Abstract:
La educación virtual se ha visto impulsada por la pandemia de COVID-19 y, aunque ya era una opción de aprendizaje, su uso se ha vuelto más frecuente. Las universidades no siempre cuentan con la infraestructura necesaria para dar cabida a grandes cantidades de estudiantes que eligen esta modalidad de educación, y la educación virtual puede ayudar a incrementar la cantidad de vacantes ofertadas. Sin embargo, es necesario establecer mecanismos que garanticen una educación de calidad, justa y equitativa. En la actualidad, se utiliza la supervisión humana, que requiere la presencia de un examinador para monitorear visual y acústicamente a los estudiantes durante los exámenes, lo cual resulta costoso y requiere un gran esfuerzo cuando se tienen que evaluar a muchas personas. En este estudio, se propone un modelo de detección de anomalías en los exámenes en línea. Se desarrolló una aplicación de escritorio para recolectar información de la cámara y el micrófono durante el examen simulacro de admisión del centro pre-universitario de la Universidad Nacional del Altiplano. Se recolectaron 180024 clips de video y 115292 clips de audio. La información se procesó y se extrajeron características de movimiento para construir un vector de características. Se desarrollaron, compararon y evaluaron tres modelos, basados en los algoritmos ISOLATIONFOREST, LSTM-AUTOENCODER y AUTOENCODERS y este último tuvo los mejores resultados, ya que se obtuvo un ACCURACY de 80.08 % y una PRECISIÓN 98.00 %. El modelo propuesto puede ayudar a reducir la posibilidad de que los estudiantes hagan trampa y mejorar la calidad y equidad de la educación virtual en línea.