td>N°28</td>
<td>Localización de Cámaras 3,4 y 5</td>
<td>66</td>
</tr>
<tr>
<td>N°29</td>
<td>Localización de Cámaras 6, 7, 8 y 9</td>
<td>67</td>
</tr>
</tbody>
</table>
Figura N°30. Localización del Sistema de control de asistencia biométrico. 70
Figura N°31. Cama IP Dlink DCS5300. ... 71
Figura N°32. Izq. Housing para la cámara ccd, Der. Camara SONY CCD 14°. 73
Figura N°33. Calculo de la altura para las cámaras de seguridad. 75
Figura N°34. DVR Avtech H264 8CH. ... 76
Figura N°35. Calculo de la capacidad de disco duro para el DVR. 77
Figura N°36. Registrador de asistencia. .. 78
Figura N°37. Cable UTP cat 5e. ... 79
Figura N°38. Conector RJ-45. ... 80
... 81
Figura N°40. Cable coaxial RG59. ... 83
Figura N°41. Conector BNC. ... 86
Figura N°42. Tablero general y su conexión a Tierra. 92
Figura N°43. Importancia de una puesta a tierra. 94
Figura N°44. Tipos de puesta a Tierra. ... 94
Figura N°45. Instalación de las canaletas y tomas para datos. 96
Figura N°46. Ubicación de las cámaras. ... 97
Figura N°47. Conexiones de la cámara IP Dlink DCS 5300 99
Figura N°48. Conexión a los equipos de la cámara IP Dlink DCS 5300 99
Figura N°49. Conexión de las cámaras analógicas al DVR y al SWITCH 2. ... 100
Figura N°50. Instalación de disco duro HDD SATA 500GB en el DVR. 101
Figura N°51. Configuración de Hora y Fecha DVR. 102
Figura N°52. Menú para borrar el disco HDD 102
Figura N°53. Menú para Configurar la RED. 102
Figura N°54. Imágenes desde el panel Web. 103
Figura N°55. Instalación de software ZKTime 5.0. 104
Figura N°56. Ventana Principal Software ZKTime 5.0. 105
Figura N°57. Ventana para configurar el dispositivo para su conexión. 106
Figura N°58. Configuración del dispositivo 107
Figura N°59. Intercambio de datos entre el software y el equipo 108
Figura N°60. Procedimiento para configurar la asignación de los horarios. ... 110
Figura Nº61. Registro de asistencia. ... 111
Figura Nº62. Búsqueda de Marcaciones de Asistencia de los Empleados. ... 112
Figura Nº63. Procedimiento para la impresión de los registros de asistencia.113
INDICE DE ANEXOS

ANEXO A Cotización SCIMIC TECHNOLOGIES S.A.C PAG.121
ANEXO B Lista de precios Microtech Perú. PAG.122
ANEXO C Características del UPS PAG.125
ANEXO D Código Nacional de Electricidad Sección 340 PAG 128
RESUMEN

Este proyecto tiene como objetivo la instalación de las cámaras de seguridad y el control de asistencia biométrico y así disminuir las pérdidas de los materiales, mercadería, herramientas, etc. También se optimizará la productividad al instalar el registrador de asistencia biométrico para el personal. Esto es tomando en cuenta las nuevas tecnologías y las normas establecidas por el Código Nacional de Electricidad, Normas para cableado estructurado ANSI/EIA-568-A, Norma técnica peruana para las puesta a tierra NTP 370.053, Norma Instalaciones de Telecomunicaciones EM. 020, entre otras, con lo cual conseguiremos un sistema de acuerdo a las necesidades de la empresa, primeramente se realizó el diseño tomando en cuenta las áreas vulnerables, se determinó un presupuesto aceptable, para así poder empezar su implementación y puesta en marcha y se realizará la respectiva capacitación al personal encargado de seguridad. Sabemos que la seguridad en una empresa o vivienda es muy importante, para lo cual contamos con los últimos avances en el área de seguridad electrónica, y el control de asistencia ya que se cuenta con los equipos a disposición para cumplir con nuestros objetivos con lo cual garantizamos que la seguridad y el control de asistencia será más eficiente.

Palabras Clave: cámaras de seguridad, Código Nacional de Electricidad, control de asistencia biométrico, cableado estructurado.
ABSTRACT

This project aims to install security cameras and biometric attendance and thus reduce losses of materials, goods, tools, etc. Productivity by installing biometric attendance recorder for staff were also optimized. This is taking into account new technologies and standards established by the National Electrical Code, structured cabling Standards ANSI / EIA-568-A, Peruvian Technical Standard for grounding NTP 370,053, Norma Telecommunications Facilities EM. 020, among others, which get a system according to the needs of the business, first the design was performed taking into account vulnerable areas, an acceptable budget is determined, in order to begin implementation and commissioning and performs the respective training to personnel safety. We know that security in a business or property is very important, for which we have the latest advances in the field of electronic security, and control of assistance because they have the equipment available to meet our objectives which guarantee that safety and control systems will be more efficient.

Keywords: security cameras, National Electrical Code, biometric attendance, structured cabling.
INTRODUCCIÓN

Actualmente en nuestras ciudades se vive un gran problema de inseguridad. A menudo se oye hablar de robos a casas, bancos, negocios, etc. Pero hay otros aspectos que se relacionan íntimamente y no son muy mencionados, mas sin embargo existen en gran medida en las empresas; tal es el caso de sabotajes, espionaje industrial, incendios premeditados incluso el terrorismo. Por otra parte, los costos que implica el contratar personal que se encargue de la seguridad, son bastante elevados; la seguridad de las instalaciones de los edificios exige en la actualidad la incorporación de sistemas modernos capaces de reaccionar ante la información recibida y actuar sobre los equipos instalados. En la presente tesis se expone el análisis realizado desde el punto de vista de ingeniería para brindar una solución para mejorar la seguridad y el control de asistencia del personal que labora en las empresas, tal es el ejemplo práctico del cual vamos a implementar en las instalaciones de la empresa Autoaccesorios los Gemelos S.A.C. La presente tesis está organizada en nueve capítulos:

El capítulo I referido al problema en que se aborda la descripción y las causas del problema, bajo el enfoque de la metodología del estructural lógico, así mismo, trata los antecedentes, la definición y la delimitación del problema.

El capítulo II referido a los fundamentos técnicos de la investigación, en que se desarrolla el marco teórico, abordándose aspectos relacionados con las cámaras de seguridad, su funcionamiento, tratamiento de imágenes, etc. Por otro lado se describe la finalidad, los objetivos, la hipótesis y las variables de la investigación.
El capítulo III aborda la metodología, aquí se trata del tipo, nivel, los métodos y diseño de la investigación, la población, la muestra, las técnicas de recolección de datos y las técnicas de procesamiento de datos.

En el capítulo IV se aborda el análisis, e interpretación de resultados, en base a los resultados de campo y el marco teórico y conceptual, también en forma breve, se resalta las características más importantes del lugar donde se instalaron las cámaras de seguridad y el control de asistencia biométrico, así mismo desarrolla las conclusiones, recomendaciones, y bibliografía.
CAPÍTULO I

PLANTEAMIENTO DEL PROBLEMA,

INVESTIGACION
1.1. **PLANTEAMIENTO DEL PROBLEMA**

1.1.1. **Descripción de la Realidad Problemática**

El problema de seguridad en una empresa es siempre prioritario, a pesar de contar con personal de seguridad siempre se presentan perdidas de materiales e instrumentos (herramientas, cámaras fotográficas, celulares, laptops, etc.) todo esto debido a las siguientes causas:

- Abandono de los puestos de trabajo.
- Libre acceso a personas no autorizadas a las áreas de trabajo.
- Falta de planificación para la compra de equipos de vigilancia.

Otra de las prioridades es el control de asistencia de personal, en las pequeñas empresas actualmente en su mayoría se cuenta con un control de firmas de planillas diarias, lo cual trae problemas de tiempo y desorden, como es el caso de esta empresa que implementamos este sistema de asistencia de personal.

1.1.2. **Definición del Problema**

1.1.3. **Delimitación del Problema**

Una de las principales limitantes para los proyectos es el factor económico. Para que sea viable el proyecto es necesario contar la aceptación del presupuesto propuesto a la empresa.

1.1.3.1. **Delimitación Espacial**

El presente proyecto se realizará en las instalaciones de la Empresa Autoaccesorios Los Gemelos SAC ubicada en la ciudad de Juliaca.
1.1.3.2. Delimitación Temporal

El proyecto tiene como objetivo terminar su implementación en Diciembre del 2013.

1.1.3.3. Delimitación Social

La implementación contribuirá a la mejora de la seguridad y el control de asistencia de dicha empresa.

1.2. ANTECEDENTES DE LA INVESTIGACION

Se han encontrado diversos trabajos profesionales de este tipo, estos son los siguientes:

En este proyecto se describen los principios de compresión digital (MPEG, MJPEG, DivX, XviD, y H.261), requerimientos para la transmisión multimedia, y dentro de las aplicaciones de Video Digital se enfatiza los Sistemas de Cámaras IP, con lo cual se pretende monitorear el trabajo de los empleados y a la vez mejorar la seguridad en la empresa. En este proyecto se diseñó e implementó el sistema de video vigilancia con cámaras IP, para la empresa PROINDUPET CIA. LTDA., y en el desarrollo del mismo se analizó la mejor opción en tecnología para ser utilizada.

b) “Diseño de un Sistema de Video Vigilancia IP para la Corte Superior de Justicia - La Libertad”. Br. PELÁEZ SALVADOR, Juan
Alexander, Universidad Privada del Norte- Trujillo- Perú, Tesis
2013.

En este Proyecto se realizó un estudio técnico para la Corte Superior de Justicia - La Libertad, orientado a diseñar un sistema de Video Vigilancia IP, lo cual es una tecnología de vigilancia visual que combina los beneficios analógicos de los tradicionales CCTV (Circuito Cerrado de Televisión) con las ventajas digitales de las redes de comunicación IP (Internet Protocol), lo cual permite la supervisión local y/o remota de imágenes y audio así como el tratamiento digital de las imágenes. Se logró demostrar que el diseño de un sistema de video vigilancia IP mejora la seguridad de los activos de la Corte Superior de Justicia – La Libertad.

c) “Red de vigilancia mediante cámaras IP para el mejoramiento de la seguridad en el Supermercado Express de la ciudad de Ambato.” Eugenia Paulina Laura Guangasi, Universidad Técnica De Ambato Facultad De Ingeniería En Sistemas, Electrónica E Industrial Ambato – Ecuador, Tesis – 2011

En el Presente Proyecto se diseña una red de video vigilancia mediante cámaras IP para mejorar la seguridad en el supermercado “EXPRESS”. Localizando las áreas críticas dentro de la infraestructura de la empresa, verificando el grado de seguridad que ofrece el supermercado “EXPRESS”, se elaboró un sistema de red de video vigilancia para el supermercado “EXPRESS” de la Ciudad de Ecuador.
d) “Automatización del proceso de control de asistencia del personal académico en tiempo real a través de reconocimiento biométrico”. Alejandro Olivares Morales, Universidad Nacional Autónoma de México, Tesis Marzo 2010.

En este trabajo se incluyó un resumen general de los diferentes métodos de codificación y tecnologías de reconocimiento biométrico que actualmente se utilizan para el registro y control de acceso de usuarios o empleados a sus centros de trabajo. También se realizó una pequeña introducción a la biometría y dentro de esta al reconocimiento por iris, voz, reconocimiento facial y de la huella digital, todo ello al con el fin de validar cuál de ellos es el más seguro y aceptable para los usuarios.

1.3. OBJETIVOS DE LA INVESTIGACION

1.3.1. Objetivo General

Diseñar e Implementar un sistema de video vigilancia y control de asistencia biométrico del personal de la empresa “Autoaccesorios los Gemelos S.A.C.” de la ciudad de Juliaca.

1.3.2. Objetivos Específicos

a) Diseñar un sistema de video vigilancia y control de asistencia del personal de la empresa “Autoaccesorios los Gemelos S.A.C.” de la ciudad de Juliaca, tomando en cuenta las normas nacionales y las normas internacionales vigentes.

b) Implementar un sistema de video vigilancia y control de asistencia del personal de la empresa “Autoaccesorios los Gemelos S.A.C.” de la ciudad
de Juliaca, utilizando el presupuesto asignado por la empresa y las tecnologías que están a nuestro alcance.

c) Mejorar el sistema de video vigilancia para la empresa “Autoaccesorios los Gemelos S.A.C.” de la ciudad de Juliaca.

d) Mejorar el control de asistencia del personal que labora en la empresa “Autoaccesorios los Gemelos S.A.C.” de la ciudad de Juliaca.
CAPÍTULO II
MARCO TEORICO E HIPOTESIS DE LA INVESTIGACION
2.1. MARCO TEORICO

Los sistemas de vigilancia por video se originaron entre los años 50s avances en los 70s empezaron siendo sistemas analógicos al 100% y paulatinamente se fueron digitalizando. Los sistemas de hoy en día han avanzado mucho desde la aparición de las primeras cámaras analógicas con tubo conectadas a VCR. En la actualidad, estos sistemas utilizan cámaras de servidores de PC para la grabación de video en un sistema completamente digitalizado. Sin embargo, entre los sistemas completamente analógicos y los sistemas completamente digitales existen diversas soluciones que son parcialmente digitales. Dichas soluciones incluyen un número de componentes digitales pero no constituyen sistemas completamente digitales. (TENE, 2010)

2.1.1. Sistemas de circuito cerrado de TV analógicos usando VCR:

![Diagrama de sistema de circuito cerrado de TV analógico usando VCR](image)

Figura Nº1. Circuito cerrado de TV analógica usando VCR

Fuente: (TENE, 2010)

Un sistema de circuito cerrado de TV (CCTV) analógico que utilice un VCR (*video cassette recorder*), representa un sistema completamente analógico formado por cámaras analógicas con salida coaxial, conectadas al VCR para grabar. El VCR utiliza el mismo tipo de cintas que una grabadora doméstica. El video no se comprime y, si se graba a una velocidad de imagen completa, una
cinta durará como máximo 8 horas. En sistemas mayores, se puede conectar un multiplexor entre la cámara y el VCR. El multiplexor permite grabar el video procedente de varias cámaras en un solo grabador, pero con el inconveniente que tiene una menor velocidad de imagen. Para monitorizar el video, es necesario un monitor analógico. (TENE, 2010)

2.1.2. Sistemas de circuito cerrado de TV analógicos usando DVR:

![Diagrama de un sistema de circuito cerrado de TV analógico usando un DVR](image)

Figura N°2. Circuito cerrado de TV analógica usando DVR.

Fuente: (TENE, 2010)

Un sistema de circuito cerrado de TV (CCTV) analógico usando un DVR (*digital video recorder*), es un sistema analógico con grabación digital. En un DVR, la cinta de video se sustituye por discos duros para la grabación de video, y es necesario que el video se digitalice y comprima para almacenar la máxima cantidad de imágenes posible de un día. Con los primeros DVR, el espacio del disco duro era limitado, por tanto, la duración de la grabación era limitada, o debía usarse una velocidad de imagen inferior. El reciente desarrollo de los discos duros significa que el espacio deja de ser el principal problema. La mayoría de DVRs disponen de varias entradas de video, normalmente 4, 9 ó 16, lo que significa que también incluyen la funcionalidad de los multiplexores. (TENE, 2010) El sistema DVR añade las siguientes ventajas:

- No es necesario cambiar las cintas
- Calidad de imagen constante
2.1.3. Sistemas de circuito cerrado de TV analógicos usando DVR de red.

![Diagrama de un sistema de circuito cerrado de TV analógicos usando DVR de red.](Image)

Figura Nº3. Sistema de circuito cerrado de TV analógico usando DVR de red.

Fuente: (TENE, 2010)

Un sistema de circuito cerrado de TV (CCTV) analógico usando un DVR IP (*digital video recorder IP*) es un sistema parcialmente digital que incluye un DVR IP equipado con un puerto Ethernet para conectividad de red. Como el video se digitaliza y comprime en el DVR, se puede transmitir a través de una red informática para que se monitorice en un PC en una ubicación remota. Algunos sistemas pueden monitorizar tanto video grabado como en directo, mientras otros sólo pueden monitorizar el video grabado.

El sistema DVR IP añade las siguientes ventajas: (TENE, 2010)

- Monitorización remota de video a través de un PC.
- Funcionamiento remoto del sistema.

2.1.4. Sistemas de video IP que utilizan servidores de video:

![Diagrama de un sistema de video IP que utiliza servidor de video.](Image)

Figura Nº4. Sistema de video IP que utiliza servidor de video.

Fuente: (TENE, 2010)

Un sistema de video IP que utiliza servidores de video incluye un servidor de video, un switch de red y un PC con software de gestión de video. La cámara
analógica se conecta al servidor de video, el cual digitaliza y comprime el video. A continuación, el servidor de video se conecta a una red y transmite el video a través de un switch de red a un PC, donde se almacena en discos duros. Esto es un verdadero sistema de video IP. Un sistema de video IP que utiliza servidores de video añade las ventajas siguientes:

- Utilización de red estándar y hardware de servidor de PC para la grabación y gestión de video.
- El sistema es escalable en ampliaciones de una cámara cada vez.
- Es posible la grabación fuera de las instalaciones.
- Preparado para el futuro, ya que este sistema puede ampliarse fácilmente incorporando cámaras IP.

En la figura Nº 4, se muestra un sistema de video IP, donde la información del video se transmite de forma continua a través de una red IP. Utiliza un servidor de video como elemento clave para migrar el sistema analógico de seguridad a una solución de video IP. (TENE, 2010)

2.1.5. Sistemas de video IP que utilizan cámaras IP

Figura Nº5. Sistema de video IP que utiliza cámaras IP.

Fuente: (TENE, 2010)

Una cámara IP combina una cámara y un computador en una unidad, lo que incluye la digitalización y la compresión del video así como un conector de
red. El video se transmite a través de una red IP, mediante los switches de red y se graba en un PC estándar con software de gestión de video. Esto representa un verdadero sistema de video IP donde no se utilizan componentes analógicos. Un sistema de video IP que utiliza cámaras IP añade las ventajas siguientes: (TENE, 2010)

- Cámaras de alta resolución (megapíxel).
- Calidad de imagen constante.
- Alimentación eléctrica a través de Ethernet y funcionalidad inalámbrica.
- Funciones de Giro/Inclinación/zoom, audio, entradas y salidas digitales a través de IP, junto con el video.
- Flexibilidad y escalabilidad completas.

2.1.6. Tipos De Cámaras

Las cámaras se pueden clasificar en función de si están diseñadas únicamente para su uso en interiores o para su uso en interiores-exteriores. Las cámaras para exteriores suelen tener un objetivo con iris automático para regular la cantidad de luz a la que se expone el sensor de imagen. Una cámara de exteriores también necesitará una carcasa de protección externa, salvo que su diseño ya incorpore un cerramiento de protección. Las carcasas también están disponibles para cámaras de interiores que requieren protección frente a entornos adversos como polvo y humedad y frente a riesgo de vandalismo o manipulación.

Las cámaras diseñadas para su uso en interiores o exteriores, pueden clasificarse en cámaras fijas, domo fijas, PTZ (Pan-Tilt-Zoom) y domo PTZ. (URL1, s.f.)
2.1.7. Cámaras fijas:

Una cámara fija, que puede entregarse con un objetivo fijo o varifocal, es una cámara que dispone de un campo de vista fijo (normal/telefoto/gran angular) una vez montada. Este tipo de cámara es la mejor opción en aplicaciones en las que resulta útil que la cámara esté bien visible. Normalmente, las cámaras fijas permiten que se cambien sus objetivos. Pueden instalarse en carcasas diseñadas para su uso en instalaciones interiores o exteriores.

![Cámaras fijas](image_url)

Figura N°6. Cámaras fijas.

Fuente: (URL1, s.f.)

En la figura N°6, se puede observar un sin número de cámaras fijas las cuales incluyen versiones inalámbricas.

2.1.8. Cámaras domo fijas

Una cámara domo fija, también conocida como mini domo, consta básicamente de una cámara fija preinstalada en una pequeña carcasa domo. La cámara puede enfocar el punto seleccionado en cualquier dirección. La ventaja principal radica en su discreto y disimulado diseño, así como en la dificultad de ver hacia qué dirección apunta la cámara. Asimismo, es resistente a las manipulaciones. Uno de los inconvenientes que presentan las cámaras domo fijas es que normalmente no disponen de objetivos intercambiables, y si pueden
intercambiarse, la selección de objetivos está limitada por el espacio dentro de la carcasa domo. Para compensarlo, a menudo se proporciona un objetivo varifocal que permita realizar ajustes en el campo de visión de la cámara. Las cámaras domo fijas están diseñadas con diferentes tipos de cerramientos, a prueba de vandalismo y/o con clasificación de protección IP66 cuyo valor significa, IP índice de protección, el primer digito 6 protección completa contra personas y entrada de polvo, el segundo digito 6 protección contra fuertes chorros de agua de todas direcciones, incluido olas. Generalmente, las cámaras domo fijas se instalan en la pared o en el techo. (URL2, s.f.)

![Cámaras domo fijas](URL2)

Figura Nº7. Cámaras domo fijas.

Fuente: (URL2, s.f.)

2.1.9. Cámara PTZ

Las cámaras PTZ pueden rotar alrededor de dos ejes, uno horizontal y otro vertical, así como acercarse o alejarse (*zoom*) para enfocar un área u objeto de forma manual o automática. Dicho de otra forma, este tipo de cámaras es capaz de rotar en un plano vertical (*tilt* en inglés) y en un plano horizontal (*panning*), además de acercarse o alejarse de forma manual o automática. Además, pueden ser analógicas, de tipo IP o incluso híbridas, es decir, combinando ambas características. En el caso de las cámaras PTZ analógicas, los comandos se transmiten generalmente a través de un par de cables que se conecta vía RS232 o RS485 a un teclado o directamente al equipo de grabación
y la transmisión de video se realiza a través de un cable coaxial o de un cable UTP con el uso de un video balún. En el caso de los equipos IP, todos los comandos PTZ se envían a través del mismo cable de red que se utiliza para la transmisión de video. (URL4, s.f.) Algunas de las funciones que se pueden incorporar a una cámara PTZ:

a) **Estabilización electrónica de imagen (EIS).** En instalaciones exteriores, las cámaras domo PTZ con factores de zoom superiores a los 20x son sensibles a las vibraciones y al movimiento causados por el tráfico o el viento. La estabilización electrónica de la imagen (EIS) ayuda a reducir el efecto de la vibración en un video. Además de obtener videos más útiles, EIS reducirá el tamaño del archivo de la imagen comprimida, de modo que se ahorrará un valioso espacio de almacenamiento.

b) **Máscara de privacidad.** La máscara de privacidad permite bloquear o enmascarar determinadas áreas de la escena frente a visualización o grabación para que en esa área no grave y aparezca en el video solo una franja blanca.

c) **Posiciones predefinidas.** Muchas cámaras PTZ permiten programar posiciones predefinidas, normalmente entre 20 y 100 posiciones. Una vez las posiciones predefinidas se han configurado en la cámara, el operador puede cambiar de una posición a la otra de forma muy rápida.

d) **E-flip.** En caso de que una cámara PTZ se monte en el techo y se utilice para realizar el seguimiento de una persona, por ejemplo en unos grandes almacenes, se producirán situaciones en las que el
individuo en cuestión pasará justo por debajo de la cámara. Sin la funcionalidad E-flip, las imágenes de dicho seguimiento se verían del revés. En estos casos, E-flip gira las imágenes 180 grados de forma automática. Dicha operación se realiza automáticamente y no será advertida por el operador.

e) **Auto-flip.** Generalmente, las cámaras PTZ, a diferencia de las cámaras domo PTZ, no disponen de un movimiento vertical completo de 360 grados debido a una parada mecánica que evita que las cámaras hagan un movimiento circular continuo. Sin embargo, gracias a la función Auto-flip, una cámara de red PTZ puede girar al instante 180 grados su cabezal y seguir realizando el movimiento horizontal más allá de su punto cero. De este modo, la cámara puede continuar siguiendo el objeto o la persona en cualquier dirección.

f) **Autoseguimiento.** El autoseguimiento es una función de video inteligente que detecta automáticamente el movimiento de una persona o vehículo y lo sigue dentro de la zona de cobertura de la cámara. Esta función resulta especialmente útil en situaciones de video vigilancia no controlada humanamente en las que la presencia ocasional de personas o vehículos requiere especial atención. La funcionalidad recorta notablemente el coste de un sistema de supervisión, puesto que se necesitan menos cámaras para cubrir una escena. Asimismo, aumenta la efectividad de la solución debido a que permite que las cámaras PTZ graben áreas de una escena en actividad.
Aunque las cámaras PTZ y domo PTZ comparten funciones similares, existen algunas diferencias entre ellas:

a) Las cámaras de red PTZ no disponen de un movimiento horizontal de 360 grados debido a la existencia de un tope mecánico. Esto significa que la cámara no puede seguir a una persona que esté andando de forma continua en un círculo completo alrededor del dispositivo. Son excepciones de ello las cámaras PTZ que disponen de la funcionalidad Auto-flip.

b) Las cámaras de red PTZ no están diseñadas para la operación automática continua o las llamadas rondas de vigilancia, en las que la cámara se mueve automáticamente de una posición predefinida a la siguiente. (URL3, s.f.)

![Figura 8. Cámaras PTZ](URL3)

Figura Nº8. Cámaras PTZ

Fuente: (URL3, s.f.)

2.1.9.1. Cámara PTZ Mecánica

Las cámaras PTZ mecánicas se utilizan principalmente en interiores y en aplicaciones donde se emplea un operador. El zoom óptico en cámaras PTZ varía normalmente entre 10x y 26x. Una cámara PTZ se puede instalar en el techo o en la pared. (“Cámaras de red domo fijas, PTZ y gráficos de las mismas”)

Fuente: (URL3, s.f.)

2.1.9.2. Cámaras PTZ no Mecánica

Figura N°10. Cámaras PTZ no mecánica.

Fuente: (URL3, s.f.)

Las cámaras PTZ no mecánicas, ofrecen capacidades de movimiento horizontal, vertical y zoom sin partes móviles, de forma que no existe desgaste de potencia por lo que no existen motores para que realicen el movimiento. Con un objetivo gran angular, ofrecen un campo de visión más completo que las cámaras PTZ mecánicas. Una cámara PTZ no mecánica utiliza un sensor de imagen megapíxel y permite que el operador aleje o acerque, de forma instantánea, cualquier parte de la escena sin que se produzca ninguna pérdida en la resolución de la imagen. Esto se consigue presentando una imagen de visión general en resolución VGA (640x480 píxeles) aunque la cámara capture una imagen de resolución mucho más elevada. Cuando se da la orden a la
cámara de acercar o alejar cualquier parte de la imagen de visión completa, el dispositivo utiliza la resolución megapiéxel original para proporcionar una relación completa, en resolución VGA. (URL3, s.f.)

2.1.9.3. Cámara domo PTZ

Las cámaras domo PTZ pueden cubrir una amplia área al permitir una mayor flexibilidad en las funciones de movimiento horizontal, vertical y zoom. Asimismo, permiten un movimiento horizontal continuo de 360° grados y un movimiento vertical de normalmente 180° grados. Debido a su diseño, montaje y dificultad de identificación del ángulo de visión de la cámara (el cristal de las cubiertas de la cúpula puede ser transparente o ahumado), las cámaras domo PTZ resultan idóneas para su uso en instalaciones discretas. Las cámaras domo PTZ también proporcionan solidez mecánica para operación continua en el modo ronda de vigilancia, en el que la cámara se mueve automáticamente de una posición predefinida a la siguiente de forma predeterminada o aleatoriamente. Normalmente, pueden configurarse y activarse hasta 20 rondas de vigilancia durante distintas horas del día. En el modo ronda de vigilancia, una cámara domo PTZ puede cubrir un área en el que se necesitarían 10 cámaras de red fijas ya que se pueden configurar para que vigilen en diferentes puntos es decir que no solo graba el entorno total sino también puede grabar distintos puntos configurados. El principal inconveniente de este tipo de cámara es que sólo se puede supervisar una ubicación en un momento concreto, dejando así las otras nueve posiciones sin supervisar. El zoom óptico de las cámaras domo PTZ se mueve, generalmente, entre valores de 10x y 35x. Las cámaras domo PTZ se utilizan con frecuencia en situaciones en las que se emplea un operador.
En caso de que se utilice en interiores, este tipo de cámara se instala en el techo o en un poste o esquina para instalaciones exteriores. (URL3, s.f.)

Figura Nº11. Cámaras domo PTZ.

Fuente: (URL3, s.f.)

2.1.10. Cámara con visión diurna/nocturna

Figura Nº12. Respuesta del sensor de imagen frente a la luz infrarroja visible y a la luz próxima al espectro infrarrojo.

Fuente: (URL5, s.f.)

La totalidad de los tipos de cámaras, fijas, domo fijas, PTZ y domo PTZ, dispone de función de visión diurna y nocturna. Las cámaras con visión diurna y nocturna están diseñadas para su uso en instalaciones exteriores o en entornos interiores con poca iluminación. Las cámaras a color con visión diurna y nocturna proporcionan imágenes a color a lo largo del día. Cuando la luz disminuye bajo
un nivel determinado, la cámara puede cambiar automáticamente al modo nocturno para utilizar la luz prácticamente infrarroja IR (radiación infrarroja) para proporcionar imágenes de alta calidad en blanco y negro. En la figura N°12, se muestra cómo un sensor de imagen responde a la luz infrarroja visible y a la luz próxima al espectro infrarrojo. La luz casi-infrarroja, se observa que implica con la longitud de onda desde 700 nanómetros (nm) hasta cerca de 1.000 nm, está más allá de la visión humana, pero la mayoría de los sensores de cámara pueden detectarla y utilizarla, pero como se puede observar en la figura que la respuesta relativa del sensor de imagen va disminuyendo frente a la longitud de onda. Durante el día, la cámara de visión diurna y nocturna utiliza un filtro de paso IR (radiación infrarroja). La luz de paso IR se filtra de modo que no distorsiona los colores de las imágenes en el momento en que el ojo humano las ve, como se puede observar en la figura cuando se tiene una longitud de onda entre los 500 nanómetros la respuesta relativa del sensor de imagen llega a un máximo, en esos puntos se puede obtener un comportamiento casi sin distorsión de colores frente a la imagen. Cuando la cámara está en modo nocturno (blanco y negro), el filtro de paso IR se elimina, lo que permite que la sensibilidad lumínica de la cámara alcance los 0,001 lux o un nivel inferior.

Figura N°13. Cámara con visión diurna y nocturna.

Fuente: (URL5, s.f.)
En la figura N°13, se puede observar a la izquierda una cámara con visión diurna y nocturna y con filtro de paso IR; en el centro, posición de un filtro de paso IR durante el día y a la derecha, posición del filtro de paso IR durante la noche. Las cámaras diurnas/nocturnas resultan útiles en entornos que restringen el uso de luz artificial. Incluyen vigilancia por video con escasa luz, vigilancia oculta y aplicaciones discretas, por ejemplo, en una situación de vigilancia del tráfico en la que las luces brillantes podrían entorpecer la conducción nocturna. Los iluminadores de infrarrojos que proporcionan luz próxima al espectro infrarrojo también pueden utilizarse junto con las cáamaras de visión diurna/nocturna para mejorar la capacidad de producción de video de alta calidad en condiciones de escasez luminica o nocturna. (URL5, s.f.)

Figura N°14. Comparación entre una imagen con ilustración infrarrojo y sin ilustración infrarrojo.

Fuente: (URL5, s.f.)

En la figura N°14, a la izquierda se observa una imagen en la noche sin iluminador de infrarrojos; a la derecha, imagen con un iluminador de infrarrojos, en la misma se puede distinguir claramente que cuando se tiene una cámara con ilustrador de infrarrojos se observa todo el entorno enfocado por la cámara. (URL5, s.f.)
2.1.11. Cámaras con resolución megapíxel

Las cámaras con resolución megapíxel, disponible en las cámaras fijas y domo fijas, incorporan un sensor de imagen megapíxel para proporcionar imágenes con un millón o más megapíxeles. Se trata de una resolución como mínimo dos veces mejor que la que ofrecen las cámaras analógicas. Las cámaras de red fijas con resolución megapíxel pueden utilizarse de una de las dos formas siguientes: pueden permitir a los visualizadores ver detalles más concretos en una resolución de imagen más elevada, lo que puede resultar útil para la identificación de personas y de objetos. Asimismo, pueden utilizarse para cubrir una parte más amplia de la escena si la resolución de imagen se mantiene como la de las cámaras sin resolución megapíxel. Actualmente, las cámaras con resolución megapíxel son, en general, menos sensibles a la luz que las cámaras de red que no incorporan esta tecnología. Las secuencias de video de resolución más elevada generadas por las cámaras con resolución megapíxel también requieren requisitos más exigentes en el ancho de banda de la red y el espacio de almacenamiento para las grabaciones, aunque estas exigencias pueden reducirse utilizando el estándar de compresión de video H.264. A continuación se presenta un cuadro de resumen de todos los tipos de cámaras. (URL6, s.f.)
2.1.12. COMPONENTES QUE CONSTITUYEN UNA CÁMARA.

![Diagrama de componentes de una cámara](image)

Figura N°15. Componentes de una cámara

Fuente: (URL7, s.f.)

Básicamente una cámara se compone de:

a) La "cámara" de video tradicional (lentes, sensores, procesador digital de imagen, etc)

b) Un sistema de compresión de imagen (para poder comprimir las imágenes captadas por la cámara a formatos adecuados como MPEG4)

c) La CPU, la memoria Flash y la memoria DRAM representan el "cerebro" o las funciones informáticas de la cámara y están diseñadas específicamente para aplicaciones de red. Gestionan la comunicación con la red y el servidor Web.

d) A través del puerto Ethernet, una cámara de red de gama alta puede enviar imágenes directamente a diez o más computadores de forma simultánea. Si las imágenes se envían primero a un servidor Web
externo (en lugar de directamente a los usuarios que las visualizan), un número ilimitado de usuarios puede ver el video en tiempo real. (URL7, s.f.)

2.1.13. **CONTROL DE ASISTENCIA BIOMÉTRICO**

El incremento de los requerimientos de seguridad y los avances en la tecnología han permitido un rápido desarrollo de sistemas inteligentes de identificación de personas basados en técnicas biométricas. Las técnicas biométricas usan características o comportamientos fisiológicos propios de cada individuo para identificarlo. Existen muchas tecnologías que usan la biometría para la identificación y verificación de individuos como: Huellas dactilares, reconocimiento del iris del ojo, reconocimiento del rostro, geometría de la mano, etc. La identificación por medio de huellas dactilares establece una de las formas más representativas de la utilización de la biometría. La huella dactilar está formada por surcos y formaciones morfológicas. Estas formas son características únicas que pueden ser medidas y es posible obtener la identidad de una persona que intenta acceder a un sistema en general. En la actualidad debido a su sencilla implementación y bajo costo/beneficio, la biometría de huella dactilar es el método más utilizado y conocido; se emplean programas de lectura de huellas digitales, relojes registradores de control biométrico o programas de control de ausentismo por lectura biométrica, estos sistemas son aquellos que utilizando lectores de huellas digitales integrados a una red de computadoras o bien lectores autónomos de huellas dactilares permiten verificar el ingreso, salida, ausentismo y otras situaciones relacionadas con el control de personal. Los principios en los que se basa están relacionados con la traducción de la información contenida en la huella digital (utilizan un mapa de puntos clave de
una huella dactilar) a algoritmos únicos y personales que se emplean para identificar al usuario y relacionar esta información con sus datos personales. (Morales, 2010)

Estos sistemas de lectura de huellas digitales por biometría utilizan menos de un segundo para captar e identificar al poseedor de la impresión dactilar. Son las formas caprichosas que adopta la piel que cubre las yemas de los dedos. Están constituidas por rugosidades que forman salientes y depresiones. Las salientes se denominan crestas papilares y las depresiones surcos interpapilares. En las crestas se encuentran las glándulas sudoríparas. El sudor que éstas producen contiene aceite, que se retiene en los surcos de la huella, de tal manera que cuando el dedo hace contacto con una superficie, queda un residuo de ésta, lo cual produce un facsímil o negativo de la huella. Son únicas e irrepetibles aún en gemelos idénticos, debido a que su diseño no está determinado estrictamente por el código genético, si no por pequeñas variables en las concentraciones del factor del crecimiento y en las hormonas localizadas dentro de los tejidos. Cabe señalar que en un mismo individuo la huella de cada uno de sus dedos es diferente. (Kimaldi, 2008)

Clasificación:

Los patrones de huellas digitales están divididos en 4 tipos principales, todos ellos matemáticamente detectables. Esta clasificación es útil al momento de la verificación en la identificación electrónica, ya que el sistema sólo busca en la base de datos del grupo correspondiente.
Figura Nº16. Características de la huella digital

Fuente: (URL8, s.f.)

En la figura Nº16 aparecen 8 puntos características que hay en un dedo, éstos se repiten indistintamente para formar entre 60 y 120 (por ejemplo 10 orquillas 12 empalmes 15 islotes, etc.). A estos puntos también se llaman minutae, o minucias, término utilizado en la medicina forense que significa “punto característico”. Con este conjunto de puntos, el software biométrico de huella digital genera un modelo en dos dimensiones, según se muestra en el ejemplo, mismo que se almacena en una base de datos, con la debida referencia de la persona que ha sido objeto del estudio. Para ello, la ubicación de cada punto característico o minucia se representa mediante una combinación de números (x, y) dentro de un plano cartesiano, los cuales sirven como base para crear un conjunto de vectores que se obtienen al unir las minucias entre sí mediante rectas cuyo ángulo y dirección generan el trazo de un prisma de configuración única e irrepetible. Para llevar a cabo el proceso inverso o verificación dactilar, se utilizan estos mismos vectores, no imágenes.
El dedo es leído por un lector de huellas.
El dedo es codificado.
Una plantilla matemática es generada.
El lector guarda y reconoce un conjunto de números que solo podrán ser reconocidos como una plantilla.

Figura N°17. Procedimiento de lectura de huella digital.

Fuente: (URL8, s.f.)

El Sistema de Identificación Automatizada de Huellas Dactilares, tiene un índice de seguridad del 99.9% ya que verifica la identidad de una persona, basada en las características de sus huellas digitales. Para tratar los datos de la huella se utiliza un algoritmo que permite asociar la huella que se desea identificar, con otras de similares características, almacenadas en la base de datos. Existen dos maneras distintas usar los datos de una huella. (MORALES, 2010)

1. **Verificación.** ¿Es la persona quien dice ser? Se suele pedir un código, una lectura de tarjeta y comparar esa huella almacenada con la huella puesta en el lector, la verificación es un proceso un poco más molesto porque se le pide una información o una acción adicional al usuario, pero como ventaja tiene que es más rápido y más seguro.

2. **Identificación.** ¿Quién es la persona? En este proceso directamente se compara una huella capturada contra todas las que están
almacenadas en el ordenador, es un proceso algo más lento, pero la
interacción con el usuario es mínima.

Es importante remarcar que la mayoría de los lectores dactilares, no
guardan la imagen de la huella, solo almacenan los datos matemáticos
explicados anteriormente. (MORALES, 2010)

2.1.14. **Tipos de sensores biométricos**

En el mercado actual existen muchos tipos de sensores biométricos,
lectores capaces de convertir una huella en una imagen procesable por un
algoritmo. Existen muchos más tipos, la mayoría experimentales y nunca han
llegado realmente al mercado, los que se puede encontrar se dividen en las
siguientes categorías:

La mayoría de los dispositivos biométricos usan lectores ópticos, son los
más versátiles y requieren de un lector óptico de alta precisión.

Lectores Ópticos
Ventajas: Bajo costo, rapidez de captura, resolución de la imagen, velocidad.
Inconvenientes: Uso solo para interiores debido a la luz solar.

Lectores conductivos
Ventajas: Reducido tamaño ideal para dispositivo de uso personal, móviles, etc.
Inconvenientes: Muy sensibles a la humedad, poca calidad de imagen.

Lectores térmicos
Ventajas: Tamaño pequeño, uso en exteriores, dispositivos personales.
Inconvenientes: sensibles a la temperatura, dificultad de uso, necesita un cierto
aprendizaje.

Lectores ultrasonidos
Ventajas: No requiere de contacto, mucha seguridad

2.1.15. Reconocimiento de huella dactilar

Huellas dactilares

Típicamente la huella dactilar de un individuo ha sido un patrón bastante bueno para determinar su identidad de forma inequívoca (figura Nº18), ya que está aceptado que dos dedos nunca poseen huellas similares, ni siquiera entre gemelos o entre dedos de la misma persona. Por tanto, parece obvio que las huellas se convertirían antes o después en un modelo de autenticación biométrico: desde el siglo pasado hasta nuestros días se vienen realizando con éxito clasificaciones sistemáticas de huellas dactilares en entornos policiales, y el uso de estos patrones fue uno de los primeros en establecerse como modelo de autenticación biométrica. Cuando un usuario desea autenticarse ante el sistema sitúa su dedo en un área determinada, el área de lectura. Aquí se toma una imagen que posteriormente se normaliza mediante un sistema de finos espejos para corregir ángulos, y es de esta imagen normalizada de la que el sistema extrae las *minucias* (ciertos arcos, bifurcaciones y remolinos de la huella) que va a comparar contra las que se tiene en la base de datos. Es importante resaltar que el sistema no analiza la huella en sí sino las *minucias*, concretamente la posición relativa de cada una de ellas. (Morales, 2010)
Figura Nº18. Huella dactilar con minucias.

Fuente: (MORALES, 2010)

Las huellas de los dedos presentan como característica principal, la presencia de un conjunto de crestas o partes donde la piel se eleva sobre las partes más bajas o valles existentes entre las crestas. Con respecto a estas crestas se definen dos características particulares que obedecen al término de minucias:

Final de cresta (ridge ending). Característica definida como el punto donde la cresta acaba de forma abrupta.

Bifurcación de la cresta (ridge bifurcation). Característica definida como el punto en el que la cresta se bifurca en dos o más crestas. Estas dos características quedan unívocamente definidas a partir de su localización (coordenadas x, y respecto al sistema de coordenadas central de la imagen) y de su orientación (ángulo q).

Algoritmos de huellas

Autenticación significa comprobar si un individuo es quien dice ser. El algoritmo de autenticación, está formado por dos bloques: en primer lugar se extraen las minucias características de la huella “actual” del usuario que se va a autenticar (**algoritmo de extracción de minucias**) y, en segundo lugar, se comparan esas
minucias características de su huellas con las minucias almacenadas en la base de datos en forma de “plantilla”. De manera general la forma de procesar una huella digital es la siguiente:

Está demostrado que dos dedos nunca pueden poseer más de ocho minucias comunes, y cada uno tiene al menos entre 30 y 40 de éstas. En la figura N°19 se muestra una imagen de una huella digitalizada con sus minucias. Si la comparación de las posiciones relativas de las minucias leídas con las almacenadas en la base de datos es correcta, se permite el acceso al usuario, denegándose obviamente en caso contrario. (MORALES, 2010)

Los sistemas basados en reconocimiento de huellas son relativamente baratos, en comparación con otros biométricos, como los basados en patrones de retinas. Sin embargo, tienen en su contra la incapacidad temporal de autenticar usuarios que se hayan podido herir en el dedo a reconocer. Un pequeño corte o una quemadura que afecte a varias minucias pueden hacer inútil al sistema. También elementos como la suciedad del dedo, la presión ejercida sobre el lector o el estado de la piel pueden ocasionar lecturas erróneas.

Fuente: (MORALES, 2010)
Cuando hablamos de huella “actual”, se hace referencia a la huella situada sobre el lector de huellas dactilares (también huella “en vivo”), mientras que la “plantilla” se corresponde con las características extraídas de una huella anteriormente, normalmente para ser almacenada en una base de datos. Se dice que un usuario ha sido autenticado si las características extraídas de la huella “actual” coinciden con las de la “plantilla” dentro de un límite de tolerancia para el algoritmo de comparación de minucias.

Algoritmo de extracción de minucias

Una de las tareas más importantes en un sistema de reconocimiento de huellas es la extracción de las minucias de una imagen capturada de una huella. Debido a las imperfecciones de la imagen adquirida, en algunos casos el algoritmo de extracción puede obviar algunas minucias, y en otros se pueden añadir minucias falsas. Las imperfecciones de la imagen pueden también generar errores al determinar las coordenadas de cada minucia y su orientación relativa en la imagen. Todos estos factores contribuyen a disminuir la fiabilidad del sistema de reconocimiento, puesto que el reconocimiento de huellas dactilares está basado en la comparación, dentro de unos límites de tolerancia, del patrón biométrico, o conjunto de minucias extraídas, adquirido “en vivo” y el almacenado. (MORALES, 2010)

A continuación describiremos en profundidad cada una de las fases de este algoritmo y lo que se consigue en estas.

Normalización de la imagen

El objetivo de esta fase es disminuir el rango de variación de grises entre los valles y las crestas de la imagen para facilitar el proceso en las siguientes etapas.
Figura N°20. (a) Huella original (b) Huella normalizada.

Fuente: (MORALES, 2010)

Cálculo del campo orientación

El campo orientación representa la orientación local de las crestas que contiene la huella. Para estimarlo, la imagen se divide en bloques de 16x16 píxeles y se calcula la inclinación para cada píxel, en coordenadas x e y. Debido a la carga computacional del proceso de reconocimiento, es suficiente aplicar una máscara de 3x3 píxeles para el cálculo de la inclinación en cada píxel.

Figura N°21. (a) Huella orientada (b) Campos re alineados.

Fuente: (MORALES, 2010)

El ángulo de orientación se calcula a partir de la información de la inclinación. Frecuentemente, en algunos bloques, el ángulo de orientación no se
calcula correctamente debido a ruidos y daños en los *valles* y las *crestas* de la imagen capturada. Como no pueden existir variaciones significativas del ángulo entre bloques adyacentes, se aplica un nuevo filtro “espacial” de 5x5 píxeles al campo de orientación estimado para reordenar correctamente todos los segmentos. La figura Nº21 (a) muestra el campo orientación obtenido a partir del cálculo de la inclinación. La figura Nº21 (b) muestra los campos re-alineados después de aplicar el filtro “espacial”. (MORALES, 2010)

Selección de la zona de interés

Debido a que la imagen contiene “ruído” de fondo, el algoritmo puede generar *minucias* fuera del área ocupada por la huella. Para evitar este problema, se selecciona el área de imagen, definida por todos los bloques de 16x16, en la que existe una alta variación del nivel de grises en la dirección normal de las *crestas* existentes (el campo orientación normal de las *crestas* se había calculado previamente). Después de esto el área de la imagen con ruido, que será excluido en las siguientes etapas, se define por bajas variaciones en todas las direcciones. En la figura Nº22 se muestran las variaciones de una huella y la región de interés obtenida a partir de esta. (MORALES, 2010)

![Figura Nº22](image)

Figura Nº22. (a) Variaciones de la huella (b) Región importante.

Fuente: (MORALES, 2010)
2.2. HIPÓTESIS DE LA INVESTIGACION

2.2.1. Hipótesis

Hipótesis General:

El diseño y la implementación de un sistema de video vigilancia y control de asistencia de personal, es la solución para el problema de robos, proteger bienes inmuebles, protección de sus clientes y el control de personal de la empresa “Autoaccessorios los Gemelos S.A.C.” de Juliaca.

Hipótesis Específicas:

- El diseño adecuado de un sistema de video vigilancia permitirá un mejor control de las áreas vulnerables e importantes de la Empresa.
- La implementación de un sistema de video vigilancia dará solución al problema de robos y pérdidas en la Empresa “Autoaccessorios los Gemelos S.A.C.”
- Mediante un sistema de video vigilancia se tendrá un mejor control sobre las instalaciones de la empresa “Autoaccessorios los Gemelos S.A.C.”
- Mediante un sistema de control adecuado se tendrá un mejor control de asistencia del personal que labora en la empresa “Autoaccessorios los Gemelos S.A.C.”

2.2.2. Variables e Indicadores

Variable Independiente:

Sistema de video vigilancia y control de asistencia biométrico

Variable Dependiente:
La seguridad mediante cámaras CCTV de las instalaciones y control de asistencia biométrico del personal de la empresa “AUTOACCESORIOS LOS GEMELOS S.A.C.” de la ciudad de Juliaca.

2.3. OPERACIONALIZACION DE VARIABLES

Tabla Nº01: Operacionalización de Variables

<table>
<thead>
<tr>
<th>Variable(s)</th>
<th>Dimensiones</th>
<th>Indicador(es)</th>
<th>Instrumento(s)</th>
</tr>
</thead>
</table>
| V.I. Sistema de video vigilancia y control biométrico de asistencia. | Uso sistema de video vigilancia en la empresa Autoaccessorios Los Gemelos S.A.C. | • Redes de Comunicaciones
• Terminales
• Cámaras de videos video vigilancia
• Sensor Biométrico
• Redes de interconexión sensores | • Mediciones de las instalaciones
• Calculo del Nro de cámaras CCTV
• Determinación del equipo biométrico
• Ubicación de las cámaras de videos vigilancia
• Determinación medio de transmisión a utilizar
• Observación directa |
| V.D. Personal e instalaciones de la empresa “AUTOACCE | • Uso de sistema de control biométrico de asistencia en la empresa Autoaccessorios Los Gemelos S.A.C. | • Cantidad de personal que labora. |
| RIOS LOS GEMELOS S.A.C.” de la ciudad de Juliaca. | Autoaccesorios Los Gemelos S.A.C. | Condiciones de las instalaciones donde funciona la empresa Autoaccesorios Los Gemelos S.A.C. | Recolección de datos
Observación directa |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• Instalaciones físicas de la Empresa Autoaccesorios Los Gemelos S.A.C.</td>
<td>• Medios tecnológicos que utiliza para la vigilancia de las instalaciones de la empresa Autoaccesorios Los Gemelos S.A.C.</td>
<td>• Medios tecnológicos que utiliza para el control biométrico del personal de la empresa Autoaccesorios Los Gemelos S.A.C.</td>
<td></td>
</tr>
</tbody>
</table>

Elaboración: Propia del Autor
CAPÍTULO III

DISEÑO METODOLÓGICO DE INVESTIGACIÓN
3.1. TIPO Y DISEÑO DE INVESTIGACIÓN

3.1.1. Tipo de Investigación

Es de tipo tecnológico cuasi experimental, ya que se pone en práctica los conocimientos y teorías sobre sistemas de video vigilancia y sistemas de control de asistencia biométrico del personal.

3.1.2. Diseño de Investigación

- Por el ambiente en que se realiza: De campo
- Por la fuente de datos que se utiliza: Primaria

3.2. POBLACIÓN Y MUESTRA

3.2.1. Población

Empresas que funcionan en la ciudad de Juliaca.

3.2.2. Muestra

La muestra para el presente proyecto son las instalaciones de la empresa Autoaccesorios los Gemelos SAC la cual se encuentra ubicada en la ciudad de Juliaca.

3.2.3. Técnicas de Procesamiento y Análisis de Datos

Tabla Nº02: Técnicas e Instrumentos

<table>
<thead>
<tr>
<th>TECNICAS</th>
<th>INSTRUMENTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A) MEDICION: Esta técnica permite identificar y establecer la eficiencia de los equipos</td>
<td>Cámaras de Video vigilancia</td>
</tr>
<tr>
<td></td>
<td>Registrador biométrico</td>
</tr>
<tr>
<td></td>
<td>Computadoras</td>
</tr>
<tr>
<td>B) REVISION DE DOCUMENTACION Permite identificar las limitaciones de los equipos</td>
<td>Donde se consignaran los datos de cada equipo analizado</td>
</tr>
</tbody>
</table>

Elaboración: Propia del Autor
CAPITULO IV
ANALISIS E INTERPRETACION DE
RESULTADOS DE LA INVESTIGACION
4.1. DESCRIPCION DE LA EMPRESA

Autoaccesorios los Gemelos S.A.C. es una empresa dedicada a la venta de accesorios para autos y la fabricación de stickers, hace ya más de cinco años que realiza este tipo de actividades, es la mejor empresa en este rubro a nivel departamental, cuenta con máquinas de impresión y corte de última generación, cuenta con un promedio de 20 personas trabajando en las diferentes áreas, el trabajo está dividido en tres áreas: instalaciones, diseño gráfico y ventas. El área de instalaciones cuenta con un taller donde están las herramientas. El área de diseño gráfico cuenta con cinco ventanillas para la atención al cliente, donde se realizan los diseños de logos de las empresas mayormente de transportes, cuenta con dos pisos en donde están ubicadas sus máquinas plotters de impresión y de corte de vinil, el área de ventas está a la entrada de la empresa donde también se ubica caja, el esta área se cuenta con mercadería, todo lo que corresponde a los autoaccesorios. Se presentaron robos en varias ocasiones de equipos de cómputo, motocicletas, cámaras fotográficas, herramientas, materiales de trabajo etc. Lo cual hace necesaria la implementación de su sistema de seguridad con cámaras. Anteriormente la empresa contaba con dos cámaras de video vigilancia analógicas, conectada a una tarjeta PCI de cuatro canales, que llega a una pc Pentium III con un disco de 40Gb, lo cual lo consideramos deficiente. Para el control de asistencia se cuenta con unas planillas que se debe de firmar hasta en cuatro oportunidades, ocasionando desorden y reclamos del personal. (Fuente: Elaboración Propia)
4.2. DESCRIPCION DE LAS INSTALACIONES

Figura N°23. Primera planta.

FUENTE: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor
Las instalaciones de esta empresa consta de cuatro pisos, en los cuales los dos primeros son para la actividad económica y las otras dos son de uso familiar, en la primera planta es donde existe mayor actividad, donde también se encuentran las maquinas plotter, mercadería, herramientas, etc.

Figura Nº24. Área de diseño 1er piso y 2do piso.

Fuente: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor
En la figura N°23 se puede apreciar el plano de todo el establecimiento en donde se le dividió en tres áreas (diseño, instalaciones y ventas), el área de diseño consta de dos pisos como se observa en la figura N°24 en donde se ubican dos plotter de impresión y un gabinete donde se encuentra el switch #1 y el modem. En el área de diseño toda las computadoras y los plotter de impresión están conectadas a la red, los plotter de corte están conectados a las pc 4 y 5 por puerto serie, las cuales comparten ese recurso. En el área de ventas, caja se cuenta con dos computadoras que también tienen acceso a la red, mediante el switch 2, a la vez están conectado el DVR y el Controlador de asistencia biométrico.

4.3. DIRECCION EMPRESARIAL

- **RUC**: 20406512178
- **Razón Social**: AUTOACCESORIOS LOS GEMELOS S.A.C.
- **Nombre Comercial**: Los Gemelos
- **Tipo Empresa**: Sociedad Anónima Cerrada
- **Fecha Inicio Actividades**: 14 / Marzo / 2005
- **Actividad Comercial**: Venta Partes, Piezas, Accesorios.
- **Dirección Legal**: Jr. Tumbe Nro. 1772 Manco Capac
- **Distrito / Ciudad**: Juliaca
- **Provincia**: San Román
- **Departamento**: Puno
4.4. MAPA GEOGRÁFICO

Fuente: Google Maps.

4.5. ORGANIZACIÓN EMPRESARIAL

Fuente: (Reglamento Interno Autoaccesorios Los Gemelos SAC, 2000)

Elaboración: Propia del Autor
4.6. **INTERPRETACIÓN DE RESULTADOS**

Se iniciara con ubicar en el plano las cámaras de seguridad tomando como criterio las áreas más vulnerables, lugares donde haya más probabilidad de robo. Una vez realizado y aprobado los lugares de instalación de las cámaras se procederá a elaborar el presupuesto, la elección de las cámaras según sea el lugar donde se instalen y el tipo de conexión, para su posterior instalación y prueba. En el caso del sistema de control de asistencia el equipo se colocara en el ingreso de la empresa y al costado de caja para su mejor control, luego se procederá a realizar su configuración correspondiente.

4.6.1. Diseño de ubicación de equipos

Se realizó un plano de la Empresa, para poder determinar con mayor facilidad la ubicación de las cámaras, así como determinar los lugares en donde se requiere un nivel de vigilancia de mayor importancia. La instalación e implementación de cámaras para vigilancia están ubicadas en puntos estratégicos puntuales de tal forma que permitirán mejorar la seguridad de la empresa, el control y prevención de riesgos laborales de trabajadores. Analizando estos puntos donde se podrá incrementar la seguridad se tiene los siguientes sitios donde ubicaremos las cámaras:

Tabla N°03. Numero de cámaras a instalar en las Áreas de Trabajo.

<table>
<thead>
<tr>
<th>Area</th>
<th>Numero de Cámaras</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diseño</td>
<td>2</td>
</tr>
<tr>
<td>Instalaciones</td>
<td>3</td>
</tr>
<tr>
<td>Ventas y caja</td>
<td>2</td>
</tr>
<tr>
<td>Calle</td>
<td>2</td>
</tr>
</tbody>
</table>

Elaboración: Propia del Autor
En el cuadro N°03, tenemos el resumen el numero cámaras a instalar en cada área, en total será 9 cámaras. En el área de diseño tendremos una cámara IP PTZ, y una cámara fija IR analógica, con la cámara PTZ tenemos la posibilidad de acercamiento y detección de movimiento, a la vez podemos configurarla y concertarla a una alarma, estará conectada al SWITH #1 y se ubicara al ingreso de dicha área. La conexión de la Cámara 1 al SWITH #1 es por cable UTP cat5, con una longitud de 15 metros aproximados, por medio de canaletas de 40x15. Esta área es considerada de mayor importancia por los equipos y materiales que se usan y están más expuestas a los clientes.

Figura N°27. Localización de Cámaras 1 y 2.

Fuente: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor
En instalaciones tendremos 3 cámaras fijas IR, dos observando al patio central en direcciones opuestas y una a la entrada de vehículos para obtener el número de placa y el ingreso y salida de los vehículos y de los clientes, estas cámaras son analógicas cableadas con cable Coaxial RG59 paralelamente, el cable de alimentación AWG 2x22, estos cables van por canaletas 40x15 separados 30-50mm según norma CNE 340-510 (Conductores de Comunicación en Edificaciones).
Figura No 28. Localización de Cámaras 3,4 y 5.

Fuente: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor
En el área de ventas se instalarán 2 cámaras, una observando casi toda la parte de mercadería y la otra observando a los clientes que pasan por caja a cancelar sus cuentas. En el exterior de la empresa se tendrá dos cámaras fijas IR, para su mejor conservación se tendrán que colocar en sus respectivos housing, que los protegerá en caso de polvo y lluvia.

Figura Nº29. Localización de Cámaras 6, 7, 8 y 9.

Fuente: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor
Sin importar las tecnologías que se utilice para diseñar e implementar un sistema de seguridad, existen cuestiones que deben ser tenidas en cuenta en todo tipo de situaciones. En primer lugar, ¿Qué información se quiere que el sistema o los componentes provean? Existen tres respuestas posibles: (PELÁEZ SALVADOR, 2013)

- **Detección**: indicar si algo está ocurriendo en el área de interés.
- **Reconocimiento**: determinar exactamente qué está ocurriendo.
- **Identificación**: determinar quién está involucrado en la actividad.

Su respuesta afectará la clase de equipamiento que requerirá para una aplicación de CCTV. A su vez, existen otras consideraciones básicas que influencian el diseño del sistema de CCTV y entre ellas se encuentra obviamente el presupuesto. Estas incluyen:

- La calidad de imagen requerida.
- El tamaño del área de interés a ser observada.
- La luz disponible (puede existir la necesidad de luz suplementaria).
- El ambiente en el cual el equipamiento será utilizado (interior vs. exterior, estándar vs. alto riesgo de daño).
- La fuente de alimentación.

Cada uno de estos puntos afecta el diseño de CCTV. Por ejemplo, si se requiere una representación más precisa de una escena, sus especificaciones de diseño pueden requerir cámaras de color en contraposición a las cámaras monocromáticas. Mientras que si lo que se busca es mayor detalle y resolución, una cámara blanco y negro sensible a condiciones de poca luz o una cámara Día/Noche representan una mejor opción. Como una regla general, las cámaras
color y los monitores deberán ser utilizados en sistemas cuyo propósito sea la identificación.

La elección de la cámara de CCTV correcta puede parecer un proceso complejo ya que existen demasiados factores a tener en cuenta. Sin embargo, es importante resaltar que todas las cámaras están compuestas por tres elementos básicos:
- El sensor de imagen, convierte la imagen en señales electrónicas.
- Lente, une la luz reflejada del sujeto
- Circuito de procesamiento de imágenes, organiza, optimiza y transmite señales.

Las cámaras CCTV se encuentran disponibles en forma: monocromática, color y día/noche (combina color con monocromática). Las ventajas de la cámara monocromática son la mayor resolución, los menores requerimientos de luz y en general son menos costosas. Por otra parte, la cámara color ofrece una mejor representación general de la escena (con la iluminación apropiada) y a la vez cuenta con capacidades mejoradas para la identificación y posterior persecución. Las cámaras día/noche ofrecen lo mejor de ambos mundos y en la actualidad se están transformando en la tecnología CCTV elegida por los consumidores tanto para aplicaciones interiores o exteriores.

Para la ubicación del control de asistencia biométrico se colocara a la entrada de la empresa como se observa en la figura Nº30, está conectado al switch #2 mediante un cable UTP cat5.
Figura N°30. Localización del Sistema de control de asistencia biométrico.

Fuente: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor

4.6.2. Descripción y selección de los equipos a utilizar:

Determinada el área que se desea grabar, el grado de seguridad requerida por el usuario, en este caso se requiere un nivel de seguridad alta en el área de diseño, media en las áreas de instalaciones y ventas. A continuación se describen las cámaras a utilizar tomando en cuenta los planos anteriormente descritos:
Cámara 1: cámara IP Dlink DCS 5300

Figura Nº31. Cama IP Dlink DCS5300.

Fuente: (URL9, s.f.)

- 01 Botón de Reset.
- 01 Puerto RJ-45 10/100 BASE-TX: Soporta operación full dúplex, Soporta control de flujo 802.3x.
- Sensor: 1/4" color CCD, modo de escaneo entrelazado, soporta salida de video para TV de 380 líneas, hasta 30 imágenes por segundo
- Memoria RAM: 32 Mbytes
- Flash Memory: 8 Mbytes
- Soporte de Control Automático de Ganancia (AGC) 24dB
- Soporte de Balance Automático del blanco (AWB)
- Automatic Exposure (AE)
- Disparador Electrónico: 1/60~1/15,000 sec
- Iluminación mínima: 1Lux/F2.0
- Lente de 3.4mm F2.0
- Microfono Omni-direccional
- Video size: QCIF (30 fps), CIF (30 fps), 4CIF (10 fps)
- Resolución: 24-bit RGB, 4CIF, soporta hasta 704 x 480 (NTSC)/704 x 576 (PAL)
- Tamaño de bit e imagen, calidad ajustable
- Time stamp y text overlay
- Brillo, saturación y nitidez Configurable
- Zoom digital hasta 4X
- MPEG4 short header mode compression
- Nivel de Compresión: 5
- Detección movimiento
- Protocolos soportados: HTTP, FTP, TCP/IP, UDP, SMTP, DHCP, Telnet, NTP, DDNS y DNS
- Indicadores leds: Indicador energía de sistema
 Indicador actividad de red.
- Protección de administrador y grupo de usuario 15 caracteres de clave autenticación.
- Audio: 24Kbps
- Alimentación: Input:100-240VAC,50/60Hz Output: 12VDC, 1.25A
- Consumo Máximo: 4.8W (Max)

Según las especificaciones podemos calcular el ancho de banda AB:

(RIVAS CRUZ JUAN ANTONIO, 2011)

\[AB = \text{Tamaño de imagen} \times \text{cuadros por segundo} \times \text{canales} \quad (1) \]

Donde el tamaño de imagen es de 8 bits x 3 canales (RGB)=24 bits (Según características de la cámara), en el formato PAL se tiene 30 imágenes por segundo reemplazando en la ecuación (1) se tiene:

\[AB = 24 \times 30 \times 1 \]

\[AB = 0.72 \text{Kb/s} \]

Este resultado obtenido es muy conveniente para un bajo consumo de ancho de banda y por lo tanto no afectará el tráfico en la red ni a las demás cámaras conectadas a la misma red, ya que en caso de que sobrepase un valor superior a 4MB el tráfico de información se vería afectado. Con un requerimiento de ancho de banda bajo, la información se transmite adecuadamente y sin pérdidas. (RIVAS CRUZ JUAN ANTONIO, 2011)

El cable UTP Cat 5e que puede transmitir datos hasta 100Mbps, para lo cual lo consideramos suficiente para la interconexión de esta cámara IP.
Calculo del espacio en disco duro necesario:

\[
EDD = \frac{Tamaño de Imagen \times CPS \times Tiempo \times Profundidad de Color}{8}
\]

Tamaño de Imagen = 740x480
CPS=30
Tiempo=60min
Profundidad de Color=24bit/pixel

Reemplazando en la ecuación (2):

\[
EDD = \frac{740 \times 480 \times 30 \times 60 \times 8}{8} = 0.64Gb
\]

Como se puede observar de acuerdo al resultado, la capacidad requerida para la grabación es mínima. (RIVAS CRUZ JUAN ANTONIO, 2011)

Cámaras 2, 3, 4, 5, 6, 7, 8,9: SONY CCD 1/4”

Figura N°32. Izq. Housing para la cámara ccd, Der. Camara SONY CCD 14”.

Fuente: (URL1, s.f.)

Elaboración: Adaptación, Propia del Autor

- 420tvl, 0lux,
- 36 super IR leds,
- Aluminium, water proof IP55, available
- distance: 50M
- cdd 1/4"
- Consumo Electrico 6w

Las cámaras 8 y 9 son cámaras que están a la intemperie es necesario colocarlos en sus respectivos housing, estas cámaras son utilizadas en la mayoría de las instalaciones, para determinar la altura de colocación de estas cámaras se realizó los siguientes cálculos:

\[f = \frac{h \times D}{H} \quad (3) \]

Donde:

- \(f \) = Distancia focal (m)
- \(D \) = Distancia a objetivo (m)
- \(H \) = Distancia a la que se observa el objetivo (m)
- \(h \) = Valor del sensor de imagen (m)

La distancia focal combinada con el tamaño del sensor es el ángulo de visión, una distancia focal pequeña dará una visión y una distancia focal grande, dará una visión estrecha de teleobjetivo. Los objetivos con un gran ángulo, tienen una profundidad de campo mejor, los datos que se muestran a continuación, son datos del sensor de imagen y su correspondiente valor en “\(h \)”, dicho sensor permite tener un área de grabado más amplia o más reducida, a una distancia mínima del objeto que se desea monitorizar, dichos valores son necesarios para emplearlos en la ecuación anterior. (RIVAS CRUZ JUAN ANTONIO, 2011)

\[1/4" \text{ sensor: } h = 3.6 \text{mm} \]
\[1/3" \text{ sensor: } h = 4.8 \text{mm} \]
\[1/2" \text{ sensor: } h = 6.4 \text{mm} \]
Según las especificaciones técnicas de estas cámaras se dan las distancias óptimas de visualización D=50m, h=3.6mm, la distancia a la que se observa el objetivo H=<10m, que es el ancho total del área de diseño, a la cual consideramos también para todas las cámaras la cual consideramos óptima para la observación de dichas áreas. Reemplazando en la ecuación (3) se tiene:

\[f = \frac{3.6 \times 50}{10} \]
\[f = 18 \text{ m} \]

Por lo tanto, la distancia a la cual la cámara trabaja mejor es a 18m. Esto no restringe que solo tenga que grabar a esta distancia, sino que mostrará la imagen con mayor calidad si se enfocan con este valor. (RIVAS CRUZ JUAN ANTONIO, 2011)

Figura Nº33. Calculo de la altura para las cámaras de seguridad.

FUENTE: (RIVAS CRUZ JUAN ANTONIO, 2011)

\[a = c \times \cos(45°) \] \hspace{1cm} (4)

La distancia “c” que en los cálculos anteriores es la distancia focal \(f=18 \text{ m} \), no se aplicará ya que el ancho máximo del área de diseño es 10m, tendremos que considerarla menor y la más óptima para tener vigilado las computadoras de diseño es de 4m, entonces tendremos que estimar la distancia “c” a 4 m, para lo
cual también estimamos un ángulo de 45° con estos datos podemos calcular la altura que se colocara las cámaras de seguridad, reemplazando estos valores anteriormente calculados en la ecuación (4) se tiene que la altura a la cual será colocada la cámara es:

\[a = 2.8 \text{ m} \]

DVR: Avtech H264 8CH.

Figura Nº34. DVR Avtech H264 8CH.

Fuente: (Manual DVR Avtech 8CH., s.f.)

- Sistema de video NTSC/PAL (detección automática)
- Entrada de video (señal de video compuesto 1 Vp-p 75 omh BNC) 8 canales
- Salida de video BNC
- Salida de video VGA
- Capacidad de disco duro 2TB
- Interfaz SATA
- Dispositivo de copia de seguridad, grabadora DVD(opcional)/unidad flash USB 2.0/Red
- Formato de compresión de transmisión Wed h.264
- Ethernet 10/100 Base-T. Admite control remoto y visualización en directo por Ethernet.
- Interfaz Wed.
- Protocolo de red TCP/IP, PPPOE, DHCP y DDNS
- Fuente de alimentación DC 19V
- Consumo de energía (+-10%) <64W

Para el cálculo del tamaño del disco duro se puede hacer uso del calculador de disco duro de Quaddrix Tech. Esta herramienta está disponible en www.quaddrix.com link Tech support. También podemos usar otras opciones en la Web.

Figura Nº35. Calculo de la capacidad de disco duro para el DVR.

Fuente: (URL11, s.f.)

El la figura Nº35 podemos apreciar el cálculo realizado con los datos ingresados nos calcula un aproximado de 6345 a 7155 GB aproximados, para una resolución de 4 CIF (704 x 572), 8 cámaras, 24 horas y 30 días, de este dato podemos estimar que necesitamos un disco duro de 1Tb para un mes de grabación continua.
Registrador de asistencia biométrico 3000T-C de Scimic.

Figura N°36. Registrador de asistencia.

Fuente: (Cotización SCIMIC TECHNOLOGIES S.A.C., 2013)

- Capacidad de huellas 3000
- Capacidad de registros 100000
- Pantalla a colores de 3"
- Modo de registro por contraseña
- Comunicación tcp/ip, rs232/485
- Mensaje en pantalla
- Foto id
- Wed server
- Empotrable en pared
- Alimentación de 5v- 2a

Para la elección del registrador de asistencia se tomó en cuenta las características, como la capacidad de huellas que se requieren en la empresa (25 registros aprox.) así como la comunicación por TCP/IP.

Los requisitos básicos que reúne el reconocimiento por huella dactilar para el registrador de asistencia biométrico son: (Ávila, 2010)

- Universalidad (media-alta), Más de un 96% de la población tiene una huella legible.
- Univocidad (alta) Incluso gemelos idénticos tienen huellas diferentes
- Permanencia (alta). La huella se forma en la etapa fetal y permanece estructuralmente inalterable a lo largo de la vida.

- Rendimiento (alto). Es una de las técnicas biométricas con mejor rendimiento, mayor compromiso entre comodidad y seguridad.

- Aceptación (media). La captura de la imagen de la huella no es intrusiva, posee implicaciones legales.

4.6.3. Medios de Transmisión Utilizados:

Cableado UTP: Para la comunicación entre los equipos a utilizar se utilizó cable UTP categoría 5e como se ha mencionado anteriormente. Dicho cable se ha escogido porque se necesita una velocidad de transmisión mínima de 4Mbps, y que la categoría 5e es capaz de ofrecer. UTP son cables de pares trenzados sin apantallar que se utilizan para diferentes tecnologías de red local. Son de bajo costo y de fácil uso, pero producen más errores que otros tipos de cable y tienen limitaciones para trabajar a grandes distancias sin regeneración de la señal. En este caso utilizamos la configuración de cable recto (pin a pin).

![Figura Nº37. Cable UTP cat 5e.](image)

Fuente: (Sanz, 2010)

Para conectar dicho cable utilizamos conectores RJ-45 que podemos apreciar en la figura Nº38. Los conectores RJ-45 sirven para unir los cables UTP.
Figura N°38. Conector RJ-45.

Fuente: (Sanz, 2010)

Colocación de las canaletas plástica: Para la colocación de las canaletas plástica simplemente tomaremos las medidas establecidas, cortaremos las canaletas, colocaremos los tarugos en la pared y se atornillarán las canaletas plásticas con los tornillos.

Medición del Cableado: En esta parte se hará el mismo procedimiento que con las canaletas, se tomará las medidas del cableado para evitar el exceso de cables entre las estaciones de trabajo.

Conexión del cableado a los conectores: En la conexión para los conectores será necesario el cable a conectar, los conectores RJ45 y un ponchador. El primer paso será coger el cable colocarlo al final del ponchador, luego procederemos a pelarlo, el siguiente paso será cortarlo en línea recta es decir todos deben quedar parejos, ya que si esto no sucede tendremos una mala conexión y algunos contactos quedarán más largos que otros. Primero examinaremos las normativas ya que esto es indispensable para el buen funcionamiento de la red.

Fuente: (Sanz, 2010)

Se tomará en cuenta la norma de la comunicación ANSI/TIA/EIA-568-A (Alambrado de Telecomunicaciones para Edificios Comerciales) Este estándar define un sistema genérico de alambrado de telecomunicaciones para edificios públicos que puedan soportar un ambiente de productos y proveedores múltiples. El propósito de esta norma es permitir la planificación e instalación de cableado de edificios públicos con muy poco conocimiento de los productos de telecomunicaciones que serán instalados con posterioridad. La instalación del
sistemas de cableado durante la construcción o renovación de edificios es significativamente menos costosa y desorganizadora que cuando el edificio está ocupado. (Sanz, 2010)

La unidad de medida que se utiliza para la velocidad en que se transmiten los datos a través del cableado es el BPS (BIT por segundo, donde BIT son las siglas en inglés de “Binary digit”, que significan “dígito binario” y es la menor unidad de información que existe, pudiendo contener los valores 0 o 1, es decir presencia o ausencia de corriente eléctrica). Como las velocidades de transmisión a través del cableado de la red, equivalen a miles o millones de Bits por segundo, se utilizan las siguientes medidas:

1000 BPS = 1 KBPS (KiloBits Por Segundo)
1000 KBPS = 1 MBPS (MegaBits Por Segundo).
1000 MBPS = 1 GBPS (GigaBits Por Segundo).

A menudo, se hace referencia al término “ancho de banda”, como sinónimo de velocidad de transmisión. En redes de área local “LAN” es común que las velocidades sean de 10 MBPS o 100 MBPS. También, se suele usar el término “baudio”, como sinónimo de bits por segundo “BPS”, lo que no es del todo correcto, pues el baudio es la unidad de medida que especifica la cantidad de veces que se produce un cambio de polaridad eléctrica (positivo “+” a negativo “−” y viceversa) a través del cableado en el lapso de un segundo, pero en la actualidad como hay dispositivos (por ejemplo los MODEM de alta velocidad) que por cada baudio, es decir por cada cambio de polaridad, transmiten varios bits (0 y 1). Entonces es incorrecto pensar que el bit por segundo sea equivalente al baudio. Esto ocurre porque los nuevos sistemas de codificación, analizan además del cambio de polaridad otras características de la señal eléctrica, como
la fase y la amplitud, que permiten codificar por cada baudio varios bits. Un ejemplo de ello es un MODEM de 9600 BPS que funciona a 2400 baudios, esto ocurre porque por cada baudio o cambio de polaridad eléctrica, se están trasmitiendo 4 bits (cuatro 0 o 1). En redes con grandes distancias a cubrir, la variable que quizás más pesa en la elección del cableado es el costo económico.

Cable de video: El cable de video elegido y que cumple con los requisitos es el CABLE COAXIAL RG-59 que se detalla a continuación y se puede ver en la figura siguiente.

![Cable coaxial RG59](image)

Figura N°40. Cable coaxial RG59.

Fuente: (Sanz, 2010)

- Conductor interior (material / Ø mm): CW / 0.58.
- Dieléctrico (material / Ø mm): sólido PE / 3.70.
- Trenza (material / Ø mm cuantidad): CU descubierto / 0.12 x 112.
- Blindaje (material / difusión %): CU / 95.
- Cubierta (material / Ø mm color): PVC II / 6.2 negro.
- Datos eléctricos (impedancia): 75 ± 5 ohm.
- Atenuación (dB / 100m).
- Operating temperature range: -5 ->50º.
- Longitud: 500m (en bobina).
Elección del Cable Video: Hay dos factores que gobiernan la selección del cable:

- La localización de los funcionamientos de cable, de interior o al aire libre. En este caso interior porque la parte del patio se encuentra cubierta.
- La distancia total de recorrido del cable, para que la resistencia no varíe de 75 ohmios y no exista perdida de señal.

Las características del cable son determinadas por un número de factores (material de la base, material dieléctrico y construcción del protecto, entre otras) y se deben emparejar cuidadosamente al uso específico. Por otra parte, las características de la transmisión del cable serán influenciadas por el ambiente físico a través del cual se funciona el cable y el método de instalación. Se debe de utilizar solamente el cable de alta calidad y tener cuidado de emparejar el cable al ambiente (de interior o al aire libre). En las localizaciones en donde el cable debe ser doblado continuamente, el cable usado debe de estar pensado para tal aplicación. Este cable tendrá una base trenzada del alambre. Se utilizará solamente el cable con la encalladura de cobre pura. No utilizar el cable con la encalladura de acero cobre-plateada porque no transmite con eficacia en la gama de frecuencia usada en CCTV. El material dieléctrico preferido es polietileno de la espuma. El polietileno de la espuma tiene características eléctricas mejores y ofrece a mejor excedente del funcionamiento el polietileno sólido, pero es más vulnerable a la humedad. Se debe de utilizar el cable con dieléctrico sólido del polietileno en usos conforme a la humedad, aunque en principio en esta aplicación no se debería tener problemas de humedad ya que el cable no se encuentra expuesto a la intemperie. En la instalación media de
CCTV, con longitudes de cable de menos de (228 m), el cable de RG59 es una buena opción. Teniendo una dimensión exterior de aproximadamente 0.25 pulgadas, viene en rodillos de 500 metros que es lo que se necesita para el sistema de video. Una vez más, las características eléctricas de este cable son básicamente los mismos que los demás. Debido a los cambios en el fuego y las normas de seguridad en todo el país, teflón y el fuego de otros materiales retardantes son cada vez más populares como las chaquetas exteriores y los materiales dieléctricos.

Tendidos de cable. Aunque el cable coaxial tiene pérdidas incorporadas, el más largo y el más pequeño es el cable que más severas pérdidas tiene; y cuanta más alta es la frecuencia de la señal, más pronunciadas las pérdidas. Desafortunadamente éste es uno de los problemas más comunes y más innecesarios que plagan actualmente sistemas de la seguridad de CCTV en su totalidad. Si, por ejemplo, el monitor está situado (304 m) de la cámara, aproximadamente 37 por ciento de la información de alta frecuencia serán perdidos en la transmisión. A menos que se tenga un conocimiento total de las características del cable con instalaciones de miles de metros el sistema puede proporcionar una imagen seriamente degradada. Así pues, si las cámaras y monitores están separados por una distancia mayor de los 228 m, se debe comprobar para asegurarse que se haya hecho una cierta disposición de garantizar la fuerza de la transmisión de señal video, manteniendo la impedancia del cable constante.

Terminación de cable: En los sistemas de video vigilancia, las señales de la cámara deben viajar de la cámara al monitor. El método de transmisión es generalmente cable “coaxial” hasta el DVR. La terminación apropiada de cables
es esencial para el funcionamiento confiable de un sistema. Como la impedancia característica del cable coaxial se extiende a partir del 72 a 75 ohmios, es necesario que los recorridos de la señal, en una trayectoria uniforme, a lo largo de cualquier punto en el sistema, se debe prevenir cualquier distorsión y ayudar a asegurar la transferencia apropiada de la señal de la cámara. La impedancia del cable debe seguir siendo constante con un valor de 75 ohmios. Para transferir correctamente energía entre dos dispositivos de video con pérdidas aceptables, la señal que sale de la cámara debe emparejar la impedancia de la entrada del cable, que alternadamente debe emparejar la impedancia de la entrada del monitor. El punto final de cualquier funcionamiento de cable video se debe terminar en 75 ohmios. La impedancia de la entrada del DVR se controlada generalmente por un interruptor situado cerca de los conectadores de video (de la entrada-salida). Este interruptor permite cualquier terminación de 75 ohmios. Se debe comprobar las especificaciones y las instrucciones del equipo y determinar los requisitos apropiados de la terminación. (Sanz, 2010)

Conector para cable coaxial: El conector utilizado para el cable coaxial es el BNC.

![Conector BNC](image)

Figura Nº41. Conector BNC.

Fuente: (Sanz, 2010)
4.6.4. **Normatividad:**

Código Nacional de Electricidad: En el capítulo 8, “Sistema de Comunicación”, 8.1.2.2 Instalaciones de Conductores inciso (a) Separación de conductores, dice: Conductores a la Vista. Los conductores deberán estar separados por lo menos 5 cm de cualquier conductor de alumbrado o de fuerza o de circuitos de Clase I, a menos que:

a. Los conductores de alumbrado o de fuerza o de Clase I estén colocados en una canalización o formen parte de un cable con cubierta metálica, armadura metálica o cubierta no metálica.

b. Los conductores estén permanentemente separados de los conductores de otros sistemas por un material no conductor continuo y finamente fijado, tal como tubo de porcelana o tubería flexible, adicionalmente al aislante de los conductores.

Normas Para Cableado Estructurado: Al ser el cableado estructurado un conjunto de cables y conectores, sus componentes, diseño y técnicas de instalación deben de cumplir con una norma que dé servicio a cualquier tipo de red local de datos, voz y otros sistemas de comunicaciones, sin la necesidad de recurrir a un único proveedor de equipos y programas. De tal manera que los sistemas de cableado estructurado se instalan de acuerdo a la norma para cableado para telecomunicaciones, EIA/TIA/568-A, emitida en Estados Unidos por la Asociación de la industria de telecomunicaciones, junto con la asociación de la industria electrónica.

Estándar ANSI/TIA/EIA-568-A de Alambrado de Telecomunicaciones para Edificios Comerciales. El propósito de esta norma es permitir la planeación e instalación de cableado de edificios con muy poco conocimiento de los productos
de telecomunicaciones que serán instalados con posterioridad. ANSI/EIA/TIA emiten una serie de normas que complementan la 568-A, que es la norma general de cableado: Estándar ANSI/TIA/EIA-569-A de Rutas y Espacios de Telecomunicaciones para Edificios Comerciales. Define la infraestructura del cableado de telecomunicaciones, a través de tubería, registros, pozos, trincheras, canal, entre otros, para su buen funcionamiento y desarrollo del futuro. EIA/TIA 570, establece el cableado de uso residencial y de pequeños negocios. Estándar ANSI/TIA/EIA-606 de Administración para la Infraestructura de Telecomunicaciones de Edificios Comerciales. EIA/TIA 607, define al sistema de tierra física y el de alimentación bajo las cuales se deberán de operar y proteger los elementos del sistema estructurado.

Norma Técnica Peruana NTP 370.053 Seguridad Eléctrica. Elección de los materiales eléctricos en las instalaciones interiores para puesta a tierra. Conductores de protección de cobre. Esta Norma Técnica Peruana establece las condiciones que deben cumplir los conductores eléctricos a ser utilizados como conductores de protección a tierra considerados necesarios para la seguridad de las personas, animales y de la propiedad, frente a los peligros y daños que pueden resultar por el uso de las instalaciones eléctricas, en condiciones que puedan ser previstas. Esta Norma Técnica Peruana se aplica en instalaciones interiores en edificios públicos, edificios residenciales, viviendas unifamiliares o locales comerciales, cuando el conductor de protección a tierra corresponde a un alambre o conjunto de alambres de cobre. Puede ser desnudo, cubierto o aislado.
Norma EM. 020, Instalaciones De Comunicaciones: La presente Norma, establece las condiciones que deben cumplir, las redes e instalaciones de telecomunicaciones en edificaciones que involucran a las telecomunicaciones y a los servicios postales de ser el caso. El diseño e implementación de la infraestructura de comunicaciones en edificaciones que involucran a las telecomunicaciones y a los servicios postales de ser el caso, deben observar las normas correspondientes específicas que aprobará el Ministerio de Transportes y Comunicaciones. En la presente Norma se desarrolla lo referido a redes e instalaciones de telecomunicaciones. La presente norma se aplica a las redes e infraestructura de telecomunicaciones en edificaciones, considerando, entre otros, los siguientes aspectos:

- Diseño y construcción de los sistemas de ductos, conductos y/o canalizaciones que permitan la instalación de las líneas de acometida y la distribución interna dentro de las edificaciones, que permitan la provisión de los servicios de telecomunicaciones.

- Diseño y construcción de canalizaciones y cámaras que permitan la instalación y empalmes necesarios de los cables de distribución.

- Diseño y construcción de ductos, conductos y/o canalizaciones a partir de la cámara de acometida.

- Diseño y construcción de instalaciones de captación de señales de televisión y otros.

La infraestructura de telecomunicaciones considera los siguientes sistemas entre otros:

- Sistemas telefónicos fijos y móviles

- Sistemas de telefonía pública
- Sistemas satelitales
- Sistemas de procesamiento y transmisión de datos
- Sistemas de acceso a Internet
- Sistemas de cableado, inalámbricos u ópticos
- Sistemas de radiodifusión sonora o de televisión
- Sistemas de protección contra sobretensiones y de puesta a tierra.

La autoridad competente que apruebe el proyecto, autorice la construcción y/o recepción de obras u otros actos administrativos para la edificación respectiva, tendrá la responsabilidad de velar, que el proyecto cumpla con la presente Norma y las disposiciones que emita el Ministerio de Transportes y Comunicaciones. Las instalaciones existentes se adecuarán a la presente normativa en los aspectos relacionados con la seguridad de las personas y de la propiedad, para lo cual se tomará en cuenta las normas y recomendaciones del Instituto Nacional de Defensa Civil –INDECI, el Código Nacional de Electricidad y las normas que fueran pertinentes.

4.6.5. Sistema de Protección Eléctrica

4.6.5.1. UPS:

Para saber que UPS necesitaremos tenemos que convertir la potencia teórica 126.8W (Potencia total según Tabla N°04) a la potencia real, que es en Volt Ampere (VA), para ello multiplicamos por el factor de corrección que es 1.45, también tenemos que tener en cuenta que debemos adicionarle un 25% a 30 % de tolerancia o eficiencia a futuro.

\[
126.8 W \times 1.45 = 183.86 VA
\]

\[
183.86 VA + 183.86 VA(30\%) = 239.018 VA
\]
La potencia que tomaremos en cuenta será de 0.239KVA, en el mercado existen varias posibilidades, tenemos una propuesta de 1 KVA, consideramos a un UPS HP9116C Series de SOROTEC, las características técnicas se pueden observar en el Anexo 3.

Tabla N°04. Consumo de potencia de los equipos utilizados.

<table>
<thead>
<tr>
<th>Cant.</th>
<th>Equipo</th>
<th>Pot.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Cámara 1 IP Dlink DCS 5300</td>
<td>4.8 W</td>
<td>4.8W</td>
</tr>
<tr>
<td>8</td>
<td>Cámaras 2, 3, 4, 5, 6, 7, 8,9: SONY CCD 1/4"</td>
<td>6W</td>
<td>48W</td>
</tr>
<tr>
<td>1</td>
<td>DVR: Avtech H264 8CH.</td>
<td>64W</td>
<td>64W</td>
</tr>
<tr>
<td>1</td>
<td>Registrador de asistencia biométrico 3000 T-C de Scimic.</td>
<td>10W</td>
<td>10W</td>
</tr>
</tbody>
</table>

Elaboración: Propia del Autor

4.6.5.2. Puesta a tierra:

Dentro del sistema integral de protección contra rayos, las Puestas a Tierra constituyen un elemento fundamental dentro de cualquier instalación industrial, vivienda, comercial y todas las construcciones posibles. Protege a las personas y a los equipos de los riesgos y peligros que existen al producirse algún fenómeno eléctrico dentro de la instalación. Una puesta a tierra adecuada permite que cualquier fuga que se produzca busque la tierra como destino inmediato y evitando así una descarga sobre quien, accidentalmente, entre en contacto con un equipo defectuoso. El objetivo de una puesta a tierra es limitar sobretensiones debidas a descargas atmosféricas y fenómenos transitorios; además de conducir a tierra todas las corrientes de fuga, producidas por una falla de aislamiento que pasa corriente a las carcasas de los equipos eléctricos.
Según Norma Técnica Peruana NTP 370.053, SEGURIDAD ELÉCTRICA.
Elección de los materiales eléctricos en las instalaciones interiores para puesta a tierra. Esta Norma Técnica Peruana se aplica en instalaciones interiores en edificios públicos, edificios residenciales, viviendas unifamiliares o locales comerciales, cuando el conductor de protección a tierra corresponde a un alambre o conjunto de alambres de cobre. Puede ser desnudo, cubierto o aislado. (NTP 370.053, 1999)

Figura N°42. Tablero general y su conexión a Tierra.

Fuente: (NTP 370.053, 1999)

(a) Conductor Neutro (sólo para sistemas que lo utilicen)
(b) Conductor de Protección (a Tierra)
(c) Puente de Unión entre Neutro y Tierra (sólo en el Panel Principal)
(d) Conductor de Puesta a Tierra
(e) Interruptor General
(f) Interruptor de Circuito Derivado
Para el cableado eléctrico se tomara en cuenta el código de colores de dicha norma, en concordancia con el Código Nacional de Electricidad, el conductor de protección a tierra tendrá una cubierta o un aislamiento de color amarillo, de manera de poder distinguirlos de los conductores activos (de fase) o del conductor neutro si existiera. Los conductores destinados a ser usados como conductores neutros de circuitos (si existen), deberán tener un revestimiento de color blanco. Los conductores activos usados como conductores individuales, deberán tener un revestimiento que los distinga de los conductores neutros (si existe), de puesta a tierra o de protección. Deberán identificarse con colores distintos del blanco o amarillo, como por ejemplo: negro, azul o rojo. (NTP 370.053, 1999)

Importancia de una puesta a tierra:

- a) Es importante porque convierte el uso de la energía eléctrica en algo seguro.
- b) Mayor vida útil y mejor protección de sus equipos eléctricos y electrónicos.
- c) Disipa y minimiza los devastadores efectos de las sobrecargas y descargas eléctricas de los rayos.
- d) Según el código Nacional de Electricidad es obligatorio tener una puesta a tierra.
- e) INDECI exige la certificación de baja resistencia de una puesta a tierra firmado por un ingeniero colegiado.
Figura No. 43. Importancia de una puesta a tierra.

Fuente: (URL12, s.f.)

Tipos de puesta a tierra:

a) Puesta a tierra vertical: para espacios pequeños (los coloca más cerca de la caja de luz)

b) Puesta a tierra horizontal: para espacios grandes (puede ser colocado en espacios más grandes.

Figura No. 44. Tipos de puesta a Tierra.

Fuente: (URL12, s.f.)

4.6.6. Diseño físico

Se colocara canaletas en toda la instalación tanto para las cámaras como para el registrador de asistencia biométrico, se utilizó la canaleta de medidas 40x15mm debido a que irán más de dos cables en el caso de la cámara 6 y 2.
también por razones de ampliación a futuro, se emplea un aproximado de 75 metros de canaleta, como cada canaleta tiene 3m, son 25 canaletas requeridas, también se instalará las tomas RJ45 respectivas para la cámara 1 (IP PTZ) y para el registrador de asistencia biométrico. Para la canalización del cableado se tomará en cuenta las normas EM.020: Instalaciones en Telecomunicaciones.

El cableado eléctrico se instalara en paralelo con el de datos cada cable en su canaleta respectiva, separados 3-6 cm según norma: 340-510, Conductores de Comunicación en Edificaciones, (CNE, 2006), las tomas eléctricas de las cámaras estarán conectadas al UPS, el UPS actualmente no está instalado pero se tiene la conexión lista para su instalación a futuro, tomando en cuenta las especificaciones técnicas de los equipos a utilizar podemos calcular la potencia del UPS requerido es de 126.8W.
Figura №45. Instalación de las canaletas y tomas para datos.

Fuente: (Planos de las Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Elaboración: Propia del Autor
4.6.7. Diseño Lógico

En la figura N°46 se presenta cómo se estructura la red para las cámaras:

Figura N°46. Ubicación de las cámaras.

Fuente: (URL1, s.f.), (URL9, s.f.)
Elaboración: Adaptación, Propia del Autor

4.6.8. Presupuesto para la empresa

Después de haber hecho el análisis y estudio de equipos, se procede con el presupuesto de los materiales requeridos para la instalación.
Tabla N°05. Presupuesto requerido para su implementación.

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Unidad</th>
<th>Cant.</th>
<th>Precio U.</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cámara SONY 1/3" COLOR 420 TVL 3.6mm IR 25-30mt, LED: 24Pcs, 0.1lux, 12V/500mA</td>
<td>und.</td>
<td>8</td>
<td>S/. 179.80</td>
<td>S/. 1,438.40</td>
</tr>
<tr>
<td>Automático IR trigger On/off, para exteriores.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cámara IP Dlink DCS 5300</td>
<td>und.</td>
<td>1</td>
<td>S/. 220.00</td>
<td>S/. 220.00</td>
</tr>
<tr>
<td>AVC796B - 8CH H.264 Network DVR</td>
<td>und.</td>
<td>1</td>
<td>S/. 2,350.00</td>
<td>S/. 2,350.00</td>
</tr>
<tr>
<td>Carcasa de exterior para cámaras</td>
<td>und.</td>
<td>2</td>
<td>S/. 180.00</td>
<td>S/. 360.00</td>
</tr>
<tr>
<td>Cable RG59</td>
<td>mts.</td>
<td>500</td>
<td>S/. 0.50</td>
<td>S/. 250.00</td>
</tr>
<tr>
<td>Cable utp cat 5e</td>
<td>mts.</td>
<td>20</td>
<td>S/. 1.00</td>
<td>S/. 20.00</td>
</tr>
<tr>
<td>Plug RJ45 cat 5e</td>
<td>und.</td>
<td>6</td>
<td>S/. 0.60</td>
<td>S/. 3.60</td>
</tr>
<tr>
<td>Conector BNC</td>
<td>und.</td>
<td>20</td>
<td>S/. 2.50</td>
<td>S/. 50.00</td>
</tr>
<tr>
<td>Canaleta 40x15</td>
<td>und.</td>
<td>25</td>
<td>S/. 2.50</td>
<td>S/. 62.50</td>
</tr>
<tr>
<td>Canaleta 20x10</td>
<td>und.</td>
<td>25</td>
<td>S/. 1.50</td>
<td>S/. 37.50</td>
</tr>
<tr>
<td>Tubería Corrugada 5cm de diámetro</td>
<td>mts.</td>
<td>5</td>
<td>S/. 5.00</td>
<td>S/. 25.00</td>
</tr>
<tr>
<td>Precintos</td>
<td>paquete</td>
<td>1</td>
<td>S/. 6.00</td>
<td>S/. 6.00</td>
</tr>
<tr>
<td>Control de asistencia iclock3500</td>
<td>und.</td>
<td>1</td>
<td>S/. 2,850.00</td>
<td>S/. 2,850.00</td>
</tr>
<tr>
<td>Cable awg 2x22</td>
<td>Mts.</td>
<td>300</td>
<td>S/. 1.20</td>
<td>S/. 360.00</td>
</tr>
<tr>
<td>Otros</td>
<td>und</td>
<td>100</td>
<td>S/. 100.00</td>
<td>S/. 100.00</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td>S/. 8,133.00</td>
</tr>
</tbody>
</table>

Elaboración: Propia del Autor
4.6.9. Configuración de equipos:

4.6.9.1. Cámaras

![Conexiones de la cámara IP Dlink DCS 5300.](image)

Figura N°47. Conexiones de la cámara IP Dlink DCS 5300.

FUENTE: (URL9, s.f.)

Elaboración: Adaptación Propia del Autor

La cámara Dlink se conecta con su respectiva fuente de 12 VDC, también se conecta a la red mediante el cable UTP, adicionalmente se le puede conectar un micrófono, también tiene un conector para entrada o salida que se puede configurar para por ejemplo activar una alarma, etc, también posee conexión para salida de audio video, es decir que puede funcionar analógicamente.

![Conexión a los equipos de la cámara IP Dlink DCS 5300.](image)

Figura N°48. Conexión a los equipos de la cámara IP Dlink DCS 5300.

FUENTE: (URL9, s.f.)

Elaboración: Adaptación Propia del Autor
En la figura N°48 se observa el conexionado de la cámara tplink al swith #1, la cual mediante la instalación y configuración del software se puede tener acceso a la imagen desde cualquier pc. Después de instalar el hardware correctamente es necesario instalar el software para poder manipularla, el primer paso es instalar el controlador que viene en un cd juntamente con la cámara, podemos configurarla en cualquier computadora que esté conectada a la misma red. Las cámaras 2-9 son analógicas se conectan directamente al dvr de acuerdo al siguiente esquema:

Figura N°49. Conexión de las cámaras analógicas al DVR y al SWITH 2.

Fuente: (Manual DVR Avetech 8CH., s.f.), (URL1, s.f.)

Elaboración: Adaptación Propia del Autor

4.6.9.2. DVR

Antes de encender y configurar el DVR se instaló el disco duro de 500 GB como se muestra en la figura:
Figura Nº50. Instalación de disco duro HDD SATA 500GB en el DVR.

FUENTE: (Archivo de Imágenes del Procedimiento de instalacion de Cámaras de Seguridad, 2013)

Elaboración: Propia del Autor

Las cámaras deben conectarse y encenderse antes de que se encienda el DVR. Conecte la cámara con la fuente de alimentación indicada. Entonces, conecte la salida de vídeo de la cámara al puerto de entrada de vídeo del DVR con un cable coaxial o cable RCA con conectores BNC.

Enseguida se enciende el DVR, y lo primero que se recomienda es configurar la fecha y la hora, introducir la contraseña del DVR, la contraseña predeterminada del administrador es 0000. El estado cambiará de (bloqueo de clave) a (administrador). Haga clic con el botón derecho para mostrar el menú principal. Seleccione “RAPIDA INICIALIZACIÓN” “Configuración de hora” para configurar la fecha y la hora.
Figura Nº51. Configuración de Hora y Fecha DVR.

Fuente: (Manual DVR Avetech 8CH., s.f.)

Se recomienda borrar los datos del disco duro antes de iniciar la grabación:

Figura Nº52. Menú para borrar el disco HDD.

Fuente: (Manual DVR Avetech 8CH., s.f.)

Para configurar la red se ingresa al menú avanzado, a la pestaña configuración de red:

Figura Nº53. Menú para Configurar la RED.

Fuente: (Manual DVR Avetech 8CH., s.f.)
Una vez hecho esto se puede acceder a las imágenes por medio de la web en cualquier pc conectada a la misma red:

Figura Nº54. Imágenes desde el panel Web.

Fuente: (Panel Web, DVR Avetech 8CH. Instalaciones de la Empresa Autoaccesorios Los Gemelos SAC, 2013)

Como se puede apreciar en las imágenes ya tenemos las señales tanto interior como exterior de la empresa, grabadas en el disco duro del DVR.

4.6.9.3. Control de asistencia iclock3500

Una vez instalado el sistema se procede a configurarlo, para lo cual se va a describir los pasos más importantes:

i. Instalar el dispositivo, conectarlo a la corriente y encenderlo.

ii. Enrollar a los usuarios registrando sus huellas digitales, contraseñas y/o tarjetas. Asignar los usuarios con privilegios (administradores para que solo los responsables puedan tener acceso a la administración).
iii. Después de registrar a los usuarios, verificar si la huella, contraseña y tarjeta registradas son válidas.

iv. Configure la comunicación entre el equipo y el sistema. Luego descargue la información de los usuarios al software. La data puede ser transmitida, dependiendo del equipo, por TCP/IP, RS232 y RS485, USB o Memoria USB.

v. Verificar que el equipo muestre el día y hora correcta. Entonces se puede empezar a registrar asistencias.

vi. Descargar los registros de asistencia en los lapsos de tiempo convenientes. Puede ser al inicio o fin de mes, a la quincena, o a la semana, de acuerdo a su evaluación de asistencias.

En seguida se instala el software del sistema en la PC del administrador, su instalación es muy simple el cual se resume en las siguientes figuras:

![Figura Nº55. Instalación de software ZKTime 5.0.](image)

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)
Figura Nº56. Ventana Principal Software ZKTime 5.0.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

Una vez instalado el software se procede a configurarlo para lo cual el proveedor envía los manuales de configuración y videos tutoriales, a continuación hacemos un resumen:

Primeramente se conecta el equipo al sistema, se introduce la información necesaria, después de la conexión exitosa, la descarga o subida de datos estará disponible.
Figura N°57. Ventana para configurar el dispositivo para su conexión.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

Para configurar la conexión se hace Click en “Equipo” en la interface, en esa lista podrá agregar, eliminar y modificar dispositivos. Por defecto hay dos parámetros de comunicación en el sistema, uno es RS232/RS485, el otro es Ethernet.

- Agregar el usuario puede agregar nuevos dispositivos, introduzca los parámetros correspondientes de la conexión, grábelos, el nombre del dispositivo aparecerá en la lista de la izquierda.

- Nombre del dispositivo: El nombre que el dispositivo tendrá al conectarse con el equipo.

- Forma de Comunicación: Cual método es usado para la comunicación entre el dispositivo y la computadora.

- Baud rate: La velocidad debe ser la misma en el equipo y la PC.

- Dirección IP: La dirección IP del equipo
- Contraseña de comunicación: Si hay una contraseña de comunicación en el equipo deberá ponerla en este campo, de lo contrario no es necesario que escriba algo.
- Número del equipo: Número de identificación del equipo.
- Borrar: Si el equipo ya no estará más en uso, de un click sobre él en la lista de la izquierda, click en (Borrar) para quitarlo del sistema.
- Guardar: Después de modificar la información de los parámetros de conexión de click en (Guardar) para guardar la información.

Figura Nº58. Configuración del dispositivo.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

En la figura Nº58 se muestra la configuracion del equipo, donde se le da el nombre del equipo, su dirección ip, contraseña para la comunicación y una vez terminado esto se guarda para luego conectarnos con el equipo y poder descargar los datos de los empleados que previamente fueron cargados directamente en el equipo. Una vez conectado podemos realizar el cargado de datos, la utilidad de intercambio es utilizada para descargar o subir datos de
registros e información de usuarios. El siguiente procedimiento muestra cómo usar esta utilidad para descargar y subir datos.

- Descargar del equipo el registro de asistencia: Descarga todos los registros de verificación en el equipo.

- Descargar del equipo información y huellas del personal:

 Descarga la información del personal, las huellas del personal pueden ser descargadas al mismo tiempo.

- Subir al equipo información y huellas del personal: Sube la información y huellas del personal al mismo tiempo.

- Administración del equipo: Examinar la información del equipo y modificar opciones mediante el software.

- Descargar del equipo el registro de asistencia: No es posible descargar datos del equipo a menos que el equipo y el sistema se encuentren conectados.

Figura N°59. Intercambio de datos entre el software y el equipo.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)
Los datos descargados han sido agregados al sistema, si los datos son muchos, es posible que se necesite mucho tiempo para realizar la descarga. Los registros descargados se pueden mostrar en el área que tiene el círculo de la figura N°59. Al mismo tiempo, los registros nuevos serán almacenados en la lista de datos de registro de personal en el sistema, usted podrá verlos desde el registro de asistencia; los usuarios nuevos serán almacenados en el sistema en la tabla de información de personal. Después de descargar los datos, el sistema aun no elimina los datos almacenados en el equipo. En la opción Mantenimiento, Opciones, Guardas descargas, puede elegir descargar los datos y borrar el registro de datos del equipo al mismo tiempo, el sistema removerá del equipo los registros de datos automáticamente. Después de realizar el registro de los empleados y asignar los administradores con sus diferentes privilegios, se procede a configurar el horario de asistencia, el tiempo de tolerancia de marcado, etc., para ellos tenemos el menú descrito en la siguiente figura:
Figura N°60. Procedimiento para configurar la asignación de los horarios.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

Como podemos apreciar en las figuras N°60 la configuración de horarios podemos establecerla para diferentes empleados de acuerdo a su tipo de trabajo, donde a veces no necesariamente tendría que marcar, o en el caso que
este de viaje, tenemos diferentes obsiones lo cual no vamos a detallar solo aremos un resumen.

Una vez realizado lo anterior se procede a probar el sistema, nuestro sistema funciono bien para lo cual tuvimos que modificar el horario, de acuerdo al los requerimientos de la empresa, una ves realizado las pruebas, podemos hacer el reporte el cual es utilizado para consultar los registros de asistencia de todo el personal que ha sido descargado del equipo.

Figura Nº61. Registro de asistencia.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

Click en el menú (buscar/ imprimir), de click en la opción "registro de asistencia" y aparecerá la siguiente pantalla:
Figura N°62. Búsqueda de Marcaciones de Asistencia de los Empleados.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

La lista contiene el nombre del departamento, el número de registro, el número de empleado, el nombre, la fecha y hora y el número de equipo. El usuario también podrá ver el estado de asistencia y el código de trabajo. Para imprimir el reporte, solo necesita hacer click en el botón de impresión en la parte superior izquierda de la ventana:
Figura Nº63. Procedimiento para la impresión de los registros de asistencia.

Fuente: (zk-software Soluciones Biométricas Avanzadas, s.f.)

También podemos exportar este registro a Excel así tendríamos facilidad para agregar más datos como las horas de trabajo y el costo por hora, etc.
CONCLUSIONES

Primero: El diseño del sistema de video vigilancia y del control biométrico se desarrolló teniendo en cuenta los diferentes criterios de ingeniería ajustándose a las normas que son necesarios para su posterior implementación; asimismo se plantea los diferentes equipos y medios de transmisión que han de formar parte del proyecto para su correcto funcionamiento. Todo esto teniendo en cuenta las condiciones físicas del establecimiento donde funciona la empresa “Autoaccesorios Los Gemelos SAC”.

Segundo: El Implementación del sistema de video vigilancia y del control biométrico se realizó teniendo en cuenta el diseño planteado y teniendo en cuenta las normas de seguridad que son necesarios para este tipo de proyectos y en coordinación con los dueños de la empresa y demás personal que labora en dicha establecimiento.

Tercero: Considerando que en dicha empresa no se contaba con un sistema de video vigilancia y un sistema de control de personal adecuado, POR LO TANTO con el DISEÑO e IMPLEMENTACION de un sistema de VIDEO VIGILANCIA Y UN SISTEMA DE CONTROL BIOMÉTRICO de asistencia, permitirá mejorar tanto la seguridad en y un mejor control de asistencia del personal que labora en dicha empresa.

Cuarto: Se demostró que la instalación de cámaras de seguridad y el control de asistencia biométrico para el control de asistencia de personal,
en una empresa es muy importante y necesario cuando se tiene un alto crecimiento económico ya que se tiene mayor afluencia de clientes y más personal para atender la demanda, con eso podemos observar tanto a los clientes como al personal, así como también tener estrictamente la asistencia del personal.
SUGERENCIAS

Primero: Hace falta instalar más cámaras de seguridad, y de mayor calidad de imagen, colocar un monitor en la sala de diseño para incrementar la disuasión tanto de clientes como de personal.

Segundo: Es necesario publicar días antes el reporte de asistencia de cada empleado, para ello se recomienda configurar el sistema biométrico de asistencia para que pueda publicar por web o enviar vía correo electrónico dicho reporte a cada empleado.

Tercero: Las cámaras que se encuentran fuera de las instalaciones de la empresa, en temporadas de lluvia se nublan haciendo ineficiente la visibilidad, se recomienda usar cámaras domo con IP65.

Cuarto: Se hace necesario colocar alarma en caso de intrusos.

Quinto: Las cámaras de seguridad y el sistema biométrico de asistencia están conectadas a la red eléctrica, se recomienda conectarlas a un UPS ya que en caso de apagones las cámaras sigan grabando y el sistema pueda seguir registrando.
BIBLIOGRAFÍA

[10] (s.f.). Norma Técnica Peruana NTP 370.053, Seguridad Eléctrica.

[33] zk-software Soluciones Biométricas Avanzadas. (s.f.). Obtenido de http://www.zk-software.com/

ANEXO A:

Cotización SCIMIC TECHNOLOGIES S.A.C
ANEXO B

Lista de precios Microtech Perú.

<table>
<thead>
<tr>
<th>IMAGEN</th>
<th>MODELO MTP</th>
<th>ESPECIFICACIONES</th>
<th>STOCK</th>
<th>S/ SIN IDV</th>
<th>S/ INC IDV PRECIO</th>
<th>S/ INC IDV PRECIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>TH-009</td>
<td>SONY 1/3" COLOR 420 TVL, 1/16"</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>52,54</td>
<td>62,00</td>
<td>178,80</td>
<td></td>
</tr>
<tr>
<td>AP-1593</td>
<td>SONY CCD 420TV, Max 10M, super IR leds, humo sensitive proof IR, waterproof IR, peeled edge,</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>55,47</td>
<td>69,00</td>
<td>209,10</td>
<td></td>
</tr>
<tr>
<td>MTH-409T</td>
<td>SONY 9" COLOR CTV, 30m, HOUSING CON BRACKET</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>62,41</td>
<td>97,24</td>
<td>282,00</td>
<td></td>
</tr>
<tr>
<td>AP-1443 G</td>
<td>SONY CCD, 660TVL PAN 360, Cámara antifurto, indoor, waterproof,</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>40,33</td>
<td>54,69</td>
<td>158,60</td>
<td></td>
</tr>
<tr>
<td>TB-001</td>
<td>SONY 1/3" COLOR 420 TVL, PAL, Tilt, IR 24 leds, 30M, 90°, waterproof, IR, peeled edge,</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>70,01</td>
<td>82,61</td>
<td>239,57</td>
<td></td>
</tr>
<tr>
<td>TD-001</td>
<td>SONY 1/3" COLOR 420 TVL, PAL, Tilt, IR 24 leds, 30M, 90°, waterproof, IR, peeled edge,</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>46,35</td>
<td>54,69</td>
<td>168,60</td>
<td></td>
</tr>
<tr>
<td>TM-029</td>
<td>CMOS 1/3" COLOR 540 TVL PAL, Tilt, IR 24 leds, 30M, 90°, Ultra HD,</td>
<td>OFERTA</td>
<td>16,76</td>
<td>22,14</td>
<td>64,21</td>
<td></td>
</tr>
<tr>
<td>TML-20</td>
<td>CMOS 1/3" COLOR 540 TVL PAL, Tilt, IR 24 leds, 30M, 90°, Ultra HD,</td>
<td>OFERTA</td>
<td>27,31</td>
<td>32,22</td>
<td>93,44</td>
<td></td>
</tr>
<tr>
<td>TC-003</td>
<td>SONY 1/3" COLOR CTV, PAL, Tilt, IR 24 leds, 30M, 90°, waterproof, IR, peeled edge,</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>45,65</td>
<td>53,07</td>
<td>156,22</td>
<td></td>
</tr>
<tr>
<td>QF-021</td>
<td>CMOS 1/3" COLOR CTV, PAL, Tilt, IR 24 leds, 30M, 90°, waterproof, IR, peeled edge,</td>
<td>OFERTA</td>
<td>32,92</td>
<td>38,85</td>
<td>112,67</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Descripción</td>
<td>Lote</td>
<td>Oferta 1</td>
<td>Oferta 2</td>
<td>Oferta 3</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>SSE0286</td>
<td>LENTE: Manual Iris 1/3" Mount CS: 2.1mm.</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>20,48</td>
<td>24,17</td>
<td>70,09</td>
<td></td>
</tr>
<tr>
<td>SSV0356GN</td>
<td>LENTE: Manual Zoom Auto Iris: 1/2.8mm.</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>17,19</td>
<td>20,28</td>
<td>58,81</td>
<td></td>
</tr>
<tr>
<td>MTHL-001-2E</td>
<td>BALUN: 2 Canales Video / 1 Canales Audio</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>3,98</td>
<td>4,79</td>
<td>13,63</td>
<td></td>
</tr>
<tr>
<td>MTW-0906C</td>
<td>ADAPTADOR CCTV.</td>
<td>DISPONIBLE EN ALMACENES</td>
<td>5,14</td>
<td>6,06</td>
<td>17,57</td>
<td></td>
</tr>
<tr>
<td>MP-001</td>
<td>PTZ HIGH SPEED + SONY 1/4" CCD 480 TVL. 8.1 LUX 1/10 OPTICOS DIANOCHE</td>
<td>SOLO PEDIDOS</td>
<td>927,88</td>
<td>1089,00</td>
<td>3158,10</td>
<td></td>
</tr>
<tr>
<td>MK-001</td>
<td>SIMPLE CONTROL: DOME PTZ 3 ejes</td>
<td>SOLO PEDIDOS</td>
<td>152,54</td>
<td>180,00</td>
<td>522,00</td>
<td></td>
</tr>
<tr>
<td>MK-002</td>
<td>3 EJE'S CONTROL CUBIERTA METALICA: DOME PTZ</td>
<td>SOLO PEDIDOS</td>
<td>334,75</td>
<td>395,00</td>
<td>1145,50</td>
<td></td>
</tr>
<tr>
<td>Código</td>
<td>Producto</td>
<td>描述</td>
<td>OFERTA</td>
<td>116.95</td>
<td>138.00</td>
<td>409.20</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>T882</td>
<td>4CH DVR, H.264, SATA, SUPPORT IE, SYMBIAN,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BLACKBERRY, AND IPHONE MOBILE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support resume, USB, network, IE View,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HDMI output, support system/channel black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>busy and system/ channel red busy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Active: 27 blocks]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[720dpi, 640x360, 720dpi, VGA, 720dpi NTSC]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Support network: USB backup]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Support: 300°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>330HS</td>
<td>8CH DVR, H.264, SATAS SUPPORT PTZ, IE VIEW,</td>
<td></td>
<td></td>
<td>236.61</td>
<td>350.00</td>
<td>1015.00</td>
</tr>
<tr>
<td></td>
<td>SUPPORT SYMBIAN, BLACKBERRY, DROID AND IPHONE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MOBILE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support resume, USB, network, IE View,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>support system/black busy and system/white</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>busy and system/channel black busy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Active: 30 blocks, 720dpi, 770dpi, 720dpi,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Support: 32°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3716HC</td>
<td>16CH DVR, H.264, SATAS SUPPORT PTZ, IE VIEW,</td>
<td></td>
<td></td>
<td>585.98</td>
<td>695.00</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SUPPORT SYMBIAN, BLACK BERRY AND IPHONE.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Support resume, USB, network, IE View,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>support system/black busy and system/white</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>busy and system/channel black busy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Active: 60 blocks, 720dpi, 770dpi, 720dpi,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Support: 32°C]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NUMEROS DE CUENTA BANCARIA MICRO TECHNOLOGY PERU SAC

CUENTA CORRIENTE SUS DOLARES : BANCO DE CREDITO: 193-1803635-1-26

CUENTA CORRIENTE S/ SOLES : BANCO CREDITO: 193-1923339-0-65

BENEFICIARIO: MICRO TECHNOLOGY PERU SAC
ANEXO C

Especificaciones del UPS.

HP9116C Series
High Frequency Online UPS
1-3KVA (1 Ph in/1 Ph out)

Product snapshot:
- Model: 1-3KVA
- Nominal voltage: 208/220/230/240VAC
- Nominal frequency: 50/60Hz
- Output Power factor: 0.8

Safe and reliable protection
High frequency online UPS HP9116C (1ph in/1ph out) 1-3KVA series have a high stability and reliability which was designed by SORO company according to China power grid environment and network system requirements. Its excellent quality and perfect usability can provide a safe and reliable guarantee for the computer network system and realize overall protection to user devices.
Key Features

- Large blue backlight LCD for detailed real-time UPS status display.
- Pure sine wave double conversion online UPS with voltage regulator circuit, which can provide a perfect power protection when UPS working in a harsh surroundings.
- Comprehensive electric isolation and bypass protection.
- Input PF correction technology, reduce harmonic pollution to the power grid.
- Automatic alarm; Self-testing function.
- Wide input frequency range can connect various fuel generators.
- Adopt intelligent battery management, saving charging time and extend battery life.
- DC start when power off, convenient and reliable; restart automatically when electricity is restored.

Back Panel Description:

Available sockets
- Australian Socket
- British Socket
- CEE Universal Socket
- NEMA Socket
- Indian Socket
- Schuko Socket
- UK Socket

Contact Information:

Calle monte rosa 240 Of.901 - chancillería
San Isidro - Lima - Peru
Tel: (511) 330 9100
HP9116C series Technical Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>HP9116C-1-3KVA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1KVA/0.8KW</td>
</tr>
<tr>
<td>Rated Power</td>
<td>220/230/240VAC</td>
</tr>
<tr>
<td>Rated Frequency</td>
<td>50/60 Hz</td>
</tr>
</tbody>
</table>

Input
- Voltage Range: 110V~295VAC （±3%）
- Frequency Range: 50（±1）Hz/60（±1）Hz
- Power Factor: 0.8

Output
- Voltage Regulation: 220/230/240VAC （±2%）VAC
- Frequency Regulation: 50/60Hz ±0.5Hz
- Power Factor: 0.6
- Voltage Distortion: Linear load <3% Non-linear load <6%
- Overload Capacity: 110% = 150% for 30 sec. >150% for 200ms
- Current Crest Ratio: 3:1
- Transfer Time: 0ms (AC mode → Battery mode)

Battery
- DC Voltage: 36VDC / 96VDC
- Recharge Time: 5 hours to 90% of capacity after full load discharge
- Recharge Current: 1A / 4A/8A (Optional)

Display
- LCD Display: input/output Voltage, Frequency, Battery voltage, Battery capacity, Loading rate.

Communication
- Interface: Smart RS232, SNMP (Optional) - USB (Optional)

Environment
- Operation Temperature: 0~40℃
- Humidity: 0~95% (Non-condensing)
- Storage Temperature: -25℃~55℃
- Sea Level Elevation: ≤1500m
- Noise Level (1m): <45dB / <50dB / <50dB

Physical Characteristics
- Weight (N.W.): 14 / 7 / 31 / 13.5 / 31.5 / 14
- G.W.: 16 / 9 / 33 / 16 / 33.5 / 16
- Dimensions (W/D/H mm): 145X440X229 / 192X460X340

STANDARD: Conform to GB/IEC regulation: GB7266.21:EC62040-2, GB17626.2-5:EC61000-4-2 - 5 SAFETY GB4943

Note: Product specifications are subject to change without further notice.
ANEXO D:

SECCIÓN 340
SISTEMAS ELÉCTRICOS DE COMUNICACIONES

Alcance

340-000 Alcance (ver Anexo B)

(1) Esta Sección se aplica a instalaciones de sistemas de comunicaciones.

(2) Los requerimientos de esta Sección son complementarios o modificatorios de los requerimientos generales del Código.

General

340-100 Terminología Especial

En esta Sección se aplica la siguiente definición:

Planta expuesta: Circuito o cualquier porción del mismo que está sujeto a descargas atmosféricas, tensiones de valor eficaz superiores a 300 V, debidas a contacto accidental con conductores eléctricos de iluminación o fuerza, inducción debida a operación desbalanceada de la línea de energía o faltas, y a elevaciones del potencial de tierra.

340-102 Utilización de Equipo Aprobado

El equipo eléctrico utilizado en instalaciones de sistemas de comunicaciones debe ser aprobado:

(a) Si está conectado a una planta expuesta; o

(b) Si el equipo es conectado a una red de telecomunicaciones, a menos que sea específicamente permitido por otras reglas de esta Sección; o

(c) Si es requerido por otras reglas de esta Sección.

340-104 Circuitos en Cables de Comunicación (ver Anexo B)

Los circuitos de radio y televisión, circuitos de control remoto y circuitos de alarma de incendio, o partes de los mismos:

Ministerio de Energía y Minería
http://www.miem.gob.pe

Dirección General de Electricidad
email: dime@miem.gob.pe
CÓDIGO NACIONAL DE ELECTRICIDAD - UTILIZACIÓN
SECCIÓN 340 - SISTEMAS ELECTRICOS DE COMUNICACIONES
Sección 340 - Reg. 18 de 14

(a) Tener una cubierta protectora sobre cada alambre o grupo de alambres, la cual puede ser parte integral del aislamiento; y

(b) Ser apropiado para el propósito de acuerdo con las recomendaciones del fabricante.

340-306
Aislamiento de Cables

(1) Los alambres dentro de un cable utilizado en circuitos de comunicación, que requieran protectores primarios, deben tener aislamiento de papel, termoplástico u otro apropiado.

(2) El cable debe ser de un tipo apropiado para la aplicación y estar de acuerdo con las recomendaciones del fabricante, con:

(a) Una cubierta metálica; o

(b) Una cubierta de material compuesto (o de amalgama) con pantalla metálica y una cubierta exterior protectora de caucho o termoplástico; o

(c) Una cubierta protectora de caucho o termoplástico sin pantalla metálica.

340-510
Conductores de Comunicación en Edificaciones

(1) Los conductores de comunicaciones en edificaciones deben mantener una separación de por lo menos 500 mm de los conductores de iluminación o fuerza que no estén aislados en tuberías, a menos que estén separados permanentemente por una canalización no metálica, continua y fija firmemente, en adición al aislamiento de los conductores.

(2) Cuando los conductores de iluminación o fuerza estén desnudos o tengan cubierta no aislante, los conductores de comunicación deben estar en la posición más baja, y se debe proveer un espacio de trabajo adecuado, la distancia mínima dada en la Subregla (1) debe ser incrementada a un mínimo de 600 mm desde conductores que operan con tensiones de hasta 1 000 V.

(3) Los conductores de comunicaciones sujetos a contacto accidental con conductores de iluminación o fuerza con tensiones que excedan los 300 V y que estén anclados expuestos a edificaciones, deben mantenerse separados de materiales combustibles, empleando soportes de vidrio, porcelana u otro material aislante apropiado. Esta separación no se requiere cuando se omiten los fusibles como se establece en la Regla 340-203(2), o cuando se utilizan los conductores para extender el circuito hasta una edificación desde un cable con cubierta o pantalla metálica puesta a tierra.
340-312 Ingreso de Conductores de Comunicación a Edificios

Cuando se instale un protector primario dentro de la edificación, los conductores de comunicaciones deben ingresar a la edificación, ya sea a través de un manguito aislado no combustible ni absorbente, o a través de una canalización metálica, excepto que se permita la omisión del manguito aislado cuando los conductores que ingresan:

(a) Están contenidos en un cable con cubierta o pantalla metálica; o
(b) Pasan a través de mampostería; o
(c) No tienen fusibles en los protectores primarios como se establece en la Regla 340-202 (2); o
(d) Son utilizados para extender circuitos a una edificación desde un cable con cubierta o pantalla metálica puesta a tierra.

340-314 Ingreso de Conductores de Comunicación a Casas Móviles

El ingreso de conductores de comunicaciones a casas móviles debe hacerse de acuerdo con la Regla 300-100.

340-316 Conductores de Pararrayos

Se debe mantener una distancia mínima de 2 m, cuando sea posible, entre conductores de comunicación sobre edificios y conductores de pararrayos.

340-318 Piscinas de Natación

Cuando se instale alambres o cables sobre, o adyacentes a piscinas de natación, deben colocarse de acuerdo con las Reglas 230-054 y 230-056.

Circuitos Subterráneos

340-600 Sistemas Directamente Enterrados

Cuando se instalen conductores o cables de comunicación directamente enterrados, la cubierta protectora exterior debe ser apropiada para el enterramiento directo, y el conductor o cable debe:

(a) No ser instalado en el mismo plano vertical con otro sistema subterráneo, excepto cuando son instalados de acuerdo con el párrafo (g); y
(b) Mantener una distancia horizontal mínima de 300 mm de otros sistemas subterráneos, excepto cuando se instalen de acuerdo con el párrafo (g); y