Manual básico del software Synchro Studio 8

Synchro más SimTraffic y 3D Viewer
INDICE

Capítulo 1 - Introducción
Introducción ... 4
Análisis de Capacidad ... 4
Coordinar y optimizar ... 4
Señales accionadas ... 5
Rotondas ... 5
SimTraffic Simulaciones ... 5
Animaciones 3D ... 5

Capítulo 2 - Ver mapa y Diseño
Ver Mapa ... 6
Cambie la barra de herramientas de posicionamiento a izquierda o derecha 6
Introducción a Enlaces e Intersecciones .. 7
Las intersecciones semaforizadas .. 7
Delinear Enlaces e Intersecciones .. 7
Cómo agregar un enlace ... 8
Opciones de Enlace de menú .. 8
Nombre de la Calle Arriba ... 9
Mueva nombre de calle ... 9
Cambie Diagrama Posición ... 9
Mover Diagrama volumen ... 9
Añadir curvatura ... 9
Cómo eliminar un enlace ... 10
Cómo eliminar una intersección ... 10
Cómo mover una intersección o nodo externo .. 10
Imágenes de fondo ... 10
Selezione Ajustes de Fondos .. 11
Establecer la escala de mapa de bits y Offset ... 12
Intersección y Botones de Enlace .. 12
Mostrar Botones de información ... 13

Capítulo 3 - Configuración de entrada de datos
Entrada de datos Configuración de Botones .. 16
Ver Entrada de datos Completo .. 17
Side View Data Entry ... 18
Carriles y volúmenes filas de datos ... 18
Archivo botones de comando .. 19

Capítulo 4 - Configuración del nodo
Número de nodo .. 20
Zona ... 20
Coordenadas de nodo ... 20
Descripción .. 21
Tipo de control .. 21
Capítulo 5 - Ajustes de volumen .. 24
Los volúmenes de tráfico .. 24
Conflicto peatones .. 24
Bicicletas en conflicto ... 24
Factor horas pico .. 25
Factor de crecimiento ... 25
Vehículos Pesados ... 26
Bus Bloqueos .. 26
Aparcamiento Adyacente Lane, las maniobras de aparcamiento 26
Tráfico de Mid-bloque ... 26
Capítulo 6 - Timing / Configuración de firma 27
Ajustes de sincronización .. 27
Disposición .. 27
Interruptor de fase ... 28
Liderando Detector ... 28
Trailing Detector .. 28
Ajuste de Tiempo Perdido .. 29
Volumen de Relación de Capacidad ... 29
Cola de retardo ... 29
Nivel de Servicio ... 29
Cola Longitudes .. 29
Timing Configuración de inicio rápido .. 30
Capítulo 7 - Optimización y Cálculos ... 31
Optimizaciones ... 31
Intersección Capacidad (UCI) Cálculos 31
Capítulo 1 - Introducción

Introducción
Synchro Plus es un completo paquete de software para el modelado, optimización, gestión y simulación de sistemas de tráfico.
Synchro Plus es un paquete de software que incluye:
- Synchro, un análisis macroscópico y programa de optimización;
- SimTraffic, un potente y fácil de usar aplicación de software de simulación de tráfico;
- 3D Viewer, una vista tridimensional de simulaciones SimTraffic;
- SimTraffic CI, una aplicación que interactúa con una interfaz de controlador (IC) del dispositivo conectado a un controlador para simular el funcionamiento del controlador con simulada tráfico.

Análisis de Capacidad

Synchro implementa la utilización Intersección Capacidad (UCI) Método 2003 para determinar capacidad de intersección. Este método compara el volumen actual de las intersecciones finales de capacidad. El método es muy sencillo de implementar y puede determinarse con una sola La página de la hoja de trabajo.

Synchro también implementa los métodos de la 2000 y recientemente lanzado 2010 Carretera Capacidad Manual. Synchro ofrece una solución fácil de usar para el análisis individual de la capacidad de intersección y de temporización de optimización.

Synchro incluye un término de cola de interacción bloqueando demora. El retardo total incluye la retraso control tradicional más el retardo de cola. Cálculos de retardo son una parte integral de la objetivo de optimización en Synchro por lo que este será considerado directamente.

Además de calcular la capacidad, Synchro puede optimizar la duración del ciclo, escisiones y compensaciones, eliminando la necesidad de tratar varios planes de sincronización en la búsqueda del óptimo.

Coordinar y optimizar
Synchro permite la generación rápida de los planes óptimos de tiempo. Synchro optimiza la duración del ciclo, tiempos parciales, compensaciones y secuencia de fases para minimizar las paradas de controladores y el retraso.
Synchro es completamente interactivo. Cuando se cambian los valores de entrada, los resultados se actualizan automáticamente. Planes de temporización se muestran en fácil de entender diagramas de tiempo.
Señales accionadas
Synchro ofrece detallada modelado, automática de señales de accionamiento. Synchro puede modelar saltarse y gapping comportamiento y aplicar esta información para retrasar el modelado.

Rotondas
Synchro 8 incluye los 2.010 Carretera Capacidad Manual (HCM) los métodos de rotondas. Este permita el modelado de 1 y 2 rotondas de carril.

SimTraffic Simulaciones
SimTraffic realiza micro simulación y la animación de la circulación de vehículos y peatones. Con SimTraffic, vehículos individuales se modelan y se muestra que atraviesa una red de calles.

Animaciones 3D
SimTraffic puede crear un archivo 3D que se puede ver con el Visor Trafficware 3D. Los tres modos primarios del espectador para la reproducción de datos SimTraffic en un entorno 3D incluyen escena, paseo, y la pista. La capacidad de crear escenarios para mejorar el fondo predeterminado es también disponible en el visor 3D.
Capítulo 2 - Ver mapa y Diseño

Ver Mapa

El MAPA vista, incluye el área de dibujo y los botones de información de mapa. El propósito del área de dibujo del MAPA visión es crear la red de enlaces y nodos.

Para activar el MAPA vista, pulse Ver Mapa o el botón [F2] clave desde cualquier parte en el programa. Por defecto, Synchro mostrará el MAPA ver cuando se inicia el aplicación.

En el lado derecho del MAPA vista son los botones de información de mapas. Estos botones incluyen el siguiente:

- Información Intersección (Número de nodo, Zona, Ciclo Largo, Delay y LOS),
- Movimiento de texto (Volúmenes, Splits, Inicio de Green (s) o amarilla (s), volumen de Capacidad Ratio, o Movimiento de retardo).

El MAPA vista también incluye un mapa botones de información para mostrar la siguiente:

- Utilización Intersección Capacidad [UCI]
- Mostrar la distancia de enlace, velocidad y tiempo de viaje en el mapa [DST]
- Mostrar flujo desequilibrado [VB]
- Mostrar los números de fase movimiento [Ø]
- Mostrar el Nivel de Servicio [LOS].

Cambie la barra de herramientas de posicionamiento a izquierda o derecha

Para colocar la barra de herramientas a la izquierda / derecha, haga clic derecho en la barra de herramientas seleccione el menú Mover a la izquierda o Mover a la derecha.
Introducción a Enlaces e Intersecciones

Modelos Synchro calles e intersecciones como enlaces y nodos. Estos enlaces y nodos se crean en el MAPA punto de vista. Cada intersección para ser analizada en el área de estudio está representado por un nodo.

Hay dos tipos de enlaces: enlaces internos y enlaces externos. Los enlaces internos representan una sección de calle entre dos intersecciones. Enlaces externos indican una aproximación a una intersección que no se conecta a otra intersección señalizada.

Las intersecciones semaforizadas

Modelos Synchro 8.0 intersecciones semaforizadas basan los Manuales Carretera Capacidad 2000 y rotondas sobre la base de los métodos de HCM 2010. Requisitos de entrada incluyen el movimiento de giro recuentos, geometría intersección y el tipo de control de señal para cada enfoque (detener, rendimiento o de flujo libre).

Delinear Enlaces e Intersecciones

A menudo es útil para esbozar una red de gran tamaño utilizando una fotocopia de un mapa detallado del estudio área. El dibujo puede ser utilizado para registrar los números de intersección, enlace distancias y velocidades y Lane configuraciones antes de la codificación de estos detalles en Synchro.

Otra opción es importar un mapa base en DXF, GIS, formato BMP o JPEG) en Synchro como capa de base. Enlaces y nodos a continuación se pueden crear en la parte superior de la capa gráfica. Para obtener más Información, consulte Imágenes de fondo, página 2-10. Si está utilizando mapas bases precisas, las distancias y ángulos se puede rastrear en el mapa base.

Los pasos para trazar enlaces e intersecciones son los siguientes:

1. Identificar las intersecciones a analizar.
2. Identificar los enlaces internos y determinar la longitud y la dirección de cada enlace. Synchro indica la dirección por acimutes (Norte = 0°, Este = 90°, 180° = Sur, etc.).
3. Identificar los enlaces externos y determinar su dirección. Si se utiliza solamente, el Synchro longitud del enlace externo no es importante. Si va a exportar el área de estudio a un modelo de simulación microscópica (SimTraffic o CORSIM), entonces la longitud de la enlace externo debe ser lo suficientemente largo para permitir que los vehículos para hacer una corriente abajo maniobra. Mientras que depende en gran medida el nivel de volumen, una longitud externa de 2000 pies (610 m) por lo general funciona bien. Esto debería permitir que los vehículos tiempo suficiente para realizar decisiones con respecto a su movimiento aguas abajo. Aumente esta longitud si los vehículos parecen tener dificultades para llegar a su carril de destino.

Al dibujar un enlace, el ángulo se muestra en la esquina inferior izquierda del MAPA punto de vista. Norte es siempre (cero grados). Synchro permite hasta ocho enlaces por nodo. Cada enlace se asigna al título más cercano punto de la brújula (Norte, Noroeste, Nordeste, etc.).

Cómo agregar un enlace
Para agregar un enlace al mapa:
1. Seleccione el Añadir Enlace botón
2. Coloque el cursor del ratón sobre el MAPA ver donde desea que empiece el enlace, y haga clic en el botón izquierdo del ratón. Los indicadores de estado, en la esquina inferior derecha de la ajustes, muestran el Este y el Sur coordenadas en metros (pies). Nota: Para cancelar la adición un enlace, pulse [Esc].
3. Suelte el botón del ratón y mover el cursor a la posición en el mapa en el que quieren que termine el enlace. Haga clic en el botón izquierdo del ratón. Consulte la barra de estado en la parte inferior de la configuración para ver la longitud y la dirección del enlace.

No es necesario tener la distancia exacta al agregar un enlace. La distancia se puede ajustar a través de la CARRIL ajustes. Sin embargo, los nuevos enlaces añadidos a la red deben estar dentro de 50 pies de distancias de enlace reales para asegurar la precisión en la simulación.

Opciones de Enlace de menú
Para acceder al menú Enlace, haga clic derecho en el enlace dentro del MAPA Ver.
Nombre de la Calle Arriba
Elija el Nombre de la Calle Arriba comando para establecer el nombre de la calle por encima o por debajo del enlace actual. Si mueve el nombre de la calle a través del enlace, el menú se leerá Calle Nombre de Down.

Mueva nombre de calle
Elija el Mueva nombre de calle para mover el nombre de la calle a lo largo de la calle. La etiqueta o en la calle nombre se resalta. Cuando el ratón se coloca sobre esta etiqueta, se inicia el siguiente movimiento del ratón hasta que el botón izquierdo del ratón se hace clic.

Cambie Diagrama Posición
Elija el Cambie Diagrama Posición para mover la etiqueta del diagrama de encima o por debajo del enlace actual.

Mover Diagrama volumen
Selección de la Diagrama Mover volumen opción mueve la etiqueta del diagrama a lo largo de la calle. La etiqueta se resalta. Cuando el ratón se sobreponen esta etiqueta, se inicia después de la moción de el ratón hasta el botón izquierdo del ratón se hace clic.

Añadir curvatura
Synchro permite a los usuarios añadir curvatura a segmentos de enlace mediante curvas de Bezier, que son comúnmente encontrados en paquetes CAD y dibujo. Curvas de Bezier se pueden utilizar para aproximar cualquier curvatura representada en el dibujo base.
Simplemente haga clic derecho en un segmento de enlace directo y seleccione Agregar-curvatura. Dos cuadrados (curva puntos) aparecerán en los enlaces de curvas que sirven como puntos de control. Seleccione y arrastre un control apuntar a modificar la forma de la curva. Con un poco de práctica, puede crear arcos suaves y curvas que representan cualquier geometría que se encuentra en su red de calles.
Cómo eliminar un enlace
Para eliminar un enlace desde el mapa:
1. Seleccione el vínculo haciendo clic sobre ella con el botón izquierdo del ratón. La mitad del enlace se convertirá en resaltado.
2. Seleccione el Eliminar vínculo botón
3. Seleccionar [Sí] a la pregunta, "Eliminar vínculo, ¿está seguro?"
El enlace se elimina de la pantalla. Si el enlace se conectó a una intersección con sólo dos enlaces, esa intersección será eliminada.

Cómo eliminar una intersección
Para eliminar una intersección del mapa:
1. Seleccione la intersección haciendo clic sobre ella con el botón izquierdo del ratón. El nodo se resalta.
2. Seleccione el Eliminar Nodo botón
3. Respuesta [Sí] a la pregunta, "Eliminar Intersección, ¿está seguro?"

Cómo mover una intersección o nodo externo
Para mover una intersección o nodo externo en el mapa:
1. Seleccione el Mover Nodo botón o pulse el [M] clave.
2. Seleccione una intersección, o el final de un enlace externo, haciendo clic en él con la izquierda botón del ratón. Nota: Puede cancelar una operación de movimiento pulsando [Esc], o por clic en el lugar original de intersección.
3. Arrastre la intersección o nodo a la nueva ubicación y haga clic en el botón izquierdo del ratón.

Si un nodo externo se mueve a otro nodo externo, los dos nodos se combinarán como una nueva intersección. Sin embargo, las intersecciones existentes no se pueden combinar con otras intersecciones o nodos externos.

Imágenes de fondo
Soportes Synchro importadores varias imágenes al mismo tiempo para que el mapa de fondo. El archivo tipos soportados incluyen:
✓ DXF, archivos de vectores CAD. En la versión 7 y versiones posteriores, el archivo DXF se referencia como externa presentar y que no esté integrado en el archivo Synchro (*.syn).
✓ SHP, archivos de formas SIG. Los archivos de formas vienen con soporte archivos de índice y deben ser mantenerse juntos en el mismo directorio. El usuario tendrá la opción de fijar el color de la Forma del archivo.
✓ SID, archivos de mapa de bits SIG. Synchro utiliza Decode MrSID desde www.lizardtech.com a convertir archivos SID de SIG en formato JPEG (véase la sección siguiente).
✓ JPG, JPEG, BMP, archivos de mapa de bits.
✓ La imagen de fondo puede ser una combinación de cualquiera de los tipos de archivo enumerados.
Selecciona Ajustes de Fondos

Si no se adjuntan los archivos, el usuario se le solicita un archivo (s) archivo o múltiple. Los archivos pueden tener la extensión JPG, JPEG, BMP, DXF o SHP como se definió anteriormente.

La lista de archivos se muestra en la Antecedentes de lista de archivos como se muestra como "A". Este archivo lista incluye lo siguiente:

- **Nombre del archivo**: es el fondo de la imagen de nombre de archivo incluyendo la ruta.
 - ✔ Tipo es el tipo de archivo (Bitmap, SHP, DXF, JPG).
 - ✔ X, Y es el Synchro coordenadas para la esquina superior izquierda de la imagen.
 - ✔ X2, Y2 es el Synchro coordenadas de la esquina inferior derecha de la imagen.
 - ✔ X Sc, Y Sc es el factor de escala de la imagen (consulte la sección "Set Bitmap Escala y Offset" a continuación).
 - ✔ Color permite cambiar el color de un archivo de forma SIG.
 - ✔ Ocultar ocultará la imagen de fondo en caso de control.
 - ✔ Retire eliminará la imagen del fondo.

Utilice la [añadir archivo (s)] botón ("B" en Figura) para seleccionar uno o más archivos. El botón [Comprimir] Archivos JPEG ("C" en Figura) le solicitará archivos JPEG. Los archivos seleccionados se cargarán y volverán a guardar con mayor compresión, pero menos calidad.

Convertir SID área de archivos ("D" en Figura) proporciona acceso a la MRSIDDECODE.EXE, utilidad gratuita. Esta es una herramienta de DOS sin apoyo para ayudar a convertir archivos SID en JPEG. Selecciona uno o más archivos SID, un archivo jpg y jgw se crearán con el mismo nombre base que el archivo SID.

El archivo jgw es un archivo de texto que contiene coordinar y ampliar información. Synchro lee esto ajusta automáticamente la escala para archivos SID convertidos.
Establecer la escala de mapa de bits y Offset

Al cargar un archivo de mapa de bits (bmp o jpg) es necesario para establecer el punto de escala y la base. Desde Seleccione Antecedentes configuración, haga doble clic en la configuración de escala (se describen como "E" en Figura) para establecer la escala de mapa de bits y el desplazamiento. La SET de mapa de bits de escala y offset configuración de la voluntad aparecerá como se muestra en Figura.

Intersección y Botones de Enlace

Los botones debajo de los botones de zoom y desplazamiento se utilizan para crear, eliminar y mover vínculos y nodos. Hay un botón se utiliza para transformar el mapa. Los botones disponibles se indican a continuación.

- Seleccione el Añadir Enlace botón o pulse [A] para crear un enlace en el MAPA punto de vista.

- Seleccione el Eliminar vínculo botón o pulse [Del] para eliminar el enlace seleccionado.

- Seleccione el Ajustes de carril botón o pulse [Enter] para entrar CARRIL ajustes para el enlace seleccionado. Se mostrará la ventana de datos de la vista lateral.

- Seleccione el Mover Nodo botón o pulse [M] para mover un nodo.

- Seleccione el Eliminar Nodo botón o pulse [Del] para eliminar el nodo.

- Seleccione el Transformar Mapa botón para cambiar el nodo de red de coordenadas, gire el mapa o para introducir un factor de escala.
Mostrar Botones de información

Los botones de la parte derecha del MAPA punto de vista puede ser utilizado para mostrar información sobre el MAPA punto de vista. Los botones de información disponibles se enumeran a continuación.

Mostrar retrasos Intersección

Selecciona el Mostrar retrasos Intersección botón o pulse [Shift] + [D] para mostrar la retardo de intersección para cada intersección.

Mostrar niveles de servicio

Selecciona el Mostrar niveles de servicio botón o presione la tecla [O] para mostrar la LOS intersección para cada intersección. Este es el Intersección Nivel de Servicio se muestra en la TIEMPO ajustes.

Mostrar Ciclo Longitudes

Selecciona el Mostrar Ciclo Longitudes botón o pulse la tecla [C] para mostrar la corriente la duración del ciclo para cada intersección. Este es el Ciclo Largo se muestra en la TIEMPO ajustes. Intersecciones semaforizadas se mostrarán con una "U".

Mostrar Natural Ciclo Longitudes

Selecciona el Mostrar Natural Ciclo Longitudes botón o presione la tecla [N] para mostrar la la duración del ciclo natural para cada intersección. Este es el Longitud Ciclo Natural se muestra en la la TIEMPO ajustes. Interseciones semaforizadas se mostrarán con una "U".

Mostrar Intersección Utilización de la Capacidad

Selecciona el Mostrar Intersección Utilización de la Capacidad botón para mostrar las intersecciones " utilización de la capacidad de cada intersección. Este es el Intersección Capacidad Utilización se muestra en la TIEMPO ajustes.

Mostrar Factor Coordinatability

Selecciona el Mostrar Factor Coordinatability botón para visualizar el factor coordinatability para cada enlace.
Mostrar Factor Coordinatability Natural

Seleccione el Mostrar Factor Coordinatability Natural botón para visualizar la factor de coordinatability para cada enlace.

Mostrar números de nodo

Para ver los números de nodo, pulse el Mostrar números de nodo o el botón [#] clave. Nodo los números se pueden cambiar con el NODO

Mostrar Locked Tiempos

Seleccione el Mostrar Locked Tiempos botón para mostrar las intersecciones con horario bloqueada. Este es el Bloqueo Tiempos campo mostrado en el TIEMPO ajustes.

Mostrar Zonas

Para ver los nombres de zona, pulse el Mostrar Zonas Intersection o el botón [Z] clave. Los nombres de zona se pueden cambiar con el NODO ajustes. Los nombres de zona pueden incluir cualquiera letra o un número máximo de siete caracteres.

Mostrar Equilibrio de volumen

Seleccione el Equilibrio Mostrar volumen botón para visualizar el desequilibrio de tráfico de volúmenes entre intersecciones.

Diagramas Volumen

Para mostrar los volúmenes en el mapa, seleccione la Mostrar volúmenes en mapa botón a la izquierda de la MAPA ver o pulse el [V] clave.

Mostrar Enlace distancia, velocidad y tiempo de viaje

Seleccione el Mostrar Enlace distancia, velocidad y tiempo de viaje botón o pulse el [T] clave para mostrar la distancia de enlace, velocidad y tiempo de viaje en el MAPA punto de vista. Doble click en el diagrama trae configuración de la vista lateral.

Mostrar Inicio de los Verdes, Inicio de Amarillo
Para ver la calidad de la progresión, pulse el Mostrar Inicio de los Verdes botón o pulse el [G] clave. Esta opción muestra el principio de los tiempos verde para cada movimiento. La También se muestra la duración del ciclo intersección.

La Mostrar inicio de los tiempos Amarillo botón de muestra el principio de los tiempos amarilla para cada movimiento. También se muestra la longitud del ciclo de intersección. Esta pantalla muestra numéricamente progresión. Para los movimientos permitido más protegidas, al final de la se muestra verde protegida.

Mostrar Máxima Verde Tiempos

Seleccione el El tiempo máximo Verde botón para mostrar la hora verde máximo para cada fase en cuestión de segundos. También se muestra la longitud del ciclo de intersección. Esta pantalla muestra veces verdes en un formato de mapa.

Mostrar volumen para Ratios Capacidad

Seleccione el Mostrar volumen para Ratios Capacidad botón para visualizar el volumen de capacidad ratios para cada movimiento. Las relaciones de v / c se basan en tiempos verdes promedio. La v / c relaciones no muestran problemas con los carriles de facto de inflexión. Esta pantalla se puede utilizar para identificar rápidamente los problemas de capacidad. Al hacer doble clic en el diagrama se abre la TIEMPO ajustes.

Mostrar números de fase

Seleccione el Mostrar números de fase botón o pulse el [P] clave para mostrar los números de fase para cada movimiento. Fases permitidos se muestran entre paréntesis (). Al hacer clic en el abre el diagrama TIEMPO ajustes y te trae a la Fases fila Protegid.

Mostrar carril Flechas en Mapa

Seleccione el Mostrar carril Flechas en Mapa botón o pulse el [L] clave para mostrar los carriles para cada movimiento. Flechas diagrama del palillo se le aparecen en el lado derecho de la enfoque.

Ocultar información

Para ocultar la información, seleccione el No Mapa Información [Espacio] o Sin Movimiento Texto botones o pulse [Shift] + [espacio].
Capítulo 3 - Configuración de entrada de datos

Los datos se pueden recoger, editado y visto con los botones de ajuste de entrada de datos después de enlaces y nodos se han creado en el MAPA punto de vista. Consulte el Capítulo 2 para obtener más información sobre la creación de enlaces y nodos. En Synchro, una fila horizontal de botones es siempre a la vista. Estos botones se utilizan para cambiar entre los distintos ajustes de entrada de datos. Los botones de entrada de datos aparecen en gris y no se puede acceder hasta que se seleccione ya sea en un enlace o nodo el mapa. La Figura muestra la ubicación de los botones de ajuste en Synchro entrada de dato.

Entrada de datos Configuración de Botones

Los botones de ajuste de entrada de datos son los siguientes:

 Este es el Ajustes de carril botón. Utilice este botón o la tecla [F3] para cambiar a la CARRIL ajustes.

 Este es el Ajustes de volumen botón. Utilice este botón o la tecla [F4] para activar la VOLUMEN ajustes.

 Este es el Ajustes de sincronización botón. Utilice este botón o la tecla [F5] para activar la TIEMPO ajustes. Este botón no está visible si una intersección señalizada es seleccionada.

 Este es el La eliminación gradual Ajustes botón. Utilice este botón o la tecla [F6] para activar la FASES ajustes.
Este es el Simulation Settings botón. Utilice este botón o la tecla [F10] para activar el AJUSTES DE SIMULACIÓN botón.

Este es el HCM 2010 Ajustes botón. Utilice este botón para activar el año 2010 Carretera Capacidad ajustes manuales. Se incluyen los métodos para la Modo de Automóviles, modo peatonal y de bicicletas Mode. Si el tipo de control es establecido en la rotonda, los ajustes se mostrará el año 2010 HCM Roundabout métodos.

Este es el Select-Intersección botón. Utilice este botón o la tecla [F8] para llevar una lista de las intersecciones de la red. La elección de una intersección y pulsar [OK] cambiará la configuración actual de esa intersección.

Ver Entrada de datos Completo

La entrada de datos en Synchro se puede realizar con una vista de pantalla completa tradicional o un MAPA vista lateral entrada. En la entrada de la vista de todos los datos, la MAPA vista desaparecerá. Para activar, seleccione un intersección de la MAPA vista y seleccione el botón de entrada de datos deseado a lo largo de la parte superior de Synchro. Figura siguiente ilustra la pantalla de entrada de datos de la vista de la CARRIL ajustes.
Side View Data Entry

Además de una pantalla de entrada de datos a plena vista, los datos también se pueden introducir con una pantalla de vista lateral.

Esta vista muestra las filas de entrada de datos en el lado izquierdo de la MAPA ver lo que permite ver el actualización de los datos de la entrada. Para activar la entrada de datos la vista lateral, haga doble clic en un enlace acercarse a una intersección. Figura siguiente ilustra la vista de datos de entrada lateral.

La parte superior de los ajustes de la vista lateral contiene una serie de botones.

El botón [X] se cerrará la configuración de la vista lateral. El segundo botón se alternará entre la plena vista y vista lateral. El círculo rojo aparecerá el NODO ajustes y la flecha cambiará el enfoque.

Carriles y volúmenes filas de datos
Las dos primeras filas de la Lane, VOLUMEN, el tiempo, opciones de simulación y DETECTORES ajustes mostrarán el Carriles y Distribución seguido por la fila Volumen de Tráfico fila. Esto reducirá la necesidad de alternar entre los ajustes.

Archivo botones de comando

Este es el Archivo-Guardar como botón. Utilice este botón para guardar el archivo con un diferente nombre.

Este es el botón Create-Informe. Utilice este botón o la tecla [Ctrl] + teclas [R] a crear un informe (abre la INFORMES SELECT ventana).

Este es el botón Deshacer. Utilice esta opción para deshacer los últimos 100 comandos.

Este es el botón Rehacer. Use esto para rehacer los últimos 100 comandos de deshacer.
Capítulo 4 - Configuración del nodo

Para activar la NODO configuración, haga doble clic en una intersección o seleccionar una intersección y pulse [Enter]. Figura siguiente ilustra la NODO ajustes.

![Diagrama de configuración de nodo](image)

La NODO ajustes permiten los siguientes valores para ser editados:

- Intersección de identidad o número de nodo
- Zona
- Ciclo de longitud, el tipo de control, bloqueo de los tiempos y Optimizar botones
- Coordenadas (X, Y, Z)
- Descripción caja Nota
- Datos de frecuencia de la señal (controlador, offset, etc.)

Número de nodo

Todas las intersecciones y los nodos externos se les asignan un número de nodo único. Se utiliza para identificar la nodo en los informes y datos exportados a archivos CORSIM, HCS y UTDF.

Si va a utilizar un archivo con CORSIM, mantenga todos los números de nodo a menos de 7.000.

Zona

Synchro permite intersecciones para ser asignados a zonas (utilizar hasta 7 caracteres). Zonas son útiles para el análisis de una sección de una red. Utilice las zonas de mantener los horarios de algunas intersecciones constante mientras se cambian los horarios para otras intersecciones.

Coordenadas de nodo

La NODO ajustes permiten que el X, Y y Z coordenadas a ser introducido exactamente. Las coordenadas de los nodos se utilizan en el diseño del mapa y de la geometría de los enfoques de intersección.

El X, Y y Z de coordenadas ajustes proporcionan un método conveniente para intersecciones de trasladarse a coordenadas exactas. Las coordenadas son para el punto...
central de la intersección. Para el tráfico propósitos de ingeniería, es lo suficientemente bueno para tener las coordenadas a menos de 20 pies.

Descripción
La Descripción célula es una ubicación conveniente para escribir notas sobre la intersección. La información aparecerá en la parte inferior de los Informes de intersección.

Tipo de control
Ajustes de sincronización

Utilice la Tipo de control campo para indicar qué tipo de controlador que está utilizando. Las opciones son: Pretimed, Semi-accionados descoordinado, accionados descoordinado, Coordinado-accionada, Rotonda y no semaforizadas.

He aquí una breve descripción de cada tipo de control de la señal:

Pretimed: Una señal pretimed no tiene actuaciones técnicas y de todas las fases se ponen a Máximo recordar. La señal se considera coordinada porque la longitud del ciclo se fija cada ciclo.

Semi-accionados descoordinado: Una señal de semi-accionado recuerda la calle principal a través de las fases a sus valores máximos. Otras fases asignadas pueden omitir o hueco de salida basado en vehículo detección. Esta señal no se considera coordinada porque la longitud del ciclo puede variar cada ciclo.

Accionado descoordinado: Todas las fases están completamente activados y no retiradas se establecen. La duración del ciclo se le permite variar cada ciclo (basado en la detección), por lo que la intersección se considera descoordinada.

Accionado Coordinado: En este caso, todas las fases distintas de las fases coord asignados son totalmente accionada. La señal funciona con una longitud de ciclo fijo y se añade cualquier momento sin utilizar en el ciclo a las fases coord asignadas.

Configuración de firma
Al seleccionar una intersección no semaforizadas, el TIEMPO Ajustes del botón cambia a la FIRMA botón de configuración. El símbolo del botón [F5] también cambia símbolo señal a una señal de alto para indicar si la intersección seleccionada es señalizado o no semaforizadas.

Semaforizadas: Movimientos de tráfico en las intersecciones semaforizadas pueden ser de flujo libre o controlado por las señales de alto o de rendimiento.

Rotondas: Modelos Synchro círculos o rotondas utilizando el HCM tráfico carril individuales métodos (años 200 y 2010). El método 2000 sólo analiza las rotondas de carril individuales y la sólo de salida es una gama de relaciones de v / c. No hay ningún
intentó de producir retrasos o colas. El 2010 método (véase el HCM 2010 Ajustes) modelos rotondas de varios carriles y hace presentes los retrasos y colas.

Ciclo Largo

La duración del ciclo es el tiempo total requerido para dar servicio a todos los movimientos de tráfico que compiten en una intersección señalizada o no semaforizadas. Coordinación fija la duración del ciclo a un valor constante y asegura que todo el tiempo de holgura no utilizada por las fases de accionamiento es utilizado por el coord asignado fases. El usuario puede especificar la longitud de ciclo deseado en segundos para cada intersección.

Optimizar Ciclo Largo

La Optimizar Ciclo Largo botón optimizará la longitud del ciclo intersección seleccionado.

Optimizar Splits

La Optimizar Splits botón optimizará las divisiones de intersección seleccionados.

Longitud Ciclo Natural

La duración del ciclo natural es la longitud del ciclo más corto que le dará la capacidad aceptable. En en general, las intersecciones tienen una longitud de ciclo óptimo que ofrece el mejor nivel de servicio. Utilizando una longitud de ciclo más corto no proporcionará suficiente tiempo verde para borrar todo de la espera vehículos causando congestión.

V Máxima / Relación de c

Ajustes de sincronización

La TIEMPO pantallas de configuración, la relación volumen a la capacidad (v / c) para cada movimiento de tráfico o grupo carril. La V Máxima / Relación de c es el más alto de servicio individual o grupo carril relación v / c.

Configuración de firma

Volumen para Ratios de capacidad también se proporcionan para los de 2 vías de control de parada y dar la señal. Relaciones V / c para el control de la parada de 4 vías no están definidos. Estos resultados son consistentes con HCM 2000. Además ratios de v / c se estiman para el a través de flujos en las rotondas.

Intersección Delay

Ajustes de sincronización

La Intersección Delay campo muestra el retardo promedio total para la intersección señalizada y se calcula tomando un promedio ponderado de volumen de todos los retrasos totales. El retardo total incluye la cola de retardo (consulte la página 7-25) más el retardo de control.

Configuración de firma

La demora media de intersección para intersecciones no semaforizadas se basa en un promedio de cada movimiento "s retrasos. El retraso no semaforizadas intersección se basa estrictamente en los métodos de la HCM. Por lo tanto, el retraso no semaforizadas no incluye Queue Delay.
Intersección Nivel de Servicio

Ajustes de sincronización

Para intersecciones señalizadas, el nivel de servicio de la intersección se calcula tomando la total de Intersección de retardo y la conversión a un nivel (AF) utilizando Tabla 4-1.

Nivel de Servicio de Intersección semaforizada (HCM 2010)

<table>
<thead>
<tr>
<th>Control de retardo por vehículo (s)</th>
<th>LOS por Volumen para Ratio Capacidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10</td>
<td>La</td>
</tr>
<tr>
<td>> 10 y ≤20</td>
<td>B</td>
</tr>
<tr>
<td>> 20 y ≤35</td>
<td>C</td>
</tr>
<tr>
<td>> 35 y ≤55</td>
<td>D</td>
</tr>
<tr>
<td>> 55 y ≤80</td>
<td>E</td>
</tr>
<tr>
<td>> 80</td>
<td>F</td>
</tr>
</tbody>
</table>

Configuración de firma

Para una de dos vías no semaforizadas dejó de controlar (TWSC), todo-camino de parada controlada (AWSC) o una intersección rotonda, el nivel de servicio de la intersección se calcula tomando la Intersección Delay y convertirlo en una carta utilizando Tabla 4-2.

TWSC, AWSC y Roundabout Nivel de criterios del servicio (2010 HCM)

<table>
<thead>
<tr>
<th>Control de retardo por vehículo (s)</th>
<th>LOS por Volumen para Ratio Capacidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤10</td>
<td>La</td>
</tr>
<tr>
<td>> 10 y ≤15</td>
<td>B</td>
</tr>
<tr>
<td>> 15 y ≤25</td>
<td>C</td>
</tr>
<tr>
<td>> 25 y ≤35</td>
<td>D</td>
</tr>
<tr>
<td>> 35 y ≤50</td>
<td>E</td>
</tr>
<tr>
<td>> 50</td>
<td>F</td>
</tr>
</tbody>
</table>
Capítulo 5 - Ajustes de volumen

Desde la vista de MAPA, haga clic en la intersección deseada con el botón derecho del ratón y seleccione VOLUMEN Ajustes.

Desde cualquier parte del programa, pulse [F8] y seleccione la intersección deseada de la lista. A continuación, pulse el Ajustes de volumen botón o la tecla [F4].

<table>
<thead>
<tr>
<th>VOLUME SETTINGS</th>
<th>EBL</th>
<th>EBT</th>
<th>EBR</th>
<th>WRL</th>
<th>WBR</th>
<th>WER</th>
<th>VBR</th>
<th>SEL</th>
<th>SEL2</th>
<th>NEU</th>
<th>NEU2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lane and Sharing (RL)</td>
<td>0</td>
</tr>
<tr>
<td>Traffic Volumes (vph)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Conflicting Ped. (vph)</td>
<td>0</td>
</tr>
<tr>
<td>Conflicting Bikes (bph)</td>
<td>0</td>
</tr>
<tr>
<td>Peak Hour Factor</td>
<td>0.02</td>
</tr>
<tr>
<td>Design Factor</td>
<td>1.00</td>
</tr>
<tr>
<td>Heavy/ Vehicular (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bus Berthages (bph)</td>
<td>0</td>
</tr>
<tr>
<td>Adj Parking Lanes</td>
<td>0</td>
</tr>
<tr>
<td>Parking Maneuvers (bph)</td>
<td>8</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Traffic Combined (%)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
</tr>
<tr>
<td>Link (DE) Volumes</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
</tr>
<tr>
<td>Adjusted Flow (vph)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lane Group Flow (vph)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>109</td>
</tr>
</tbody>
</table>

Los volúmenes de tráfico
En el apropiado Volumen de Tráfico células, entran en los volúmenes de tráfico para cada movimiento en vehículos por hora.

Modelos Synchro los volúmenes horarios proporcionados por un período de diseño. Sin embargo, es posible modelar múltiples períodos de diseño utilizando la tabla de volumen UTDV.

Si tiene el recuento de volumen en formato TMC, es posible importar de forma automática en la Tabla de volumen UTDV.

Conflicto peatones
Introduce el número de peatones, por hora, que entran en conflicto con los movimientos de giro a la derecha permitidos.

Este número afecta el Factor Ped Bike derecha (consulte la página 5-12) y el Saturada Caudal (ver página 5-11) se muestra en la CARRIL ajustes para los giros a la derecha permitidos. Si giros a la derecha están protegidos de los peatones debido a una isla, o si no se permiten peatones durante través de este enfoque fase, a continuación, introduzca cero.

Bicicletas en conflicto
Introduce el número de bicicletas a través de que el conflicto con el derecho gira. Si bicicletas cruzan la derecha convertir el tráfico delante de la intersección, introduzca 0. Esta entrada afectará el factor de Derecho Ped-Bike en la CARRIL ajustes.
Bicicletas en conflicto no tienen que ser ingresado para giros a la izquierda. Se supone que van a borrar durante el tiempo de eliminación de colas para los vehículos.

Factor horas pico
Los volúmenes de tráfico se dividen por el Factor horas pico (PHF) para determinar el flujo de tráfico tasa durante el período más activo de 15 minutos durante la hora. Por ejemplo:

Pago por hora de caudal: 1000 vph
Factor horas pico: 0,9
Máximo ajustado Caudal: 1000 / 0.9 = 1111 vph

La HCM 2000 Capítulo 10 recomienda: "En ausencia de mediciones de campo de las horas pico factor de (PHF), se pueden utilizar aproximaciones. Para condiciones de congestión, 0,92 es una razonable aproximación para PHF. Para las condiciones en las que hay un flujo bastante uniforme en todo el pico hora, pero un pico reconocible ocurre, 0.88 es una estimación razonable para PHF. "Si tienes 15 minuto cuenta, puede utilizar los más altos recuentos y un PHF de uno.

Valores sugeridas de hora pico

<table>
<thead>
<tr>
<th>Volumen Total Approach</th>
<th>PHF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000 vph</td>
<td>0.95</td>
</tr>
<tr>
<td>1000</td>
<td>0.93</td>
</tr>
<tr>
<td>500</td>
<td>0.92</td>
</tr>
<tr>
<td>200</td>
<td>0.87</td>
</tr>
<tr>
<td>100</td>
<td>0.83</td>
</tr>
<tr>
<td>50</td>
<td>0.78</td>
</tr>
</tbody>
</table>

Si la intersección aguas arriba está en capacidad de toda la hora pico, use un PHF de 1,0. Es importante entender que la varianza de tráfico aumenta a medida que el volumen disminuye.
Por lo tanto, los volúmenes de tráfico inferiores crean mayores fluctuaciones en los niveles de volumen de 15 minutos que tiende a aumentar PHF.

Factor de crecimiento
La Factor de crecimiento puede ser utilizada para ajustar los volúmenes de tráfico utilizando un intervalo de 0,5 a 3,0. La prima datos de volumen se multiplica por el factor de crecimiento en el cálculo de los volúmenes ajustados y Lane Volúmenes de Grupo.
Para calcular un factor de crecimiento (GF), basado en una tasa de crecimiento durante varios años, utilice la siguiente fórmula.

$$GF = (1 + r) Y$$

r = tasa de crecimiento
Y = número de años

Por ejemplo, el factor de crecimiento para el crecimiento de 3% en 10 años es:

$$GF = (1 + 0,03) = 1,34 10$$
Vehículos Pesados
Vehículos pesados (%) en el marco del VOLUMEN configuración representa el porcentaje de camiones y autobuses para cada movimiento del tráfico. El aumento de este valor disminuye la Saturada Caudal muestra en la CARRIL ajustes. El valor predeterminado para este campo es de 2%. Porcentajes de vehículos pesados se modelan explícitamente en SimTraffic, pero no afectan a la inflexión porcentajes cuando traslada a CORSIM. El Factor de vehículo pesado es:

\[F_{hv} = \frac{100}{100 + \% hv \ (E_t -1)} \]

donde:
\[F_{hv} = \text{factor de ajuste de vehículos pesados} \]
\[\% = \text{Hv% vehículos pesados para el volumen de grupo carril} \]
\[E_t = 2.0 \text{ pc } / \text{ hv} \]

Bus Bloqueos
Introduce el número de autobuses por hora que se detienen y en realidad bloquean el tráfico. El aumento de este factor Baja el Saturada Caudal muestra en la CARRIL ajustes. El valor predeterminado para este campo es cero autobuses por hora. Entrar Bus Bloqueos para cada grupo de carril que se ve afectado por el bloqueo. El factor de bloqueos de bus se calcula por:

\[F_{bb} = \left[N - \left(14.4N_b / 3600 \right) \right] / N \]

donde:
\[F_{bb} = \text{factor de bus bloqueo} \]
\[N = \text{número de carriles en el grupo carril} \]
\[N_b = \text{número de autobuses parando } / \text{ h} \]

Aparcamiento Adyacente Lane, las maniobras de aparcamiento
Si hay aparcamiento en la calle de este enfoque, marque la casilla Adyacente carril de estacionamiento y el número de maniobras por hora para Las maniobras de aparcamiento. Aumentar el número de aparcamiento maniobras baja la Saturada Caudal se muestra en la CARRIL ajustes. El factor de estacionamiento se basa en la siguiente ecuación:

\[F_p = \left[N -0.1 - \left(18N_m / 3600 \right) \right] / N \]

donde:
\[F_p = \text{factor de aparcamiento} \]
\[N = \text{número de carriles en el grupo carril} \]
\[N_m = \text{número de maniobras de aparcamiento } / \text{ h} \]

Tráfico de Mid-bloque
El tráfico de mitad de cuadra campo identifica los vehículos procedentes de fuentes mediados de bloque entre la intersección actual y la última intersección aguas arriba modelado en Synchro. Un valor de 50 indica que el 50% del tráfico de fuentes mitad de cuadra. Un valor de cero indica que 0% del tráfico es de calzadas y 100% del tráfico proviene de la señal aguas arriba.
Capítulo 6 - Timing / Configuración de firma

Ajustes de sincronización
Desde MAPA vista, haga clic en la intersección deseada con el botón derecho del ratón y el select Timing Configuración.

Desde cualquier parte del programa, pulse [F8] y seleccione la intersección deseado de la lista. A continuación, pulse el Intervalo La definición botón o la tecla [F5].

La TIEMPO ajustes se muestran con información sobre el tiempo y la eliminación gradual. Ver Capítulo 3 para obtener detalles de cómo navegar las pantallas de entrada de datos.

Disposición
El lado izquierdo de la TIEMPO Configuración muestra la NODO ajustes con filas alternas se muestra en amarillo. Aquí usted puede actualizar datos como el número de nodo, nombre de zona, intersección de coordenadas, descripción notas y datos de...
temporización de la señal. Consulte el Capítulo 4 para más detalles sobre la NODO ajustes.

Interruptor de fase
La Interruptor de fase es una fase secundaria que se extiende la fase entrado cuando es verde. Este ajuste no realizar una llamada y no llama a la Fase Detector primaria cuando el ingresado fase interruptor es de color verde.

Liderando Detector
Esta distancia en pies (metros) se mide desde la barra de parada al borde de ataque del detector más alejado de la barra de parada. Introduzca este valor para cada grupo de carril.
Esta información sólo es necesario introducir si utiliza las funciones de análisis de señales de accionamiento de Synchro. Esta información no tiene que ser introducido para los principales enfoques de la calle de semi accionado y señales coordinado.

Trailing Detector
Esta es la distancia desde el borde de salida del detector posterior a la barra de parada en metros (pies). Introduzca detectores de extensión sólo para cada grupo de carril. No cuente llamando sólo y escriba-3 detectores en este campo. La información detector se utiliza en conjunción con tiempos de separación de salida y por lo tanto se utilizan detectores de extensión. Un valor negativo se puede entrar si el detector de arrastre se extiende más allá de la barra de parada.

Mínimo Inicial
La Mínimo Inicial tiempo es el tiempo más corto verde que está garantizado si una fase es atendida.
Synchro permite un intervalo de 1 a 840 segundos. Este valor se llama Min verde en accionada controladores y mantiene el verde lo suficientemente largo para asegurar que la fase se prolonga por inicial detección. El rango de grande permitirá para el modelado de los planes de temporización inusuales.

Dividir mínimo
La Dividir mínimo es la menor cantidad de tiempo permitido para una fase. La división mínima debe ser lo suficientemente largo para acomodar el intervalo inicial mínimo más el amarillo y rojo todos los tiempos (típicamente 8-12 segundos). El mínimo permitido en Synchro es de 3 segundos y el valor máximo es de 840 segundos. Cuando Synchro asigna automáticamente splits, hará de que todas las divisiones son mayores o iguales a sus Splits mínimos.

Tiempo Amarillo
Tiempo Amarillo es la cantidad de tiempo para el intervalo de color amarillo. Este valor debe establecerse entre 3 y 5 segundos, dependiendo de la velocidad de proximación, la anchura de la calle transversal, y las normas locales. La valor mínimo permitido por Synchro es 2 segundos y el máximo es de 10 segundos.

Todo-Red Tiempo
Todo-Red Tiempo es la cantidad de tiempo para el intervalo todo rojo que sigue el intervalo de amarillo. La todos los tiempos roja debe tener una duración suficiente para permitir la intersección para borrar antes de tráfico cruzado se libera.

Ajuste de Tiempo Perdido
La Ajuste de Tiempo Perdido reemplaza el tiempo total de Perdido en el CARRIL ajustes anteriores versiones.

Volumen de Relación de Capacidad
La Volumen de Relación de Capacidad (V Ratio / c) utiliza acciona veces verdes y duración de los ciclos. La v / c relación indica la cantidad de congestión para cada grupo de carril. Cualquier relación V / c mayor o igual a 1 indica que el enfoque está funcionando a capacidad superior. Este número se calcula mediante la fórmula:

\[
X = \frac{v}{s\times g/C}
\]

X = Volumen de Relación de Capacidad
v = Volumen ajustado Carril Grupo (véase VOLUMEN ajustes en la página 6-1)
s = Saturada Caudal (ver CARRIL ajustes en la página 3-1)
g = Efectiva Tiempo Verde (split total menos tiempo perdido)
C = Largo Ciclo

Cola de retardo
Cola de retardo es un análisis de los efectos de las colas y de bloqueo en enlaces cortos y corto girando bahías. Este retardo incluye el análisis de spillback, el hambre, y el bloqueo de almacenamiento.

Retraso total
Retraso total es el grupo carril Delay control, más la cola de retardo.

Nivel de Servicio
La Nivel de Servicio (LOS) para el grupo de carril se calcula tomando el señalizada Intersección de retardo y la conversión a una carta, entre A y F, en base a la longitud de la demora.

Cola Longitudes
Las filas de longitud de cola muestran el percentil 50 y el percentil 95 longitudes de cola máxima.
La cola máxima percentil 50 es la parte posterior máximo de cola en un ciclo típico y la Cola percentil 95 es la parte posterior máximo de cola con los volúmenes de tráfico percentil 95.
Timing Configuración de inicio rápido

Hay una gran cantidad de información que se puede introducir en el TIEMPO parámetros que se pueden intimidante para los nuevos usuarios. El propósito de esta sección es dar los pasos básicos que se requieren para rápidamente obtener sus datos introducidos en el TIEMPO ajustes. Para una intersección básica, los pasos sería la siguiente:

Escriba su CARRIL y VOLUMEN ajustes de datos para su intersección.

Elija el apropiado Plantilla Fase (Consulte la página 7-2) para que coincida con su numeración convención. Este paso es necesario para Synchro puede utilizar la plantilla adecuada cuando la creación de tipos vuelta y números de fase.

Elija su tipo de control. Para intersecciones señalizadas, esto se puede establecer a un pretimed, semi-accionado descoordinada, accionada no coordinado o coordinado accionado. Para intersecciones semaforizadas, esto se puede configurar para un semaforizadas (parada o rendimiento controlado) o intersección rotonda.

Seleccione el tipo de Turno para sus giros a la izquierda y derecha. Este es el paso donde definirá cómo se escalonan sus movimientos de giro (protegidos, permitidos, libre, etc.). Si ha definido la plantilla de fase en el paso 3, Synchro automáticamente asignar números de fase para sus tratamientos giro basados en el diagrama que se muestra en la figura 7-7.

Introduzca la longitud del ciclo correspondiente. Si usted no está realizando una condición existente, análisis de intersección, se puede determinar la longitud de ciclo mediante la realización de una optimización de la duración del ciclo intersección o una optimización de la duración del ciclo de la red.

Introduzca el FASES configuración.

Ajuste las divisiones de fase con el diagrama de Splits y Phasing con el ratón. Movimiento el puntero del ratón hasta el final de la separación de fases y cambiará a la forma se muestra aquí (botón de ajuste de tamaño horizontal). Mantenga pulsado el botón izquierdo del ratón y mover el ratón a la izquierda para ajustar la división.
Capítulo 7 - Optimización y Cálculos

Este capítulo proporcionará detalles sobre la optimización y cálculos realizados por Synchro. La sección sobre optimización definirá cómo llevar a cabo los distintos comandos de optimización, junto con los objetivos de estas optimizaciones. La sección de cálculos proporcionará en profundidad detalles con respecto a los cálculos subyacentes que se encuentran dentro de Synchro.

Optimizaciones

Panorámica de optimizaciones
Synchro contiene una serie de funciones de optimización. Es importante entender lo que cada uno de ellos hace y utilizar las optimizaciones en el orden correcto.

Consejos para mejorar Optimizaciones

Asegúrese de ajustar la Longitud máxima Ciclo usando el comando Configuración. Intersecciones congestionadas se ajustarán a la longitud máxima del ciclo en muchas situaciones.
Si no se permiten movimientos de giro a la izquierda con av/c de más de 1, considere hacer una protegida fase de giro a la izquierda o la prohibición de giros a la izquierda en esta intersección.
Si usted encuentra que no están bloqueando los problemas entre las intersecciones muy próximas entre sí, considerar el uso de órdenes de fase alternativas, como izquierdas retrasadas, eliminación gradual de adelanto-atraso, o eliminación gradual de división. Si se establece el Permitir Avance / Optimizar? en el campo FASES ajustes en “Sí” a continuación sincronizada tratarán ambos principales y menos para esa fase. Medidas Synchro cola demora interacción, que habrá representaron durante el proceso de optimización (ver la sección de cola de Interacciones, página 1454).

Al optimizar las compensaciones, la optimización de la eliminación gradual de adelanto-atraso ralentiza el proceso de optimización.
Si quiere una optimización más rápida, desactive Permitir Optimizar Lead / Lag ?.
La longitud del ciclo de optimización puede tomar un buen tiempo. Considere limitar el número de ciclos evaluar y utilizar la opción de desplazamiento rápido.

Optimizar-Intersección Longitud Ciclo

La duración del ciclo natural es la longitud más baja ciclo aceptable para un funcionamiento intersección de forma independiente. La longitud ciclo natural aparece en la TIEMPO ajustes.

Intersección Capacidad (UCI) Cálculos

La utilización Intersección Capacidad (UCI) método es una herramienta simple pero potente para medir una intersección "capacidad de s. La UCI puede calcularse utilizando una página sola hoja de cálculo, que es a la vez fácil de generar y fácil de revisar. La UCI es la herramienta perfecta para aplicaciones de planificación de este tipo de como el diseño de la carretera y los estudios de impacto de tráfico.
Manual básico del software PTV VISSIM 9
INDICE

CAPITULO 1: INTRODUCCION ... 3

CAPITULO 2. PREPARACIÓN DEL AMBIENTE DE TRABAJO 4
 2.1 Imagen de Fondo .. 5

CAPITULO 3. TRAMOS Y CONECTORES .. 10
 3.1 Tramos .. 10
 3.2 Conectores .. 11

CAPITULO 4. REGLAS DE PRIORIDAD ... 12
 4.1 Como Crear una Regla de Prioridad ... 12

CAPITULO 5. ÁREAS DE CONFLICTO .. 16

CAPITULO 6. EVALUACIÓN DE TIEMPOS DE VIAJE 19

CAPITULO 7. REGULADORES SEMAFÓRICOS Y SEMÁFOROS EN LA RED 23
 7.1 Creación de Controladores Semafóricos 23

CAPITULO 8. GENERACIÓN DE NODOS ... 29
 8.1 Creación de Nodos .. 29
 8.2 Evaluación de Nodos .. 30

CAPITULO 9. SIMULACIÓN MÚLTIPLE .. 33
CAPITULO 1: INTRODUCCION
PTV Vissim es el principal programa de simulación microscópica para modelar el transporte multimodal Operaciones y pertenece al software Vision Traffic Suite.

Realista y preciso en cada detalle, Vissim crea las mejores condiciones para que usted las pruebe.

Diferentes escenarios de tráfico antes de su realización.

Vissim está siendo utilizado en todo el mundo por el sector público, empresas Consultoras y universidades.

Además de la simulación de vehículos por defecto, también puede usar Vissim para realizar simulaciones de peatones basadas en el modelo de Wiedemann.

Simulación de peatones con PTV Viswalk.
PTV Viswalk es el software líder para la simulación de peatones. Basado en la Fuerza Social Modelo del Prof. Dr. Dirk Helbing, reproduce el comportamiento de caminar humano de manera realista y seguramente. Esta solución de software con funciones potentes se utiliza cuando es necesario simular y analizar los flujos peatonales, ya sea al aire libre o en interiores.

Viswalk está diseñado para todos aquellos que deseen tener en cuenta las necesidades de los peatones en sus proyectos o estudios, por ejemplo para planificadores de tráfico y consultores de tráfico, arquitectos y Propietarios de propiedades de acceso público, gerentes de eventos y oficiales de seguridad contra incendios.

Sin embargo, solo con PTV Viswalk, no puede simular flujos de vehículos. Simular vehículo y flujos peatonales, necesita Vissim y el módulo adicional PTV Viswalk. Entonces puedes Elija si desea utilizar el enfoque de modelado de Helbing o Wiedemann.

¿Qué es VISSIM?
Es un programa que puede analizar la operación del transporte público y privado bajo condiciones como configuración de carriles, composición vehicular, semáforos, paradas TP, etc., convirtiéndose así en una herramienta útil para la evaluación de diferentes alternativas basadas en ingeniería de transporte y planeación de indicadores de desempeño.

Adicionalmente, los flujos peatonales también pueden ser modelados, de forma exclusiva o combinados con el transporte público y/o privado.
CAPITULO 2. PREPARACIÓN DEL AMBIENTE DE TRABAJO

Cuando se va a empezar a realizar una modelación en Vissim 6 es necesario preparar el ambiente de trabajo para que los archivos que genera el programa queden ubicados en un lugar conocido y más ordenado.

Como primera medida se debe guardar el trabajo previo a la realización de cualquier procedimiento, para hacer esto se va a File, Save As.

Se abre un cuadro de diálogo el cual pregunta la ubicación en la cual se desea guardar el archivo, también solicita el nombre que se le quiere dar al archivo, se recomienda abrir una nueva carpeta ya que Vissim no solo guarda el archivo plano sino que también guarda archivos adicionales.
Al dar guardar Vissim informa que en la carpeta se guardarán los archivos que se generen de la modelación.

2.1 Imagen de Fondo

Ya con el archivo guardado se procede a incorporar una imagen de fondo para poder trazar la red de la modelación, Vissim acepta archivos de Google Earth, archivos CAD o formato imagen, a continuación se explica cómo se puede incorporar una imagen de Google Earth.

Se escoge la zona en Google Earth y se guarda la imagen de la siguiente forma, archivo, guardar, guardar imagen.

Se escoge la carpeta donde se desea guardar la imagen, se recomienda usar la misma carpeta donde se guardó el archivo de la modelación.
Para poder utilizar la imagen el Vissim, es necesario escalarla, por lo tanto se necesita una distancia de referencia para poder realizar este procedimiento. Se escogen 2 puntos se sean de fácil identificación y se les mide la distancia en Google Earth, la medición se realiza activando el icono mostrar regla.

Cuando se activa la opción se muestra un cuadro de dialogo, el cual indicara la distancia que se requiere.

Para tomar la distancia se da click en dos puntos característicos y en lo posible alejado para tener una precisión en la escala, se recomienda tomar un pantallazo para no olvidar cuáles fueron los dos puntos escogidos.
Con esta información se procede a cargar la imagen en Vissim, para realiza esto se activa el módulo Background Images

Con el modulo activo se da un click derecho en la zona de trabajo para poder insertar la imagen, se abre un cuadro de diálogo donde se busca la imagen que se guardó de Google Earth; una vez escogida la imagen de da click en aceptar.
Al dar click en abrir, se inserta la imagen en Vissim, pero esta no se encuentra escalada.

Para escalar la imagen se da al mismo tiempo la tecla ctrl + click derecho sobre la imagen, al hacer este procedimiento se muestra un cuadro de diálogo y se pica en la opción Set Scale.

Cuando se pica en esta opción el cursor cambia de aspecto y es cuando se deben picar los 2 puntos que se escogieron anteriormente en Google Earth, esto con el fin de tener una referencia para escalar la imagen. Para hacer este procedimiento se pica el primer extremo y se mantiene sostenido hasta el segundo punto.
Una vez se suelta el botón del mouse aparece un cuadro de dialogo donde se pregunta una distancia, esta distancia es la misma que se midió en Google Earth.

Al dar ok la imagen queda escalada.
CAPITULO 3. TRAMOS Y CONECTORES

Partimos de tener definido el fondo por donde queremos que circule el tránsito de vehículos públicos.

3.1 Tramos

Damos Clic izquierdo en la barra de herramientas en Links

Nos paramos en el fondo y con clic derecho sostenido picamos en el fondo arrastramos, creando el primer tramo o carril de la vía deseada. Al soltarlo aparece un cuadro de diálogo Link Data que nos pregunta datos como se muestra a continuación:

Repetimos el mismo procedimiento para crear otros tramos. Con clic izquierdo seleccionamos el tramo y luego clic derecho se crea unos puntos que permite darle flexibilidad al tramo o curvatura.
Ya dibujados los tramos que se necesiten, pasamos a crear los conectores

3.2 Conectores
Estando en el final de un tramo damos clic derecho sostenido hasta el inicio del tramo al que queremos unir y soltamos. Se muestra a continuación:

Al hacer esto se abre un cuadro de diálogo que nos pregunta: datos como Spline: que quiere decir el número de puntos que se requiere para generar la curvatura del conector. Realizamos el mismo procedimiento para crear los demás conectores.
CAPÍTULO 4. REGLAS DE PRIORIDAD

En la construcción de nuestros proyectos de grado por medio de la herramienta de modelación VISSIM, vamos a encontrar que necesitamos representar intersecciones no semaforizadas, al igual que tramos de separación o unión, los cuales pueden ser modelados con técnicas apropiadas.

Una de esas técnicas son las reglas de prioridad, que básicamente es el derecho de vía para movimientos en conflicto que no se encuentran regulados por un semáforo, es decir que podemos definir quién tiene la prioridad de transitar primero en una intersección, entrecruzamiento o glorieta (tramos/conectores), y quien debe esperar un tiempo mínimo para integrarse al nuevo tramo vial.

Si se llega a tener incluido el módulo de peatones en nuestros proyectos, las reglas de prioridad también se pueden definir para flujos en conflicto con peatones.

Una regla de prioridad se compone de:

- Una línea de pare (permite a los vehículos cruzar o no).
- Una o más líneas de conflicto que están asociadas a la línea de pare.

Hay dos requerimientos para poder activar las marcas de conflicto:

- Una separación mínima (distancia), es la longitud de área de conflicto, es decir la distancia que hay entre la línea de conflicto (verde) y el primer vehículo aproximándose a ella, a la línea de pare (roja).
- Un tiempo de brecha mínima, es el tiempo que un vehículo que se aproxima necesitara la marca en conflicto (verde) y depende de la velocidad de viaje.

4.1 Como Crear una Regla de Prioridad

1. Primero creamos nuestros link con sus respectivas características.
2. Luego introducimos nuestros respectivos volúmenes vehiculares y/o peatonales con su respectiva composición vehicular.
3. Crear las respectivas rutas de decisión si hay lugar a realizarlo.
4. Creamos la regla de prioridad de la siguiente manera:
 a. Seleccionamos en el árbol de trabajo NETWORK OBJECTS que aparece en la parte izquierda la opción o el modo Priority Rules.
b. Selecciono el tramo/conector donde la línea de pare debe ser ubicada con clic izquierdo.

c. Damos clic derecho en la ubicación para la línea de pare sobre el tramo seleccionado.

d. Seleccionamos el tramo/conector donde la marca de conflicto debe ser ubicada.

e. Dar clic derecho en la ubicación para la marca de conflicto, normalmente se ubica en los dos últimos metros del área de conflicto.

f. A continuación aparece una ventana o cuadro de dialogo, en donde se definen las propiedades: en la parte donde aparece stop line podemos definir número de carriles que deseamos que haga la parada, el tipo de vehículos que queremos que hagan la parada; de igual manera en la parte derecha encontramos conflict marker en donde definimos en donde dice line el carril(es) que deseamos llegue nuestra área de conflicto y después flujo ande libremente, también podemos definir nuestra brecha (Min. Gap Time), separación (Min. Headway) y una velocidad máxima.
Vista después de introducirle los parámetros y atributos.

g. Luego de definir los anteriores parámetros le damos ok.
h. Para definir más marcas de conflicto que este ubicadas en la misma línea de pare, se da doble clic fuera de la red para regresar a los pasos c y d para realizar cada marca de conflicto adicional.

i. Y para realizar una nueva regla de prioridad, vuelvo y selecciono Priority Rules y repetimos el procedimiento de los pasos (a) al (d).

j. Por último le damos continuos, opción yes para ver cómo queda modelada nuestra regla de prioridad o señal de pare.
CAPITULO 5. ÁREAS DE CONFLICTO

Las áreas en conflicto se establecen como las zonas en las cuales dos tramos o conectores se traslanpan. Este módulo en el software VISSIM tiene mucha utilidad, pues permite establecer la prelación que tiene una vía o conector sobre otra que la cruza en algún punto específico. Establecer en el modelo un área en conflicto, permite obtener resultados más aproximados a la realidad, pues configura una estrategia interna en la cual el software genera opciones sobre cada vehículo, planeando el momento en el cual es prudente hacer el cruce sobre esta área, del mismo modo que un conductor lo hace en la vida real.

Es de tener en cuenta que esta opción no es posible desarrollarla en el caso en que se presenten las siguientes situaciones:

- Cuando la intersección presenta diferencias de altura superior a un metro entre los links.
- Cuando la sección de traslape es inferior a 0,5m.
- Cuando los vehículos salen automáticamente de la red tan pronto cruzan esta zona.

Creación:

1. Para establecer un área en conflicto es necesario tener dibujados los links y conectores con zonas de traslape.

2. Posteriormente en el árbol de trabajo en el costado izquierdo de la pantalla se selecciona la opción número cuatro (4) llamada “Conflict Area”. Al seleccionar esta opción el programa automáticamente subraya de color amarillo la zona en la cual se está presentando el área en conflicto.

Con las áreas de conflicto establecidas, es necesario como paso siguiente asignar la prelación o nivel de importancia de cada tramo. Las convenciones que establece el software para mostrar la importancia que tiene cada vía son las siguientes:

- Verde: Indica cual es la vía principal con prelación.
- Rojo: Indica cual vía es secundaria o con menor importancia.
- Amarillo: Indica que el área de conflicto está configurada como área pasiva.
Esta configuración se realiza siguiendo los siguientes pasos:

A. Se debe dar doble click sobre el área en conflicto.

B. Seguidamente en la barra de edición sobre la columna llamada “Status” se establece la prioridad de cada link. Para esto, se despliega la barra de opciones de datos picando sobre cada dato y seleccionando la opción deseada.
Para el caso de ejemplo se observa en la Figura que las opciones desplegadas son las siguientes:

- “2 waits for 1”: La prelación la tiene el link uno (1) sobre el link dos (2).
- “1 waits for 2”: La prelación la tiene el link dos (2) sobre el link uno (1).
- “Undetermined”: Indica que el área está indeterminada y no se ha establecido prelación para ninguno de los links.
- “Passive”: Muestra que el área está configurada como pasiva y que ninguno de los links presenta prioridad, lo que genera en el modelo que los vehículos que transitan por cada uno de estos sectores, planeen su momento de cruce.

En la siguiente Figura se observa la representación que hace el programa cuando tiene las prioridades configuradas en las aéreas de conflicto.

Por último y como paso seguido es necesario configurar para cada link las distancias de visibilidad y los tiempos de brecha para cruce tanto frontal como trasera; esto se realiza incorporando los datos en la columnas dos (2), Cuatro (4), seis (6) y siete (7) de la barra de edición.
CAPITULO 6. EVALUACIÓN DE TIEMPOS DE VIAJE

Para la realización de la evaluación de mediciones de tiempo de viaje se debe realizar el siguiente procedimiento:

1. Se tiene la red de simulación y se selecciona el tramo al cual le vamos a medir la evaluación de los tiempos de viaje.

2. Se debe definir un punto de inicio del tramo y un punto final del tramo para realizar la evaluación. Para lo cual se selecciona la pestaña de “Vehicle Travel Times” en el costado izquierdo de la pantalla. Haciendo clic con el botón derecho del mouse sobre el tramo a medir y luego con el botón izquierdo se marca el inicio del tramo a ser evaluado y el final del tramo.
3. Una vez se generan el punto inicio y el punto final, se genera un cuadro al cual se debe marcar el nombre del tramo seleccionado para efectos de evaluación.

4. En el cuadro de configuración de las evaluaciones se define el parámetro a ser evaluado, que en este caso es “Vehicle Travel Times” y se define el lapso de tiempo y el intervalo a ser evaluado en la pestaña “Result Attributes”.

Posteriormente, se selecciona la pestaña “Evaluation” y ahí se hace clic en “configuration”, para tener acceso a la configuración de parámetros a ser evaluados.
5. En la pestaña “Direct Output” se define el parámetro a ser evaluado y se determina el lapso de tiempo de evaluación.

6. En la pestaña “Evaluation” se selecciona el ítem “Result List” y de ahí se selecciona “Vehicle Travel Times” para definir los atributos del resultado de la evaluación.
7. El la ventana resultante del proceso anterior se observan los atributos donde se observarán los resultados de la evaluación.

8. Se corre el modelo y se observa para cada intervalo de tiempo el resultado de la evaluación.

9. Una vez se haya terminado la simulación, se observa en la parte final de la tabla de evaluación, los datos de Total, promedio, desviación estándar, mínimo y máximo de tiempo en el tramo evaluado.
CAPITULO 7. REGULADORES SEMAFÓRICOS Y SEMÁFOROS EN LA RED

En Vissim 6 las intersecciones semaforizadas pueden ser modeladas por medio de control de tiempo fijo. Para la creación de controles semaforizadas se hará por medio de un ejemplo, de tal manera que sea fácil su comprensión:

7.1 Creación de Controladores Semafóricos.

1. Creación de enlace o link

2. Colocación de semáforos; para esto se deben seguir los siguientes pasos:

A) Inicialmente se activa el módulo de Semáforos ubicado en la barra de herramientas del costado izquierdo. Se da clic en el menú señales de control (parte superior de la pantalla) y luego en el submenú controladores de señal.

B) El archivo se debe guardar en una carpeta, es de aclarar que en esta dirección se guardarán todos los archivos que se generan a lo largo de la creación semafórica.

C) Dar clic derecho sobre la lista para crear un nuevo controlador.
D) Se abrirá una ventana de dialogo en donde se deberá señalar el cuadro, editar controlador de señal.

![Image of Vissim interface](image1.png)

E) Para comenzar a editar el cuadro del controlador se debe definir cuantos grupos de señales se requieren. Para nuestro ejercicio insertamos dos (esto se hizo dando clic derecho en el submenú grupos de señal del menú, mi controlador semafórico, y dando luego un clic izquierdo sobre nuevo)

![Image of Vissim interface](image2.png)

Es de aclarar que en Vissim podemos editar cada uno de los grupos de señales creados dando clic derecho sobre el grupo a modificar, opción Editar, y de esta forma podremos escoger entre 11 opciones de secuencias de acuerdo a nuestra necesidad. También se pueden cambiar los valores mínimos (segundos) que trae el programa por defecto en cada uno de los 7 estados de señales que nos presenta (Rojo, Rojo/ámbar, Verde, Ámbar, Verde intermitente, Ámbar intermitente, Apagado):
F) Luego se hace el mismo paso anterior, solo que se hace para el plan de señales (para nuestro ejemplo solo insertamos un plan)

G) Sobre el programa creado se debe hacer doble clic, con el fin de observar la presentación gráfica predeterminada que nos arroja el programa evidenciando en esta los tiempos de ciclos para cada uno de los Grupos de señales que se crearon.
A continuación se debe definir la secuencia para cada grupo de señal.

H) Y se deben modificar los tiempos para cada grupo de señal

I) Después de realizados los cambios se deben guardar en la misma carpeta creada anteriormente, y en la ventana de dialogo se deberá dar ok.

J) Se debe elegir el elemento de semáforo (ubicado en la parte izquierda de la pantalla)
K) Luego se puede colocar los semáforos eligiendo con el botón izquierdo la calzada donde se desea ubicar el semáforo, y con clic derecho creando ya el semáforo, es allí cuando aparece una línea de color rojo lo que indica que el semáforo está instalado en ese punto.

L) Allí aparecerá un cuadro dialogo en donde se deberá escoger el número de controlador y el grupo de señal. Para nuestro ejercicio utilizamos el controlador=1 y grupo de señal =1, ya que es nuestra vía principal y son los datos que corresponden de acuerdo a la programación del ciclo que le asignamos a cada grupo de señal.

M) De igual manera se realiza el paso anterior para la vía secundaria solo que para ésta el grupo de señal será=2

N) Con clip derecho sostenido sobre la línea de semáforo ya creado, se puede duplicar arrastrando hacia el lado o carril que se quiere colocar, y al salir el cuadro de diálogo se indicara también el número de señal así como el grupo de señal.
3. A continuación se crean las rutas de decisión

4. Se asignan los volúmenes vehiculares para cada carril al igual que la composición vehicular.

5. Y finalmente se corre el modelo de simulación
CAPITULO 8. GENERACIÓN DE NODOS

Para la generación de los nodos se da click en el icono Nodes se va a la pantalla en la que se deben hacer una figura que seleccionen el área que se quiere a analizar.

8.1 Creación de Nodos.

Se deja oprimido click derecho y se arrastras hasta terminar el primer lado de la figura luego solo tiene que oprimir hasta donde más quiere que llegue la figura y ubica los puntos que necesite.

Por último cierra la figura dando click en el punto 1. A esto se le llama un Nodo luego de cerrar la figura se despliega una ventana con las siguientes propiedades:

No.: número de Nodo

- Nombre: nombre o comentario opcional
- Etiqueta: al mostrar las etiquetas de todos los nodos, esta opción permite desactivar individualmente la etiqueta de cada uno.
- Evaluación de nodo: si esta opción está activa, el nodo será incluido en la evaluación de nodo si mediante el menú EVALUACIÓN – ARCHIVOS – [VEHÍCULOS]
- Asignación Dinámica: Si esta opción está activa, el nodo es considerado para el gráfico de red durante la Asignación Dinámica, y dar Ok.
Si se quieren analizar más zonas se hace el mismo procedimiento para realizar el Nodo y solo se cambia el Name para luego diferenciarlo.

8.2 Evaluación de Nodos
Para la evaluación de los nodos se procede a verificar inicialmente la configuración de la simulación para esto se va simulación parámetros.
Posterior a esto se procede a la configuración de la evaluación que se realiza en evaluación – configuración, Se despliega la ventana de configuraciones de la evaluación en la cual se selecciona nodos y se le introduce el intervalo de tiempo en segundos.

Luego de hacer estos pasos y estar en la pantalla principal corre el programa con el icono de play llamado Simulation Continuous y se deja correr los 3600 segundos si se tiene licencia o 600 segundos si no se tiene óseo todo lo que el programa corra.

Ya dejando correr el programa todo el tiempo que se puede, se va a Evaluation, reports, nodes y se despliega una nueva ventana en donde puede ver la información de cada nodo señalado.
CAPÍTULO 9. SIMULACIÓN MÚLTIPLE

La opción de simulación múltiple sirve para ejecutar el determinado número de simulaciones que se consideren necesarias para lograr que el modelo tenga la validez necesaria de datos y tenga la concordancia indicada al momento de ser confrontado con datos tomados directamente en campo.

Las aplicaciones típicas de la simulación múltiple son:

- Variación de la semilla de aleatoriedad
- Iteración de asignación dinámica
- Incremento sucesivo de la demanda de tráfico con asignación dinámica

Antes de realizar la simulación múltiple es necesario configurar la salida de los datos para encontrar el directorio en el cual se desean guardar los resultados, en esta configuración se puede habilitar o deshabilitar la información que se quiere evaluar, la configuración se realiza siguiendo los siguientes pasos:

- Se va al menú EVALUATION, luego en CONFIGURATION.
- Se puede seleccionar la composición con la cual se desee realizar la simulación múltiple.
- Se selecciona la información que se desea evaluar y colectar para que queden guardados los resultados en un directorio que se desee que también se puede seleccionar en este mismo menú.

Para la simulación múltiple por asignación dinámica los parámetros de configuración se deben editar en el menú TRAFFIC – DINAMIC ASSIGNMENT – ASSIGNMENT PARAMETERS, en este menú se puede configurar el intervalo de evaluación que se desea, es decir cada cuanto desea que se haga la evaluación del modelo, de igual manera serán generados los resultados, en este menú se ingresa la composición la cual se quiere evaluar, también se evalúan los cotos de ruta, alternativas y rutas.
Luego de tener la configuración por el método que se vaya a evaluar ya sea por la semilla de aleatoriedad o por asignación dinámica, se procede a configurar la simulación múltiple de la siguiente manera:

- Se ingresa al menú SIMULACIÓN – SIMULACIÓN MÚLTIPLE.
- Se configura la semilla de aleatoriedad ingresando el valor inicial y el incremento que se desea que tenga esta entre cada simulación, cuando se utiliza la simulación por asignación dinámica este incremento debe ser 0.
- Se ingresa el número de simulación que se desea realizar, es recomendable que este número de simulaciones esté en un rango de 5 a 20 simulaciones para tener datos confiables.
- Se ingresa el valor del incremento de volumen en asignación dinámica, este parámetro hace referencia a que la demanda puede ser aumentada sucesivamente con el fin de llegar al punto donde la demanda alcance un crecimiento del 100%, para cada simulación la demanda es aumentada en el valor que se determine hasta alcanzar el 100% del incremento, es importante no iniciar con un valor del 100% porque en este caso no habría manera de confrontar el comportamiento de la red ante un incremento gradual que es el que en realidad ocurre en terreno.
- Por último se selecciona el directorio en el cual se deseen almacenar los resultados de las simulaciones, y se da inicio a las iteraciones.