ANEXO 1: MATRIZ DE CONCISTENCIA

a) Matriz de consistencia:

"Evaluación del uso de ceniza de fondo y cal como aditivo estabilizante de suelo arcilloso en la subrasante del camino vecinal Pallalla – Totojira."

PROBLEMAS	OBJETIVOS	HIPÓTESIS	VARIABLES	DIMENSIÓN	INDICADORES	METODOLOGÍA
Problema general: ¿Cómo la incorporación de ceniza de fondo y cal podría mejorar la estabilidad de la subrasante arcillosa del camino vecinal Pallalla – Totojira? Problemas específicos:	Objetivo general: Evaluar el comportamiento de la ceniza de fondo y la cal para ser empleada como aditivo estabilizante de la subrasante arcillosa del camino vecinal Pallalla – Totojira. Objetivos específicos:	Hipótesis general: La incorporación de ceniza de fondo y cal influye de forma positiva para la estabilización de la subrasante arcillosa, por lo que es viable para su uso en el camino vecinal Pallalla – Totojira. Hipótesis específicas:	Variable independiente (X): Ceniza de fondo y cal	- Cantidad	Porcentaje de ceniza de fondo y cal	 Método de investigación: Aplicada Nivel de investigación: Descriptivo Diseño de investigación: Experimental
 ¿De qué manera se modifica las propiedades de plasticidad del suelo arcilloso a nivel de subrasante adicionando ceniza de fondo y cal? ¿Cuánto cambia las propiedades de densidad seca máxima del suelo arcilloso a nivel de subrasante adicionando ceniza de fondo y cal? ¿Cuánto se modifica el valor de soporte relativo del suelo arcilloso a nivel de subrasante adicionando ceniza de fondo y cal? 	1. Analizar de qué modo afecta las propiedades de plasticidad del suelo arcilloso a nivel de subrasante adicionando ceniza de fondo y cal del camino vecinal Pallalla – Totojira. 2. Determinar cómo cambia las propiedades de densidad seca máxima y el contenido de humedad óptimo del suelo arcilloso a nivel de subrasante adicionando ceniza de fondo y cal del camino vecinal Pallalla – Totojira. 3. Determinar cómo se modifica el valor de soporte relativo del suelo arcilloso a nivel de subrasante adicionando ceniza de fondo y cal del camino vecinal Pallalla – Totojira.	 La adición de ceniza de fondo y cal mejora las propiedades de plasticidad del suelo arcilloso a nivel de subrasante del camino vecinal Pallalla – Totojira. La adición de ceniza de fondo y cal influye en la máxima densidad seca (MDS) y al contenido de humedad óptimo (CHO) debido a la adición de insumos con características diferentes al suelos arcilloso a nivel de subrasante del camino vecinal Pallalla – Totojira. La adición de ceniza de fondo y cal modifica positivamente la capacidad portante del suelo arcilloso a nivel de subrasante del camino vecinal Pallalla – Totojira. 	Variable dependiente (Y): Estabilización de suelos arcillosos	- Propiedades físicas - Propiedades mecánicas	 Clasificación de suelo (SUCS y AASHTO) Índice de plasticidad (%) Máxima densidad seca (g/cm3) Optimo contenido de humedad (%) Índice de capacidad de soporte (%) Expansión (%) 	Población: Está constituida por el suelo de subrasante del camino vecinal Pallalla – Totojira. Muestra: Son los materiales de los suelos arcillosos empleados para su caracterización. Técnicas de obtención y procesamiento de datos: Comprendió la ficha de análisis de las diferentes muestras y la guía del MTC, en el laboratorio de mecánica de suelos de la EPIC-UNA.

ANEXO 2: CUADRO DE OPERACIONALIZACIÓN DE VARIABLES

b) Cuadro de operacionalización de variables:

"Evaluación del uso de ceniza de fondo y cal como aditivo estabilizante de suelo arcilloso en la subrasante del camino vecinal Pallalla – Totojira."

VARIABLE	TIPO	DEFINICIÓN CONCEPTUAL	DEFINICIÓN OPERACIONAL	DIMENSIONES	INDICADORES	UNIDAD		
Ceniza de	que se generan du		Son los residuos sólidos que se generan durante la etapa de producción de Pallalla - Totojira,		Porcentaje de ceniza de fondo	%		
fondo	macpenarente	ladrillos en las ladrilleras y se acumula en el fondo de los hornos.	considerando 3%, 6%, 9% y 12% en relación al peso seco de la muestra.	Tamaño	Pasante de la malla Nº40	%		
Cal	Independiente	Es un compuesto químico que se obtiene mediante la calcinación de piedra	Se adiciona al suelo arcilloso del camino vecinal Pallalla - Totojira,	Cantidad	Porcentaje de ceniza de fondo	%		
Cai	macpenarente	caliza, es empleado como material de construcción y estabilización de suelos. considerando 3% para las 4 dosificaciones en relación al peso seco de la muestra.		material de construcción y dosificaciones en relación Tamaño		Tamaño	Pasante de la malla Nº40	%
					Contenido de humedad	%		
				Propiedades físicas	Granulometría	%		
					Límite líquido	%		
		Conjunto de técnicas y			Límite plástico	%		
Estabilización de suelos	Dependiente	procesos empleados para mejorar las propiedades de	Se evalúa los datos obtenidos en base a los ensayos realizados según la normativa peruana.		Índice de plasticidad	%		
arcillosos	-	suelos arcillosos, con el objetivo de aumentar su resistencia y estabilidad.			Máxima densidad seca	g/cm3		
				Propiedades	Optimo contenido de humedad	%		
				mecánicas	Índice de capacidad de soporte	%		
					Expansión	%		

ANEXO 3: PANEL FOTOGRÁFICO

Inspección visual del suelo de subrasante del camino vecinal Pallalla – Totojira. Cuenta con una longitud de 3.80 km y un ancho promedio de plataforma de 4.00 m.

FOTO Nº 2

Se muestra la subrasante arcillosa con deficiencias debido a su alta plasticidad y baja capacidad portante.

FOTO Nº 3

Inicio de la excavación con maquinaria de la calicata C-01 en la progresiva Km 00+500.

Calicata C-01 para su respectivo muestreo.

FOTO N° 5

Excavación con maquinaria de la calicata C-02 en la progresiva Km 01+000.

FOTO Nº 6

Excavación con maquinaria de la calicata C-03 en la progresiva Km 01+500.

Excavación con maquinaria de la calicata C-04 en la progresiva Km 02+000.

FOTO Nº 8

Excavación con maquinaria de la calicata C-05 en la progresiva Km 02+500.

FOTO Nº 9

Secado de las muestras obtenidas debido al alto contenido de humedad natural.

Cuarteo del material para seleccionar una muestra representativa destinada a su análisis en laboratorio.

FOTO Nº 11

Cuarteo del material para seleccionar una muestra representativa destinada a su análisis en laboratorio.

FOTO Nº 12

Lavado de muestras de suelo empleando el hexametafosfato de sodio y el tamiz #200.

Ensayo de análisis granulométrico por tamizado del suelo muestreado con fines de elaboración del perfil estratigráfico.

FOTO Nº 14

Ensayo de limite plástico de los suelos de subrasante con fines de elaboración del perfil estratigráfico.

FOTO Nº 15

Introducción de muestras al horno para su respectivo secado del ensayo de límites de consistencia con fines de elaboración del perfil estratigráfico.

Vista panorámica de los hornos de ladrilleras en el centro poblado de Salcedo.


FOTO Nº 17

Proceso de purificación con una zaranda para eliminar contaminantes o materiales de gran tamaño presentes en la ceniza de fondo.

FOTO Nº 18

Recolección de ceniza de fondo de los hornos de ladrilleras con ayuda de una pala y sacos.

Elaboración de los especímenes con adición de distintos porcentajes de cal.

FOTO Nº 20

Proceso del ensayo para estimar el porcentaje aproximado de cal basado en el pH, se muestra los especímenes que se encuentran en recipientes de plástico herméticamente sellados.

FOTO Nº 21

Registro de las lecturas obtenidas de pH para los diferentes especímenes analizados.

Dosificación de las diferentes mezclas: suelo – ceniza de fondo – cal, para el ensayo de proctor modificado.

FOTO Nº 23

Elaboración de las diferentes dosificaciones para el ensayo de proctor modificado.

FOTO Nº 24

Proceso de compactación del ensayo de proctor modificado según el método "A".

Pesaje de las probetas de suelo elaboradas según el ensayo de proctor modificado.

FOTO Nº 26

Elaboración de las diferentes dosificaciones para el ensayo de límites de consistencia.

FOTO Nº 27

Saturación de muestras pasantes del tamiza #40 para el ensayo de límites de consistencia.

Ensayo de límite líquido y límite plástico para las mezclas sueloceniza de fondo-cal objeto de estudio.

FOTO Nº 29

Resultados del ensayo de límite líquido y limite plástico

FOTO Nº 30

Introducción de las muestras del ensayo de límites de consistencia al horno de laboratorio para su respectivo secado.

Elaboración de las diferentes dosificaciones sueloceniza de fondo-cal para el ensayo de CBR de laboratorio.

FOTO Nº 32

Saturación de las muestras de suelo para su posterior ensayo de CBR en laboratorio.

FOTO Nº 33

Proceso de compactación de las diferentes mezclas de suelo-ceniza de fondocal según el ensayo de CBR de laboratorio.

Pesaje de las probetas de suelo elaboradas según el ensayo de CBR de laboratorio.

FOTO Nº 35

Moldes de CBR con suelo compactado para las diferentes dosificaciones objeto de estudio.

FOTO Nº 36

Inmersión de los moldes de CBR en agua en el pozo durante un espacio de tiempo de 4 días.

Control y registro diario de la expansión para todas las muestras compactadas en el ensayo de CBR de laboratorio.

FOTO Nº 38

Colocado del molde con la muestra drenada con sus discos de carga y ubicación del punto inicial de carga en la prensa CBR.

FOTO Nº 39

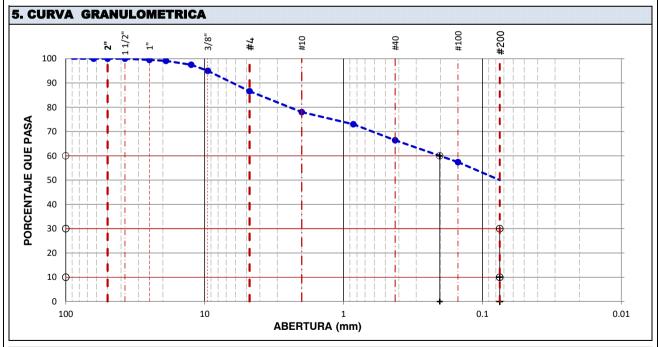
Ensayo de CBR en la fase de penetración de los especímenes moldeados.

ANEXO 4: RESULTADOS DE ENSAYOS DE LABORATORIO

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 01 / PLATAFORMA KM 00+500	LADO: IZQUIERDO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.70 m	E-01

3. T	AMIZAI	00					4. RESUMEN	
	TAMIZ	<u>'</u>	RETE	NIDO	PASANTE	ACUMULADO (%)	DATOS GENERALES	
N	DENOM	INACION	PESO (g)	%	SU	ELO NATURAL	DESRIPCIÓN	VALOR
IN	ASTM	(mm)	FE30 (g)	/0	% PASANTE	•	Peso inicial	4,052 g
1	3 1/2"	90.000					Peso muestra lavada y seca	2,025 g
2	3"	75.000					% de Arena: 36.69	.,
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 13.49	
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	3,511 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 50.09	
6	1"	25.000	21	0.5	99.5		TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	16	0.4	99.1		TAMAÑO MÁXIMO	1 1/2"
8	1/2"	12.500	64	1.6	97.5			
9	3/8"	9.500	102	2.5	95.0		LIMITES DE ATTE	
10	#4	4.750	338	8.3	86.6		DESCRIPCION	RESULTADO
11	#10	2.000	350.2	8.6	78.0		Límite Líquido (LL):	36.2 %
12	#20	0.850	201.4	5.0	73.0		Límite Plástico (LP):	19.8 %
13	#40	0.425	268.9	6.6	66.4		Índice Plástico (IP):	16.4 %
14	#100	0.150	365.0	9.0	57.4			
15	#200	0.075	298.3	7.4	50.0		CLASIFICACIÓN DEL SUELO	
16	Fondo	0.075	2,027.0	50.0			SUCS	CL
17							AASHTO	A-6
18							INDICE GRUPO	6

DESCRIPCIÓN DEL SUELO: ARCILLA ARENOSA DE BAJA PLASTICIDAD

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 01 / PLATAFORMA KM 00+500	LADO: IZQUIERDO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.70 m.	E-01

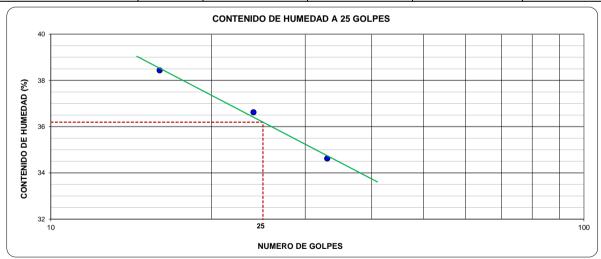
3 DATOS DEL ENSAYO							
Nº DE ENSAYO	M-01	M-02	M-03	-			
PESO MATERIAL HUMEDO + TARA (Gr.)	251.5	278.7	243.9	-			
PESO MATERIAL SECO + TARA (Gr.)	211.5	235.6	205.4	-			
PESO DE TARA (Gr.)	48.4	50.1	50.7	-			
PESO DEL AGUA (Gr.)	40.0	43.1	38.5	-			
PESO MATERIAL SECO (Gr.)	163.1	185.5	154.7	-			
HUMEDAD NATURAL (%)	24.5	23.2	24.9	-			
PROMEDIO DE HUMEDAD (%)	24.2						

4.- OBSERVACIONES

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 01 / PLATAFORMA KM 00+500	LADO: IZQUIERDO	
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.70 m	E-01

3LIMITE LIQUIDO							
DESCRIPCIÓN	UNIDAD		MUESTRAS				
Nº CAPSULA	ID	C-01	C-06	C-10	-		
PESO TARA + SUELO HUMEDO	(g)	77.05	84.49	75.18	-		
PESO TARA + SUELO SECO	(g)	62.35	68.19	61.83	-		
PESO DE AGUA	(g)	14.70	16.30	13.35	-		
PESO DE LA TARA	(g)	24.10	23.68	23.27	-		
PESO DEL SUELO SECO	(g)	38.25	44.51	38.56	-		
CONTENIDO DE HUMEDAD	(%)	38.43	36.62	34.62	-		
NUMERO DE GOLPES		16	24	33			

4LIMITE PLÁSTICO							
DESCRIPCIÓN	UNIDAD		MUESTRAS				
Nº TARRO	ID	T-12	T-10	T-15	PROMEDIO		
PESO TARA + SUELO HUMEDO	(g.)	23.52	24.31	24.12			
PESO TARA + SUELO SECO	(g.)	21.52	22.15	21.98			
PESO DE LA TARA	(g.)	11.54	11.26	11.04			
PESO DEL AGUA	(g.)	2.00	2.16	2.14			
PESO DEL SUELO SECO	(g.)	9.98	10.89	10.94			
CONTENIDO DE HUMEDAD	(%)	20.04	19.83	19.56	19.81		

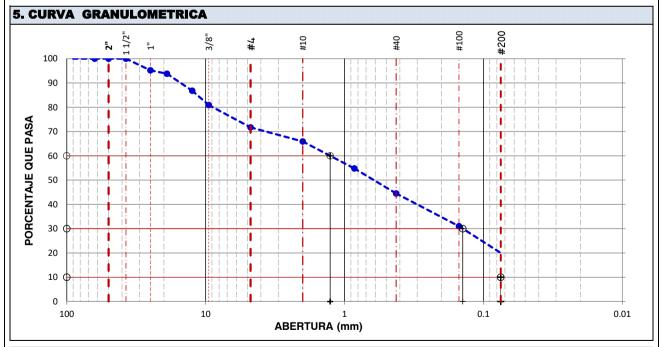
CONSTANTES FISICAS DE LA MUESTRA				
LIMITE LIQUIDO (%)	36.2			
LIMITE PLASTICO (%)	19.8			
INDICE DE PLASTICIDAD (%)	16.4			

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 01 / PLATAFORMA KM 00+500	LADO: IZQUIERDO	F 02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.70 - 1.50 m.	E-02

3. T	AMIZAI	00					4. RESUMEN	
	TAMIZ RETENIDO			PASANTE ACUMULADO (%)		DATOS GENERALES		
N	DENOM	INACION	PESO (g)	%	SU	ELO NATURAL	DESRIPCIÓN	VALOR
IN	ASTM	(mm)	FE30 (g)	/0	% PASANTE	•	Peso inicial	4,510 g
1	3 1/2"	90.000					Peso muestra lavada y seca	3,609 g
2	3"	75.000					% de Arena: 51.7%	=,00. 9
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 28.3%	
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	3,235 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 20.0%	
6	1"	25.000	215	4.8	95.2		TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	65	1.4	93.8		TAMAÑO MÁXIMO	1 1/2"
8	1/2"	12.500	315	7.0	86.8			
9	3/8"	9.500	265	5.9	80.9		LIMITES DE ATTER	
10	#4	4.750	415	9.2	71.7		DESCRIPCION	RESULTADO
11	#10	2.000	265.0	5.9	65.9		Límite Líquido (LL):	NP
12	#20	0.850	498.1	11.0	54.8		Límite Plástico (LP):	NP
13	#40	0.425	465.6	10.3	44.5		Índice Plástico (IP):	NP
14	#100	0.150	610.0	13.5	31.0			
15	#200	0.075	495.2	11.0	20.0		CLASIFICACIÓN DEL	
16	Fondo	0.075	901.0	20.0			SUCS	SM
17							AASHTO	A-1-b
18							INDICE GRUPO	0

DESCRIPCIÓN DEL SUELO: ARENA LIMOSA CON GRAVA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 01 / PLATAFORMA KM 00+500	LADO: IZQUIERDO	E-02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.70 - 1.50 m.	E-02

3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	301.9	292.5	330.4	-				
PESO MATERIAL SECO + TARA (Gr.)	245.6	240.1	268.3	-				
PESO DE TARA (Gr.)	51.2	50.5	51.8	-				
PESO DEL AGUA (Gr.)	56.3	52.4	62.1	-				
PESO MATERIAL SECO (Gr.)	194.4	189.6	216.5	-				
HUMEDAD NATURAL (%)	29.0	27.6	28.7	-				
PROMEDIO DE HUMEDAD (%)	28.4							

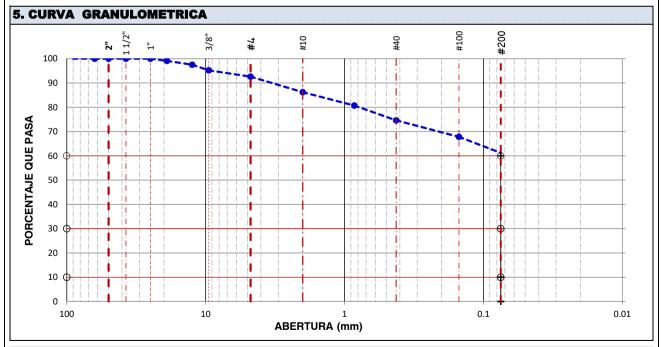
4.- OBSERVACIONES

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000	LADO: DERECHO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.20	E-01

3. T	'AMIZAI	00					4. RESUMEN	
	TAMIZ RETENIDO PASANTE ACUMULADO (%)			DATOS GENERALES				
N	DENOM	INACION	PESO (g)	%	SUE	LO NATURAL	DESRIPCIÓN	VALOR
IN	ASTM	(mm)	FE30 (g)	/0	% PASANTE	•	Peso inicial	3,845 g
1	3 1/2"	90.000					Peso muestra lavada y seca	1,491 g
2	3"	75.000					% de Arena: 31.3	
3	2 1/2"	63.000	0	0.0	100.0			ŀ% 286 g
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	3,559 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 61.2	
6	1"	25.000	0	0.0	100.0		TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	35	0.9	99.1		TAMAÑO MÁXIMO	1"
8	1/2"	12.500	62	1.6	97.5			
9	3/8"	9.500	86	2.2	95.2		LIMITES DE ATTI	
10	#4	4.750	103	2.7	92.6		DESCRIPCION	RESULTADO
11	#10	2.000	245.0	6.4	86.2		Límite Líquido (LL):	38.0 %
12	#20	0.850	210.2	5.5	80.7		Límite Plástico (LP):	20.4 %
13	#40	0.425	235.1	6.1	74.6		Índice Plástico (IP):	17.5 %
14	#100	0.150	261.7	6.8	67.8			
15	#200	0.075	253.2	6.6	61.2		CLASIFICACIÓN D	
16	Fondo	0.075	2,354.0	61.2			SUCS	CL
17							AASHTO	A-6
18			·	·			INDICE GRUPO	8

DESCRIPCIÓN DEL SUELO: ARCILLA ARENOSA DE BAJA PLASTICIDAD

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000	LADO: DERECHO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR : 0.00 - 1.20 m.	E-01

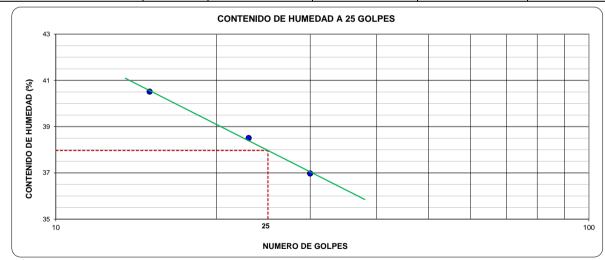
3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	235.6	219.8	227.9	1				
PESO MATERIAL SECO + TARA (Gr.)	196.0	183.4	189.4	•				
PESO DE TARA (Gr.)	51.2	45.3	49.5	-				
PESO DEL AGUA (Gr.)	39.6	36.4	38.5	-				
PESO MATERIAL SECO (Gr.)	144.8	138.1	139.9	-				
HUMEDAD NATURAL (%)	27.3	26.4	27.5	-				
PROMEDIO DE HUMEDAD (%)	27.1							

4.- OBSERVACIONES

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 ESTRATO
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000	LADO:	DERECHO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR:	0.00 - 1.20 m.	E-01

3LIMITE LIQUIDO							
DESCRIPCIÓN	UNIDAD	MUESTRAS					
Nº CAPSULA	ID	C-05	C-26	C-11	-		
PESO TARA + SUELO HUMEDO	(g)	62.46	60.99	60.63	-		
PESO TARA + SUELO SECO	(g)	51.25	50.62	50.54	-		
PESO DE AGUA	(g)	11.21	10.37	10.09	-		
PESO DE LA TARA	(g)	23.58	23.69	23.25	-		
PESO DEL SUELO SECO	(g)	27.67	26.93	27.29	-		
CONTENIDO DE HUMEDAD	(%)	40.51	38.51	36.97	-		
NUMERO DE GOLPES		15	23	30			

4LIMITE PLÁSTICO							
DESCRIPCIÓN	UNIDAD	MUESTRAS					
Nº TARRO	ID	T-06	T-02	T-14	PROMEDIO		
PESO TARA + SUELO HUMEDO	(g.)	20.10	21.49	21.96			
PESO TARA + SUELO SECO	(g.)	18.50	19.60	20.13			
PESO DE LA TARA	(g.)	10.59	10.38	11.24			
PESO DEL AGUA	(g.)	1.60	1.89	1.83			
PESO DEL SUELO SECO	(g.)	7.91	9.22	8.89			
CONTENIDO DE HUMEDAD	(%)	20.23	20.50	20.58	20.44		

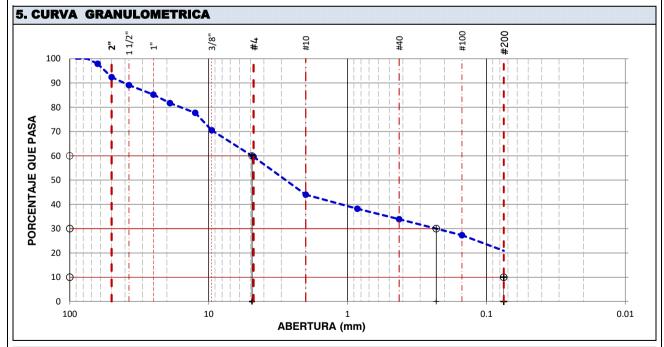
CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	37.97					
LIMITE PLASTICO (%)	20.44					
INDICE DE PLASTICIDAD (%)	17.53					

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA			2. ESTRATO
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000	LADO:	DERECHO	F 00
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR:	1.20 - 1.50 m.	E-02

3. T	AMIZAI	00					4. RESUMEN		
	TAMIZ	-	RETE	NIDO	PASANTE	ACUMULADO (%)	DATOS GENERALES		
N	DENOM	INACION	PESO (g)	%	SUE	LO NATURAL	DESRIPCIÓN	VALOR	
IN	ASTM	(mm)	FE30 (g)	/0	% PASANTE	•	Peso inicial	4,562 g	
1	3 1/2"	90.000					Peso muestra lavada y seca	3,607 g	
2	3"	75.000					% de Arena: 38.7%	.,	
3	2 1/2"	63.000	95	2.1	97.9		% de Grava: 40.4%		
4	2"	50.000	253	5.5	92.4		Fracción de suelo < #4	2,719 g	
5	1 1/2"	37.500	150	3.3	89.1		% de Suelo Fino < #200: 20.9%		
6	1"	25.000	175	3.8	85.2		TIPO DE TAMIZADO	MANUAL	
7	3/4"	19.000	162	3.6	81.7		TAMAÑO MÁXIMO	3"	
8	1/2"	12.500	184	4.0	77.7				
9	3/8"	9.500	326	7.1	70.5		LIMITES DE ATTER	RBERG	
10	#4	4.750	498	10.9	59.6		DESCRIPCION	RESULTADO	
11	#10	2.000	712.5	15.6	44.0		Límite Líquido (LL):	NP	
12	#20	0.850	265.8	5.8	38.2		Límite Plástico (LP):	NP	
13	#40	0.425	195.4	4.3	33.9		Índice Plástico (IP):	NP	
14	#100	0.150	301.5	6.6	27.3				
15	#200	0.075	288.7	6.3	20.9		CLASIFICACIÓN DE	SUELO	
16	Fondo	0.075	955.0	20.9			SUCS	GM	
17							AASHTO	A-1-b	
18							INDICE GRUPO	0	

DESCRIPCIÓN DEL SUELO: GRAVA LIMOSA CON ARENA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000	LADO: DERECHO	E-02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 1.20 - 1.50 m.	E-02

3 DATOS DEL ENSAYO				
Nº DE ENSAYO	M-01	M-02	M-03	-
PESO MATERIAL HUMEDO + TARA (Gr.)	391.4	459.9	446.2	•
PESO MATERIAL SECO + TARA (Gr.)	312.5	362.1	350.4	-
PESO DE TARA (Gr.)	52.6	51.3	52.0	-
PESO DEL AGUA (Gr.)	78.9	97.8	95.8	-
PESO MATERIAL SECO (Gr.)	259.9	310.8	298.4	-
HUMEDAD NATURAL (%)	30.4	31.5	32.1	-
PROMEDIO DE HUMEDAD (%)	31.3			

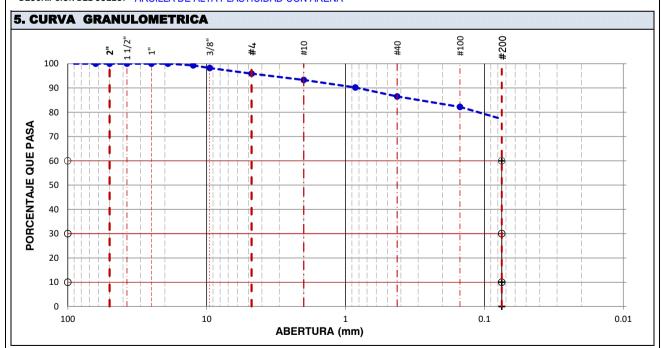
4.- OBSERVACIONES

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	LADO: IZQUIERDO	E 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.50 m.	E-01

3. T	AMIZAI	00					4. RESUMEN	
	TAMIZ		RETE	NIDO	PASANTE	ACUMULADO (%)	DATOS GENER	ALES
N	DENOM	INACION	PESO (g)	%	SU	ELO NATURAL	DESRIPCIÓN	VALOR
IN	ASTM	(mm)	FE30 (g)	/0	% PASANTE	•	Peso inicial	4,105 g
1	3 1/2"	90.000					Peso muestra lavada y seca	937 g
2	3"	75.000					% de Arena: 18.7%	
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 4.1%	
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	3,936 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 77.2%	
6	1"	25.000	0	0.0	100.0		TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	0	0.0	100.0		TAMAÑO MÁXIMO	3/4"
8	1/2"	12.500	29	0.7	99.3			
9	3/8"	9.500	46	1.1	98.2		LIMITES DE ATTER	
10	#4	4.750	94	2.3	95.9		DESCRIPCION	RESULTADO
11	#10	2.000	105.4	2.6	93.3		Límite Líquido (LL):	51.5 %
12	#20	0.850	126.8	3.1	90.2		Límite Plástico (LP):	18.4 %
13	#40	0.425	151.7	3.7	86.5		Índice Plástico (IP):	33.1 %
14	#100	0.150	178.5	4.3	82.2			
15	#200	0.075	205.6	5.0	77.2		CLASIFICACIÓN DEL SUELO	
16	Fondo	0.075	3,168.2	77.2			SUCS	CH
17							AASHTO	A-7-6
18							INDICE GRUPO	14

DESCRIPCIÓN DEL SUELO: ARCILLA DE ALTA PLASTICIDAD CON ARENA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	LADO: IZQUIERDO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.50 m.	E-01

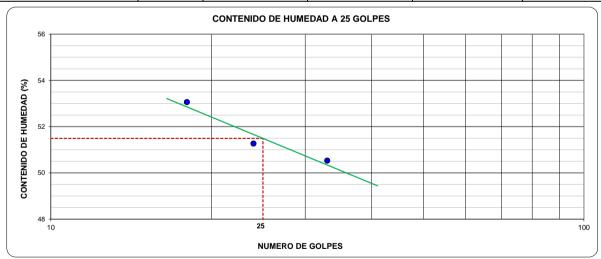
3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	237.8	233.5	215.1	1				
PESO MATERIAL SECO + TARA (Gr.)	201.4	195.5	181.0	•				
PESO DE TARA (Gr.)	52.8	49.7	45.2	-				
PESO DEL AGUA (Gr.)	36.4	38.0	34.1	-				
PESO MATERIAL SECO (Gr.)	148.6	145.8	135.8	-				
HUMEDAD NATURAL (%)	24.5	26.1	25.1	-				
PROMEDIO DE HUMEDAD (%) 25.2								

4.- OBSERVACIONES

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	LADO: IZQUIERDO	
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.50 r	E-01

3LIMITE LIQUIDO							
DESCRIPCIÓN	UNIDAD		MUESTRAS				
Nº CAPSULA	ID	C-06	C-08	C-05	-		
PESO TARA + SUELO HUMEDO	(g)	43.83	37.94	40.11	-		
PESO TARA + SUELO SECO	(g)	35.51	31.67	33.41	-		
PESO DE AGUA	(g)	8.32	6.27	6.70	-		
PESO DE LA TARA	(g)	19.83	19.44	20.15	-		
PESO DEL SUELO SECO	(g)	15.68	12.23	13.26	-		
CONTENIDO DE HUMEDAD	(%)	53.06	51.27	50.53	-		
NUMERO DE GOLPES		18	24	33			

4LIMITE PLÁSTICO						
DESCRIPCIÓN	UNIDAD		MUE	STRAS		
Nº TARRO	ID	T-09	T-21	T-15	PROMEDIO	
PESO TARA + SUELO HUMEDO	(g.)	27.12	27.49	29.41		
PESO TARA + SUELO SECO	(g.)	25.93	26.01	28.15		
PESO DE LA TARA	(g.)	19.65	18.05	21.03		
PESO DEL AGUA	(g.)	1.19	1.48	1.26		
PESO DEL SUELO SECO	(g.)	6.28	7.96	7.12		
CONTENIDO DE HUMEDAD	(%)	18.95	18.59	17.70	18.41	

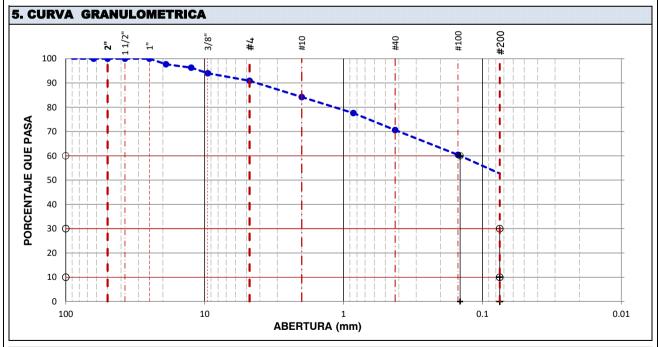
CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%) 51.49					
LIMITE PLASTICO (%)	18.41				
INDICE DE PLASTICIDAD (%)	33.08				

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 04 / PLATAFORMA KM 02+000	LADO: DERECHO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.50	E-01

			0.222	, .,					
3. T	'AMIZAI	00			4. RESUMEN				
	TAMIZ		RETENIDO		PASANTE	ACUMULADO (%)	DATOS GENERALES		
N	N DENOMINACION ASTM (mm)		PESO (g)	%	SUELO NATURAL		DESRIPCIÓN	VALOR	
IN			FE30 (g) /0		% PASANTE	•	Peso inicial	4,062 g	
1	3 1/2"	90.000					Peso muestra lavada y seca	1,921 g	
2	3"	75.000					70 dc 7 li ci la.	3.2% 1,553 g	
3	2 1/2"	63.000	0	0.0	100.0			9.1% 369 g	
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	3,693 g	
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 52	2.7% 2,141 g	
6	1"	25.000	0	0.0	100.0		TIPO DE TAMIZADO	MANUAL	
7	3/4"	19.000	95	2.3	97.7		TAMAÑO MÁXIMO	1"	
8	1/2"	12.500	54	1.3	96.3				
9	3/8"	9.500	95	2.3	94.0		LIMITES DE ATTERBERG		
10	#4	4.750	125	3.1	90.9		DESCRIPCION	RESULTADO	
11	#10	2.000	274.5	6.8	84.2		Límite Líquido (LL):	35.2 %	
12	#20	0.850	265.1	6.5	77.6		Límite Plástico (LP):	20.6 %	
13	#40	0.425	285.1	7.0	70.6		Índice Plástico (IP):	14.6 %	
14	#100	0.150	415.2	10.2	60.4				
15	#200	0.075	312.6	7.7	52.7		CLASIFICACIÓN		
16	Fondo	0.075	2,141.0	52.7			SUCS	CL	
17							AASHTO	A-6	
18							INDICE GRUPO	5	

DESCRIPCIÓN DEL SUELO: ARCILLA ARENOSA DE BAJA PLASTICIDAD

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA	2 ESTRATO	
UBICACIÓN: CALICATA 04 / PLATAFORMA KM 02+000	LADO: DERECHO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.50 m.	E-01

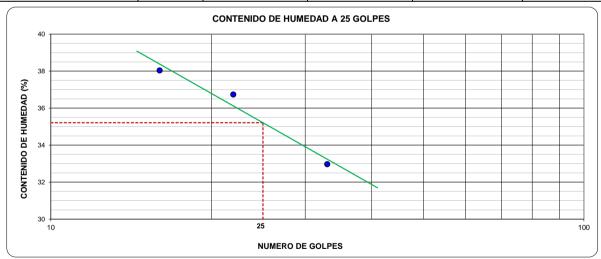
3 DATOS DEL ENSAYO							
Nº DE ENSAYO	M-01	M-02	M-03	-			
PESO MATERIAL HUMEDO + TARA (Gr.)	239.6	221.9	252.7	-			
PESO MATERIAL SECO + TARA (Gr.)	201.2	189.2	212.4	-			
PESO DE TARA (Gr.)	46.2	49.7	48.3	-			
PESO DEL AGUA (Gr.)	38.4	32.7	40.3	-			
PESO MATERIAL SECO (Gr.)	155.0	139.5	164.1	-			
HUMEDAD NATURAL (%)	24.8	23.4	24.6	-			
PROMEDIO DE HUMEDAD (%)	24.3						

4.- OBSERVACIONES

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 ESTRATO
UBICACIÓN: CALICATA 04 / PLATAFORMA KM 02+000	LADO:	DERECHO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	_ ESPESOR:	0.00 - 0.50 m.	E-01

3LIMITE LIQUIDO						
DESCRIPCIÓN	UNIDAD	MUESTRAS				
Nº CAPSULA	ID	C-02	C-05	C-03	-	
PESO TARA + SUELO HUMEDO	(g)	64.21	60.24	66.09	-	
PESO TARA + SUELO SECO	(g)	52.62	50.24	55.32	-	
PESO DE AGUA	(g)	11.59	10.00	10.77	-	
PESO DE LA TARA	(g)	22.15	23.02	22.65	-	
PESO DEL SUELO SECO	(g)	30.47	27.22	32.67	-	
CONTENIDO DE HUMEDAD	(%)	38.04	36.74	32.97	-	
NUMERO DE GOLPES		16	22	33		

4LIMITE PLÁSTICO						
DESCRIPCIÓN	UNIDAD	MUESTRAS				
Nº TARRO	ID	T-06	T-02	T-14	PROMEDIO	
PESO TARA + SUELO HUMEDO	(g.)	21.50	22.04	20.45		
PESO TARA + SUELO SECO	(g.)	19.62	20.31	18.90		
PESO DE LA TARA	(g.)	11.32	11.56	10.95		
PESO DEL AGUA	(g.)	1.88	1.73	1.55		
PESO DEL SUELO SECO	(g.)	8.30	8.75	7.95		
CONTENIDO DE HUMEDAD	(%)	22.65	19.77	19.50	20.64	

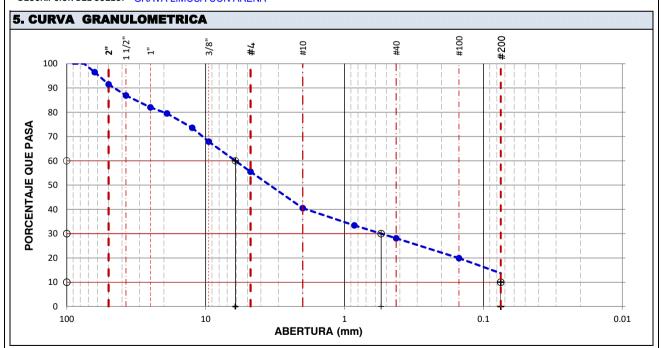
CONSTANTES FISICAS DE LA MUESTRA				
LIMITE LIQUIDO (%)	35.2			
LIMITE PLASTICO (%)	20.6			
INDICE DE PLASTICIDAD (%)	14.6			

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 04 / PLATAFORMA KM 02+000	LADO: DERECHO	F 02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.50 - 1.50 m	E-02

3. T	AMIZAI	00					4. RESUMEN		
	TAMIZ RETENIDO			NIDO	PASANTE	ACUMULADO (%)	DATOS GENERALES		
N	DENOMINACION		DECO (a)	%	SUI	ELO NATURAL	DESRIPCIÓN	VALOR	
IN	ASTM	(mm)	PESO (g)	70	% PASANTE		Peso inicial	4,262 g	
1	3 1/2"	90.000					Peso muestra lavada y seca	3,678 g	
2	3"	75.000					% de Arena: 41.89		
3	2 1/2"	63.000	151	3.5	96.5		% de Grava: 44.59		
4	2"	50.000	212	5.0	91.5		Fracción de suelo < #4	2,364 g	
5	1 1/2"	37.500	195	4.6	86.9		% de Suelo Fino < #200: 13.79		
6	1"	25.000	210	4.9	82.0		TIPO DE TAMIZADO	MANUAL	
7	3/4"	19.000	105	2.5	79.5		TAMAÑO MÁXIMO	3"	
8	1/2"	12.500	251	5.9	73.6				
9	3/8"	9.500	246	5.8	67.9		LIMITES DE ATTE	RBERG	
10	#4	4.750	528	12.4	55.5		DESCRIPCION	RESULTADO	
11	#10	2.000	638.1	15.0	40.5		Límite Líquido (LL):	NP	
12	#20	0.850	302.5	7.1	33.4		Límite Plástico (LP):	NP	
13	#40	0.425	225.2	5.3	28.1		Índice Plástico (IP):	NP	
14	#100	0.150	348.9	8.2	19.9				
15	#200	0.075	265.0	6.2	13.7		CLASIFICACIÓN DE	L SUELO	
16	Fondo	0.075	584.0	13.7			SUCS	GM	
17							AASHTO	A-1-a	
18							INDICE GRUPO	0	

DESCRIPCIÓN DEL SUELO: GRAVA LIMOSA CON ARENA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 04 / PLATAFORMA KM 02+000	LADO: DERECHO	E-02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.50 - 1.50 m.	E-02

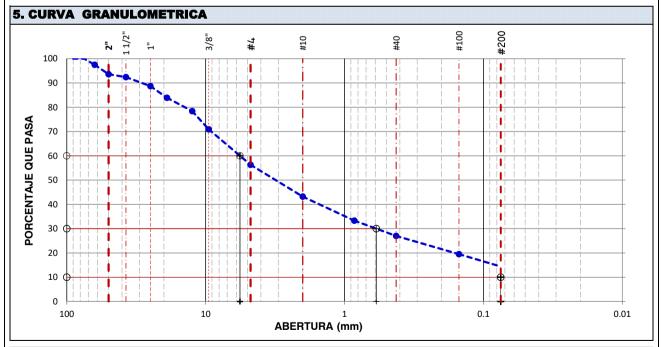
3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	365.0	349.1	360.7	-				
PESO MATERIAL SECO + TARA (Gr.)	295.6	280.3	291.0	-				
PESO DE TARA (Gr.)	51.2	51.7	50.9	-				
PESO DEL AGUA (Gr.)	69.4	68.8	69.7	-				
PESO MATERIAL SECO (Gr.)	244.4	228.6	240.1	-				
HUMEDAD NATURAL (%)	28.4	30.1	29.0	-				
PROMEDIO DE HUMEDAD (%)	29.2							

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 05 / PLATAFORMA KM 02+500	LADO: IZQUIERDO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.00 m.	E-01

3. T	'AMIZAI	00						4. RESUMEN	
	TAMIZ		RETE	NIDO	PASANTE ACUMULADO (%)		DATOS GENERALES		
N	DENOMINACION		PESO (g)	%	SU	ELO NATURAL		DESRIPCIÓN	VALOR
14	ASTM	(mm)	1 LSO (g)	70	% PASANTE			Peso inicial	4,177 g
1	3 1/2"	90.000						Peso muestra lavada y seca	3,575 g
2	3"	75.000						70 do 7 li ciid.	.9% 1,750 g
3	2 1/2"	63.000	104	2.5	97.5			% de Grava: 43	.7% 1,825 g
4	2"	50.000	162	3.9	93.6			Fracción de suelo < #4	2,352 g
5	1 1/2"	37.500	50	1.2	92.4			% de Suelo Fino < #200: 14	.4% 602 g
6	1"	25.000	156	3.7	88.7			TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	201	4.8	83.9			TAMAÑO MÁXIMO	3"
8	1/2"	12.500	230	5.5	78.4				_
9	3/8"	9.500	312	7.5	70.9			LIMITES DE ATT	ERBERG
10	#4	4.750	610	14.6	56.3			DESCRIPCION	RESULTADO
11	#10	2.000	548.2	13.1	43.2			Límite Líquido (LL):	NP
12	#20	0.850	412.0	9.9	33.3			Límite Plástico (LP):	NP
13	#40	0.425	265.1	6.3	27.0			Índice Plástico (IP):	NP
14	#100	0.150	312.0	7.5	19.5				
15	#200	0.075	212.5	5.1	14.4			CLASIFICACIÓN DEL SUELO	
16	Fondo	0.075	602.0	14.4				SUCS	GM
17								AASHTO	A-1-a
18								INDICE GRUPO	0

DESCRIPCIÓN DEL SUELO: GRAVA LIMOSA CON ARENA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 05 / PLATAFORMA KM 02+500	LADO: IZQUIERDO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.00 m.	E-01

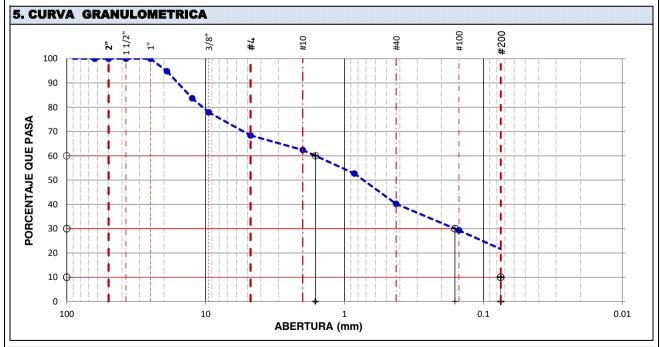
3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	425.5	364.1	412.9	-				
PESO MATERIAL SECO + TARA (Gr.)	345.6	295.7	338.1	-				
PESO DE TARA (Gr.)	50.8	50.3	51.2	-				
PESO DEL AGUA (Gr.)	79.9	68.4	74.8	-				
PESO MATERIAL SECO (Gr.)	294.8	245.4	286.9	-				
HUMEDAD NATURAL (%)	27.1	27.9	26.1	-				
PROMEDIO DE HUMEDAD (%)	27.0							

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 05 / PLATAFORMA KM 02+500	LADO: IZQUIERD	
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 1.00 - 1.50	E-02

3. T	'AMIZAI	00					4. RESUMEN	
	TAMIZ		RETE	NIDO	PASANTE	ACUMULADO (%)	DATOS GENER	ALES
N	DENOM	INACION	PESO (g)	%	SU	ELO NATURAL	DESRIPCIÓN	VALOR
IN	ASTM	(mm)	FE30 (g)	/0	% PASANTE	•	Peso inicial	4,161 g
1	3 1/2"	90.000					Peso muestra lavada y seca	3,260 g
2	3"	75.000					% de Arena: 46.7%	1,944 g
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 31.6%	
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	2,845 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 21.6%	6 901 g
6	1"	25.000	0	0.0	100.0		TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	215	5.2	94.8		TAMAÑO MÁXIMO	1"
8	1/2"	12.500	465	11.2	83.7			
9	3/8"	9.500	241	5.8	77.9		LIMITES DE ATTER	RBERG
10	#4	4.750	395	9.5	68.4		DESCRIPCION	RESULTADO
11	#10	2.000	250.3	6.0	62.4		Límite Líquido (LL):	NP
12	#20	0.850	403.1	9.7	52.7		Límite Plástico (LP):	NP
13	#40	0.425	520.1	12.5	40.2		Índice Plástico (IP):	NP
14	#100	0.150	450.8	10.8	29.3			•
15	#200	0.075	320.1	7.7	21.6		CLASIFICACIÓN DE	
16	Fondo	0.075	901.0	21.7			SUCS	SM
17							AASHTO	A-1-b
18							INDICE GRUPO	0

DESCRIPCIÓN DEL SUELO: ARENA LIMOSA CON GRAVA

6. OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 05 / PLATAFORMA KM 02+500	LADO: IZQUIERDO	E-02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 1.00 - 1.50 m.	E-02

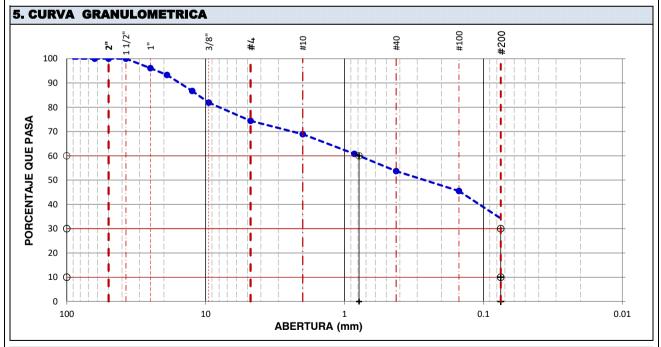
3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	346.0	285.9	350.1	-				
PESO MATERIAL SECO + TARA (Gr.)	265.3	224.1	268.9	-				
PESO DE TARA (Gr.)	49.2	51.3	51.7	•				
PESO DEL AGUA (Gr.)	80.7	61.8	81.2	-				
PESO MATERIAL SECO (Gr.)	216.1	172.8	217.3	-				
HUMEDAD NATURAL (%)	37.3	35.8	37.4	-				
PROMEDIO DE HUMEDAD (%)	36.8							

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 06 / PLATAFORMA KM 03+000	LADO: DERECHO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.50 m	E-01

3. T	AMIZAI	00					4. RESUMEN	
	TAMIZ		RETE	NIDO	PASANTE	ACUMULADO (%)	DATOS GENERALES	
N	DENOM	INACION	DECO (a)	%	SUE	LO NATURAL	DESRIPCIÓN	VALOR
IN	ASTM	(mm)	PESO (g)	70	% PASANTE		Peso inicial	4,102 g
1	3 1/2"	90.000					Peso muestra lavada y seca	2,698 g
2	3"	75.000					% de Arena: 40.2%	1,648 g
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 25.69	
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4	3,052 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 34.29	6 1,404 g
6	1"	25.000	161	3.9	96.1		TIPO DE TAMIZADO	MANUAL
7	3/4"	19.000	112	2.7	93.3		TAMAÑO MÁXIMO	1 1/2"
8	1/2"	12.500	273	6.7	86.7			
9	3/8"	9.500	196	4.8	81.9		LIMITES DE ATTEI	RBERG
10	#4	4.750	308	7.5	74.4		DESCRIPCION	RESULTADO
11	#10	2.000	227.5	5.5	68.9		Límite Líquido (LL):	21.2 %
12	#20	0.850	332.1	8.1	60.8		Límite Plástico (LP):	19.7 %
13	#40	0.425	291.6	7.1	53.7		Índice Plástico (IP):	1.5 %
14	#100	0.150	335.4	8.2	45.5			•
15	#200	0.075	461.8	11.3	34.2		CLASIFICACIÓN DE	SUELO
16	Fondo	0.075	1,404.0	34.2			SUCS	SM
17							AASHTO	A-2-4
18							INDICE GRUPO	0

DESCRIPCIÓN DEL SUELO: ARENA LIMOSA CON GRAVA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

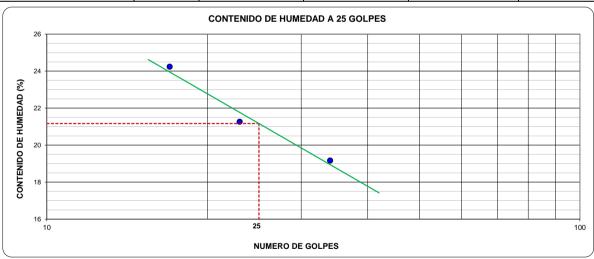
1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 06 / PLATAFORMA KM 03+000	LADO: DERECHO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 1.50 m.	E-01

3 DATOS DEL ENSAYO								
Nº DE ENSAYO	M-01	M-02	M-03	-				
PESO MATERIAL HUMEDO + TARA (Gr.)	264.9	278.3	283.8	-				
PESO MATERIAL SECO + TARA (Gr.)	210.3	218.5	224.2	-				
PESO DE TARA (Gr.)	50.1	49.2	48.6	-				
PESO DEL AGUA (Gr.)	54.6	59.8	59.6	-				
PESO MATERIAL SECO (Gr.)	160.2	169.3	175.6	-				
HUMEDAD NATURAL (%)	34.1	35.3	33.9	-				
PROMEDIO DE HUMEDAD (%) 34.4								

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 ESTRATO
UBICACIÓN: CALICATA 06 / PLATAFORMA KM 03+000	LADO	DERECHO	F 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR:	0.00 - 1.50 m.	E-01

3LIMITE LIQUIDO						
DESCRIPCIÓN	UNIDAD	MUESTRAS				
Nº CAPSULA	ID	C-12	C-05	C-10	-	
PESO TARA + SUELO HUMEDO	(g)	59.51	60.12	57.09	-	
PESO TARA + SUELO SECO	(g)	52.72	53.85	51.75	-	
PESO DE AGUA	(g)	6.79	6.27	5.34	-	
PESO DE LA TARA	(g)	24.71	24.36	23.89	-	
PESO DEL SUELO SECO	(g)	28.01	29.49	27.86	-	
CONTENIDO DE HUMEDAD	(%)	24.24	21.26	19.17	-	
NUMERO DE GOLPES		17	23	34		

4LIMITE PLÁSTICO							
DESCRIPCIÓN	UNIDAD	MUESTRAS					
Nº TARRO	ID	T-03	T-05	T-02	PROMEDIO		
PESO TARA + SUELO HUMEDO	(g.)	26.89	33.37	33.21			
PESO TARA + SUELO SECO	(g.)	24.25	29.60	29.60			
PESO DE LA TARA	(g.)	11.10	10.66	10.66			
PESO DEL AGUA	(g.)	2.64	3.77	3.61			
PESO DEL SUELO SECO (g.)		13.15	18.94	18.94			
CONTENIDO DE HUMEDAD	(%)	20.08	19.90	19.06	19.68		

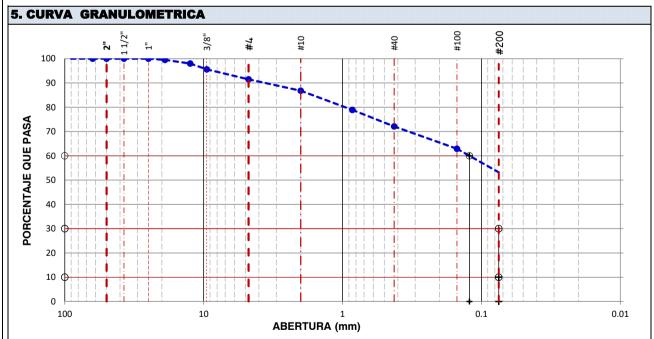
CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%)	21.2				
LIMITE PLASTICO (%)	19.7				
INDICE DE PLASTICIDAD (%)	1.5				

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 07 / PLATAFORMA KM 03+500	LADO: IZQUIERDO	E 04
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.40 m.	- E-01

3. T	'AMIZAI	00					4. RESUMEN
	TAMIZ		RETE	NIDO	PASANTE	ACUMULADO	(%) DATOS GENERALES
N	DENOM	INACION	PESO (g)	%	SUI	ELO NATURAL	DESRIPCIÓN VALOR
14	ASTM	(mm)	1 LSO (g)	70	% PASANTE		Peso inicial 3,984 g
1	3 1/2"	90.000					Peso muestra lavada y seca 1,863 g
2	3"	75.000					% de Arena: 38.2% 1,523 g
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 8.5% 340 g
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4 3,644 g
5	1 1/2"	37.500	0	0.0	100.0		% de Suelo Fino < #200: 53.2% 2,121 g
6	1"	25.000	0	0.0	100.0		TIPO DE TAMIZADO MANUAL
7	3/4"	19.000	20	0.5	99.5		TAMAÑO MÁXIMO 1"
8	1/2"	12.500	61	1.5	98.0		
9	3/8"	9.500	95	2.4	95.6		LIMITES DE ATTERBERG
10	#4	4.750	164	4.1	91.5		DESCRIPCION RESULTADO
11	#10	2.000	186.7	4.7	86.8		Límite Líquido (LL): 38.3 %
12	#20	0.850	315.4	7.9	78.9		Límite Plástico (LP): 21.5 %
13	#40	0.425	268.7	6.7	72.1		Índice Plástico (IP): 16.8 %
14	#100	0.150	367.2	9.2	62.9		
15	#200	0.075	385.1	9.7	53.2		CLASIFICACIÓN DEL SUELO
16	Fondo	0.075	2,121.0	53.2		•	SUCS CL
17							AASHTO A-6
18							INDICE GRUPO 6

DESCRIPCIÓN DEL SUELO: ARCILLA ARENOSA DE BAJA PLASTICIDAD

6. OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

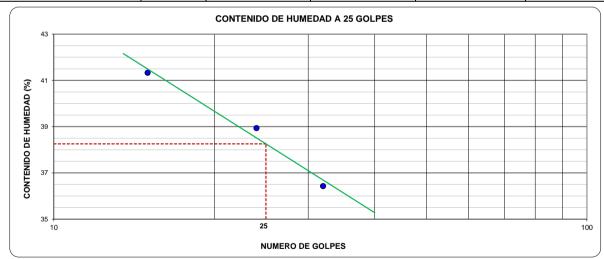
1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 07 / PLATAFORMA KM 03+500	LADO: IZQUIERDO	E-01
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.40 m.	E-01

3 DATOS DEL ENSAYO							
Nº DE ENSAYO	M-01	M-02	M-03	-			
PESO MATERIAL HUMEDO + TARA (Gr.)	241.1	286.9	258.6	-			
PESO MATERIAL SECO + TARA (Gr.)	201.5	235.6	215.4	-			
PESO DE TARA (Gr.)	50.1	48.2	48.9	-			
PESO DEL AGUA (Gr.)	39.6	51.3	43.2	-			
PESO MATERIAL SECO (Gr.)	151.4	187.4	166.5	-			
HUMEDAD NATURAL (%)	26.2	27.4	25.9	-			
PROMEDIO DE HUMEDAD (%) 26.5							

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 07 / PLATAFORMA KM 03+500	LADO: IZQUIERDO	
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.00 - 0.40 m	E-01

3LIMITE LIQUIDO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº CAPSULA	ID	C-05	C-09	C-08	-
PESO TARA + SUELO HUMEDO	(g)	65.02	68.75	62.59	-
PESO TARA + SUELO SECO	(g)	52.15	55.27	51.48	-
PESO DE AGUA	(g)	12.87	13.48	11.11	-
PESO DE LA TARA	(g)	21.01	20.65	20.98	-
PESO DEL SUELO SECO	(g)	31.14	34.62	30.50	-
CONTENIDO DE HUMEDAD	(%)	41.33	38.94	36.43	-
NUMERO DE GOLPES		15	24	32	

4LIMITE PLÁSTICO						
DESCRIPCIÓN	UNIDAD		MUE	STRAS		
Nº TARRO	ID	T-01	T-02	T-07	PROMEDIO	
PESO TARA + SUELO HUMEDO	(g.)	20.95	21.81	22.48		
PESO TARA + SUELO SECO	(g.)	19.25	19.79	20.34		
PESO DE LA TARA	(g.)	11.02	10.68	10.40		
PESO DEL AGUA	(g.)	1.70	2.02	2.14		
PESO DEL SUELO SECO	(g.)	8.23	9.11	9.94		
CONTENIDO DE HUMEDAD	(%)	20.66	22.17	21.53	21.45	

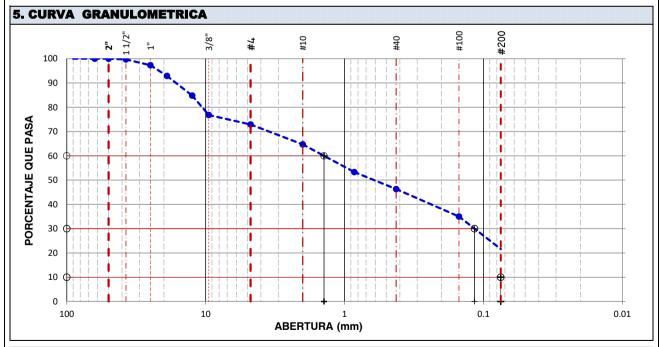
CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%) 38.3					
LIMITE PLASTICO (%)	21.5				
INDICE DE PLASTICIDAD (%)	16.8				

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

ANALISIS GRANULOMETRICO POR TAMIZADO (ASTM D 422)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE


DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1. DATOS DE LA MUESTRA		2. ESTRATO
UBICACIÓN: CALICATA 07 / PLATAFORMA KM 03+500	LADO: IZQUIERDO	F 02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.40 - 1.50 m	E-02

3. T	3. TAMIZADO				4. RESUMEN		
	TAMIZ		RETE	NIDO	PASANTE	ACUMULADO (%	DATOS GENERALES
N	DENOM	NACION	PESO (g)	%	SUI	ELO NATURAL	DESRIPCIÓN VALOR
14	ASTM	(mm)	1 L30 (g)	70	% PASANTE		Peso inicial 3,951 g
1	3 1/2"	90.000					Peso muestra lavada y seca 3,098 g
2	3"	75.000					% de Arena: 51.3% 2,027 g
3	2 1/2"	63.000	0	0.0	100.0		% de Grava: 27.1% 1,071 g
4	2"	50.000	0	0.0	100.0		Fracción de suelo < #4 2,880 g
5	1 1/2"	37.500	10	0.3	99.7		% de Suelo Fino < #200: 21.6% 853 g
6	1"	25.000	95	2.4	97.3		TIPO DE TAMIZADO MANUAL
7	3/4"	19.000	175	4.4	92.9		TAMAÑO MÁXIMO 2"
8	1/2"	12.500	320	8.1	84.8		
9	3/8"	9.500	315	8.0	76.8		LIMITES DE ATTERBERG
10	#4	4.750	156	3.9	72.9		DESCRIPCION RESULTADO
11	#10	2.000	324.5	8.2	64.7		Límite Líquido (LL): 23.5 %
12	#20	0.850	450.2	11.4	53.3		Límite Plástico (LP): 21.4 %
13	#40	0.425	275.2	7.0	46.3		Índice Plástico (IP): 2.1 %
14	#100	0.150	445.6	11.3	35.0		
15	#200	0.075	531.2	13.4	21.6		CLASIFICACIÓN DEL SUELO
16	Fondo	0.075	853.0	21.6		,	SUCS SM
17							AASHTO A-1-b
18							INDICE GRUPO 0

DESCRIPCIÓN DEL SUELO: ARENA LIMOSA CON GRAVA

6. OBSERVACIONES

CONTENIDO DE HUMEDAD NATURAL (ASTM D 2216)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

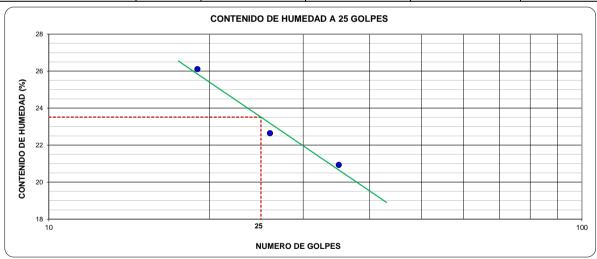
1 MUESTRA		2 ESTRATO
UBICACIÓN: CALICATA 07 / PLATAFORMA KM 03+500	LADO: IZQUIERDO	E-02
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR: 0.40 - 1.50 m.	E-02

3 DATOS DEL ENSAYO						
Nº DE ENSAYO	M-01	M-02	M-03	-		
PESO MATERIAL HUMEDO + TARA (Gr.)	297.4	332.9	276.1	-		
PESO MATERIAL SECO + TARA (Gr.)	235.2	265.1	220.7	-		
PESO DE TARA (Gr.)	49.3	51.0	50.9	-		
PESO DEL AGUA (Gr.)	62.2	67.8	55.4	-		
PESO MATERIAL SECO (Gr.)	185.9	214.1	169.8	-		
HUMEDAD NATURAL (%)	33.5	31.7	32.6	-		
PROMEDIO DE HUMEDAD (%)	32.6					

^{*} Las calicatas se realizaron con maquina y tuvo una profundidad de 1.50 m.

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 ESTRATO
UBICACIÓN: CALICATA 07 / PLATAFORMA KM 03+500	LADO:	IZQUIERDO	
MATERIAL: SUELO EXISTENTE DE PLATAFORMA	ESPESOR:	0.40 - 1.50 m.	E-02

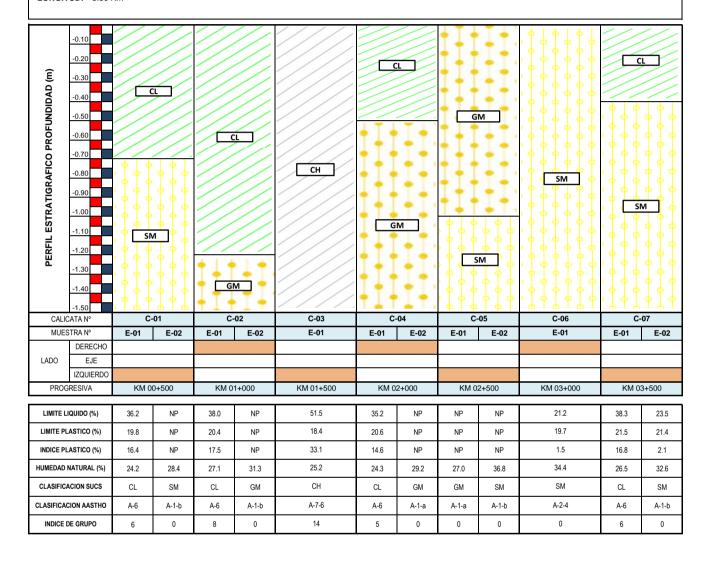
3LIMITE LIQUIDO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº CAPSULA	ID	C-02	C-05	C-07	-
PESO TARA + SUELO HUMEDO	(g)	60.15	58.42	62.31	-
PESO TARA + SUELO SECO	(g)	52.90	52.00	56.00	-
PESO DE AGUA	(g)	7.25	6.42	6.31	-
PESO DE LA TARA	(g)	25.13	23.65	25.85	-
PESO DEL SUELO SECO	(g)	27.77	28.35	30.15	-
CONTENIDO DE HUMEDAD	(%)	26.11	22.65	20.93	-
NUMERO DE GOLPES		19	26	35	

4LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD		MUESTRAS					
Nº TARRO	ID	T-05	T-06	T-10	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	28.01	35.91	27.51				
PESO TARA + SUELO SECO	(g.)	25.13	31.24	24.87				
PESO DE LA TARA	(g.)	11.53	10.92	11.70				
PESO DEL AGUA	(g.)	2.88	4.67	2.64				
PESO DEL SUELO SECO	(g.)	13.60	20.32	13.17				
CONTENIDO DE HUMEDAD	(%)	21.18	22.98	20.05	21.40			

CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%) 23.5					
LIMITE PLASTICO (%)	21.4				
INDICE DE PLASTICIDAD (%) 2.1					

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES



PERFIL ESTRATIGRÁFICO LONGITUDINAL

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO

VECINAL PALLALLA – TOTOJIRA. **BACHILLER:** AMÉRICO COLQUE ATENCIO **TRAMO:** KM. 00+000 AL KM. 03+800

LONGITUD: 3.80 Km

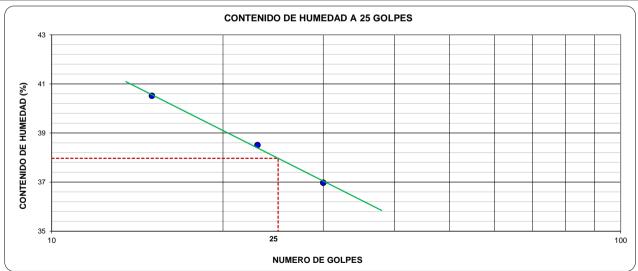
b) CALICATA C-02 CLASIFICACIÓN DE SUELO: CL (M-01)

Resultados de ensayos con adición de 0%, 3%, 6%, 9% y 12% de ceniza de fondo + 3% de cal

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S.N.	N 4
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 1

3 LIMITE LIQUIDO								
DESCRIPCIÓN	UNIDAD	MUESTRAS						
Nº CAPSULA	ID	C-05	C-26	C-11	-			
PESO TARA + SUELO HUMEDO	(g)	62.46	60.99	60.63	-			
PESO TARA + SUELO SECO	(g)	51.25	50.62	50.54	-			
PESO DE AGUA	(g)	11.21	10.37	10.09	-			
PESO DE LA TARA	(g)	23.58	23.69	23.25	-			
PESO DEL SUELO SECO	(g)	27.67	26.93	27.29	-			
CONTENIDO DE HUMEDAD	(%)	40.51	38.51	36.97	-			
NUMERO DE GOLPES		15	23	30				

4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD							
Nº TARRO	ID	T-06	T-02	T-14	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	20.10	21.49	21.96				
PESO TARA + SUELO SECO	(g.)	18.50	19.60	20.13				
PESO DE LA TARA	(g.)	10.59	10.38	11.24				
PESO DEL AGUA	(g.)	1.60	1.89	1.83				
PESO DEL SUELO SECO	(g.)	7.91	9.22	8.89				
CONTENIDO DE HUMEDAD	(%)	20.23	20.50	20.58	20.44			

CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%)	37.97				
LIMITE PLASTICO (%)	20.44				
INDICE DE PLASTICIDAD (%)	17.53				

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA			
UBICACIÓN CALICATA 02 / PLATAF	ORMA KM 01	I+000 (L/D)	DOSIFICACIÓN:	S.N.	M - 1	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD		CLASF. DE SUELO:	CL	IVI - I		
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN	:	"A"				
NUMERO DE GOLPES POR CAPA	:	25				
NUMERO DE CAPAS	:	5				
NÚMERO DE ENSAYO		1	2	3	4	
PESO (SUELO + MOLDE) (gr)		5434	5498	5557	5549	
PESO DE MOLDE (gr)		3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)		1783	1847	1906	1898	
/OLUMEN DEL MOLDE (cm ³)		935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)		1.908	1.976	2.040	2.031	
DENSIDAD SECA (gr/cm ³)		1.724	1.754	1.772	1.731	
4 CONTENIDO DE HUMEDAD						
RECIPIENTE Nº		1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)		482.0	554.0	505.3	514.2	
PESO (SUELO SECO + TARA) (gr)		439.2	501.1	445.5	446.6	
PESO DE LA TARA (gr)		38.8	84.3	49.0	56.8	
PESO DE AGUA (gr)		42.8	52.9	59.8	67.6	
(3.)						
PESO DE SUELO SECO (gr)		400.4	416.8	396.5	389.8	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

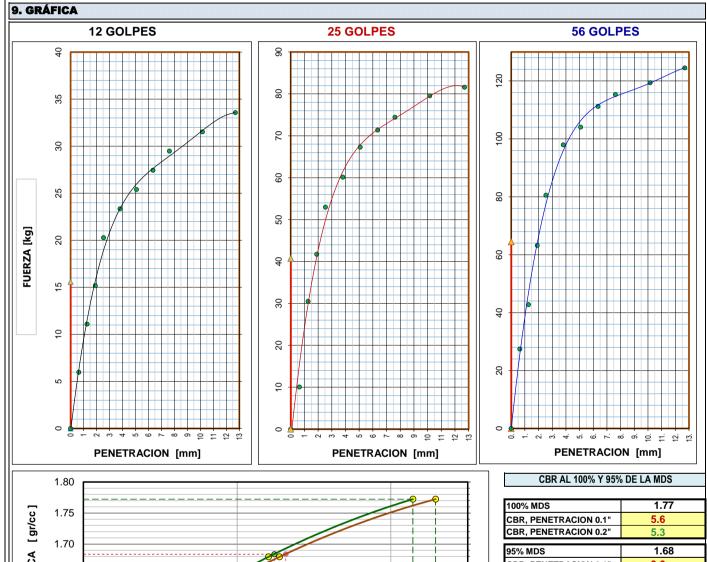
. DAT	OS DE L	A MUEST	RA							2. N° MUES	TRA
				ORMA KM 01-	r000 (1 /D)			DOSIFICACIÓN:	S.N.		
,	-			BAJA PLAST			-	ASF. DE SUELO:	CL	М	- 1
	-			BAJA FLAST	ICIDAD			NOF. DE SUELU.	CL		
DAT	OS PARA	LEL ENS	AYO								
							PROCTOR	HO=14.85	MDS=1.772	N°CAPAS	5
N		DE	SCRIPCION		UND	12 G	OLPES	25 GC	LPES	56 G0	DLPES
IN .			SCRIFCION		OND	MOL	DE 01	MOL	DE 02	MOL	DE 03
DEN	ISIDAD										
	Condición o	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
1	Peso suelo I	númedo + mo	lde		g	10,994	11,235	11,807	12,025	11,594	11,618
2	Peso del mo	lde			g	7,279	7,279	7,697	7,697	7,295	7,295
3	Volumen de	I molde REC	3:		cc	2,104	2,104	2,123	2,123	2,109	2,109
4		numedo, [1]-[2			g	3,715	3,956	4,110	4,328	4,299	4,323
5		uelo humedo	, [4]/[3]		g/cc	1.77	1.88	1.94	2.04	2.04	2.05
6	ld. Capsula				-	1	2	3	4	5	6
7		elo húmedo +			g	107.23	107.31	109.81	116.19	109.12	109.84
8		elo seco + car	osula		g	95.17	90.57	97.40	100.11	96.99	96.92
9	Peso del ag				g	12.06	16.74	12.41	16.08	12.13	12.92
10	Peso de la c		101		g	17.01	22.20	16.27	24.72	17.78	24.87
11 12		elo seco, [8]-[g	78.16	68.37	81.13	75.39 21.33	79.21	72.05
13		de humedad, eca,[5]/(1+[12			%	15.43 1.530	24.48 1.511	15.30 1.679	1.680	15.31 1.767	17.93 1.738
			2]/100)		g/cc	1.000	1.311	1.079	1.000	1.707	1.730
. PEN	IETRACIO)N									
	CARGA			URA DE DIAL (c	, ,		T 1		RZA (kg)		
	NDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
	ea del	0.000	0	0	0 270	0		0		0	
•	stón:	0.635	60	100 300	420	6 11	=	10 31		27 43	
19.3	5 cm2	1.270 1.905	110 150	410	620	15	-	42		63	
7	0.5	2.540	200	520	790	20	18*	53	48*	81	76*
	0.0	3.175	210	550	860	21	10	56	40	88	70
	•	3.810	230	590	960	23	-	60		98	
10	05.7	5.080	250	660	1,020	25	27*	67	70*	104	108*
		6.350	270	700	1,090	27		71	. •	111	100
		7.620	290	730	1,130	29		74		115	
	-	10.160	310	780	1,170	32		80		119	-
	-	12.700	330	800	1,220	34		82		125	
	C		DEL ANILLO	DE CARGA	EN NEWTON			•			•
											427.0
EVD	TIEMPO		LECT	LIDA DIAL (D:).	0.010mm	0.040		ALTI	JRAS	H _{suelo} =	127.0 m
. EXP		(Hrs)		URA DIAL(Div):	56 GOLPES	0.010 mm	%		% %	mm	%
	Hora	0	0.00	0.00	0.00	0.000	0.00%	mm 0.000	0.00%	mm 0.0	0.00%
Fecha	Hora	U		2.35	2.10	0.000	1.99%	0.000	1.85%	0.0	1.65%
	10:20 AM	24				0.023	3.03%	0.024	2.84%	0.0	2.61%
Fecha 14/11/23 15/11/23	10:20 AM 10:20 AM	24 48	2.53	3.61	3.32	0.000	3.63%	0.030	3.35%	0.0	2.98%
Fecha 4/11/23 5/11/23 6/11/23	10:20 AM 10:20 AM 10:20 AM	48	3.85	3.61 4.25	3.32 3.78						2.50 /0
Fecha 4/11/23 5/11/23 6/11/23 7/11/23	10:20 AM 10:20 AM 10:20 AM 10:20 AM	48 72	3.85 4.61	4.25	3.78	0.046					3 16%
Fecha 4/11/23 5/11/23 6/11/23 7/11/23 8/11/23	10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM	48 72 96	3.85				3.85%	0.045	3.52%	0.04	3.16%
Fecha 4/11/23 5/11/23 6/11/23 7/11/23 8/11/23	10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM	48 72 96	3.85 4.61 4.89	4.25 4.47	3.78 4.01	0.046	3.85%			0.04	3.16%
Fecha 4/11/23 5/11/23 6/11/23 7/11/23 8/11/23	10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM ENSAYO CE	48 72 96 S	3.85 4.61 4.89	4.25 4.47 25 GOLPES	3.78 4.01 56 GOLPES	0.046 0.049	3.85% PROCTOR	0.045	3.52%	0.04 CBR FINAL	
Fecha 4/11/23 5/11/23 6/11/23 7/11/23 8/11/23 • RES	10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM ENSAYO CE nsidad Seca	48 72 96 S 8R prom.	3.85 4.61 4.89 12 GOLPES 1.52	4.25 4.47 25 GOLPES 1.68	3.78 4.01 56 GOLPES 1.77	0.046 0.049	3.85% PROCTOR ad óptima	0.045	3.52% Penetración	0.04 CBR FINAL 0.1"	0.2"
Fecha 4/11/23 5/11/23 6/11/23 7/11/23 8/11/23	10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM 10:20 AM SULTADO ENSAYO CE nsidad Seca	48 72 96 S	3.85 4.61 4.89	4.25 4.47 25 GOLPES	3.78 4.01 56 GOLPES	0.046 0.049 Humeda	3.85% PROCTOR	0.045	3.52%	0.04 CBR FINAL	

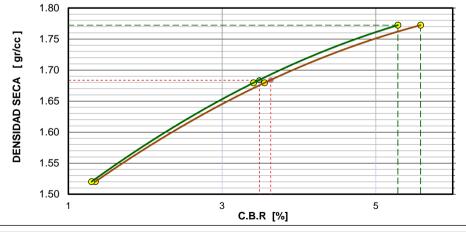
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.


SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO


9. GRÁFICA

12 GOLPES

25 GOLPES

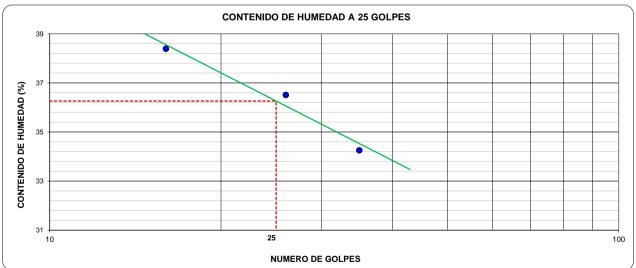
56 GOLPES

ODK AL 100 /6 1 95 /	0 DE LA MIDO
100% MDS	1.77
CBR, PENETRACION 0.1"	5.6
CBR, PENETRACION 0.2"	5.3
95% MDS	1.68
CBR, PENETRACION 0.1"	3.6
OBIN, I LIVETINACION ON	• • • • • • • • • • • • • • • • • • • •
CBR, PENETRACION 0.2"	3.5
,	
,	
,	
,	
,	
,	
,	

LEYENDA

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S97-CF0-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 1

3 LIMITE LIQUIDO									
DESCRIPCIÓN	UNIDAD		MUE	STRAS					
Nº CAPSULA	ID	C-14	C-05	C-08	-				
PESO TARA + SUELO HUMEDO	(g)	56.08	57.94	60.32	-				
PESO TARA + SUELO SECO	(g)	46.51	48.50	51.02	-				
PESO DE AGUA	(g)	9.57	9.44	9.30	-				
PESO DE LA TARA	(g)	21.58	22.64	23.87	-				
PESO DEL SUELO SECO	(g)	24.93	25.86	27.15	-				
CONTENIDO DE HUMEDAD	(%)	38.39	36.50	34.25	-				
NUMERO DE GOLPES		16	26	35					

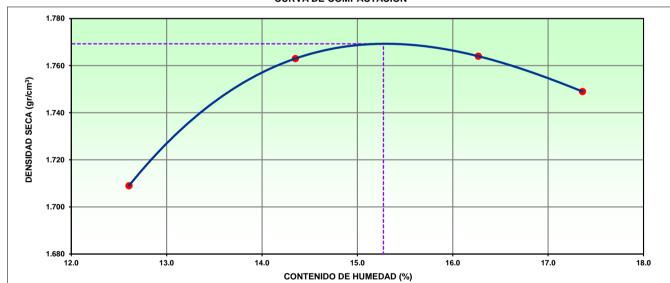
4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD		MUE	STRAS				
Nº TARRO	ID	T-15	T-01	T-06	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	24.85	26.87	27.96				
PESO TARA + SUELO SECO	(g.)	23.07	25.17	26.32				
PESO DE LA TARA	(g.)	16.26	18.58	19.92				
PESO DEL AGUA	(g.)	1.78	1.70	1.64				
PESO DEL SUELO SECO	(g.)	6.81	6.59	6.40				
CONTENIDO DE HUMEDAD	(%)	26.14	25.80	25.63	25.85			

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	36.26					
LIMITE PLASTICO (%)	25.85					
INDICE DE PLASTICIDAD (%)	10.41					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	4
UBICACIÓN CALICATA 02 / PLATAFORMA	A KM 01+000 (L/D)	DOSIFICACIÓN:	S97-CF0-C3	M - 1	
MATERIAL: ARCILLA ARENOSA DE BAJA	CLASF. DE SUELO:	CL	IVI - I		
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5449	5535	5568	5569	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1798	1884	1917	1918	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.924	2.016	2.051	2.052	
DENSIDAD SECA (gr/cm ³)	1.709	1.763	1.764	1.749	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	427.1	537.3	471.1	475.5	
PESO (SUELO SECO + TARA) (gr)	385.1	479.5	410.6	414.1	
PESO DE LA TARA (gr)	51.9	76.7	38.7	60.4	
PESO DE AGUA (gr)	42.0	57.8	60.5	61.4	
PESO DE SUELO SECO (gr)	333.2	402.8	371.9	353.7	
		14.35	16.27	17.36	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

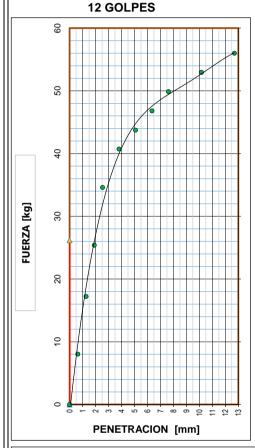
DATO	OS DE LA	MUEST	RA							2. N° MUES	STRA
UBICACION: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)								DOSIFICACIÓN:	S97-CF0-C3	N/	- 1
ı	MATERIAL:	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	SF. DE SUELO:	CL	IV	- 1
DATO	OS PARA	EL ENS	AYO								
							PROCTOR	HO=15.27	MDS=1.769	N°CAPAS	5
					1	12 G	OLPES	25 G	OLPES	56 G	OLPES
N		DE	SCRIPCION		UND	MOL	.DE 01		DE 02	MOL	DE 03
DEN	SIDAD				·						
	Condición d	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1 F	Peso suelo h	númedo + mo	de		g	10,592	10,780	10,968	11,107	11,198	11,225
2 F	Peso del mo	lde			g	6,980	6,980	7,023	7,023	6,894	6,894
		molde REC			cc	2,119	2,119	2,108	2,108	2,125	2,125
		numedo, [1]-[2			g	3,612	3,800	3,945	4,084	4,304	4,331
		uelo humedo	, [4]/[3]		g/cc	1.70	1.79	1.87	1.94	2.03	2.04
	ld. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	110.68	124.61	125.54	106.35	107.02	102.84
		elo seco + cap	sula		g	98.65	103.48	110.54	90.78	95.78	90.80
	Peso del agu				g	12.03	21.13	15.00	15.57	11.24	12.04
	Peso de la c	apsuia elo seco, [8]-[1	101		g	20.15	18.65	15.84	16.48	20.65	19.40
		le humedad,			g o/	78.50	84.83	94.70	74.30	75.13	71.40
		eca,[5]/(1+[12	 		%	15.32 1.478	24.91 1.436	15.84 1.616	20.96 1.602	14.96 1.762	16.86 1.744
			.]/ 100)		g/cc	1.470	1.430	1.010	1.002	1.702	1./44
PENI	ETRACIO	N		UDA DE BIAL /		T			()		
CTANI	CARGA			URA DE DIAL (d	,	DIDECTA	OODDEOIDA		ERZA (kg)	DIDECTA	00000000
STANI Area		0.000	12 GOLPES	25 GOLPES	56 GOLPES 0	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA 0	CORREGIO
pist	-	0.635	0 80	200	340	0 8	-	0 20	-	35	
19.35	-	1.270	170	410	650	17	-	42	1	66	
15.55	CITIZ	1.905	250	580	900	25		59	-	92	
70.	5	2.540	340	720	1,130	35	31*	73	68*	115	107*
		3.175	370	790	1,200	38	- 01	81		122	107
		3.810	400	820	1,280	41	1	84		131	
105	5.7	5.080	430	900	1,470	44	46*	92	97*	150	154*
		6.350	460	980	1,550	47		100		158	
		7.620	490	1,040	1,660	50		106		169	
		10.160	520	1,100	1,740	53		112		178	
		12.700	550	1,160	1,830	56		118	1	187	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXPA	NSIÓN									H _{suelo} =	127.0 mn
	TIEMPO		LECT	URA DIAL(Div):	0.010mm	0.010		ALT	URAS	suei0	
Fecha	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
	1:30 PM	0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
1/01/00	1:30 PM	24	1.48	1.13	0.93	0.01	1.17%	0.01	0.89%	0.01	0.73%
2/01/00	1:30 PM	48	2.40	2.03	1.77	0.02	1.89%	0.02	1.60%	0.02	1.39%
3/01/00	1:30 PM	72	2.96	2.59	2.37	0.03	2.33%	0.03	2.04%	0.02	1.87%
4/01/00	1:30 PM	96	3.29	2.98	2.73	0.03	2.59%	0.03	2.35%	0.03	2.15%
RESU	JLTADO:	3									
	ENSAYO CB	R	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Dens	sidad Seca	prom.	1.46	1.61	1.77	Humeda	ad óptima	15.27%	Penetración	0.1"	0.2"
	Pene	etracion: 0.1"	2.3	5.0	7.8	N.	IDS	1.769	100% MDS	7.8	7.5
			2.2	4.7	7.5	95 % d	e la MDS	1.681	95 % MDS	6.3	6.0

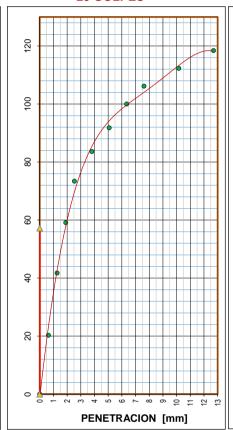
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

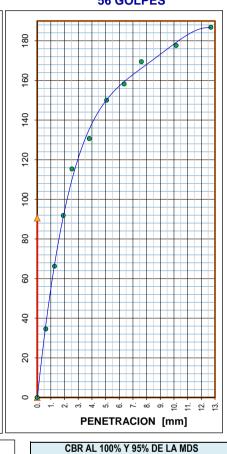
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

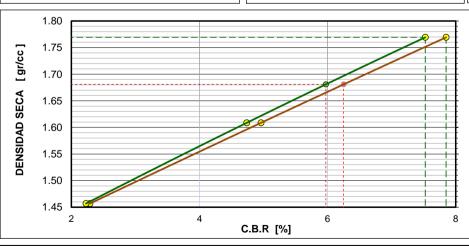
PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.


SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1


9. GRÁFICA


12 GOLPES


25 GOLPES

56 GOLPES

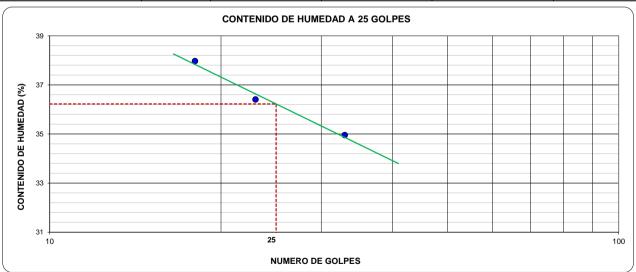
100% MDS	1.77
CBR, PENETRACION 0.1"	7.8
CBR, PENETRACION 0.2"	7.5
95% MDS	1.68
CBR, PENETRACION 0.1"	6.3
CBR, PENETRACION 0.2"	6.0

LEYENDA

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S94-CF3-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 1

3 LIMITE LIQUIDO							
DESCRIPCIÓN	UNIDAD		MUE	STRAS			
Nº CAPSULA	ID	C-02	C-22	C-15	-		
PESO TARA + SUELO HUMEDO	(g)	56.64	50.52	59.87	-		
PESO TARA + SUELO SECO	(g)	47.11	41.79	50.09	-		
PESO DE AGUA	(g)	9.53	8.73	9.78	-		
PESO DE LA TARA	(g)	22.01	17.81	22.11	-		
PESO DEL SUELO SECO	(g)	25.10	23.98	27.98	-		
CONTENIDO DE HUMEDAD	(%)	37.97	36.41	34.95	-		
NUMERO DE GOLPES		18	23	33			

4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD		STRAS					
Nº TARRO	ID	T-15	T-01	T-06	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	24.89	26.84	27.96				
PESO TARA + SUELO SECO	(g.)	23.07	25.17	26.32				
PESO DE LA TARA	(g.)	16.26	18.58	19.92				
PESO DEL AGUA	(g.)	1.82	1.67	1.64				
PESO DEL SUELO SECO	(g.)	6.81	6.59	6.40				
CONTENIDO DE HUMEDAD	(%)	26.73	25.34	25.63	25.90			

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	36.22					
LIMITE PLASTICO (%)	25.90					
INDICE DE PLASTICIDAD (%)	10.33					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTR	A
UBICACIÓN CALICATA 02 / PLATAFORMA K	M 01+000 (L/D)	DOSIFICACIÓN:	: S94-CF3-C3	M	1
MATERIAL: ARCILLA ARENOSA DE BAJA P	LASTICIDAD	CLASF. DE SUELO:	: CL	141 -	1
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5439	5532	5571	5552	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1788	1881	1920	1901	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.913	2.013	2.055	2.034	
DENSIDAD SECA (gr/cm ³)	1.699	1.756	1.767	1.721	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	427.1	538.3	471.1	478.5	
PESO (SUELO SECO + TARA) (gr)	385.1	479.5	410.6	414.1	
PESO DE LA TARA (gr)	51.9	76.7	38.7	60.4	
PESO DE AGUA (gr)	42.0	58.8	60.5	64.4	
	333.2	402.8	371.9	353.7	
PESO DE SUELO SECO (gr)	333.2	402.0	07 1.0	000.1	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

			RICO COLQU	EATENCIO							
. DAT	OS DE L	A MUESTI	RA							2. N° MUES	TRA
U	BICACION:	CALICATA (02 / PLATAFO	ORMA KM 01-	+000 (L/D)		_	DOSIFICACIÓN:	S94-CF3-C3	м	- 1
l	MATERIAL: _	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	ASF. DE SUELO:	CL		•
. DAT	OS PARA	EL ENSA	AYO								
							PROCTOR	HO=15.87	MDS=1.768	N°CAPAS	5
						12 G	OLPES		LPES	56 G(DLPES
N		DE	SCRIPCION		UND		DE 01		DE 02		DE 03
. DEN	SIDAD										
	Condición d	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
		númedo + mol	de		g	10,387	10,546	10,883	11,009	11,397	11,469
	Peso del mo				g	6,670	6,670	6,801	6,801	7,065	7,065
3	Volumen del	molde REG	3 :		cc	2,118	2,118	2,109	2,109	2,118	2,118
4	Peso suelo h	numedo, [1]-[2	2]		g	3,717	3,876	4,082	4,208	4,332	4,404
		uelo humedo	, [4]/[3]		g/cc	1.76	1.83	1.94	1.99	2.05	2.08
	ld. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	119.09	127.05	111.37	106.76	104.15	116.07
		elo seco + cap	sula		g	105.23	107.46	98.30	91.39	92.47	100.59
	Peso del agu				g	13.86	19.59	13.07	15.37	11.68	15.48
	Peso de la c		101		g	18.15	25.65	16.28	19.55	18.61	19.52
		elo seco, [8]-[1			g %	87.08 15.92	81.81 23.95	82.02 15.94	71.84 21.39	73.86 15.81	81.07 19.09
		le humedad, eca,[5]/(1+[12				1.514	1.477	1.669	1.643	1.766	1.746
•			2]/100)		g/cc	1.314	1.4//	1.009	1.043	1.700	1./40
. PENI	ETRACIO	N									
OTAN	CARGA			JRA DE DIAL (d	,	DIDECTA	00000000		RZA (kg)	DIDECTA	0000000
STAN		mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGID
	del	0.000	0	0	0 450	0		0		0	
•	tón: i cm2	0.635 1.270	100 230	290 550	920	10 23	-	29 56		46 94	
19.55	CIIIZ	1.905	300	810	1,230	31	-	83		126	
70	5	2.540	400	990	1,510	41	39*	101	95*	154	145*
		3.175	460	1,010	1,600	47	- 55	103		163	140
		3.810	512	1,180	1,750	52	-	120		179	
105	5.7	5.080	560	1,280	1,950	57	59*	131	136*	199	207*
		6.350	610	1,380	2,100	62		141		214	
		7.620	650	1,460	2,200	66		149		225	
		10.160	690	1,560	2,340	70		159		239	
		12.700	730	1,680	2,460	74		172		251	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXDA	NSIÓN									ш _	127.0 mm
	TIEMPO		LECT	IIDA DIAL (Dia):	0.010mm	0.010		ΔΙΤΙ	JRAS	H _{suelo} =	127.0 11111
Fecha	Hora	(Hrs)		URA DIAL(Div):		0.010 mm	%		%	mm	%
14/11/23	2:40 PM	0	0.00	0.00	0.00	0.00	0.00%	mm 0.00	0.00%	0.00	0.00%
15/11/23	2:40 PM	24	1.26	1.02	0.85	0.00	0.99%	0.01	0.80%	0.00	0.67%
16/11/23	2:40 PM	48	2.05	1.74	1.56	0.02	1.61%	0.02	1.37%	0.02	1.23%
17/11/23	2:40 PM	72	2.54	2.31	2.07	0.03	2.00%	0.02	1.82%	0.02	1.63%
18/11/23	2:40 PM	96	2.83	2.67	2.35	0.03	2.23%	0.03	2.10%	0.02	1.85%
	ULTADO										
	ENSAYO CB		12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
	sidad Seca		1.50	1.66	1.77	Humeda	nd óptima	15.87%	Penetración	0.1"	0.2"
					10.7		DS	1.768	100% MDS	10.7	10.1
			2.9	6.7	10.1		e la MDS	1.680	95 % MDS	7.7	7.3
	Pene	tii acioii. U.Z	2.3	0.7	10.1	95 /6 U		1.000	30 /0 IVIDG	1.1	1.3

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 180 90 250 9 80 4 2 200 120 09 150 100 20 FUERZA [kg] 40 80 100 30 9 20 40 20 10 20 0 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.77 1.75 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 10.7 CBR, PENETRACION 0.2" 10.1 1.70 95% MDS 1.68 1.65 CBR, PENETRACION 0.1" 7.7 CBR, PENETRACION 0.2" 1.60 1.55 1.50 1.45

12

LEYENDA

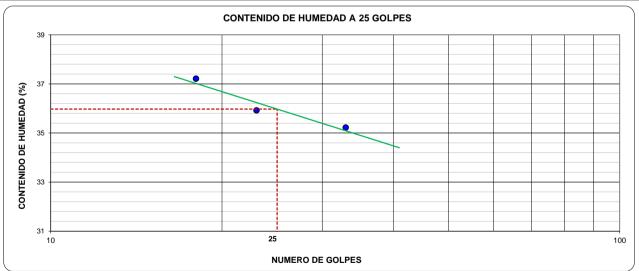
10

C.B.R [%]

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S91-CF6-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 1

3 LIMITE LIQUIDO								
DESCRIPCIÓN	DESCRIPCIÓN UNIDAD MUESTRAS							
Nº CAPSULA	ID	C-16	C-17	C-13	-			
PESO TARA + SUELO HUMEDO	(g)	42.67	44.85	39.24	-			
PESO TARA + SUELO SECO	(g)	35.44	37.90	33.08	-			
PESO DE AGUA	(g)	7.23	6.95	6.16	-			
PESO DE LA TARA	(g)	16.01	18.55	15.59	-			
PESO DEL SUELO SECO	(g)	19.43	19.35	17.49	-			
CONTENIDO DE HUMEDAD	(%)	37.21	35.92	35.22	-			
NUMERO DE GOLPES		18	23	33				

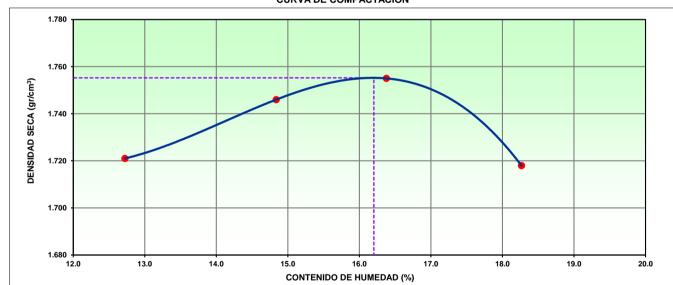
4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD	UNIDAD MUESTRAS						
Nº TARRO	ID	T-01	T-24	T-10	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	24.46	21.23	21.96				
PESO TARA + SUELO SECO	(g.)	21.93	19.09	19.55				
PESO DE LA TARA	(g.)	13.04	11.25	10.91				
PESO DEL AGUA	(g.)	2.53	2.14	2.41				
PESO DEL SUELO SECO	(g.)	8.89	7.84	8.64				
CONTENIDO DE HUMEDAD	(%)	28.46	27.30	27.89	27.88			

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	35.97					
LIMITE PLASTICO (%)	27.88					
INDICE DE PLASTICIDAD (%)	8.09					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTR	A	
UBICACIÓN CALICATA 02 / PLATAFORMA KI	И 01+000 (L/D)	DOSIFICACIÓN	: S91-CF6-C3	M - 1		
MATERIAL: ARCILLA ARENOSA DE BAJA PL	ASTICIDAD	CLASF. DE SUELO:	: CL	WI - 1		
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN :	"A"					
NUMERO DE GOLPES POR CAPA :	25					
NUMERO DE CAPAS :	5					
NÚMERO DE ENSAYO	1	2	3	4		
PESO (SUELO + MOLDE) (gr)	5464	5525	5560	5550		
PESO DE MOLDE (gr)	3651	3651	3651	3651		
PESO SUELO HÚMEDO (gr)	1813	1874	1909	1899		
VOLUMEN DEL MOLDE (cm³)	935	935	935	935		
4 LIMITE PLÁSTICO	1.940	2.005	2.043	2.032		
DENSIDAD SECA (gr/cm³)	1.721	1.746	1.755	1.718		
4 CONTENIDO DE HUMEDAD						
RECIPIENTE №	1	2	3	4		
PESO (SUELO HÚMEDO + TARA) (gr)	569.4	398.1	474.5	476.5		
PESO (SUELO SECO + TARA) (gr)	514.8	351.2	415.2	410.6		
PESO DE LA TARA (gr)	85.6	35.1	53.1	49.8		
PESO DE AGUA (gr)	54.6	46.9	59.3	65.9		
PESO DE SUELO SECO (gr)	429.2	316.1	362.1	360.8		
r Edd DE ddeled dedd (gr)						

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

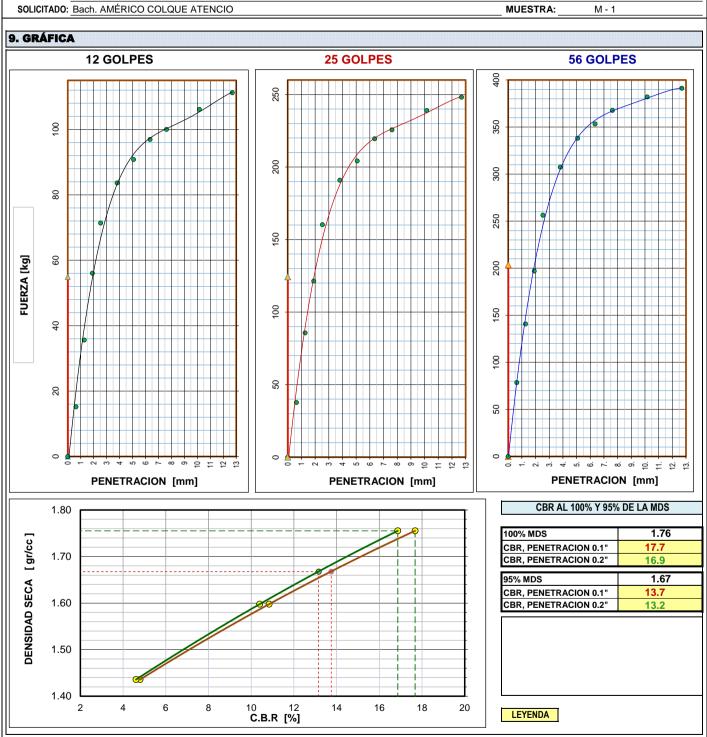
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

. DAT	OS DE L	A MUEST	RA							2. Nº MUES	TRA
	_			DRMA KM 01- BAJA PLAST	. ,		_	DOSIFICACIÓN: SF. DE SUELO:	S91-CF6-C3 CL	М -	- 1
. DAT	OS PARA	EL ENS/	YO								
	001100						PROCTOR	HO=16.20	MDS=1.755	N°CAPAS	5
	l			l l		12.6	OLPES		DLPES	56 GO	
N		DE	SCRIPCION		UND		DE 01		DE 02	MOLE	
DEN	SIDAD					02	.52 01	02	DE V2	022	
DEN		la humadad							0.4		- A - 1
4	Condición o		da		1 -	Normal	Saturado	Normal	Saturado	Normal	Saturado
	Peso suelo r Peso del mo	númedo + mo	ue		g	11,307	11,452	11,687	11,825	11,889	11,974
					g	7,714	7,714	7,733	7,733	7,601	7,601
3		molde REC			CC	2,112	2,112	2,115	2,115	2,107	2,107
		numedo, [1]-[2			g	3,593	3,738	3,954	4,092	4,288	4,373
		uelo humedo	, [4]/[3]		g/cc	1.70	1.77	1.87	1.93	2.04	2.08
	Id. Capsula	do búmedo :	conquis		-	1	2	3	4	5	6
		elo húmedo +	<u> </u>		g	98.61	125.97	118.15	119.34	110.12	130.59
		elo seco + cap	sula		g	87.17	104.33	104.74	102.38	97.13	113.10
	Peso del agu				g	11.44	21.64	13.41	16.96	12.99	17.49
	Peso de la c		101		g	17.30	19.56	21.66	25.36	17.62	23.84
		elo seco, [8]-[g	69.87	84.77	83.08	77.02	79.51	89.26
		de humedad,			%	16.37	25.53	16.14	22.02	16.34	19.59
13	Densidad so	eca,[5]/(1+[12	!]/100)		g/cc	1.462	1.410	1.610	1.586	1.750	1.736
PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c	livisión)			FUE	RZA (kg)		
STAN	IDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
Are	a del	0.000	0	0	0	0		0		0	
pis	stón:	0.635	150	370	770	15		38		79	
19.3	5 cm2	1.270	350	840	1,380	36		86		141	
		1.905	550	1,190	1,930	56		121		197	
70	0.5	2.540	700	1,570	2,510	71	65*	160	148*	256	241*
		3.175	750	1,750	2,730	76		179		279	
		3.810	820	1,870	3,010	84		191		307	
10	5.7	5.080	890	2,000	3,310	91	94*	204	213*	338	345*
		6.350	950	2,150	3,460	97		220		353	
	The state of the s	7.620	980	2,210	3,600	100		226		368	
	The state of the s	10.160	1,040	2,340	3,740	106		239		382	
		12.700	1,090	2,430	3,830	111	1	248		391	
	C		DEL ANILLO	DE CARGA	EN NEWTON			-			
		ONNECCION.	DEL ANIELO	DE O/IITO/T	EN NEWTON					Т	
EXP#	ANSIÓN									H _{suelo} =	127.0 mr
	TIEMPO			URA DIAL(Div):	0.010mm	0.010			URAS	1	
	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
Fecha		0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
Fecha 9/11/23	9:50 AM		0.84	0.79	0.73	0.01	0.66%	0.01	0.62%	0.01	0.57%
Fecha 9/11/23 0/11/23	9:50 AM 9:50 AM	24			1.41	0.02	1.20%	0.02	1.22%	0.01	1.11%
Fecha 9/11/23 0/11/23 1/11/23	9:50 AM 9:50 AM 9:50 AM	48	1.53	1.55			1.54%	0.02	1.59%	0.02	1.43%
Fecha 9/11/23 0/11/23 1/11/23 2/11/23	9:50 AM 9:50 AM 9:50 AM 9:50 AM	48 72	1.95	2.02	1.81	0.02		0.02		0.02	
Fecha 9/11/23 0/11/23 1/11/23 2/11/23	9:50 AM 9:50 AM 9:50 AM 9:50 AM	48				0.02 0.02	1.61%	0.02	1.74%	0.02	1.53%
Fecha 9/11/23 0/11/23 1/11/23 2/11/23 3/11/23	9:50 AM 9:50 AM 9:50 AM 9:50 AM	48 72 96	1.95	2.02	1.81						1.53%
Fecha 9/11/23 0/11/23 1/11/23 2/11/23 3/11/23	9:50 AM 9:50 AM 9:50 AM 9:50 AM 9:50 AM	48 72 96	1.95 2.04	2.02 2.21	1.81						1.53%
Fecha 9/11/23 0/11/23 1/11/23 2/11/23 3/11/23 RES	9:50 AM 9:50 AM 9:50 AM 9:50 AM 9:50 AM ULTADOS ENSAYO CB	48 72 96 S	1.95 2.04 12 GOLPES	2.02 2.21 25 GOLPES	1.81 1.94 56 GOLPES	0.02	1.61% PROCTOR	0.02	1.74%	0.02	
Fecha 9/11/23 0/11/23 1/11/23 2/11/23 3/11/23 RES	9:50 AM 9:50 AM 9:50 AM 9:50 AM 9:50 AM ULTADO : ENSAYO CB sidad Seca	48 72 96 S R prom.	1.95 2.04 12 GOLPES 1.44	2.02 2.21 25 GOLPES 1.60	1.81 1.94 56 GOLPES 1.76	0.02	1.61% PROCTOR ad óptima	16.20%	1.74% Penetración	0.02 CBR FINAL 0.1"	0.2"
Fecha 9/11/23 0/11/23 1/11/23 2/11/23 3/11/23 RES	9:50 AM 9:50 AM 9:50 AM 9:50 AM 9:50 AM ULTADO: ENSAYO CB nsidad Seca	48 72 96 S	1.95 2.04 12 GOLPES	2.02 2.21 25 GOLPES	1.81 1.94 56 GOLPES	0.02	1.61% PROCTOR	0.02	1.74%	0.02	

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES



CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

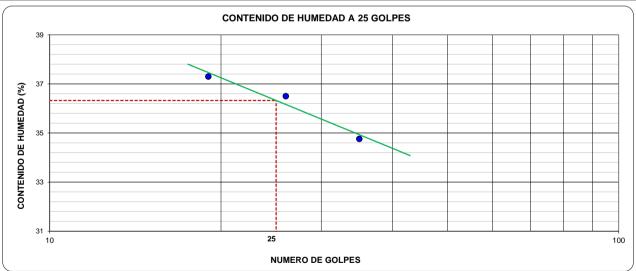
DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S88-CF9-C3	M 4
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 1

3 LIMITE LIQUIDO									
DESCRIPCIÓN	UNIDAD		MUE	STRAS					
Nº CAPSULA	ID	C-03	C-18	C-20	-				
PESO TARA + SUELO HUMEDO	(g)	51.59	57.60	42.11	-				
PESO TARA + SUELO SECO	(g)	42.37	48.91	35.53	-				
PESO DE AGUA	(g)	9.22	8.69	6.58	=				
PESO DE LA TARA	(g)	17.65	25.10	16.60	-				
PESO DEL SUELO SECO	(g)	24.72	23.81	18.93	=				
CONTENIDO DE HUMEDAD	(%)	37.30	36.50	34.76	=				
NUMERO DE GOLPES		19	26	35					

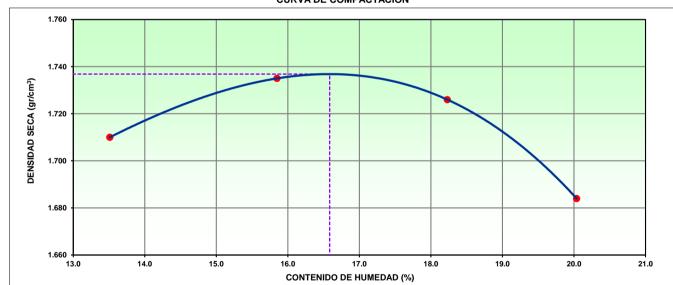
4 LIMITE PLÁSTICO									
DESCRIPCIÓN	UNIDAD		MUESTRAS						
Nº TARRO	ID	T-19	T-14	T-03	PROMEDIO				
PESO TARA + SUELO HUMEDO	(g.)	27.43	28.21	30.94					
PESO TARA + SUELO SECO	(g.)	25.14	26.12	28.56					
PESO DE LA TARA	(g.)	17.10	18.89	20.31					
PESO DEL AGUA	(g.)	2.29	2.09	2.38					
PESO DEL SUELO SECO	(g.)	8.04	7.23	8.25					
CONTENIDO DE HUMEDAD	(%)	28.48	28.91	28.85	28.75				

CONSTANTES FISICAS DE LA MUESTRA								
LIMITE LIQUIDO (%)	36.32							
LIMITE PLASTICO (%)	28.75							
INDICE DE PLASTICIDAD (%)	7.58							

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA		
UBICACIÓN CALICATA 02 / PLATAFORMA	KM 01+000 (L/D)	DOSIFICACIÓN:	S88-CF9-C3	M - 1		
MATERIAL: ARCILLA ARENOSA DE BAJA	PLASTICIDAD	CLASF. DE SUELO:	CL	141 - 1		
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN :	"A"					
NUMERO DE GOLPES POR CAPA :	25					
NUMERO DE CAPAS :	5					
NÚMERO DE ENSAYO	1	2	3	4		
PESO (SUELO + MOLDE) (gr)	5465	5530	5558	5540		
PESO DE MOLDE (gr)	3651	3651	3651	3651		
PESO SUELO HÚMEDO (gr)	1814	1879	1907	1889		
VOLUMEN DEL MOLDE (cm³)	935	935	935	935		
DENSIDAD HÚMEDA (gr/cm³)	1.941	2.010	2.040	2.021		
DENSIDAD SECA (gr/cm ³)	1.710	1.735	1.726	1.684		
4 CONTENIDO DE HUMEDAD						
RECIPIENTE Nº	1	2	3	4		
PESO (SUELO HÚMEDO + TARA) (gr)	486.5	473.3	558.9	611.2		
PESO (SUELO SECO + TARA) (gr)	437.2	418.2	484.4	523.4		
PESO DE LA TARA (gr)	72.3	70.5	75.7	85.2		
PESO DE AGUA (gr)	49.3	55.1	74.5	87.8		
		0.45-5	400.7	400.0		
PESO DE SUELO SECO (gr)	364.9	347.7	408.7	438.2		

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

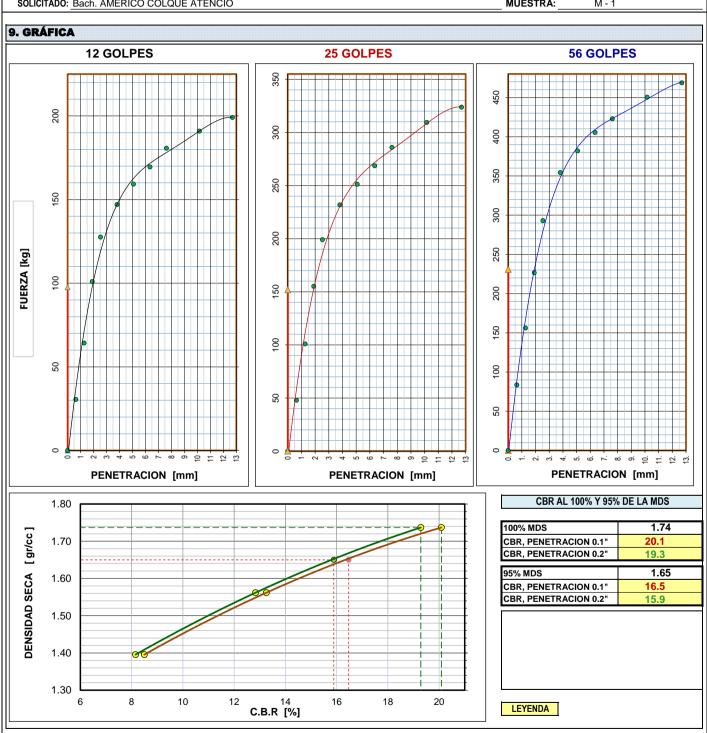
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DAT	OS DE LA	MUEST	RA							2. N' MUES	TRA
ι	JBICACION:	CALICATA ()2 / PLATAF	ORMA KM 01-	+000 (L/D)		_	DOSIFICACIÓN:	S88-CF9-C3	М -	1
	MATERIAL:	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	ASF. DE SUELO:	CL	141	
DAT	OS PARA	EL ENS	YO								
							PROCTOR	HO=16.58	MDS=1.737	N°CAPAS	5
N		DE	CCDIDCION		UND	12 G	OLPES	25 GC	DLPES	56 GO	LPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOLE	E 03
DEN	SIDAD										
	Condición d	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
		númedo + mo	de		g	11,182	11,394	11,604	11,802	11,878	11,952
2	Peso del mo				g	7,714	7,714	7,734	7,734	7,601	7,601
3		molde REC			CC	2,112	2,112	2,115	2,115	2,107	2,107
		numedo, [1]-[2			g	3,468	3,680	3,870	4,068	4,277	4,351
		uelo humedo	, [4]/[3]		g/cc	1.64	1.74	1.83	1.92	2.03	2.07
	Id. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	126.17	112.94	142.91	131.22	123.19	131.67
		elo seco + cap	sula		g	111.79	93.39	126.14	109.32	108.42	112.98
	Peso del agu				g	14.38	19.55	16.77	21.90	14.77	18.69
	Peso de la c				g	24.69	18.42	24.84	17.33	19.51	20.06
		elo seco, [8]-['			g	87.10	74.97	101.30	91.99	88.91	92.92
		le humedad,			%	16.51	26.08	16.55	23.81	16.61	20.11
13	Densidad se	eca,[5]/(1+[12	2]/100)		g/cc	1.409	1.382	1.570	1.554	1.741	1.720
PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c	división)			FUE	RZA (kg)		
STAN	IDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
Are	a del	0.000	0	0	0	0		0		0	
pis	stón:	0.635	300	470	820	31		48		84	
19.3	5 cm2	1.270	630	990	1,530	64		101		156	
		1.905	990	1,520	2,220	101		155		227	
70	0.5	2.540	1,250	1,950	2,870	128	116*	199	181*	293	274*
		3.175	1,400	2,250	3,310	143		230		338	
		3.810	1,440	2,270	3,470	147		232		354	
10	5.7	5.080	1,560	2,460	3,740	159	167*	251	262*	382	394*
		6.350	1,660	2,630	3,970	169		269		405	
		7.620	1,770	2,800	4,140	181		286		423	
		10.160	1,870	3,030	4,410	191		309		450	
		12.700	1,950	3,170	4,590	199		324		469	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXP/	ANSIÓN									ш	127.0 mi
	TIEMPO		I F∩T	URA DIAL(Div):	0.010mm	0.010		ALTI	URAS	H _{suelo} =	127.0 1111
echa		(Hrs)		25 GOLPES		mm	%	mm	%	mm	%
	12:30 PM	0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
	12:30 PM	24	0.74	0.67	0.61	0.01	0.58%	0.01	0.53%	0.01	0.48%
	12:30 PM	48	1.25	1.19	1.10	0.01	0.98%	0.01	0.94%	0.01	0.40%
	12:30 PM	72	1.62	1.53	1.34	0.02	1.28%	0.02	1.20%	0.01	1.06%
	12:30 PM	96	1.79	1.68	1.45	0.02	1.41%	0.02	1.32%	0.01	1.14%
	ULTADO		1.10	1.00		0.02	1.7/1/0	0.02	1.02/0	0.01	1.17/0
I\E3	ENSAYO CB		12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR	I		CBR FINAL	
	isidad Seca		1.40	1.56	1.74	Humed	nd óptima	16.58%	Penetración	0.1"	0.2"
Den		etracion: 0.1"	8.50	13.26	20.09		DS	1.737	100% MDS	20.1	19.3
Den		anacion u l	0.30	13/0	20.09	, IV	DO .	1./3/	100% MD2	20.1	19.3
Den		etracion: 0.2"	8.15	12.84	19.29	05 % A	e la MDS	1.650	95 % MDS	16.5	15.9



FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S85-CF12-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 1

3 LIMITE LIQUIDO									
DESCRIPCIÓN	UNIDAD								
Nº CAPSULA	ID	C-05	C-01	C-12	-				
PESO TARA + SUELO HUMEDO	(g)	61.43	59.36	56.60	-				
PESO TARA + SUELO SECO	(g)	51.23	49.32	48.65	-				
PESO DE AGUA	(g)	10.20	10.04	7.95	-				
PESO DE LA TARA	(g)	23.65	21.04	24.77	-				
PESO DEL SUELO SECO	(g)	27.58	28.28	23.88	=				
CONTENIDO DE HUMEDAD	(%)	36.98	35.50	33.29	=				
NUMERO DE GOLPES		16	24	32					

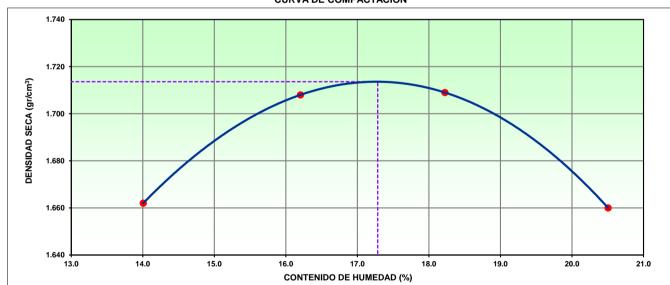
4 LIMITE PLÁSTICO									
DESCRIPCIÓN	UNIDAD		MUES	STRAS					
Nº TARRO	ID	T-02	T-04	T-05	PROMEDIO				
PESO TARA + SUELO HUMEDO	(g.)	30.63	31.78	30.91					
PESO TARA + SUELO SECO	(g.)	28.05	29.32	28.76					
PESO DE LA TARA	(g.)	19.68	21.14	21.65					
PESO DEL AGUA	(g.)	2.58	2.46	2.15					
PESO DEL SUELO SECO	(g.)	8.37	8.18	7.11					
CONTENIDO DE HUMEDAD	(%)	30.82	30.07	30.24	30.38				

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%)	34.84						
LIMITE PLASTICO (%)	30.38						
INDICE DE PLASTICIDAD (%)	4.46						

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	
UBICACIÓN CALICATA 02 / PLATAFO	RMA KM 01+000 (L/D)	DOSIFICACIÓN:	S85-CF12-C3	M - 1	
MATERIAL: ARCILLA ARENOSA DE B	AJA PLASTICIDAD	CLASF. DE SUELO:	CL	IVI - 1	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN	: "A"				
NUMERO DE GOLPES POR CAPA	: 25				
NUMERO DE CAPAS	: 5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5422	5506	5539	5520	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1771	1855	1888	1869	
VOLUMEN DEL MOLDE (cm³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.895	1.985	2.020	2.000	
DENSIDAD SECA (gr/cm ³)	1.662	1.708	1.709	1.660	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	523.2	581.9	565.1	555.6	
PESO (SUELO SECO + TARA) (gr)	468.9	512.0	490.2	475.2	
PESO DE LA TARA (gr)	81.2	80.6	79.2	83.1	
	1	20.0	74.9	80.4	
PESO DE AGUA (gr)	54.3	69.9	74.9	00.4	
PESO DE AGUA (gr) PESO DE SUELO SECO (gr)	54.3 387.7	431.4	411.0	392.1	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

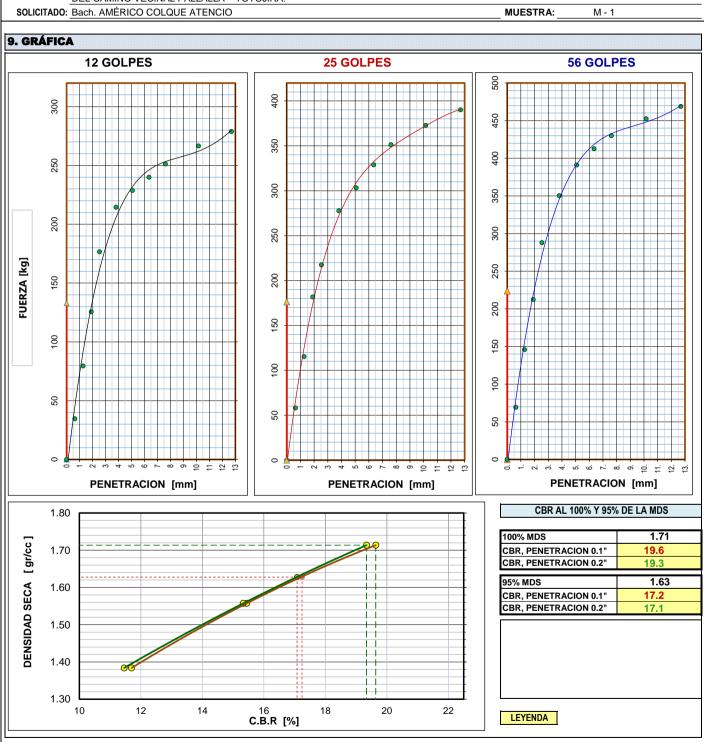
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

S	OLICITADO:	Bach. AMÉF	RICO COLQL	E ATENCIO							
1. DAT	OS DE LA	A MUEST	RA							2. N° MUES	TRA
	JBICACION:	CALICATA (02 / PLATAF	ORMA KM 01	+000 (L/D)			DOSIFICACIÓN:	S85-CF12-C3		_
	_			BAJA PLAST	. ,		_	ASF. DE SUELO:		M ·	- 1
DAT	OG DADA	LEL ENS	NVO				_				
, DAI	UU FARA	LL ENG	410				PROCTOR	HO=17.28	MDS=1.714	N°CAPAS	5
	1				<u> </u>	40.0			OLPES	1	
N		DE	SCRIPCION		UND		OLPES .DE 01		DE 02	56 GO MOLE	
						IVIOL	DE 01	IVIOL	DE UZ	WOLL	JE 03
. DEN	SIDAD					1	1		1		
	Condición		IJ-			Normal	Saturado	Normal	Saturado	Normal	Saturado
2	Peso suelo i Peso del mo	númedo + mo	ide		g	10,714	10,945	11,590 7,697	11,790	11,588	11,685
3		molde REC	٠.		g	7,279 2,104	7,279 2,104	2,123	7,697 2,123	7,295 2,109	7,295 2,109
4		numedo, [1]-[2			CC	3,435	3,666	3,893	4,093	4,293	4,390
5		uelo humedo			g g/cc	1.63	1.74	1.83	1.93	2.04	2.08
6	ld. Capsula		ויין יין יי		- 9/00	1	2	3	4	5	6
7		elo húmedo +	capsula		g	144.82	159.51	132.91	145.34	154.52	151.20
8		elo seco + cap			g	126.51	130.43	116.80	120.62	135.47	128.02
9	Peso del agi				g	18.31	29.08	16.11	24.72	19.05	23.18
10	Peso de la c	apsula			g	20.13	21.65	22.15	19.86	25.03	18.62
11	Peso del sue	elo seco, [8]-[1	10]		g	106.38	108.78	94.65	100.76	110.44	109.40
12	Contenido o	de humedad,	[9]/[11]		%	17.21	26.73	17.02	24.53	17.25	21.19
13	Densidad s	eca,[5]/(1+[12	2]/100)		g/cc	1.393	1.375	1.567	1.548	1.736	1.717
. PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (d	división)			FUI	ERZA (kg)		
STAN	NDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA
Are	a del	0.000	0	0	0	0		0		0	
pis	stón:	0.635	340	570	680	35		58		69	
19.3	5 cm2	1.270	780	1,130	1,430	80		115		146	
		1.905	1,230	1,780	2,080	126		182		212	
70	0.5	2.540	1,730	2,130	2,820	177	159*	217	211*	288	268*
		3.175	1,950	2,430	3,100	199		248		317	
		3.810	2,100	2,720	3,430	214		278		350	
10	5.7	5.080	2,240	2,970	3,830	229	234*	303	313*	391	395*
		6.350	2,350	3,220	4,040	240		329		413	
		7.620	2,460	3,440	4,210	251		351		430	
	-	10.160	2,610	3,650	4,430	267 279		373	-	452	
	L	12.700	2,730	3,820	4,590	1		390		469	
	С	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
. EXP	ANSIÓN									H _{suelo} =	127.0 mm
	TIEMPO		LECT	URA DIAL(Div):	0.010mm	0.010		ALT	URAS		
Fecha	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
26/11/23	11:40 AM	0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
27/11/23		24	0.68	0.60	0.46	0.01	0.54%	0.01	0.47%	0.00	0.36%
	11:40 AM	48	1.16	1.02	0.79	0.01	0.91%	0.01	0.80%	0.01	0.62%
	11:40 AM	72	1.39	1.29	0.95	0.01	1.09%	0.01	1.02%	0.01	0.75%
30/11/23	11:40 AM	96	1.51	1.40	1.04	0.02	1.19%	0.01	1.10%	0.01	0.82%
. RES	ULTADO	S							_		
	ENSAYO CB	R	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Der	nsidad Seca	prom.	1.38	1.56	1.71	Humed	ad óptima	17.28%	Penetración	0.1"	0.2"
	Pen	etracion: 0.1"	11.7	15.4	19.6		IDS	1.714	100% MDS	19.6	19.3
	Pen	etracion: 0.2"	11.5	15.3	19.3	95 % d	e la MDS	1.628	95 % MDS	17.2	17.1
. OBS	ERVACIO	DNES									
			corresponde :	a la calicata s	eleccionada er	base a su re	levancia para l	a presente inv	estigación		

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES



CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

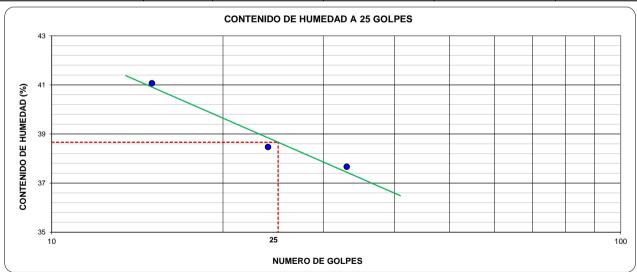
SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1

c) CALICATA C-02 CLASIFICACIÓN DE SUELO: CL (M-02)

Resultados de ensayos con adición de 0%, 3%, 6%, 9% y 12% de ceniza de fondo + 3% de cal

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S.N.	M 0
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 2

3 LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD	MUESTRAS								
Nº CAPSULA	ID	C-10	C-03	C-16	-					
PESO TARA + SUELO HUMEDO	(g)	59.62	63.49	60.15	-					
PESO TARA + SUELO SECO	(g)	49.58	52.70	49.98	-					
PESO DE AGUA	(g)	10.04	10.79	10.17	-					
PESO DE LA TARA	(g)	25.13	24.65	22.98	-					
PESO DEL SUELO SECO	(g)	24.45	28.05	27.00	-					
CONTENIDO DE HUMEDAD	(%)	41.06	38.47	37.67	-					
NUMERO DE GOLPES		15	24	33						

4 LIMITE PLÁSTICO									
DESCRIPCIÓN	UNIDAD		MUES	STRAS					
Nº TARRO	ID	T-05	T-10	T-19	PROMEDIO				
PESO TARA + SUELO HUMEDO	(g.)	23.55	22.45	21.87					
PESO TARA + SUELO SECO	(g.)	21.62	20.84	20.13					
PESO DE LA TARA	(g.)	12.51	13.62	11.84					
PESO DEL AGUA	(g.)	1.93	1.61	1.74					
PESO DEL SUELO SECO	(g.)	9.11	7.22	8.29					
CONTENIDO DE HUMEDAD	(%)	21.19	22.30	20.99	21.49				

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%)	38.66						
LIMITE PLASTICO (%)	21.49						
INDICE DE PLASTICIDAD (%)	17.17						

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA		
UBICACIÓN CALICATA 02 / PLATAFORMA KM	I 01+000 (L/D)	DOSIFICACIÓN:	S.N.			
MATERIAL: ARCILLA ARENOSA DE BAJA PLA	ASTICIDAD	CLASF. DE SUELO:	CL	M - 2		
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN :	"A"					
NUMERO DE GOLPES POR CAPA :	25					
NUMERO DE CAPAS :	5					
NÚMERO DE ENSAYO	1	2	3	4		
PESO (SUELO + MOLDE) (gr)	5444	5522	5570	5562		
PESO DE MOLDE (gr)	3651	3651	3651	3651		
PESO SUELO HÚMEDO (gr)	1793	1871	1919	1911		
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935		
DENSIDAD HÚMEDA (gr/cm ³)	1.919	2.002	2.054	2.045		
DENSIDAD SECA (gr/cm ³)	1.725	1.767	1.781	1.742		
4 CONTENIDO DE HUMEDAD						
RECIPIENTE №	1	2	3	4		
PESO (SUELO HÚMEDO + TARA) (gr)	574.8	514.5	418.0	390.0		
PESO (SUELO SECO + TARA) (gr)	521.6	459.3	368.2	339.2		
PESO DE LA TARA (gr)	48.7	45.2	41.8	47.6		
PESO DE AGUA (gr)	53.2	55.2	49.8	50.8		
PESO DE SUELO SECO (gr)	472.9	414.1	326.4	291.6		
CONTENIDO DE HUMEDAD (%)	11.25	13.33	15.27	17.42		

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

S			IO VECINAL I			ONE COMO					
1. DAT	OS DE L	A MUEST	RA							2. N° MUES	TRA
l	UBICACION:	CALICATA	02 / PLATAFO	ORMA KM 01	+000 (L/D)			DOSIFICACIÓN:	S.N.		_
	MATERIAL:	ARCILLA A	RENOSA DE	BAJA PLAST	ICIDAD		- CLA	ASF. DE SUELO:	CL	M	- 2
3. DAT	OS PAR	A EL ENS	AYO								
							PROCTOR	HO=15.04	MDS=1.781	N°CAPAS	5
						12 G	OLPES		OLPES	u .	LPES
N		DE	SCRIPCION		UND		DE 01		DE 02		DE 03
4. DEN	ISIDAD										
	Condición	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1	Peso suelo	húmedo + mo	lde		g	11,648	11,798	11,905	12,006	12,146	12,154
2	Peso del mo	olde			g	7,890	7,890	7,764	7,764	7,875	7,875
3		l molde RE			CC	2,126	2,126	2,120	2,120	2,115	2,115
4		humedo, [1]-[2			g	3,758	3,908	4,141	4,242	4,271	4,279
5		uelo humedo), [4]/[3]		g/cc	1.77	1.84	1.95	2.00	2.02	2.02
6	Id. Capsula	olo húmodo :	cancula		-	1	2	3	4	5	6
7 8		elo húmedo + elo seco + ca			g	94.08 85.94	114.87 97.16	89.13 80.82	116.89 102.65	100.02 90.78	118.23 105.21
9	Peso del ag		usula		g g	8.14	17.71	8.31	14.24	9.24	13.02
	Peso de la o				g	32.15	33.45	25.98	35.61	30.48	32.40
11		elo seco, [8]-[101		g	53.79	63.71	54.84	67.04	60.30	72.81
12		de humedad,			%	15.13	27.80	15.15	21.24	15.32	17.88
13		eca,[5]/(1+[1			g/cc	1.535	1.438	1.696	1.650	1.751	1.716
5. PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (d	división)			FUE	ERZA (kg)		
STAN	NDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA
Are	a del	0.000	0	0	0	0		0		0	
pis	stón:	0.635	80	160	210	8		16		21	
19.3	5 cm2	1.270	150	310	420	15		32		43	
		1.905	220	390	580	22		40		59	
70	0.5	2.540	270	490	740	27	26*	50	48*	75	71*
		3.175	310	530	800	32		54		82	
10)5.7	3.810	320	590	970	33	37*	60	69*	90	400*
10	13.1	5.080 6.350	350 375	660 708	1,020	36 38	31"	67 72	69"	99 104	102*
		7.620	390	740	1,080	40	-	75		110	
		10.160	410	800	1,140	42	1	82		116	
		12.700	430	860	1,210	44		88		123	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
6. EXP	ANSIÓN									H _{suelo} =	127.0 mm
	TIEMPO			URA DIAL(Div):	0.010mm	0.010		ALT	URAS		
Fecha	Hora	(Hrs)	12 GOLPES	25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
22/07/24		0	0.00	0.00	0.00	0.000	0.00%	0.000	0.00%	0.0	0.00%
23/07/24		24	2.27	1.77	1.46	0.023	1.79%	0.018	1.39%	0.0	1.15%
24/07/24		48	3.68	3.16	2.80	0.037	2.90%	0.032	2.49%	0.0	2.20%
25/07/24 26/07/24		72	5.60	3.99	3.75 4.32	0.056	4.41%	0.040	3.14%	0.0	2.95%
		96	5.05	4.65	4.32	0.051	3.98%	0.047	3.66%	0.04	3.40%
7. RES	ULTADO		T		=0.00·	T			II.	ADD	
	ENSAYO CE		12 GOLPES	25 GOLPES	56 GOLPES	11 .	PROCTOR	45.0407		CBR FINAL	0.0"
Der	nsidad Seca	•	1.49	1.67	1.78		ad óptima	15.04%	Penetración	0.1"	0.2"
		etracion: 0.1"	1.9	3.5	5.2		IDS e la MDS	1.781	100% MDS	5.2	5.0
	ren	etracion: 0.2"	1.8	3.4	5.0		ב ומ ואו טו	1.692	95 % MDS	3.8	3.6

8. OBSERVACIONES

1.50

1.45

2

C.B.R [%]

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

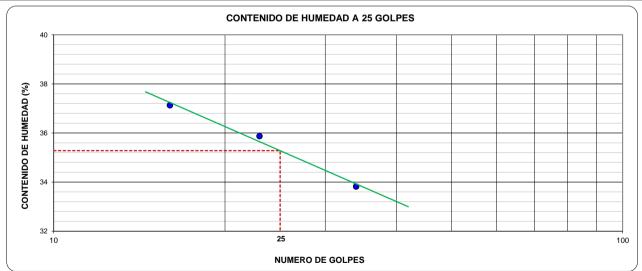
PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 20 120 45 80 40 20 8 35 09 80 30 50 FUERZA [kg] 25 9 4 20 30 40 15 20 10 20 10 2 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.78 1.75 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 5.2 CBR, PENETRACION 0.2" 1.70 95% MDS 1.69 1.65 CBR, PENETRACION 0.1" 3.8 CBR, PENETRACION 0.2" 1.60 1.55

6

LEYENDA

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S97-CF0-C3	M 0
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 2

3 LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº CAPSULA	ID	C-15	C-08	C-03	-					
PESO TARA + SUELO HUMEDO	(g)	54.33	58.96	49.88	-					
PESO TARA + SUELO SECO	(g)	45.62	50.95	43.84	-					
PESO DE AGUA	(g)	8.71	8.01	6.04	-					
PESO DE LA TARA	(g)	22.16	28.62	25.98	-					
PESO DEL SUELO SECO	(g)	23.46	22.33	17.86	-					
CONTENIDO DE HUMEDAD	(%)	37.13	35.87	33.82	-					
NUMERO DE GOLPES		16	23	34						

4 LIMITE PLÁSTICO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº TARRO	ID	T-04	T-03	T-05	PROMEDIO					
PESO TARA + SUELO HUMEDO	(g.)	20.94	27.15	23.04						
PESO TARA + SUELO SECO	(g.)	18.98	25.03	21.26						
PESO DE LA TARA	(g.)	11.45	16.84	14.23						
PESO DEL AGUA	(g.)	1.96	2.12	1.78						
PESO DEL SUELO SECO	(g.)	7.53	8.19	7.03						
CONTENIDO DE HUMEDAD	(%)	26.03	25.89	25.32	25.74					

CONSTANTES FISICAS DE LA MUESTRA								
LIMITE LIQUIDO (%)	35.28							
LIMITE PLASTICO (%)	25.74							
INDICE DE PLASTICIDAD (%)	9.53							

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	1
UBICACIÓN CALICATA 02 / PLATAFORMA KM	DOSIFICACIÓN:	S97-CF0-C3	M - 2		
MATERIAL: ARCILLA ARENOSA DE BAJA PLA	CLASF. DE SUELO:	CL	IVI - 2	1	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5435	5511	5561	5565	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1784	1860	1910	1914	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.909	1.990	2.044	2.048	
DENSIDAD SECA (gr/cm ³)	1.712	1.751	1.769	1.740	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE №	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	510.6	468.3	427.8	372.4	
PESO (SUELO SECO + TARA) (gr)	462.1	417.1	375.9	323.2	
PESO DE LA TARA (gr)	40.7	42.8	41.9	45.1	
PESO DE AGUA (gr)	48.5	51.2	51.9	49.2	
PESO DE SUELO SECO (gr)	421.4	374.3	334.0	278.1	
CONTENIDO DE HUMEDAD (%)	11.51	13.68	15.54	17.69	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

	DS DE L	MUEST	RA							2. N° MUES	ΓRA
UF	BICACION:	CALICATA (02 / PLATAF	ORMA KM 01-	+000 (L/D)			DOSIFICACIÓN:	S97-CF0-C3	М.	^
N	MATERIAL:	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	ASF. DE SUELO:	CL	IVI ·	- 2
DATO	OS PARA	EL ENS	AYO								
							PROCTOR	HO=15.65	MDS=1.769	N°CAPAS	5
						12 G	DLPES	25 GC	DLPES	56 GO	LPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOLE	DE 03
DENS	SIDAD				-						
		le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1 F	Peso suelo h	númedo + mol	lde		g	11,105	11,369	11,745	11,894	11,601	11,597
2 F	Peso del mo	lde			g	7,279	7,279	7,697	7,697	7,295	7,295
3 V	/olumen del	molde REC	3 :		CC	2,104	2,104	2,123	2,123	2,109	2,109
4 F	Peso suelo h	numedo, [1]-[2	2]		g	3,826	4,090	4,048	4,197	4,306	4,302
		uelo humedo	, [4]/[3]		g/cc	1.82	1.94	1.91	1.98	2.04	2.04
	d. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	136.12	120.15	99.89	128.02	100.92	105.23
		elo seco + cap	sula		g	120.15	102.35	90.84	110.45	90.54	94.38
	Peso del agu				g	15.97	17.80	9.05	17.57	10.38	10.85
	Peso de la c				g	21.32	32.15	33.48	30.98	25.48	36.87
		elo seco, [8]-[1			g	98.83	70.20	57.36	79.47	65.06	57.51
		le humedad,			%	16.16	25.36	15.78	22.11	15.95	18.87
		eca,[5]/(1+[12	2]/100)		g/cc	1.566	1.551	1.647	1.619	1.760	1.716
PENE	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c				FUE	RZA (kg)		
STAND		mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
Area		0.000	0	0	0	0		0		0	
pisto	-	0.635	190	240	320	19		24		33	
19.35	cm2	1.270	390	450	630	40		46		64	
	_	1.905	560	660	940	57		67		96	
70.	.5	2.540	730	910	1,150	74	69*	93	85*	117	112*
		3.175	830	970	1,380	85		99		141	
405	-	3.810	850	1,080	1,420	87	400*	110	4054	145	100+
105	0.7	5.080	990	1,210	1,560	101	102*	123	125*	159	166*
	-	6.350	1,060	1,250	1,730 1,820	108 111		128		177 186	
	-	7.620 10.160	1,090 1,120	1,330 1,370	1,910	114		136 140		195	
	-	12.700	1,120	1,410	2,000	117		144		204	
	L					117		144		204	
		JRRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXPA	ANSIÓN									H _{suelo} =	127.0 mr
	TIEMPO			URA DIAL(Div):	0.010mm	0.010		ALT	JRAS		
echa	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
	10:10 AM	0	0.00	0.00	0.00	0.000	0.00%	0.000	0.00%	0.0	0.00%
	10:10 AM	24	1.43	1.62	0.84	0.014	1.13%	0.016	1.28%	0.0	0.66%
	10:10 AM	48	2.33	1.90	1.61	0.023	1.83%	0.019	1.50%	0.0	1.27%
	10:10 AM	72	2.90	2.40	2.15	0.029	2.28%	0.024	1.89%	0.0	1.69%
	10:10 AM	96	3.19	2.79	2.48	0.032	2.51%	0.028	2.20%	0.02	1.95%
	JLTADO:										
	ENSAYO CB		12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
D	sidad Seca		1.56	1.63	1.77		nd óptima	15.65%	Penetración	0.1"	0.2"
Dens		etracion: 0.1"	5.1	6.2	8.2	I N	DS	1.769	100% MDS	8.2	8.1
Dens		etracion: 0.1	5.0	6.1	8.1		e la MDS	1.681	95 % MDS	7.0	6.8

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 120 160 40 9 120 80 20 9 FUERZA [kg] 9 80 100 9 4 40 20 20 20 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.77 DENSIDAD SECA [gr/cc] 1.75 CBR, PENETRACION 0.1" 8.2 CBR, PENETRACION 0.2" 1.70 95% MDS 1.68 CBR, PENETRACION 0.1" 7.0 1.65 CBR, PENETRACION 0.2" 1.60 1.55 1.50

9

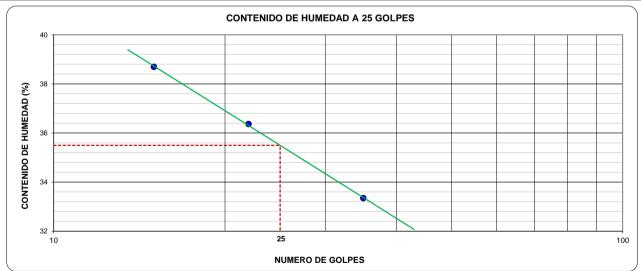
C.B.R [%]

LEYENDA

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S94-CF3-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 2

3 LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº CAPSULA	ID	C-02	C-15	C-06	-					
PESO TARA + SUELO HUMEDO	(g)	46.87	54.80	54.22	-					
PESO TARA + SUELO SECO	(g)	40.95	46.84	45.70	-					
PESO DE AGUA	(g)	5.92	7.96	8.52	-					
PESO DE LA TARA	(g)	25.65	24.95	20.15	-					
PESO DEL SUELO SECO	(g)	15.30	21.89	25.55	-					
CONTENIDO DE HUMEDAD	(%)	38.69	36.36	33.35	-					
NUMERO DE GOLPES		15	22	35						

4 LIMITE PLÁSTICO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº TARRO	ID	T-05	T-08	T-11	PROMEDIO					
PESO TARA + SUELO HUMEDO	(g.)	22.16	21.80	21.88						
PESO TARA + SUELO SECO	(g.)	20.16	19.65	20.15						
PESO DE LA TARA	(g.)	12.56	11.65	13.48						
PESO DEL AGUA	(g.)	2.00	2.15	1.73						
PESO DEL SUELO SECO	(g.)	7.60	8.00	6.67						
CONTENIDO DE HUMEDAD	(%)	26.32	26.88	25.94	26.38					

CONSTANTES FISICAS DE LA MUESTRA								
LIMITE LIQUIDO (%)	35.50							
LIMITE PLASTICO (%)	26.38							
INDICE DE PLASTICIDAD (%)	9.12							

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

				2 N° MUEST	KA
UBICACIÓN CALICATA 02 / PLATAFORMA KM 0 ⁻	DOSIFICACIÓN:	S94-CF3-C3	N4	- 2	
MATERIAL: ARCILLA ARENOSA DE BAJA PLAS	CLASF. DE SUELO:	CL	lvi ·	- Z	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5428	5485	5555	5544	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1777	1834	1904	1893	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.902	1.963	2.037	2.026	
DENSIDAD SECA (gr/cm ³)	1.708	1.730	1.762	1.721	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE №	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	471.1	468.9	432.6	395.5	
PESO (SUELO SECO + TARA) (gr)	428.6	419.7	380.8	344.3	
PESO DE LA TARA (gr)	54.2	53.6	49.8	55.1	
PESO DE AGUA (gr)	42.5	49.2	51.8	51.2	
PESO DE SUELO SECO (gr)	374.4	366.1	331.0	289.2	
CONTENIDO DE HUMEDAD (%)	11.35	13.44	15.65	17.69	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DAT	OS DE L	A MUEST	RA							2. N° MUES	ΓRA
Į	JBICACION:	CALICATA ()2 / PLATAFO	ORMA KM 01-	+000 (L/D)			DOSIFICACIÓN:	S94-CF3-C3	М.	2
	MATERIAL:	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	SF. DE SUELO:	CL	IVI -	- 2
DAT	OS PARA	LEL ENS	AYO								
							PROCTOR	HO=15.80	MDS=1.762	N°CAPAS	5
						12 G	OLPES	25 GC	DLPES	56 GO	LPES
N		DE	SCRIPCION		UND	MOL	.DE 01	MOL	DE 02	MOLE	DE 03
DEN	SIDAD				·						
	Condición o	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
1	Peso suelo I	númedo + mo	de		g	11,684	11,854	12,101	12,134	12,154	12,185
2	Peso del mo	lde			g	7,926	7,926	7,910	7,910	7,823	7,823
3	Volumen de	molde REC	3 :		CC	2,142	2,142	2,155	2,155	2,145	2,145
4	Peso suelo I	numedo, [1]-[2	<u>2</u>]		g	3,758	3,928	4,191	4,224	4,331	4,362
5	Densidad s	uelo humedo	, [4]/[3]		g/cc	1.75	1.83	1.94	1.96	2.02	2.03
6	Id. Capsula				-	1	2	3	4	5	6
7	Peso del su	elo húmedo +	capsula		g	126.13	117.84	132.02	140.32	119.65	138.15
8		elo seco + cap	sula		g	112.15	98.64	116.87	118.50	106.48	120.11
9	Peso del ag	7 6 3 6 3			g	13.98	19.20	15.15	21.82	13.17	18.04
10	Peso de la c				g	21.65	25.61	22.48	20.95	23.31	25.87
11	Peso del su	elo seco, [8]-[1	[0]		g	90.50	73.03	94.39	97.55	83.17	94.24
12	Contenido (de humedad,	[9]/[11]		%	15.45	26.29	16.05	22.37	15.84	19.14
13	Densidad s	eca,[5]/(1+[12	2]/100)		g/cc	1.520	1.452	1.676	1.602	1.743	1.707
PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c	livisión)			FUE	RZA (kg)		
STAN	IDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
	a del	0.000	0	0	0	0	001111201271	0	00111201271	0	001111201
	stón:	0.635	100	250	610	10		25		62	
•	5 cm2	1.270	280	590	1,070	28		60		109	
		1.905	460	860	1,440	47		88		147	
70	0.5	2.540	650	1,040	1,760	66	58*	106	103*	180	172*
		3.175	690	1,120	1,930	70		114		197	
	•	3.810	750	1,310	2,060	76		134		210	
10	5.7	5.080	810	1,400	2,290	83	87*	143	148*	234	241*
		6.350	910	1,500	2,410	93	-	153	-	246	
	-	7.620	960	1,570	2,500	98		160		255	
	=	10.160	1,010	1,630	2,590	103		166		264	
	-	12.700	1,040	1,700	2,680	106		174		274	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EVD	ANSIÓN										427.0
EAF	TIEMPO		LECT	URA DIAL(Div):	0.010mm	0.010		ALT	URAS	H _{suelo} =	127.0 m
echa	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
	12:15 PM	0	0.00	0.00	0.00	0.000	0.00%	0.000	0.00%	0.0	0.00%
	12:15 PM	24	1.20	0.99	0.78	0.000	0.00%	0.000	0.00%	0.0	0.61%
		48	1.95	1.77	1.49	0.012	1.54%	0.010	1.39%	0.0	1.17%
		72	2.43	2.24	1.49	0.024	1.91%	0.010	1.76%	0.0	1.17 %
	12:15 PM	96	2.43	2.24	2.29	0.024	2.10%	0.022	2.05%	0.02	1.80%
7/08/24 8/08/24 9/08/24	14. IO F W		2.01	2.00	L.LV	0.021	2.10/0	0.020	2.00/0	0.02	1.0070
3/08/24 3/08/24	III TARA	9		05.00:055	56 GOLPES	I	DDOCTOR	I		CBR FINAL	
3/08/24 3/08/24	ULTADO	D			20 GULPES	Ĭ	PROCTOR				
8/08/24 9/08/24 RES	ENSAYO CE		12 GOLPES	25 GOLPES		المسترا	nd ántim-		D1 ''	0.411	
8/08/24 9/08/24 RES	ENSAYO CE	prom.	1.49	1.64	1.76	Humeda	•	15.80%	Penetración	0.1"	0.2"
8/08/24 9/08/24 RES	ENSAYO CE nsidad Seca Pen					N	ad óptima IDS e la MDS	15.80% 1.762 1.674	Penetración 100% MDS 95 % MDS	0.1" 12.6 8.8	0.2" 11.8 8.4

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

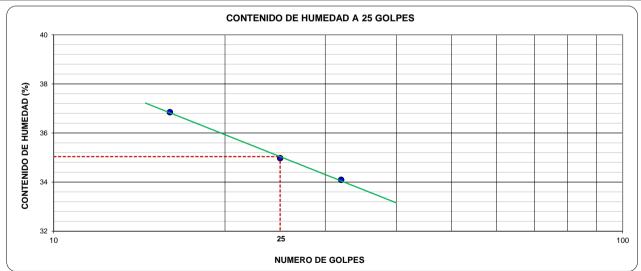
LEYENDA

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 120 180 9 9 4 200 120 80 100 FUERZA [kg] 150 9 80 001 4 9 40 20 20 20 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.76 1.75 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 12.6 CBR, PENETRACION 0.2" 1.70 95% MDS 1.67 1.65 CBR, PENETRACION 0.1" 8.8 CBR, PENETRACION 0.2" 1.60 1.55 1.50 1.45 ⁶ C.B.R [%] 2 10 0 12 14

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S91-CF6-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 2

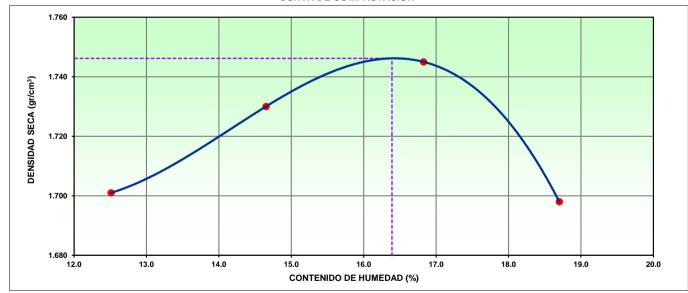
3 LIMITE LIQUIDO	- LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS							
Nº CAPSULA	ID	C-12	C-02	C-07	-						
PESO TARA + SUELO HUMEDO	(g)	59.55	58.37	58.11	-						
PESO TARA + SUELO SECO	(g)	51.23	49.84	50.16	-						
PESO DE AGUA	(g)	8.32	8.53	7.95	-						
PESO DE LA TARA	(g)	28.65	25.45	26.84	-						
PESO DEL SUELO SECO	(g)	22.58	24.39	23.32	-						
CONTENIDO DE HUMEDAD	(%)	36.85	34.97	34.09	-						
NUMERO DE GOLPES		16	25	32							

- LIMITE PLÁSTICO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº TARRO	ID	T-13	T-04	T-10	PROMEDIO					
PESO TARA + SUELO HUMEDO	(g.)	28.02	24.93	24.03						
PESO TARA + SUELO SECO	(g.)	25.61	22.92	21.65						
PESO DE LA TARA	(g.)	16.65	15.45	12.98						
PESO DEL AGUA	(g.)	2.41	2.01	2.38						
PESO DEL SUELO SECO	(g.)	8.96	7.47	8.67						
CONTENIDO DE HUMEDAD	(%)	26.90	26.91	27.45	27.09					

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%) 35.04							
LIMITE PLASTICO (%)	27.09						
INDICE DE PLASTICIDAD (%)	7.95						

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTR	A	
UBICACIÓN CALICATA 02 / PLATAFORMA KM	DOSIFICACIÓN:	S91-CF6-C3	М -	2	
MATERIAL: ARCILLA ARENOSA DE BAJA PLA	MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD		CL	IVI -	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5439	5505	5556	5535	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1788	1854	1905	1884	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.913	1.984	2.039	2.016	
DENSIDAD SECA (gr/cm ³)	1.701	1.730	1.745	1.698	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE №	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	447.8	423.5	394.2	403.9	
PESO (SUELO SECO + TARA) (gr)	403.7	375.6	344.7	348.1	
PESO DE LA TARA (gr)	51.2	48.6	50.8	49.7	
PESO DE AGUA (gr)	44.1	47.9	49.5	55.8	
PESO DE SUELO SECO (gr)	352.5	327.0	293.9	298.4	
CONTENIDO DE HUMEDAD (%)	12.51	14.65	16.83	18.70	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

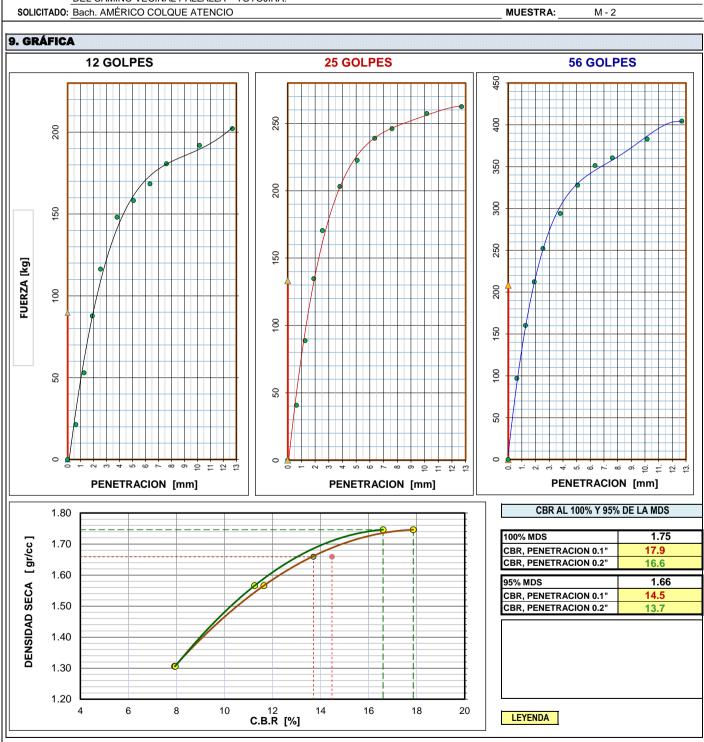
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

Peso del molde Peso	DATO	OS DE L	A MUEST	RA							2. N° MUEST	ΓRA
N DESCRIPCION UND 12 GOLPES 25 GOLPES 56 GOLPES	U	BICACION:	CALICATA ()2 / PLATAFO	ORMA KM 01-	+000 (L/D)		_	DOSIFICACIÓN:	S91-CF6-C3	M	2
N DESCRIPCION UND 12 GOLPES 25 GOLPES 56 GOLPES 56 GOLPES MOLDE 01 MOLDE 02 MOLDE 03 MOLDE 03 MOLDE 03 MOLDE 03 MOLDE 03 MOLDE 03 MOLDE 04 MOLDE 04 MOLDE 04 MOLDE 05 MO		MATERIAL:	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	SF. DE SUELO:	CL	141	- 2
No. DESCRIPCION	DATO	OS PARA	EL ENS	AYO								
DENSIDAD DESCRIPCION DINC DEC DENDE 03 DINC DEC DENDE 03 DEC DENDE 03 DEC DENDE 04 DEC DENDE 05 DENDE								PROCTOR	HO=16.39	MDS=1.746	N°CAPAS	5
DENSIDAD DESCRIPCION DINC DEC DENDE 03 DINC DEC DENDE 03 DEC DENDE 03 DEC DENDE 04 DEC DENDE 05 DENDE							12 G	OLPES	25 G0	OLPES	56 GO	LPES
Condicion de humedo	N		DE	SCRIPCION		UND						
Condicion de humedo	DEN!	SIDAD										
Pesa suelo húmedo - molde			le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
2	1 /	Peso suelo h	númedo + mo	lde		q				11,870		11,618
3 Volumen del molde REG	2	Peso del mo	lde					7,764	7,875		7,932	7,932
Peso suelo humedo, [1]+2]	3 '	Volumen del	molde REC	3:								
Second Content Second						q					3,662	
6	5	Densidad si	uelo humedo	, [4]/[3]					1.86			
Peso del suelo húmedo + capsula g 123,94 118,00 113,55 141,02 129,12 142,85												
Ses del suelo seco + capsula 9 110.23 98.64 100.65 120.05 114.33 124.12 9 Peso del agua, [7]-[8] 9 13.71 19.36 12.91 20.98 14.79 18.73 10 Peso del acapsula 9 25.13 24.10 22.94 28.31 24.87 26.64 11 Peso del suelo seco, [8]-[10] 9 85.10 74.54 77.71 91.74 89.66 97.48 12 Contenido de humedad, [9]/[11] % 16.11 25.97 16.61 22.96 16.53 19.21 13 Densidad seca, [5]/[1+1/2]/100) g/cc 1.312 1.300 1.594 1.537 1.481 1.457 PENETRACION			elo húmedo +	capsula		а	123.94			-		142.85
9 Peso del agua, [7]{8} 9 13.71 19.36 12.91 20.98 14.79 18.73 10. Peso del sa capsula 9 25.13 24.10 22.94 28.31 24.87 26.64 22.66												
10												
11												
12				101								
13												
PENETRACION												
STANDARD				<u> </u>		g, cc		111111		11441	L I	
STANDARD	FERE		/K	LECT	IDA DE DIAL (livición)			CIIC	ED7A (kg)		
Area del pistón: 0.000	STANI		mm				DIRECTA	CORREGIDA			DIRECTA	CORREGI
Pistón: 19.35 cm2 1.270 520 870 1.570 53 53 89 160 150								OOKKEODK		OOTTILOIDIT		OOMALON
19.35 cm2		L				-		-				
1.905	•	-						-			_	
70.5	13.33	CITIZ						-				
3.175	70	5						108*		150*		2/13*
3.810	70.	.0						100		133		243
105.7 5.080		-						-				
CORRECCION: DEL ANILLO DE CARGA EN NEWTON	105	5.7						462*		220*		220*
Tichnol 1,770 2,410 3,530 181 246 361 383 383 383 12,700 1,980 2,570 3,960 202 262	100	J. I						103		230		339
10.160		-										
12.700		-										
CORRECCION: DEL ANILLO DE CARGA EN NEWTON		-				,						
H _{suelo} 127.0 m H _{suelo}		L					202	<u> </u>	202		404	
TIEMPO LECTURA DIAL(Div): 0.010mm 0.010 A L T U R A S			URRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
Fecha Hora (Hrs) 12 GOLPES 25 GOLPES 56 GOLPES mm % mm % mm % 6/08/24 9:30 AM 0 0.00 0.00 0.000 0.000 0.00% 0.000 0.00% 0.00% 0.00% 0.0 0.00%	EXP/					· · · · · · · · · · · · · · · · · · ·					H _{suelo} =	127.0 mr
6/08/24 9:30 AM 0 0.00 0.00 0.00 0.000 0.000 0.000 0.000 0.00% 0.000 0.00% 0.							0.010		ALT		1	
7/08/24 9:30 AM 24 0.94 0.75 0.64 0.009 0.74% 0.008 0.59% 0.0 0.50% 3/08/24 9:30 AM 48 1.53 1.34 1.22 0.015 1.20% 0.013 1.06% 0.0 0.96% 3/08/24 9:30 AM 72 1.91 1.69 1.64 0.019 1.50% 0.017 1.33% 0.0 1.29% 0/08/24 9:30 AM 96 2.10 1.97 1.88 0.021 1.65% 0.020 1.55% 0.02 1.48% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetración: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6										,,,		
8/08/24 9:30 AM 48 1.53 1.34 1.22 0.015 1.20% 0.013 1.06% 0.0 0.96% 9/08/24 9:30 AM 72 1.91 1.69 1.64 0.019 1.50% 0.017 1.33% 0.0 1.29% 0/08/24 9:30 AM 96 2.10 1.97 1.88 0.021 1.65% 0.020 1.55% 0.02 1.48% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6												0.00%
6/08/24 9:30 AM 72 1.91 1.69 1.64 0.019 1.50% 0.017 1.33% 0.0 1.29% 0/08/24 9:30 AM 96 2.10 1.97 1.88 0.021 1.65% 0.020 1.55% 0.02 1.48% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6												
0/08/24 9:30 AM 96 2.10 1.97 1.88 0.021 1.65% 0.020 1.55% 0.02 1.48% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6												0.96%
RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6							0.019		0.017		0.0	1.29%
ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6	0/08/24	9:30 AM	96	2.10	1.97	1.88	0.021	1.65%	0.020	1.55%	0.02	1.48%
Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6		ULTADO	8									
Densidad Seca prom. 1.31 1.57 1.75 Humedad óptima 16.39% Penetración 0.1" 0.2" Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6	RES	ENSAYO CB	R	12 GOLPES	25 GOLPES	56 GOLPES					CBR FINAL	
Penetracion: 0.1" 7.9 11.6 17.9 MDS 1.746 100% MDS 17.9 16.6						1.75	Humeda	ad óptima	16.39%	Penetración	0.1"	0.2"
		sidad Seca										
				7.9	11.6	17.9	N	DS	1.746	100% MDS	17.9	16.6



FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

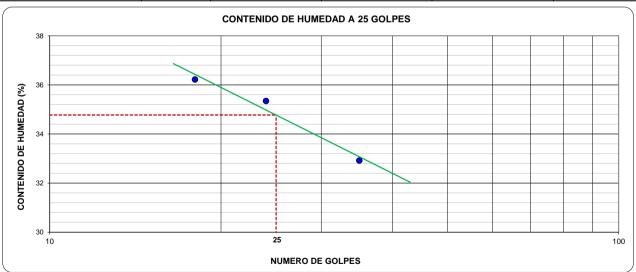
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S88-CF9-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 2

- LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº CAPSULA	ID	C-04	C-07	C-13	-					
PESO TARA + SUELO HUMEDO	(g)	58.02	60.46	62.16	-					
PESO TARA + SUELO SECO	(g)	49.65	51.32	53.48	-					
PESO DE AGUA	(g)	8.37	9.14	8.68	-					
PESO DE LA TARA	(g)	26.54	25.46	27.11	-					
PESO DEL SUELO SECO	(g)	23.11	25.86	26.37	-					
CONTENIDO DE HUMEDAD	(%)	36.22	35.34	32.92	-					
NUMERO DE GOLPES		18	24	35						

4 LIMITE PLÁSTICO	- LIMITE PLÁSTICO										
DESCRIPCIÓN	UNIDAD		MUES	STRAS							
Nº TARRO	ID	T-05	T-04	T-07	PROMEDIO						
PESO TARA + SUELO HUMEDO	(g.)	25.71	23.01	27.84							
PESO TARA + SUELO SECO	(g.)	23.51	20.95	25.43							
PESO DE LA TARA	(g.)	15.62	13.54	17.06							
PESO DEL AGUA	(g.)	2.20	2.06	2.41							
PESO DEL SUELO SECO	(g.)	7.89	7.41	8.37							
CONTENIDO DE HUMEDAD	(%)	27.88	27.80	28.79	28.16						

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%) 34.77							
LIMITE PLASTICO (%)	28.16						
INDICE DE PLASTICIDAD (%)	6.61						

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTR	RA	
UBICACIÓN CALICATA 02 / PLATAFORMA KM	DOSIFICACIÓN:	S88-CF9-C3	м -	2	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD		CLASF. DE SUELO:	CL	IVI -	2
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5405	5465	5531	5535	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1754	1814	1880	1884	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.877	1.941	2.012	2.016	
DENSIDAD SECA (gr/cm ³)	1.676	1.700	1.726	1.704	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE №	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	496.9	463.1	389.3	369.9	
PESO (SUELO SECO + TARA) (gr)	448.7	411.6	341.4	320.8	
PESO DE LA TARA (gr)	47.7	49.2	51.8	52.9	
PESO DE AGUA (gr)	48.2	51.5	47.9	49.1	
PESO DE SUELO SECO (gr)	401.0	362.4	289.6	267.9	
CONTENIDO DE HUMEDAD (%)	12.02	14.21	16.54	18.33	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

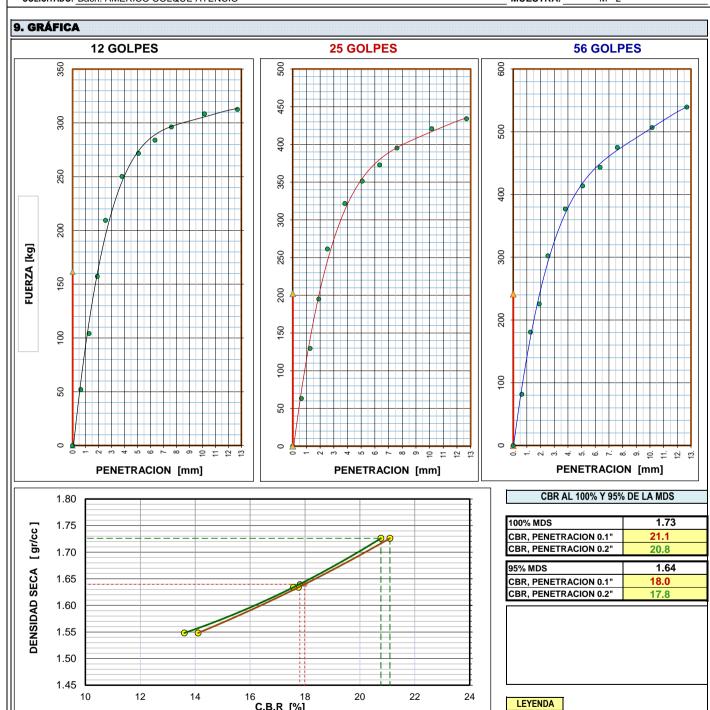
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

. DAT	OS DE LA	A MUEST	RA							2. N° MUES	TRA
				ORMA KM 01-	+000 (L/D)			DOSIFICACIÓN:	S88-CF9-C3		
	_			BAJA PLAST			-	ASF. DE SUELO:		М	- 2
				BAJA FLAST	ICIDAD			ASF. DE SUELU.	UL		
DAT	OS PARA	EL ENS	AYO								
							PROCTOR	HO=16.67	MDS=1.726	N°CAPAS	5
M		DE	CCDIDCION		UND	12 G	OLPES	25 G	OLPES	56 GC	DLPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOL	DE 03
DEN	ISIDAD										
	Condición o	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
1	Peso suelo h	númedo + mo	lde		g	11,684	11,898	11,968	12,095	12,120	12,198
2	Peso del mo	de			g	7,813	7,813	7,876	7,876	7,861	7,861
3	Volumen del	molde REC	3:		cc	2,112	2,112	2,122	2,122	2,119	2,119
4	Peso suelo h	numedo, [1]-[2	2]		g	3,871	4,085	4,092	4,219	4,259	4,337
5	Densidad si	uelo humedo	, [4]/[3]		g/cc	1.83	1.93	1.93	1.99	2.01	2.05
6	ld. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	112.05	121.59	129.61	148.12	120.02	135.94
	Peso del suelo seco + capsula				g	99.84	102.65	115.64	125.47	106.98	117.87
	Peso del agua, [7]-[8]				g	12.21	18.94	13.97	22.65	13.04	18.07
	Peso de la capsula				g	26.31	32.15	28.64	30.15	28.97	26.68
		elo seco, [8]-[g	73.53	70.50	87.00	95.32	78.01	91.19
		le humedad,			%	16.61	26.87	16.06	23.76	16.72	19.82
		eca,[5]/(1+[12	2]/100)		g/cc	1.572	1.525	1.662	1.606	1.722	1.708
PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c	livisión)			FUE	RZA (kg)		
	NDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
	a del	0.000	0	0	0	0	-	0		0	
•	stón:	0.635	510	620	800	52	=	63		82	
19.3	5 cm2	1.270	1,020	1,270	1,770	104		130		181	
70	0.5	1.905	1,540	1,910	2,210 2,960	157	192*	195 261	242*	226 302	288*
/(0.0	2.540	2,050	2,560	3,320	209 230	192"	292	242"	339	200
	}	3.175 3.810	2,250 2,450	2,860 3,150	3,690	250	-	322	1	377	
10)5.7	5.080	2,450	3,440	4,050	272	278*	351	359*	414	425*
		6.350	2,780	3,650	4,340	284	270	373	333	443	723
		7.620	2,900	3,870	4,650	296		395		475	
	Ī	10.160	3,020	4,120	4,960	308		421	1	507	
		12.700	3,060	4,250	5,280	313		434		539	
	C		DEL ANILLO	DE CARGA	EN NEWTON		•				•
		OTTI LEGGIOTE:	DEETHNEES	D2 07 (1 t 07 t	INEW TOTAL						
	ANSION		,							H _{suelo} =	127.0 m
. EXP				URA DIAL(Div):	0.010mm	0.010			URAS		
	TIEMPO	/I.I. \		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
Fecha	TIEMPO Hora	(Hrs)			0.00	0.000			0.000/	0.0	0.00%
Fecha 6/08/24	TIEMPO Hora 1:40 PM	0	0.00	0.00	0.00	0.000	0.00%	0.000	0.00%		
Fecha 16/08/24 17/08/24	TIEMPO Hora 1:40 PM 1:40 PM	0 24	0.00 0.74	0.00 0.63	0.48	0.007	0.58%	0.006	0.50%	0.0	0.38%
Fecha 6/08/24 7/08/24 8/08/24	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM	0 24 48	0.00 0.74 1.20	0.00 0.63 1.12	0.48 0.92	0.007 0.012	0.58% 0.94%	0.006 0.011	0.50% 0.88%	0.0 0.0	0.72%
Fecha 6/08/24 7/08/24 8/08/24 9/08/24	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM 1:40 PM	0 24 48 72	0.00 0.74 1.20 1.49	0.00 0.63 1.12 1.42	0.48 0.92 1.24	0.007 0.012 0.015	0.58% 0.94% 1.17%	0.006 0.011 0.014	0.50% 0.88% 1.12%	0.0 0.0 0.0	0.72% 0.98%
Fecha 6/08/24 7/08/24 8/08/24 9/08/24 0/08/24	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM 1:40 PM	0 24 48 72 96	0.00 0.74 1.20	0.00 0.63 1.12	0.48 0.92	0.007 0.012	0.58% 0.94%	0.006 0.011	0.50% 0.88%	0.0 0.0	0.72% 0.98%
Fecha 6/08/24 7/08/24 8/08/24 9/08/24 20/08/24	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM	0 24 48 72 96	0.00 0.74 1.20 1.49 1.64	0.00 0.63 1.12 1.42 1.65	0.48 0.92 1.24 1.42	0.007 0.012 0.015	0.58% 0.94% 1.17% 1.29%	0.006 0.011 0.014	0.50% 0.88% 1.12%	0.0 0.0 0.0 0.01	0.38% 0.72% 0.98% 1.12%
Fecha 6/08/24 7/08/24 8/08/24 9/08/24 0/08/24 RES	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM EVLTADO: ENSAYO CB	0 24 48 72 96	0.00 0.74 1.20 1.49 1.64	0.00 0.63 1.12 1.42 1.65	0.48 0.92 1.24 1.42 56 GOLPES	0.007 0.012 0.015 0.016	0.58% 0.94% 1.17% 1.29%	0.006 0.011 0.014 0.017	0.50% 0.88% 1.12% 1.30%	0.0 0.0 0.0 0.01	0.72% 0.98% 1.12%
Fecha 6/08/24 7/08/24 8/08/24 9/08/24 20/08/24 . RES	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM ENSAYO CB nsidad Seca	0 24 48 72 96 S R	0.00 0.74 1.20 1.49 1.64 12 GOLPES	0.00 0.63 1.12 1.42 1.65 25 GOLPES 1.63	0.48 0.92 1.24 1.42 56 GOLPES	0.007 0.012 0.015 0.016	0.58% 0.94% 1.17% 1.29% PROCTOR ad óptima	0.006 0.011 0.014 0.017	0.50% 0.88% 1.12% 1.30%	0.0 0.0 0.0 0.01 CBR FINAL 0.1"	0.72% 0.98% 1.12%
Fecha 6/08/24 7/08/24 8/08/24 9/08/24 20/08/24 . RES	TIEMPO Hora 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM 1:40 PM ENSAYO CB nsidad Seca	0 24 48 72 96	0.00 0.74 1.20 1.49 1.64	0.00 0.63 1.12 1.42 1.65	0.48 0.92 1.24 1.42 56 GOLPES	0.007 0.012 0.015 0.016 Humeda	0.58% 0.94% 1.17% 1.29%	0.006 0.011 0.014 0.017	0.50% 0.88% 1.12% 1.30%	0.0 0.0 0.0 0.01	0.72% 0.98% 1.12%



FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

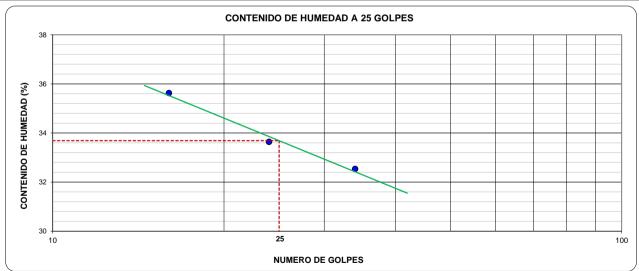
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 02 / PLATAFORMA KM 01+000 (L/D)	DOSIFICACIÓN:	S88-CF9-C3	
MATERIAL: ARCILLA ARENOSA DE BAJA PLASTICIDAD	CLASF. DE SUELO:	CL	M - 2

3 LIMITE LIQUIDO								
DESCRIPCIÓN	UNIDAD		MUE	STRAS				
Nº CAPSULA	ID	C-08	C-05	C-14	-			
PESO TARA + SUELO HUMEDO	(g)	61.13	65.01	62.88	-			
PESO TARA + SUELO SECO	(g)	51.86	55.42	53.62	-			
PESO DE AGUA	(g)	9.27	9.59	9.26	-			
PESO DE LA TARA	(g)	25.84	26.91	25.16	-			
PESO DEL SUELO SECO	(g)	26.02	28.51	28.46	-			
CONTENIDO DE HUMEDAD	(%)	35.63	33.64	32.54	-			
NUMERO DE GOLPES		16	24	34				

4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD		MUE	STRAS				
Nº TARRO	ID	T-05	T-04	T-07	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	26.44	24.10	25.61				
PESO TARA + SUELO SECO	(g.)	24.17	21.84	23.15				
PESO DE LA TARA	(g.)	16.54	13.94	14.61				
PESO DEL AGUA	(g.)	2.27	2.26	2.46				
PESO DEL SUELO SECO	(g.)	7.63	7.90	8.54				
CONTENIDO DE HUMEDAD	(%)	29.75	28.61	28.81	29.05			

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%) 33.69						
LIMITE PLASTICO (%)	29.05					
INDICE DE PLASTICIDAD (%)	4.63					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTR	IA
UBICACIÓN CALICATA 02 / PLATAFORMA KM 0	1+000 (L/D)	DOSIFICACIÓN:	S88-CF9-C3	M - 2	
MATERIAL: ARCILLA ARENOSA DE BAJA PLAS	CLASF. DE SUELO:	CL	IVI -	2	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5399	5476	5520	5525	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1748	1825	1869	1874	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm ³)	1.871	1.953	2.000	2.005	
DENSIDAD SECA (gr/cm ³)	1.652	1.688	1.697	1.673	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	484.0	414.7	373.4	365.4	
PESO (SUELO SECO + TARA) (gr)	433.4	366.0	323.8	312.6	
PESO DE LA TARA (gr)	51.2	55.4	45.8	47.3	
PESO DE AGUA (gr)	50.6	48.7	49.6	52.8	
PESO DE SUELO SECO (gr)	382.2	310.6	278.0	265.3	
CONTENIDO DE HUMEDAD (%)	13.24	15.68	17.84	19.90	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DAT	OS DE LA	MUESTI	RA							2. N° MUES	ΓRA
l	JBICACION:	CALICATA ()2 / PLATAF(ORMA KM 01-	+000 (L/D)		_	DOSIFICACIÓN:	S88-CF9-C3	М -	. 2
	MATERIAL:	ARCILLA AF	RENOSA DE	BAJA PLAST	ICIDAD		CLA	SF. DE SUELO:	CL		
DAT	OS PARA	EL ENSA	YO								
							PROCTOR	HO=17.41	MDS=1.698	N°CAPAS	5
NI .			OODIDOION.			12 G	OLPES	25 GC	LPES	56 GO	LPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOLE	E 03
DEN	SIDAD										
	Condición d	e humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1	Peso suelo h	úmedo + mol	de		g	10,849	10,980	11,684	11,648	11,485	11,514
2	Peso del mo	lde			g	7,279	7,279	7,697	7,697	7,295	7,295
3		molde REG			cc	2,104	2,104	2,123	2,123	2,109	2,109
4		umedo, [1]-[2			g	3,570	3,701	3,987	3,951	4,190	4,219
5		ielo humedo	, [4]/[3]		g/cc	1.70	1.76	1.88	1.86	1.99	2.00
6	Id. Capsula				-	1	2	3	4	5	6
7		lo húmedo +			g	114.23	150.33	127.64	163.21	120.15	152.95
8		elo seco + cap	sula		g	101.23	125.65	112.41	135.94	105.64	131.02
9	Peso del agu				g	13.00	24.68	15.23	27.27	14.51	21.93
	Peso de la c				g	25.32	33.15	26.65	21.54	22.84	25.61
		lo seco, [8]-[1			g	75.91	92.50	85.76	114.40	82.80	105.41
12		le humedad,			%	17.13	26.68	17.76	23.84	17.52	20.80
13	Densidad se	eca,[5]/(1+[12	[]/100)		g/cc	1.449	1.389	1.595	1.503	1.690	1.656
PEN	ETRACIO	N									
	CARGA		LECT	JRA DE DIAL (c	livisión)			FUE	RZA (kg)		
STAN	IDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
	a del	0.000	0	0	0	0		0		0	
•	stón:	0.635	450	680	990	46		69		101	
19.3	5 cm2	1.270	940	1,270	1,580	96		130		161	
		1.905	1,370	1,760	2,240	140		180		229	
70	0.5	2.540	1,800	2,240	2,910	184	174*	229	221*	297	277*
		3.175	2,050	2,520	3,210	209		257		328	
		3.810	2,240	2,833	3,500	229		289		357	
10	5.7	5.080	2,470	3,080	3,810	252	257*	315	325*	389	411*
		6.350	2,650	3,360	4,290	271	=	343		438	
	-	7.620	2,740	3,550	4,570	280	-	363		467	
		10.160	2,830	3,730	4,890	289	-	381		499	
		12.700	2,890	3,940	5,190	295		402		530	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXP	ANSIÓN									H _{suelo} =	127.0 mr
	TIEMPO			URA DIAL(Div):	0.010mm	0.010		ALTI	JRAS		
echa	Hora	(Hrs)	12 GOLPES	25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
	11:20 AM	0	0.00	0.00	0.00	0.000	0.00%	0.000	0.00%	0.0	0.00%
3/08/24	11:20 AM	24	0.61	0.47	0.44	0.006	0.48%	0.005	0.37%	0.0	0.35%
4/08/24	11:20 AM	48	0.99	0.85	0.85	0.010	0.78%	0.009	0.67%	0.0	0.67%
5/08/24	11:20 AM	72	1.24	1.07	1.14	0.012	0.98%	0.011	0.84%	0.0	0.90%
6/08/24	11:20 AM	96	1.36	1.24	1.31	0.014	1.07%	0.012	0.98%	0.01	1.03%
RES	ULTADO	3									
	ENSAYO CB	R	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Der	sidad Seca		1.42	1.55	1.70	Humeda	nd óptima	17.41%	Penetración	0.1"	0.2"
	Pene	etracion: 0.1"	12.8	16.2	20.3		DS	1.698	100% MDS	20.3	20.1
		etracion: 0.2"	12.6	15.9	20.1	95 % d	e la MDS	1.613	95 % MDS	17.9	17.7
	,										

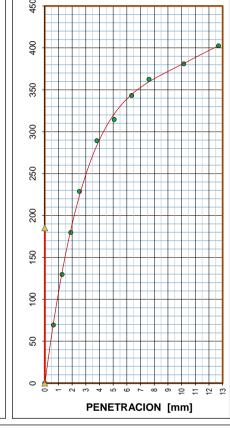
FUERZA [kg]

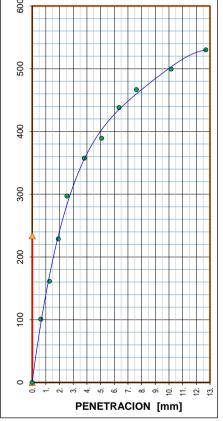
150

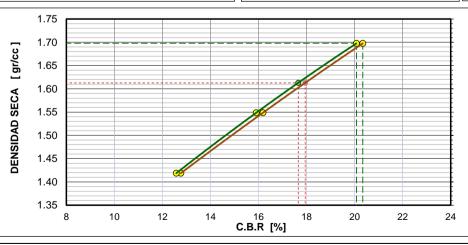
9

50

UNIVERSIDAD NACIONAL DEL ALTIPLANO


FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES




CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PENETRACION [mm]

100% MDS	1.70
CBR, PENETRACION 0.1"	20.3
CBR, PENETRACION 0.2"	20.1
250/ 1172	4.64
95% MDS	1.61
CBR, PENETRACION 0.1"	17.9
CBR, PENETRACION 0.2"	17.7

CBR AL 100% Y 95% DE LA MDS

LEYENDA

d) CALICATA C-03 CLASIFICACIÓN DE SUELO: CH (M-01)

Resultados de ensayos con adición de 0%, 3%, 6%, 9% y 12% de ceniza de fondo + 3% de cal

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA	2 N° MUESTRA		
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S.N.	M 4
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 1

3 LIMITE LIQUIDO								
DESCRIPCIÓN	UNIDAD		MUE	STRAS				
Nº CAPSULA	ID	C-06	C-08	C-05	-			
PESO TARA + SUELO HUMEDO	(g)	43.83	37.94	40.11	-			
PESO TARA + SUELO SECO	(g)	35.51	31.67	33.41	-			
PESO DE AGUA	(g)	8.32	6.27	6.70	-			
PESO DE LA TARA	(g)	19.83	19.44	20.15	-			
PESO DEL SUELO SECO	(g)	15.68	12.23	13.26	-			
CONTENIDO DE HUMEDAD	(%)	53.06	51.27	50.53	-			
NUMERO DE GOLPES		18	24	33				

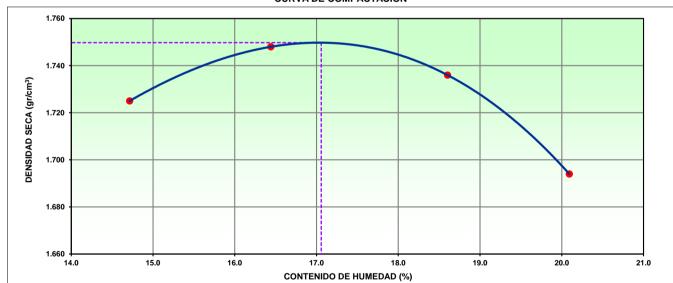
4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD		MUE	STRAS				
Nº TARRO	ID	T-09	T-21	T-15	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	27.12	27.49	29.41				
PESO TARA + SUELO SECO	(g.)	25.93	26.01	28.15				
PESO DE LA TARA	(g.)	19.65	18.05	21.03				
PESO DEL AGUA	(g.)	1.19	1.48	1.26				
PESO DEL SUELO SECO	(g.)	6.28	7.96	7.12				
CONTENIDO DE HUMEDAD	(%)	18.95	18.59	17.70	18.41			

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%) 51.49						
LIMITE PLASTICO (%)	18.41					
INDICE DE PLASTICIDAD (%)	33.08					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA
UBICACIÓN CALICATA 03 / PLATAFOR	RMA KM 01+500 (L/I)	DOSIFICACIÓN:	S.N.	M - 1
MATERIAL: ARCILLA ARENOSA DE A	LTA PLASTICIDAD	CLASF. DE SUELO:	СН	IVI - I
3 COMPACTACIÓN				
MÉTODO DE COMPACTACIÓN	: "A"			
NUMERO DE GOLPES POR CAPA	: 25			
NUMERO DE CAPAS	: 5			
NÚMERO DE ENSAYO	1	2	3	4
PESO (SUELO + MOLDE) (gr)	6043	6096	6118	6095
PESO DE MOLDE (gr)	4190	4190	4190	4190
PESO SUELO HÚMEDO (gr)	1853	1906	1928	1905
VOLUMEN DEL MOLDE (cm³)	936	936	936	936
4 LIMITE PLÁSTICO	1.979	2.035	2.059	2.034
DENSIDAD SECA (gr/cm ³)	1.725	1.748	1.736	1.694
4 CONTENIDO DE HUMEDAD				
RECIPIENTE Nº	1	2	3	4
PESO (SUELO HÚMEDO + TARA) (gr)	389.0	369.2	293.0	366.8
PESO (SUELO SECO + TARA) (gr)	346.7	326.8	257.6	310.2
PESO DE LA TARA (gr)	59.2	68.9	67.3	28.5
PESO DE AGUA (gr)	42.3	42.4	35.4	56.6
PESO DE SUELO SECO (gr)	287.5	257.9	190.3	281.7
LOO DE COLLO CECO (gi)				

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DATO	S DE L	A MUEST	RA							2. Nº MUES	STRA
UBICACION: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)						DOSIFICACIÓN: S.N.		S.N.	M	_ 1	
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDA					ICIDAD		CLAS		CH	M - 1	
DATO	S PARA	EL ENS	YO								
							PROCTOR	HO=17.06	MDS=1.750	N°CAPAS	5
						12 G	OLPES	25 GC	LPES	56 GC	DLPES
N DESCRIPCION			UND		MOLDE 01		DE 02	MOLDE 03			
DENS	IDAD										
		le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
1 P	eso suelo l	númedo + mo	de		g	11,656	11,804	11,760	11,975	11,085	11,107
2 P	eso del mo	lde			g	7,921	7,921	7,807	7,807	6,703	6,703
E PLÁSV	olumen del	molde REC	3 :		CC	2,120	2,120	2,114	2,114	2,128	2,128
4 P	eso suelo l	numedo, [1]-[2	<u>!</u>]		g	3,735	3,883	3,953	4,168	4,382	4,404
5 D	ensidad s	uelo humedo	, [4]/[3]		g/cc	1.76	1.83	1.87	1.97	2.06	2.07
	d. Capsula				-	1	2	3	4	5	6
	eso del sue	elo húmedo +	capsula		g	360.20	151.52	341.04	250.46	360.10	342.11
		elo seco + cap	sula		g	318.12	130.07	298.63	212.21	317.94	294.69
	eso del agi				g	42.08	21.45	42.41	38.25	42.16	47.42
	eso de la c		101		g	68.28	38.81	48.97	37.50	71.49	58.69
		elo seco, [8]-[g	249.84	91.26	249.66	174.71	246.45	236.00
		de humedad,			%	16.84	23.50	16.99	21.89	17.11	20.09
		eca,[5]/(1+[12	<u>!</u> /100)		g/cc	1.508	1.483	1.598	1.617	1.758	1.723
PENE	TRACIO)N									
	CARGA			URA DE DIAL (d				FUE	RZA (kg)		
STAND		mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREG
Area	L	0.000	0	0	0	0		0		0	
pistón:		0.635	40	80	130	4		8		13	
19.35	cm2	1.270	70	150	290	7		15		29	
70.5	-	1.905	100	230	410	10	40*	23	00*	42	40*
70.5)	2.540	120	280	500 560	12	12*	28 29	26*	51 57	48*
	-	3.175	130	290 310	580	15	-	32		59	
105.	7	3.810 5.080	150 160	340	640	16	17*	35	37*	65	69*
100.		6.350	170	370	710	17	11	38	31	72	03
	ŀ	7.620	180	390	750	18	_	40		76	
	ŀ	10.160	190	420	810	19		43		83	
	ŀ	12.700	200	460	890	20		47		91	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTO					-	
EXPAI		01412001014.	DEE / INTEEO	22 0/11/0//	THE WITCH	1					
EAPAI	TIEMPO		LECT	LIDA DIAL (Dia).	0.010mm	0.010		A I T I	JRAS	H _{suelo} =	127.0 m
Fecha	Hora	(Hrs)	12 GOLPES	URA DIAL(Div):	56 GOLPES	0.010 mm	%	mm	% %	mm	%
7/11/23		0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
18/11/23		24	5.56	4.69	3.67	0.06	4.38%	0.00	3.69%	0.00	2.89%
29/11/23		48	8.03	7.20	6.04	0.08	6.32%	0.03	5.67%	0.04	4.76%
30/11/23		72	9.20	8.36	7.52	0.00	7.24%	0.07	6.58%	0.08	5.92%
	11:10 AM	96	9.88	8.97	8.39	0.03	7.78%	0.00	7.06%	0.08	6.61%
	ILTADO		0.00	J.01	00	U 0.10	1.10/0	0.00	1.50/0	1 0.00	0.0170
			12 COLDEC	25 COLDEC	56 GOLPES	I	PROCTOR	11		CBR FINAL	
ENSAYO CBR			12 GOLPES	25 GOLPES	1.75	Uumad	ad óptima	17.060/	Donotro si 6		0.0"
Densidad Seca prom.			1.50	1.61	3.5			17.06%	Penetración	0.1"	0.2"
Penetracion: 0.1" Penetracion: 0.2"		0.9 0.8	1.9 1.8	3.5	MDS 95 % de la MDS		1.750 1.662	100% MDS 95 % MDS	3.5 2.5	3.4 2.3	
	Don	atracion: () ()"									

1.40

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 90 45 20 8 4 2 35 15 9 30 20 FUERZA [kg] 25 10 40 20 30 15 2 20 10 10 2 0 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.75 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 3.5 1.70 CBR, PENETRACION 0.2" 95% MDS 1.66 CBR, PENETRACION 0.1" 1.60 CBR, PENETRACION 0.2" 1.50

3

C.B.R [%]

LEYENDA

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA

SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA	2 N° MUESTRA		
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S97-CF0-C3	
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	M - 1

3 LIMITE LIQUIDO							
DESCRIPCIÓN	UNIDAD	MUESTRAS					
Nº CAPSULA	ID	C-05	C-04	C-15	-		
PESO TARA + SUELO HUMEDO	(g)	67.49	64.41	64.35	-		
PESO TARA + SUELO SECO	(g)	53.26	51.02	51.64	-		
PESO DE AGUA	(g)	14.23	13.39	12.71	-		
PESO DE LA TARA	(g)	25.16	23.65	24.84	-		
PESO DEL SUELO SECO	(g)	28.10	27.37	26.80	-		
CONTENIDO DE HUMEDAD	(%)	50.64	48.92	47.43	-		
NUMERO DE GOLPES		15	24	34			

4 LIMITE PLÁSTICO							
DESCRIPCIÓN	UNIDAD	MUESTRAS					
Nº TARRO	ID	T-04	T-06	T-08	PROMEDIO		
PESO TARA + SUELO HUMEDO	(g.)	32.50	33.92	31.28			
PESO TARA + SUELO SECO	(g.)	30.15	31.47	29.18			
PESO DE LA TARA	(g.)	21.65	22.75	21.43			
PESO DEL AGUA	(g.)	2.35	2.45	2.10			
PESO DEL SUELO SECO	(g.)	8.50	8.72	7.75			
CONTENIDO DE HUMEDAD	(%)	27.65	28.10	27.10	27.61		

CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%)	48.68				
LIMITE PLASTICO (%)	27.61				
INDICE DE PLASTICIDAD (%)	21.06				

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA					2 N° MUESTRA	4
UBICACIÓN CALICATA 03 / PLATAF	ORMA KM 01	+500 (L/I)	DOSIFICACIÓN:	S97-CF0-C3	M - 1	1
MATERIAL: ARCILLA ARENOSA DE	ALTA PLAST	TCIDAD	CLASF. DE SUELO:	CH	IVI - I	
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN	:	"A"				
NUMERO DE GOLPES POR CAPA	:	25				
NUMERO DE CAPAS	:	5				
NÚMERO DE ENSAYO		1	2	3	4	
PESO (SUELO + MOLDE) (gr)		5974	6049	6105	6090	
PESO DE MOLDE (gr)		4190	4190	4190	4190	
PESO SUELO HÚMEDO (gr)		1784	1859	1915	1900	
VOLUMEN DEL MOLDE (cm³)		936	936	936	936	
4 LIMITE PLÁSTICO		1.905	1.985	2.045	2.029	
DENSIDAD SECA (gr/cm³)		1.682	1.719	1.740	1.696	
4 CONTENIDO DE HUMEDAD						
RECIPIENTE Nº		1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)		422.4	404.3	388.9	369.6	
PESO (SUELO SECO + TARA) (gr)		378.9	357.5	338.7	317.8	
PESO DE LA TARA (gr)		50.6	55.4	51.8	53.8	
I LOO DE LA TAINA (gi)				50.0	51.8	
PESO DE AGUA (gr)		43.5	46.8	50.2	31.0	
(0)		43.5 328.3	46.8 302.1	286.9	264.0	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DAIL	OS DE L	A MUESTI	RA							2. Nº MUES	STRA
UI	BICACION:	CALICATA (03 / PLATAFO	ORMA KM 01	+500 (L/I)			DOSIFICACIÓN:	S97-CF0-C3	м	- 1
N	MATERIAL:	ARCILLA AF	RENOSA DE	ALTA PLAST	ICIDAD		CLA	ASF. DE SUELO:	CH		- 1
DATO	OS PARA	LEL ENSA	AYO								
							PROCTOR	HO=17.46	MDS=1.740	N°CAPAS	5
		DE	CCDIDCION		LIND	12 G	OLPES	25 G	OLPES	56 GC	LPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOL	DE 03
DENS	SIDAD										
(Condición o	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1 F	Peso suelo I	númedo + mol	lde		g	11,894	12,005	11,955	11,998	11,054	11,033
	Peso del mo				g	7,921	7,921	7,807	7,807	6,703	6,703
		molde REC			CC	2,120	2,120	2,114	2,114	2,128	2,128
		numedo, [1]-[2			g	3,973	4,084	4,148	4,191	4,351	4,330
5	Densidad s	uelo humedo	, [4]/[3]		g/cc	1.87	1.93	1.96	1.98	2.04	2.03
	ld. Capsula				-	1	2	3	4	5	6
7 F	Peso del su	elo húmedo +	capsula		g	289.01	265.12	356.84	386.45	286.35	330.21
8 F	Peso del su	elo seco + cap	sula		g	251.65	215.89	310.54	320.98	250.78	284.14
9 F	Peso del ag	ua, [7]-[8]			g	37.36	49.23	46.30	65.47	35.57	46.07
10 F	Peso de la c	apsula			g	42.51	38.91	40.15	35.97	50.84	55.23
11 F	Peso del su	elo seco, [8]-[1	10]		g	209.14	176.98	270.39	285.01	199.94	228.91
12 C	Contenido (de humedad,	[9]/[11]		%	17.86	27.82	17.12	22.97	17.79	20.13
13 E	Densidad s	eca,[5]/(1+[12	2]/100)		g/cc	1.590	1.507	1.675	1.612	1.736	1.694
PENF	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (d	livisión)			FUE	ERZA (kg)		
STANE	DARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
Area	del	0.000	0	0	0	0		0		0	
pist	tón:	0.635	30	150	200	3		15		20	
19.35	cm2	1.270	90	250	360	9		25		37	
	•	1.905	150	310	550	15		32		56	
70.	.5	2.540	180	400	680	18	17*	41	38*	69	64*
		3.175	210	430	720	21		44		73	
	•	3.810	220	460	780	22	1	47		80	
105	5.7	5.080	240	500	860	24	25*	51	53*	88	91*
		6.350	260	530	930	26		54		95	
	-	7.620	280	550	960	28		56		98	
	-	10.160	300	590	1,030	31		60		105	
	-	12.700	310	630	1,090	32		64		111	
	C		DEL ANILLO	DE CARGA	EN NEWTON		l .				
EVDA		01111120010111	<i>DEE</i> 71111223		112111011						
LAPA	NSIÓN TIEMPO		LEGI	LIDA DIAL (D::)	0.010mm	0.040		AIT	URAS	H _{suelo} =	127.0 mr
echa		/Uro\		URA DIAL(Div):	56 GOLPES	0.010	%	1	W W	mm	%
	Hora	(Hrs)			0.00	mm 0.00		mm 0.00	,,,	mm 0.00	,,,
08/24	4:00 PM 4:00 PM	0 24	0.00 2.94	0.00 2.55	2.17	0.00	0.00%	0.00	0.00% 2.01%	0.00	0.00% 1.71%
08/24							2.31%	0.03			
/08/24	4:00 PM	48	4.77	4.54	4.14	0.05	3.76%	0.05	3.57%	0.04	3.26%
/08/24	4:00 PM	72	5.95	5.74	5.54 6.37	0.06	4.69%	0.06	4.52%	0.06	4.36%
/08/24	4:00 PM	96	6.54	6.68	0.37	0.07	5.15%	0.07	5.26%	0.06	5.02%
RESL	JLTADO		T	l	=0.00·		nna		II	ADD	
	ENSAYO CE		12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR	47 1001		CBR FINAL	2.2"
	-!	prom.	1.55	1.64	1.74	Humeda	nd óptima	17.46%	Penetración	0.1"	0.2"
	sidad Seca	•			4 -		D0				
	Pen	etracion: 0.1" etracion: 0.2"	1.2	2.8 2.6	4.7 4.5		DS e la MDS	1.740 1.653	100% MDS 95 % MDS	4.7 3.0	4.5 2.7

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

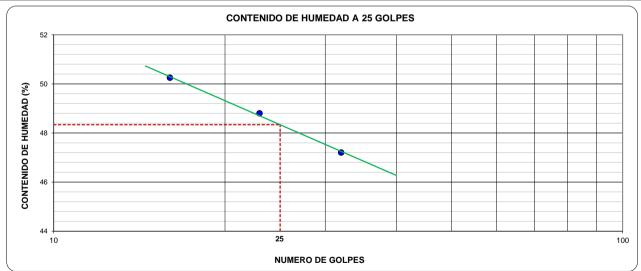
PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 30 09 8 25 50 8 20 40 FUERZA [kg] 9 15 30 4 10 20 20 10 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.74 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 4.7 CBR, PENETRACION 0.2" 1.70 95% MDS 1.65 CBR, PENETRACION 0.1" 3.0 CBR, PENETRACION 0.2" 1.60 1.50 4 5 6

C.B.R [%]

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S94-CF3-C3	
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 1

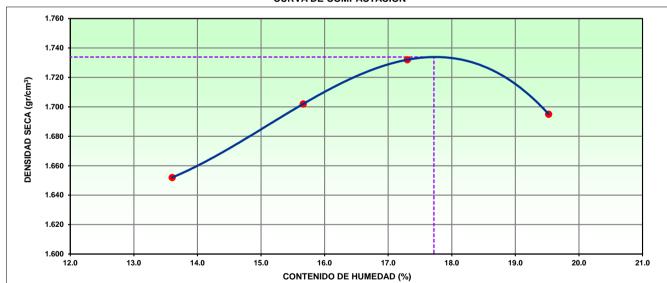
3 LIMITE LIQUIDO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº CAPSULA	ID	C-02	C-212	C-15	-
PESO TARA + SUELO HUMEDO	(g)	49.05	43.03	47.96	-
PESO TARA + SUELO SECO	(g)	40.95	35.50	39.53	-
PESO DE AGUA	(g)	8.10	7.53	8.43	-
PESO DE LA TARA	(g)	24.83	20.07	21.67	-
PESO DEL SUELO SECO	(g)	16.12	15.43	17.86	-
CONTENIDO DE HUMEDAD	(%)	50.25	48.80	47.20	-
NUMERO DE GOLPES		16	23	32	

4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD	UNIDAD MUESTRAS						
Nº TARRO	ID	T-14	T-01	T-20	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	32.56	30.72	32.67				
PESO TARA + SUELO SECO	(g.)	30.27	28.78	30.51				
PESO DE LA TARA	(g.)	21.98	21.65	22.83				
PESO DEL AGUA	(g.)	2.29	1.94	2.16				
PESO DEL SUELO SECO	(g.)	8.29	7.13	7.68				
CONTENIDO DE HUMEDAD	(%)	27.62	27.21	28.13	27.65			

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%)	48.34						
LIMITE PLASTICO (%) 27.65							
INDICE DE PLASTICIDAD (%)	20.68						

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	
UBICACIÓN CALICATA 03 / PLATAFORMA	KM 01+500 (L/I)	DOSIFICACIÓN:	S94-CF3-C3	M - 1	
MATERIAL: ARCILLA ARENOSA DE ALTA I	PLASTICIDAD	CLASF. DE SUELO:	CH	IVI - I	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5948	6034	6093	6087	
PESO DE MOLDE (gr)	4189	4189	4189	4189	
PESO SUELO HÚMEDO (gr)	1759	1845	1904	1898	
VOLUMEN DEL MOLDE (cm³)	937	937	937	937	
DENSIDAD HÚMEDA (gr/cm³)	1.877	1.969	2.032	2.026	
DENSIDAD SECA (gr/cm3)	1.652	1.702	1.732	1.695	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	508.5	514.6	500.4	482.6	
PESO (SUELO SECO + TARA) (gr)	453.1	454.7	432.5	410.5	
PESO DE LA TARA (gr)	45.8	72.3	40.0	41.2	
PESO DE AGUA (gr)	55.4	59.9	67.9	72.1	
	407.3	382.4	392.5	369.3	
PESO DE SUELO SECO (gr)	407.3	302.4	002.0	000.0	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

1	. DATO	OS DE L	A MUESTI	RA							2. Nº MUE	STRA
N DESCRIPCION UND 12 GOLPES 25 GOLPES 56 GOLPES MOLDE 02 MOLDE 02 MOLDE 03 MOLDE 04 MOLDE 04 MOLDE 05 MOLD	U	BICACION:	CALICATA (3 / PLATAFO	ORMA KM 01-	+500 (L/I)			DOSIFICACIÓN:	S94-CF3-C3	м	
N DESCRIPCION UND 12 GOLPES 25 GOLPES 56 GOLPES 56 GOLPES MOLDE 01 MOLDE 02 MOLDE 03 MOLDE 04 MOLDE 04 MOLDE 05 MO	ı	MATERIAL:	ARCILLA AF	RENOSA DE	ALTA PLAST	ICIDAD		_ CLA	SF. DE SUELO:	CH	IVI	- 1
DESCRIPCION	DATO	OS PARA	EL ENSA	YO								
DENSIDAD								PROCTOR	HO=17.72	MDS=1.734	N°CAPAS	5
Personal Description Personal Section Persona				CODIDOION			12 G	OLPES	25 G	OLPES	56 G	OLPES
Condición de humedo de molde	N		DE	SCRIPCION		UND	MOL	.DE 01	MOL	DE 02	MOL	DE 03
Peso del minde	DENS	SIDAD										
2 Pesso del molde PEG:	(Condición o	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
3 Volumen del molde REG:				de		g		,	11,658	11,790	11,882	11,885
Peso suelo humedo, [1]+2						g						
Densidad Suelo humedo, [4]/[3] Signar Sign						CC						
Content Con						g					,	
Peso del suelo húmedo + capsula g 34101 354.19 501.98 430.14 343.38 348.02			uelo humedo	, [4]/[3]		g/cc				2.02		
Reso del suelo seco + capsula 9						-						
Ses of la guar, [7]-[8]				<u> </u>		g						348.02
10				sula		g						
11			7 6 3 6 3			g						
12						g						
13 Densidad seca, 5 /(1+ 12 /100) g/cc 1.544 1.434 1.670 1.658 1.731 1.699												
PENETRACION												
STANDARD	13 I	Densidad s	eca,[5]/(1+[12	2]/100)		g/cc	1.544	1.434	1.670	1.658	1.731	1.699
STANDARD	PENI	ETRACIO	N									
Area del pistón:												
Pistón: 19.35 cm2 1.270 160 280 380 16 28 28 39 39 190 1.905 230 490 610 23 28 50 50 62 1.905 230 490 610 23 28 611 56* 73 69* 1.905 2.540 290 600 720 29 28* 61 56* 73 69* 1.005								CORREGIDA		CORREGIDA		CORREGI
19.35 cm2												_
1.905	•	-										-
Total Tota	19.35	cm2										_
3.175 330 630 820 34 64 84	70	-						00*		F0*		204
3.810 340 700 840 35 71 86 86	70.	.5						28^		56°		691
105.7 5.080 380 750 920 39 39* 76 80* 94 98*		-						-		_		_
CORRECCION: DEL ANILLO DE CARGA EN NEWTON	405	. 7						00*		00*		00*
Tiempo	103).1						39"		80"		98"
10.160								-				
Technology Tec								-		_		
CORRECCION: DEL ANILLO DE CARGA EN NEWTON		-						-				1
TIEMPO LECTURA DIAL(Div): 0.010mm 0.010 ALTURAS							40		93		114	<u> </u>
TIEMPO			ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
Fecha Hora (Hrs) 12 GOLPES 25 GOLPES 56 GOLPES mm % mm % mm % 4/12/23 3:30 PM 0 0.00 0.00 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00% 0.00 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00 0.00% 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00% 0.00 0.00 0.00% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 </td <td>EXPA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>H_{suelo}=</td> <td>127.0 mr</td>	EXPA										H _{suelo} =	127.0 mr
4/12/23 3:30 PM 0 0.00 0.00 0.00 0.00 0.00%								T			Τ	
5/12/23 3:30 PM 24 2.94 2.58 2.15 0.03 2.31% 0.03 2.03% 0.02 1.69% 5/12/23 3:30 PM 48 4.45 4.26 3.83 0.04 3.50% 0.04 3.35% 0.04 3.02% 7/12/23 3:30 PM 72 5.06 4.95 4.71 0.05 3.98% 0.05 3.90% 0.05 3.71% 3/12/23 3:30 PM 96 5.27 5.36 5.16 0.05 4.15% 0.05 4.22% 0.05 4.06% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.49 1.66 1.73 Humedad óptima 17.72% Penetración 0.1" 0.2" Penetración: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8								,,,				- ''
6/12/23 3:30 PM 48 4.45 4.26 3.83 0.04 3.50% 0.04 3.35% 0.04 3.02% 7/12/23 3:30 PM 72 5.06 4.95 4.71 0.05 3.98% 0.05 3.90% 0.05 3.71% 3/12/23 3:30 PM 96 5.27 5.36 5.16 0.05 4.15% 0.05 4.22% 0.05 4.06% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.49 1.66 1.73 Humedad óptima 17.72% Penetración 0.1" 0.2" Penetración: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8												
7/12/23 3:30 PM 72 5.06 4.95 4.71 0.05 3.98% 0.05 3.90% 0.05 3.71% 8/12/23 3:30 PM 96 5.27 5.36 5.16 0.05 4.15% 0.05 4.22% 0.05 4.06% RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.49 1.66 1.73 Humedad óptima 17.72% Penetración 0.1" 0.2" Penetración: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8												1
RESULTADOS												
RESULTADOS ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.49 1.66 1.73 Humedad óptima 17.72% Penetración 0.1" 0.2" Penetracion: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8												
ENSAYO CBR 12 GOLPES 25 GOLPES 56 GOLPES PROCTOR CBR FINAL Densidad Seca prom. 1.49 1.66 1.73 Humedad óptima 17.72% Penetración 0.1" 0.2" Penetracion: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8				5.27	5.36	5.16	0.05	4.15%	0.05	4.22%	0.05	4.06%
Densidad Seca prom. 1.49 1.66 1.73 Humedad óptima 17.72% Penetración 0.1" 0.2" Penetracion: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8										п		
Penetracion: 0.1" 2.0 4.1 5.1 MDS 1.734 100% MDS 5.1 4.8												Т
	Dens											
Penetracion: 0.2" 1.9 3.9 4.8 95 % de la MDS 1.647 95 % MDS 3.9 3.7												+
		Pen	etracion: 0.2"	1.9	3.9	4.8	95 % d	e Ia MDS	1.647	95 % MDS	3.9	3.7

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

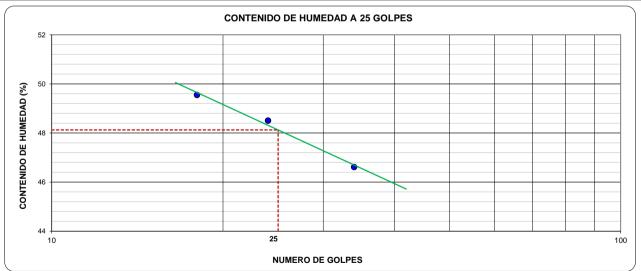
PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 100 50 90 8 80 40 20 8 9 30 FUERZA [kg] 20 9 40 20 4 30 20 10 20 10 0 0 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.75 100% MDS 1.73 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 5.1 CBR, PENETRACION 0.2" 1.65 95% MDS 1.65 CBR, PENETRACION 0.1" 3.9 CBR, PENETRACION 0.2" 1.55 1.45 2 4 5 6

C.B.R [%]

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S91-CF6-C3	N 4
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 1

3 LIMITE LIQUIDO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº CAPSULA	ID	C-13	C-05	C-08	-
PESO TARA + SUELO HUMEDO	(g)	51.82	52.84	54.92	-
PESO TARA + SUELO SECO	(g)	39.82	42.16	43.64	-
PESO DE AGUA	(g)	12.00	10.68	11.28	-
PESO DE LA TARA	(g)	15.60	20.14	19.44	-
PESO DEL SUELO SECO	(g)	24.22	22.02	24.20	-
CONTENIDO DE HUMEDAD	(%)	49.55	48.50	46.61	-
NUMERO DE GOLPES		18	24	34	

4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD	UNIDAD MUESTRAS						
Nº TARRO	ID	T-15	T-09	T-21	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	28.78	29.02	27.40				
PESO TARA + SUELO SECO	(g.)	26.45	26.74	24.84				
PESO DE LA TARA	(g.)	18.67	19.42	16.31				
PESO DEL AGUA	(g.)	2.33	2.28	2.56				
PESO DEL SUELO SECO	(g.)	7.78	7.32	8.53				
CONTENIDO DE HUMEDAD	(%)	29.95	31.15	30.01	30.37			

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%) 48.12						
LIMITE PLASTICO (%) 30.37						
INDICE DE PLASTICIDAD (%)	17.75					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	١
UBICACIÓN CALICATA 03 / PLATAFORMA	KM 01+500 (L/I)	DOSIFICACIÓN:	S91-CF6-C3	M - 1	
MATERIAL: ARCILLA ARENOSA DE ALTA	CLASF. DE SUELO:	CH	IVI - 1		
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5468	5541	5545	5515	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1817	1890	1894	1864	
/OLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.944	2.022	2.027	1.994	
DENSIDAD SECA (gr/cm³)	1.675	1.713	1.686	1.637	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	523.2	453.9	466.0	513.2	
PESO (SUELO SECO + TARA) (gr)	462.7	395.2	400.5	435.8	
PESO DE LA TARA (gr)	85.7	70.5	75.7	81.2	
PESO DE AGUA (gr)	60.5	58.7	65.5	77.4	
ESO DE AGOA (gl)					
PESO DE SUELO SECO (gr)	377.1	324.7	324.8	354.6	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

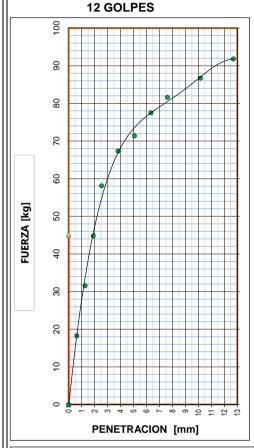
DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

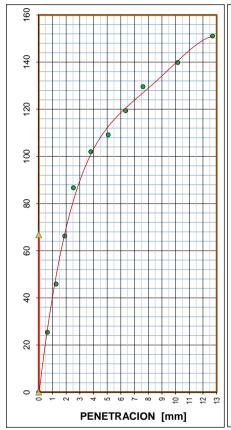
DAT	OS DE L	A MUEST	RA							2. N° MUES	TRA
U	IBICACION:	CALICATA (03 / PLATAF	ORMA KM 01-	+500 (L/I)		_	DOSIFICACIÓN:	S91-CF6-C3	М -	1
	MATERIAL:	ARCILLA AF	RENOSA DE	ALTA PLAST	ICIDAD		CLA	ASF. DE SUELO:	CH	IAI -	•
DAT	OS PARA	LEL ENS	AYO								
							PROCTOR	HO=18.10	MDS=1.713	N°CAPAS	5
N		DE	CODIDCION		UND	12 G	OLPES	25 GC	DLPES	56 GO	LPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOLE	E 03
DEN	SIDAD										
	Condición o	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
		númedo + mol	de		g	11,723	11,792	11,308	11,384	11,049	11,092
2	Peso del mo	lde			g	7,850	7,850	7,123	7,123	6,792	6,792
3	Volumen del	molde REG	3 :		cc	2,104	2,104	2,123	2,123	2,109	2,109
4	Peso suelo l	numedo, [1]-[2	2]		g	3,873	3,942	4,185	4,261	4,257	4,300
		uelo humedo	, [4]/[3]		g/cc	1.84	1.87	1.97	2.01	2.02	2.04
	ld. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	109.51	155.93	124.59	154.16	135.80	133.67
		elo seco + cap	sula		g	96.32	130.07	109.07	129.62	118.97	115.32
	Peso del agi				g	13.19	25.86	15.52	24.54	16.83	18.35
	Peso de la c				g	22.07	25.65	22.31	22.07	24.44	24.70
		elo seco, [8]-[1			g	74.25	104.42	86.76	107.55	94.53	90.62
		de humedad,			%	17.76	24.77	17.89	22.82	17.80	20.25
13	Densidad s	eca,[5]/(1+[12	2]/100)		g/cc	1.563	1.502	1.672	1.634	1.713	1.695
PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c	livisión)			FUE	RZA (kg)		
STAN	DARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
Area	a del	0.000	0	0	0	0		0		0	
pis	tón:	0.635	180	250	310	18		25		32	
19.35	5 cm2	1.270	310	450	580	32		46		59	
		1.905	440	650	840	45		66		86	
70).5	2.540	570	850	1,080	58	53*	87	79*	110	103*
		3.175	610	930	1,190	62		95		121	
		3.810	660	1,000	1,280	67		102		131	
10	5.7	5.080	700	1,070	1,400	71	76*	109	115*	143	148*
		6.350	760	1,170	1,520	78		119		155	
		7.620	800	1,270	1,570	82		130		160	
		10.160	850	1,370	1,690	87		140		173	
	L	12.700	900	1,480	1,810	92		151		185	
	С	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXPA	NSIÓN									H _{suelo} =	127.0 m
	TIEMPO		LECT	URA DIAL(Div):	0.010mm	0.010		ALT	JRAS	suelo	
echa	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
1/12/23	1:00 PM	0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
5/12/23	1:00 PM	24	2.51	2.11	1.52	0.03	1.98%	0.02	1.66%	0.02	1.20%
6/12/23	1:00 PM	48	3.85	3.43	2.79	0.04	3.03%	0.03	2.70%	0.03	2.20%
7/12/23	1:00 PM	72	4.48	4.07	3.61	0.04	3.53%	0.04	3.20%	0.04	2.84%
3/12/23	1:00 PM	96	4.99	4.47	4.19	0.05	3.93%	0.04	3.52%	0.04	3.30%
	ULTADO							-			
	ENSAYO CB		12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Den	sidad Seca		1.53	1.65	1.71	Humeda	ad óptima	18.10%	Penetración	0.1"	0.2"
2011		etracion: 0.1"	3.9	5.8	7.5		IDS	1.713	100% MDS	7.5	7.2
	1 011										
	Pen	etracion: 0.2"	3.7	5.6	7.2	95 % d	e la MDS	1.627	95 % MDS	5.2	5.1

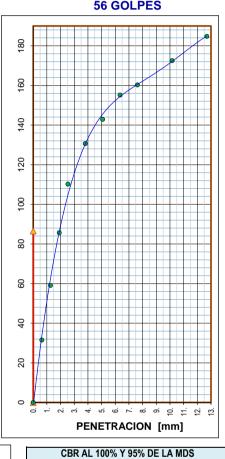
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

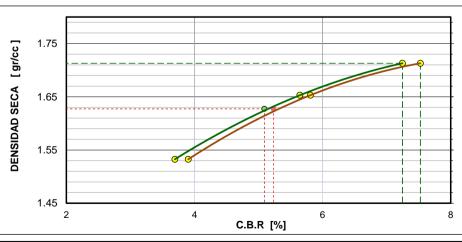
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.


SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1


9. GRÁFICA


12 GOLPES


25 GOLPES

8

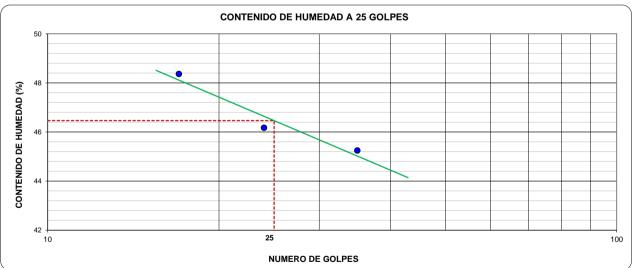
	1.71
CBR, PENETRACION 0.1"	7.5
CBR, PENETRACION 0.2"	7.2
95% MDS	1.63
CBR, PENETRACION 0.1"	5.2
CBR, PENETRACION 0.2"	5.1

LEYENDA

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S88-CF9-C3	N 4
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	M - 1

3 LIMITE LIQUIDO	LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD	MUESTRAS									
Nº CAPSULA	ID	C-07	C-13	C-16	-						
PESO TARA + SUELO HUMEDO	(g)	51.41	52.35	55.10	-						
PESO TARA + SUELO SECO	(g)	40.06	41.08	44.11	-						
PESO DE AGUA	(g)	11.35	11.27	10.99	-						
PESO DE LA TARA	(g)	16.59	16.67	19.82	-						
PESO DEL SUELO SECO	(g)	23.47	24.41	24.29	-						
CONTENIDO DE HUMEDAD	(%)	48.36	46.17	45.24	-						
NUMERO DE GOLPES		17	24	35							

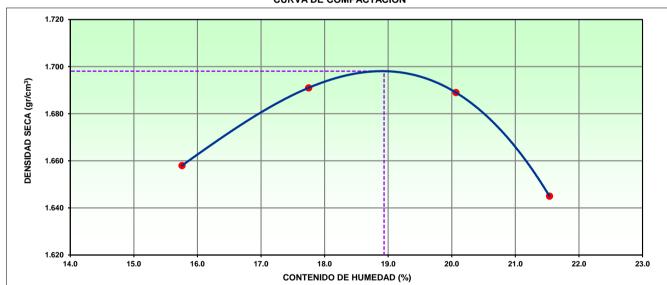
4 LIMITE PLÁSTICO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS						
Nº TARRO	ID	T-18	T-28	T-09	PROMEDIO					
PESO TARA + SUELO HUMEDO	(g.)	30.44	30.29	29.33						
PESO TARA + SUELO SECO	(g.)	27.93	27.19	26.89						
PESO DE LA TARA	(g.)	20.08	17.62	19.24						
PESO DEL AGUA	(g.)	2.51	3.10	2.44						
PESO DEL SUELO SECO	(g.)	7.85	9.57	7.65						
CONTENIDO DE HUMEDAD	(%)	31.97	32.39	31.90	32.09					

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%)	46.46						
LIMITE PLASTICO (%)	32.09						
INDICE DE PLASTICIDAD (%)	14.38						

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA		
UBICACIÓN CALICATA 03 / PLATAFO	RMA KM 01+500 (L/I)	DOSIFICACIÓN:	S88-CF9-C3	M - 1	
MATERIAL: ARCILLA ARENOSA DE A	ALTA PLASTICIDAD	CLASF. DE SUELO:	CH		
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN	: "A"				
NUMERO DE GOLPES POR CAPA	: 25				
NUMERO DE CAPAS	: 5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5445	5512	5546	5519	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1794	1861	1895	1868	
/OLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.920	1.991	2.028	1.999	
DENSIDAD SECA (gr/cm3)	1.658	1.691	1.689	1.645	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	449.9	530.2	490.4	531.1	
PESO (SUELO SECO + TARA) (gr)	398.5	462.5	421.7	450.9	
PESO DE LA TARA (gr)	72.3	81.1	79.3	78.5	
PESO DE AGUA (gr)	51.4	67.7	68.7	80.2	
	326.2	381.5	342.4	372.4	
PESO DE SUELO SECO (gr)	J20.2	001.0	0.2	··	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA

DAT	OS DE L	A MUEST	RA							2. N° MUES	TRA
	_			ORMA KM 01-				DOSIFICACIÓN:		М	- 1
l	MATERIAL:	ARCILLA AI	RENOSA DE	ALTA PLAST	ICIDAD		CLA	ASF. DE SUELO:	СН		
DAT	OS PARA	LEL ENS	AYO								
							PROCTOR	HO=18.94	MDS=1.698	N°CAPAS	5
N		DE	SCRIPCION		UND		DLPES		LPES	56 GO	
					OND	MOL	DE 01	MOL	DE 02	MOLE	DE 03
DEN:	SIDAD										
		de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturad
		númedo + mo	lde		g	11,035	11,178	11,407	11,573	10,819	10,806
	Peso del mo				g	7,160	7,160	7,293	7,293	6,578	6,578
		molde REC			CC	2,118	2,118	2,109	2,109	2,118	2,118
		numedo, [1]-[2			g	3,875	4,018	4,114	4,280	4,241	4,228
		uelo humedo	, [4]/[3]		g/cc	1.83	1.90	1.95	2.03	2.00	2.00
	Id. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	126.33	139.85	120.88	143.42	106.82	162.55
		elo seco + car	osula		g	109.94	116.48	105.87	120.47	93.78	138.42
9	Peso del agi	ua, [/]-[8]			g	16.39	23.37	15.01	22.95	13.04	24.13
	Peso de la c				g	22.86	22.87	25.66	22.30	24.69	24.42
		elo seco, [8]-[g	87.08	93.61	80.21	98.17	69.09	114.00
		de humedad,			%	18.82	24.97	18.71	23.38	18.87	21.17
		eca,[5]/(1+[12	2]/100)		g/cc	1.540	1.518	1.643	1.645	1.685	1.648
PENI	ETRACIO	N									
	CARGA			URA DE DIAL (c	,				RZA (kg)		
STANI		mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
Area	-	0.000	0	0	0	0		0		0	
•	tón:	0.635	250	330	470	25		34		48	
19.35	5 cm2	1.270	480	610	820	49		62		84	
		1.905	720	890	1,020	73		91		104	
70).5	2.540	980	1,180	1,350	100	93*	120	111*	138	129*
		3.175	1,050	1,240	1,430	107		127		146	
		3.810	1,230	1,400	1,600	126		143		163	
105	5.7	5.080	1,340	1,550	1,720	137	140*	158	164*	176	183*
		6.350	1,440	1,700	1,850	147		174		189	
		7.620	1,520	1,750	1,920	155		179		196	
		10.160	1,590	1,830	2,020	162		187		206	
			4 000	1 000	2 110	166		193		215	
	-	12.700	1,630	1,890	2,110	100		100			
	C		DEL ANILLO	DE CARGA		100		100			
EXPA	C ANSIÓN					100		100		H _{suele} =	127.0 mr
EXPA			DEL ANILLO			0.010			JRAS	H _{suelo} =	127.0 mr
	NSIÓN TIEMPO	ORRECCION:	DEL ANILLO	DE CARGA URA DIAL(Div):	EN NEWTON		%		•	H _{suelo} =	
cha	NSIÓN		DEL ANILLO	DE CARGA	EN NEWTON 0.010mm	0.010	% 0.00%	ALTI	JRAS % 0.00%	1	127.0 mr % 0.00%
cha 12/23	TIEMPO Hora 4:30 PM	(Hrs)	LECT 12 GOLPES 0.00	DE CARGA URA DIAL(Div): 25 GOLPES 0.00	0.010mm 56 GOLPES	0.010 mm 0.00	0.00%	A L T U mm 0.00	% 0.00%	mm 0.00	% 0.00%
echa (12/23 (12/23	TIEMPO Hora 4:30 PM 4:30 PM	(Hrs) 0 24	LECT 12 GOLPES 0.00 2.01	DE CARGA URA DIAL(Div): 25 GOLPES	0.010mm 56 GOLPES 0.00 1.50	0.010 mm 0.00 0.02	0.00% 1.58%	Mm 0.00 0.02	% 0.00% 1.45%	mm	0.00% 1.18%
12/23 12/23 12/23	TIEMPO Hora 4:30 PM 4:30 PM 4:30 PM	(Hrs) 0 24 48	LECT 12 GOLPES 0.00 2.01 3.15	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82	0.010mm 56 GOLPES 0.00 1.50 2.49	0.010 mm 0.00 0.02 0.03	0.00% 1.58% 2.48%	A L T U mm 0.00 0.02 0.03	% 0.00% 1.45% 2.22%	mm 0.00 0.02 0.02	% 0.00% 1.18% 1.96%
echa (12/23 (12/23 (12/23 (12/23	TIEMPO Hora 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM	(Hrs) 0 24 48 72	LECT 12 GOLPES 0.00 2.01 3.15 3.79	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82 3.44	0.010mm 56 GOLPES 0.00 1.50	0.010 mm 0.00 0.02 0.03 0.04	0.00% 1.58% 2.48% 2.98%	A L T U mm 0.00 0.02 0.03 0.03	% 0.00% 1.45% 2.22% 2.71%	mm 0.00 0.02 0.02 0.03	% 0.00% 1.18% 1.96% 2.53%
12/23 12/23 12/23 12/23 12/23	TIEMPO Hora 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM	(Hrs) 0 24 48 72 96	LECT 12 GOLPES 0.00 2.01 3.15	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82	0.010mm 56 GOLPES 0.00 1.50 2.49 3.21	0.010 mm 0.00 0.02 0.03	0.00% 1.58% 2.48%	A L T U mm 0.00 0.02 0.03	% 0.00% 1.45% 2.22%	mm 0.00 0.02 0.02	% 0.00% 1.18% 1.96%
echa 12/23 12/23 12/23 12/23 12/23	TIEMPO Hora 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM	(Hrs) 0 24 48 72 96	LECT 12 GOLPES 0.00 2.01 3.15 3.79 4.01	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82 3.44 3.75	0.010mm 56 GOLPES 0.00 1.50 2.49 3.21 3.67	0.010 mm 0.00 0.02 0.03 0.04	0.00% 1.58% 2.48% 2.98% 3.16%	A L T U mm 0.00 0.02 0.03 0.03	% 0.00% 1.45% 2.22% 2.71%	mm 0.00 0.02 0.02 0.03 0.04	% 0.00% 1.18% 1.96% 2.53%
12/23 12/23 12/23 12/23 12/23 12/23	TIEMPO Hora 4:30 PM ULTADO ENSAYO CB	(Hrs) 0 24 48 72 96	LECT 12 GOLPES 0.00 2.01 3.15 3.79 4.01	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82 3.44 3.75 25 GOLPES	0.010mm 56 GOLPES 0.00 1.50 2.49 3.21 3.67	0.010 mm 0.00 0.02 0.03 0.04 0.04	0.00% 1.58% 2.48% 2.98% 3.16% PROCTOR	A L T U mm 0.00 0.02 0.03 0.03 0.04	% 0.00% 1.45% 2.22% 2.71% 2.95%	mm 0.00 0.02 0.02 0.03 0.04 CBR FINAL	% 0.00% 1.18% 1.96% 2.53% 2.89%
12/23 12/23 12/23 12/23 12/23 12/23	TIEMPO Hora 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM ULTADO ENSAYO CB sidad Seca	(Hrs) 0 24 48 72 96 S R	LECT 12 GOLPES 0.00 2.01 3.15 3.79 4.01 12 GOLPES 1.53	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82 3.44 3.75 25 GOLPES 1.64	0.010mm 56 GOLPES 0.00 1.50 2.49 3.21 3.67 56 GOLPES 1.70	0.010 mm 0.00 0.02 0.03 0.04 0.04	0.00% 1.58% 2.48% 2.98% 3.16% PROCTOR d óptima	A L T U mm 0.00 0.02 0.03 0.03 0.04	% 0.00% 1.45% 2.22% 2.71% 2.95%	mm 0.00 0.02 0.02 0.03 0.04 CBR FINAL 0.1"	% 0.00% 1.18% 1.96% 2.53% 2.89%
echa 12/23 12/23 12/23 12/23 12/23 RESI	TIEMPO Hora 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM 4:30 PM ULTADO ENSAYO CB sidad Seca	(Hrs) 0 24 48 72 96	LECT 12 GOLPES 0.00 2.01 3.15 3.79 4.01 12 GOLPES 1.53 6.9	DE CARGA URA DIAL(Div): 25 GOLPES 0.00 1.84 2.82 3.44 3.75 25 GOLPES	0.010mm 56 GOLPES 0.00 1.50 2.49 3.21 3.67	0.010 mm 0.00 0.02 0.03 0.04 0.04	0.00% 1.58% 2.48% 2.98% 3.16% PROCTOR	A L T U mm 0.00 0.02 0.03 0.03 0.04	% 0.00% 1.45% 2.22% 2.71% 2.95%	mm 0.00 0.02 0.02 0.03 0.04 CBR FINAL	% 0.00% 1.18% 1.96% 2.53% 2.89%

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 180 200 180 9 160 40 40 120 20 20 100 FUERZA [kg] 00 80 100 80 9 9 40 20 40 20 20 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.75 100% MDS 1.70 DENSIDAD SECA [gr/cc] 1.70 CBR, PENETRACION 0.1" 9.5 CBR, PENETRACION 0.2" 1.65 95% MDS 1.61 CBR, PENETRACION 0.1" 7.6 1.60 CBR, PENETRACION 0.2" 1.55 1.50 1.45

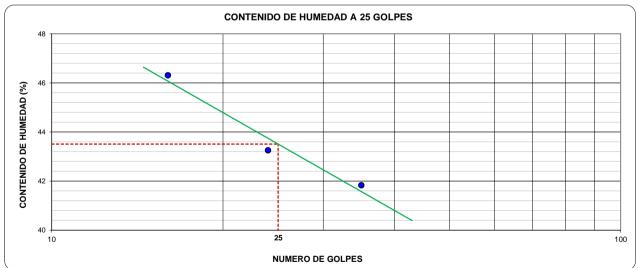
> 8 C.B.R [%]

10

LEYENDA

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S85-CF12-C3	N. 4
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	M - 1

3 LIMITE LIQUIDO	3 LIMITE LIQUIDO										
DESCRIPCIÓN	UNIDAD		MUE	STRAS							
Nº CAPSULA	ID	C-09	C-10	C-07	-						
PESO TARA + SUELO HUMEDO	(g)	57.98	56.55	49.17	-						
PESO TARA + SUELO SECO	(g)	46.32	45.81	40.98	-						
PESO DE AGUA	(g)	11.66	10.74	8.19	-						
PESO DE LA TARA	(g)	21.14	20.98	21.40	-						
PESO DEL SUELO SECO	(g)	25.18	24.83	19.58	-						
CONTENIDO DE HUMEDAD	(%)	46.31	43.25	41.83	-						
NUMERO DE GOLPES		16	24	35							

4 LIMITE PLÁSTICO										
DESCRIPCIÓN	UNIDAD		MUES	STRAS						
Nº TARRO	ID	T-05	T-11	T-03	PROMEDIO					
PESO TARA + SUELO HUMEDO	(g.)	31.59	32.14	33.15						
PESO TARA + SUELO SECO	(g.)	28.93	29.19	30.31						
PESO DE LA TARA	(g.)	21.15	20.78	22.03						
PESO DEL AGUA	(g.)	2.66	2.95	2.84						
PESO DEL SUELO SECO	(g.)	7.78	8.41	8.28						
CONTENIDO DE HUMEDAD	(%)	34.19	35.08	34.30	34.52					

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	43.51					
LIMITE PLASTICO (%)	34.52					
INDICE DE PLASTICIDAD (%)	8.99					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	
UBICACIÓN CALICATA 03 / PLATAFOR	S85-CF12-C3	M - 1			
MATERIAL: ARCILLA ARENOSA DE AL	TA PLASTICIDAD	CLASF. DE SUELO:	СН	IVI - 1	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN	: "A"				
NUMERO DE GOLPES POR CAPA	: 25				
NUMERO DE CAPAS	: 5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5449	5516	5536	5505	
PESO DE MOLDE (gr)	3651	3651	3651	3651	
PESO SUELO HÚMEDO (gr)	1798	1865	1885	1854	
VOLUMEN DEL MOLDE (cm ³)	935	935	935	935	
DENSIDAD HÚMEDA (gr/cm³)	1.924	1.996	2.017	1.984	
DENSIDAD SECA (gr/cm ³)	1.639	1.670	1.663	1.614	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	469.5	522.1	506.9	549.2	
PESO (SUELO SECO + TARA) (gr)	412.5	450.2	432.7	462.1	
PESO DE LA TARA (gr)	85.1	80.7	84.0	81.7	
	^	71.9	74.2	87.1	
PESO DE AGUA (gr)	57.0	11.5	7 7.2	· · · · ·	
PESO DE AGUA (gr) PESO DE SUELO SECO (gr)	327.4	369.6	348.7	380.4	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

			E ATENCIO							
. DATOS D	E LA MUEST	'RA							2. N° MUES	TRA
UBICACI	ON: CALICATA	03 / PLATAFO	ORMA KM 01	+500 (L/I)			DOSIFICACIÓN:	S85-CF12-C3	M	
MATER	AL: ARCILLA A	RENOSA DE	ALTA PLAST	TCIDAD		_ CL#	ASF. DE SUELO:	CH	IVI ·	• •
DATOS PA	ARA EL ENS	AYO								
						PROCTOR	HO=20.11	MDS=1.672	N°CAPAS	5
	_			1	12 G	OLPES	25 G	OLPES	56 GO	LPES
N	D	ESCRIPCION		UND	MOL	.DE 01	MOL	DE 02	MOLI	DE 03
. DENSIDA	D									
	ión de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
	uelo húmedo + m			g	11,914	11,997	11,276	11,350	11,021	11,014
	el molde			g	7,850	7,850	7,123	7,123	6,792	6,792
	n del molde RE	G.		CC	2,104	2,104	2,123	2,123	2,109	2,109
	ielo humedo, [1]-			g	4,064	4,147	4,153	4,227	4,229	4,222
	ad suelo humed			g/cc	1.93	1.97	1.96	1.99	2.00	2.00
6 Id. Cap				- 9,00	1	2	3	4	5	6
	el suelo húmedo	- capsula		g	152.21	195.83	168.09	136.87	119.27	136.29
	el suelo seco + ca			g	131.20	162.40	145.20	115.84	103.95	116.48
	el agua, [7]-[8]	- F = 1.00		g	21.01	33.43	22.89	21.03	15.32	19.81
	e la capsula			g	28.59	31.26	30.45	26.87	28.34	26.91
	el suelo seco, [8]-	[10]		g	102.61	131.14	114.75	88.97	75.61	89.57
	ido de humedad	• •		%	20.48	25.49	19.95	23.64	20.26	22.12
	ad seca,[5]/(1+[1			g/cc	1.603	1.571	1.631	1,610	1.667	1.639
. PENETRA	CION	1 /			l	1				
CAF	GA	LECT	JRA DE DIAL (división)			FUE	RZA (kg)		
STANDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGID
Area del	0.000	0	0	0	0		0		0	
pistón:	0.635	380	540	630	39		55		64	
19.35 cm2	1.270	750	890	1,000	76		91		102	
	1.905	1,100	1,190	1,230	112		121		126	
70.5	2.540	1,350	1,390	1,450	138	129*	142	138*	148	151*
	3.175	1,440	1,550	1,590	147		158		162	
	3.810	1,620	1,660	1,850	165		169		189	
105.7	5.080	1,790	1,910	2,150	183	191*	195	205*	220	220*
	6.350	1,970	2,190	2,280	201		224		233	
	7.620	2,120	2,350	2,450	216		240]	250	
	10.160	2,350	2,590	2,730	240		264		279	
	12.700	2,480	2,870	3,060	253		293		313	
	CORRECCION	: DEL ANILLO	DE CARGA	EN NEWTON						
. EXPANSIĆ	N								H _{suelo} =	127.0 mm
TIEN	1PO	LECT	JRA DIAL(Div):	0.010mm	0.010		ALT	URAS	sueio	
Fecha Hora		12 GOLPES	25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
11/12/23 12:10	\ /	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
12/12/23 12:10		1.79	1.47	1.26	0.02	1.41%	0.01	1.16%	0.01	0.99%
13/12/23 12:10		2.76	2.51	2.20	0.03	2.17%	0.03	1.98%	0.02	1.73%
14/12/23 12:10		3.37	3.16	2.92	0.03	2.65%	0.03	2.49%	0.03	2.30%
15/12/23 12:10		3.57	3.48	3.23	0.04	2.81%	0.03	2.74%	0.03	2.54%

ENSAYO CBR	12 GOLPES	25 GOLPES	56 GOLPES	PROCTOR			CBR FINAL	
Densidad Seca prom.	1.59	1.62	1.67	Humedad óptima	20.11%	Penetración	0.1"	0.2"
Penetracion: 0.1"	9.46	10.13	11.07	MDS	1.672	100% MDS	11.1	10.8
Penetracion: 0.2"	9.36	10.02	10.76	95 % de la MDS	1.589	95 % MDS	9.5	9.4

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

1.59

1.57

UNIVERSIDAD NACIONAL DEL ALTIPLANO

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 1 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 250 250 200 250 200 200 150 FUERZA [kg] 150 20 00 9 100 50 20 20 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.69 100% MDS 1.67 DENSIDAD SECA [gr/cc] 1.67 CBR, PENETRACION 0.1" 11.1 CBR, PENETRACION 0.2" 1.65 95% MDS 1.59 CBR, PENETRACION 0.1" 9.5 1.63 CBR, PENETRACION 0.2" 1.61

10 **C.B.R [%]**

12

LEYENDA

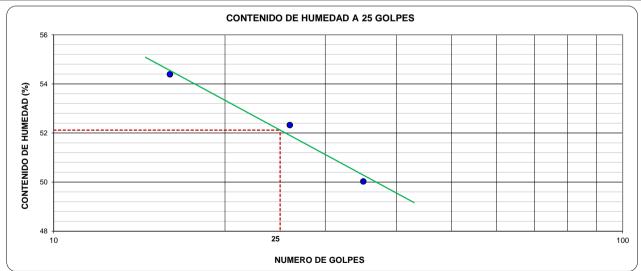
e) CALICATA C-03 CLASIFICACIÓN DE SUELO: CH (M-02)

Resultados de ensayos con adición de 0%, 3%, 6%, 9% y 12% de ceniza de fondo + 3% de cal

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S.N.	M 0
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 2

3 LIMITE LIQUIDO									
DESCRIPCIÓN	UNIDAD	UNIDAD MUESTRAS							
Nº CAPSULA	ID	C-02	C-05	C-10	-				
PESO TARA + SUELO HUMEDO	(g)	50.86	52.16	50.43	-				
PESO TARA + SUELO SECO	(g)	40.51	41.34	40.96	-				
PESO DE AGUA	(g)	10.35	10.82	9.47	-				
PESO DE LA TARA	(g)	21.48	20.66	22.03	-				
PESO DEL SUELO SECO	(g)	19.03	20.68	18.93	-				
CONTENIDO DE HUMEDAD	(%)	54.39	52.32	50.03	-				
NUMERO DE GOLPES		16	26	35					

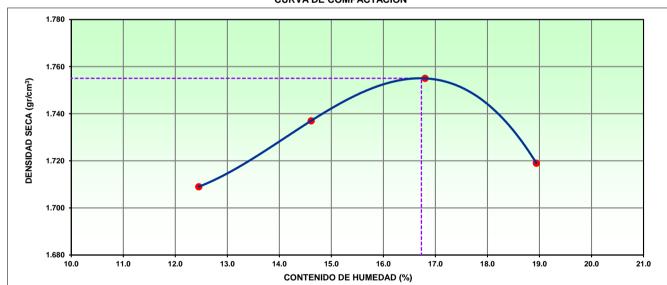
4 LIMITE PLÁSTICO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº TARRO	ID	T-06	T-07	T-01	PROMEDIO
PESO TARA + SUELO HUMEDO	(g.)	31.81	31.22	31.65	
PESO TARA + SUELO SECO	(g.)	30.42	29.85	30.26	
PESO DE LA TARA	(g.)	22.51	21.84	22.07	
PESO DEL AGUA	(g.)	1.39	1.37	1.39	
PESO DEL SUELO SECO	(g.)	7.91	8.01	8.19	
CONTENIDO DE HUMEDAD	(%)	17.57	17.10	16.97	17.22

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	52.12					
LIMITE PLASTICO (%)	17.22					
INDICE DE PLASTICIDAD (%)	34.90					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA					2 N° MUESTRA	
UBICACIÓN CALICATA 03 / PLATA	11+500 (L/I)	DOSIFICACIÓN:	S.N.	M - 2		
MATERIAL: ARCILLA ARENOSA D	E ALTA PLAS	STICIDAD	CLASF. DE SUELO:	СН	IVI - 2	
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN	:	"A"				
NUMERO DE GOLPES POR CAPA	:	25				
NUMERO DE CAPAS	:	5				
NÚMERO DE ENSAYO		1	2	3	4	
PESO (SUELO + MOLDE) (gr)		5990	6054	6110	6105	
PESO DE MOLDE (gr)		4190	4190	4190	4190	
PESO SUELO HÚMEDO (gr)		1800	1864	1920	1915	
VOLUMEN DEL MOLDE (cm³)		936	936	936	936	
4 LIMITE PLÁSTICO		1.922	1.991	2.050	2.045	
DENSIDAD SECA (gr/cm3)		1.709	1.737	1.755	1.719	
4 CONTENIDO DE HUMEDAD						
RECIPIENTE Nº	<i></i>	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)		413.8	376.0	408.4	399.0	
PESO (SUELO SECO + TARA) (gr)		373.1	333.2	357.2	344.2	
PESO DE LA TARA (gr)		46.2	40.2	52.4	54.9	
		40.7	42.8	51.2	54.8	
PESO DE AGUA (gr)						
PESO DE AGUA (gr) PESO DE SUELO SECO (gr)		326.9	293.0	304.8	289.3	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

	-			PALLALLA –	TOTOJIRA.						
S	OLICITADO:	Bach. AMÉF	RICO COLQU	IE ATENCIO							
1. DAT	OS DE L	A MUESTI	RA							2. N° MUES	TRA
ι	JBICACION:	CALICATA (03 / PLATAFO	ORMA KM 01	+500 (L/I)			DOSIFICACIÓN:	S.N.		•
	-			ALTA PLAST			CLA	ASF. DE SUELO:	CH	М-	- 2
3. DAT	OS PARA	LEL ENSA	AYO				-			-	
<u> </u>	001240						PROCTOR	HO=16.73	MDS=1.755	N°CAPAS	5
						12 G(OLPES		OLPES	56 GO	LPES
N		DE	SCRIPCION		UND		DE 01		.DE 02	MOLE	
4. DEN	SIDAD										
		de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1	Peso suelo I	númedo + mol	lde		g	11,842	11,994	11,985	12,090	11,032	11,095
2	Peso del mo	lde			g	7,921	7,921	7,807	7,807	6,703	6,703
ITE PLÁS	Volumen de	molde REC	G:		cc	2,120	2,120	2,114	2,114	2,128	2,128
4	Peso suelo l	numedo, [1]-[2	2]		g	3,921	4,073	4,178	4,283	4,329	4,392
		uelo humedo	, [4]/[3]		g/cc	1.85	1.92	1.98	2.03	2.03	2.06
	Id. Capsula				-	1	2	3	4	5	6
		elo húmedo +			g	150.25	185.15	139.94	200.48	169.52	198.51
		elo seco + cap	osula		g	133.65	152.94	123.94	168.39	150.42	170.55
	Peso del ag				g	16.60	32.21	16.00	32.09	19.10	27.96
	Peso de la c		401		9	35.26	32.16	30.61	28.94	35.12	33.84
		elo seco, [8]-[1			g	98.39	120.78	93.33	139.45	115.30	136.71
		de humedad,			%	16.87	26.67	17.14	23.01	16.57	20.45
		eca,[5]/(1+[12	2]/100)		g/cc	1.583	1.517	1.687	1.647	1.745	1.713
. PEN	ETRACIO	N	,								
	CARGA			URA DE DIAL (c	,		1		RZA (kg)		
	NDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA
	a del	0.000	0	0	0	0		0		0	
•	stón:	0.635	50	90	130	5		9		13	
19.3	5 cm2	1.270 1.905	110 170	180 250	250 360	11 17	-	18 25		25 37	
70	0.5	2.540	200	290 290	430	20	20*	29	29*	44	42*
	0.0	3.175	230	310	460	23	20	32	29	47	42
	-	3.810	250	350	520	25		36		53	
10	5.7	5.080	280	390	600	28	29*	40	41*	61	62*
	•	6.350	300	430	630	31		44	71	64	VL
		7.620	310	450	680	32		46	-	69	
	-	10.160	330	490	750	34		50		76	
	-	12.700	340	530	840	35		54		86	
	С	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
. EXP	ANSIÓN									H _{suelo} =	127.0 mm
	TIEMPO		LECT	URA DIAL(Div):	0.010mm	0.010		ALT	URAS	* *suelo	
Fecha	Hora	(Hrs)	12 GOLPES	25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
	11:10 AM	0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
	11:10 AM	24	4.47	3.43	2.90	0.04	3.52%	0.03	2.70%	0.03	2.28%
	11:10 AM	48	7.26	6.14	5.54	0.07	5.72%	0.06	4.83%	0.06	4.36%
	11:10 AM	72	9.05	7.77	7.41	0.09	7.13%	0.08	6.12%	0.07	5.83%
16/10/23	11:10 AM	96	9.94	9.03	8.52	0.10	7.83%	0.09	7.11%	0.09	6.71%
. RES	ULTADO	S									
	ENSAYO CE	SR .	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Den	nsidad Seca	prom.	1.55	1.67	1.76	Humeda	nd óptima	16.73%	Penetración	0.1"	0.2"
	Pen	etracion: 0.1"	1.4	2.1	3.1	М	DS	1.755	100% MDS	3.1	3.0
	Pen	etracion: 0.2"	1.4	2.0	3.0	95 % de	e la MDS	1.667	95 % MDS	2.1	2.0
ADC	ERVACIO	NEG									_

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

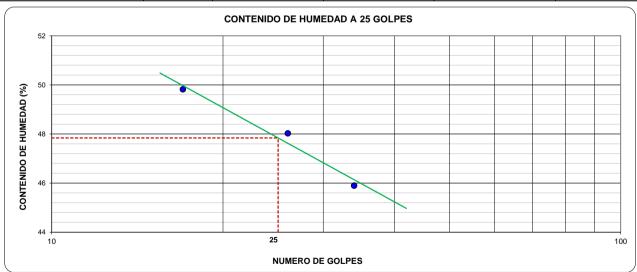
PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 40 80 35 50 20 30 40 9 25 20 FUERZA [kg] 20 30 40 15 20 30 10 20 10 2 9 0 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.76 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 3.1 1.70 CBR, PENETRACION 0.2" 95% MDS 1.67 CBR, PENETRACION 0.1" 2.1 1.60 CBR, PENETRACION 0.2" 1.50 1.40 3

C.B.R [%]

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S97-CF0-C3	
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 2

3 LIMITE LIQUIDO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº CAPSULA	ID	C-08	C-05	C-12	-
PESO TARA + SUELO HUMEDO	(g)	52.05	52.30	51.34	-
PESO TARA + SUELO SECO	(g)	42.55	42.71	42.12	-
PESO DE AGUA	(g)	9.50	9.59	9.22	-
PESO DE LA TARA	(g)	23.48	22.74	22.03	-
PESO DEL SUELO SECO	(g)	19.07	19.97	20.09	-
CONTENIDO DE HUMEDAD	(%)	49.82	48.02	45.89	-
NUMERO DE GOLPES		17	26	34	

4 LIMITE PLÁSTICO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº TARRO	ID	T-04	T-07	T-02	PROMEDIO
PESO TARA + SUELO HUMEDO	(g.)	32.10	31.52	32.87	
PESO TARA + SUELO SECO	(g.)	29.77	29.11	30.26	
PESO DE LA TARA	(g.)	21.68	20.79	21.42	
PESO DEL AGUA	(g.)	2.33	2.41	2.61	
PESO DEL SUELO SECO	(g.)	8.09	8.32	8.84	
CONTENIDO DE HUMEDAD	(%)	28.80	28.97	29.52	29.10

CONSTANTES FISICAS DE LA MUESTRA						
LIMITE LIQUIDO (%)	47.84					
LIMITE PLASTICO (%)	29.10					
INDICE DE PLASTICIDAD (%)	18.74					

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	
UBICACIÓN CALICATA 03 / PLATAFO	RMA KM 01+500 (L/I)	DOSIFICACIÓN:	S97-CF0-C3	M - 2	
MATERIAL: ARCILLA ARENOSA DE A	LTA PLASTICIDAD	CLASF. DE SUELO:	СН	IVI - Z	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN	: "A"				
NUMERO DE GOLPES POR CAPA	: 25				
NUMERO DE CAPAS	: 5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	6023	6080	6100	6055	
PESO DE MOLDE (gr)	4190	4190	4190	4190	
PESO SUELO HÚMEDO (gr)	1833	1890	1910	1865	
OLUMEN DEL MOLDE (cm³)	936	936	936	936	
4 LIMITE PLÁSTICO	1.957	2.018	2.040	1.992	
DENSIDAD SECA (gr/cm ³)	1.706	1.733	1.720	1.658	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	389.0	369.2	293.0	366.8	
PESO (SUELO SECO + TARA) (gr)	346.7	326.8	257.6	310.2	
PESO DE LA TARA (gr)	59.2	68.9	67.3	28.5	
PESO DE AGUA (gr)	42.3	42.4	35.4	56.6	
PESO DE SUELO SECO (gr)	287.5	257.9	190.3	281.7	
PESO DE SUELO SECO (gi)					

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DAT	OS DE LA	MUESTI	RA							2. N° MUES	TRA
	_			ORMA KM 01- ALTA PLAST			-	DOSIFICACIÓN: ASF. DE SUELO:	S97-CF0-C3 CH	М -	· 2
1 110/11 1 2	OS PARA			-			-	-	-		
	001100						PROCTOR	HO=17.18	MDS=1.736	N°CAPAS	5
						12 G	DLPES		LPES	56 GO	LPES
N		DE	SCRIPCION		UND		DE 01		DE 02	MOLD	
DEN	SIDAD										
	Condición d	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1	Peso suelo h	númedo + mol	de		g	11,953	12,117	12,051	12,147	12,180	12,256
2	Peso del mo	lde			g	8,023	8,023	7,890	7,890	7,925	7,925
3		molde REG			cc	2,120	2,120	2,144	2,144	2,100	2,100
4		numedo, [1]-[2			g	3,930	4,094	4,161	4,257	4,255	4,331
5		uelo humedo	, [4]/[3]		g/cc	1.85	1.93	1.94	1.99	2.03	2.06
6	Id. Capsula				-	1	2	3	4	5	6
7		elo húmedo +			g	153.01	171.25	134.56	191.32	157.84	175.98
8		elo seco + cap	sula		g	135.61	142.15	120.54	161.20	138.49	150.44
9	Peso del agu				g	17.40	29.10	14.02	30.12	19.35	25.54
	Peso de la c				g	35.65	32.15	39.12	33.24	28.94	30.12
		elo seco, [8]-[1			g	99.96	110.00	81.42	127.96	109.55	120.32
12		le humedad,	<u> </u>		%	17.41	26.45	17.22	23.54	17.66	21.23
13	Densidad se	eca,[5]/(1+[12	!]/100)		g/cc	1.579	1.527	1.656	1.607	1.722	1.701
PEN	ETRACIO	N									
	CARGA		LECT	JRA DE DIAL (c	livisión)			FUE	RZA (kg)		
STAN	IDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
	a del	0.000	0	0	0	0		0		0	
•	stón:	0.635	80	150	180	8		15		18	
19.3	5 cm2	1.270	170	260	380	17		26		39	
		1.905	250	340	530	25		35		54	
70	0.5	2.540	330	450	650	34	31*	46	44*	66	63*
		3.175	360	500	710	37		51		72	
		3.810	400	550	760	41		56		78	
10	5.7	5.080	430	610	850	44	45*	62	63*	87	90*
		6.350	450	640	920	46		65		94	
	-	7.620	470	670	960	48		68		98	
		10.160	500	700	1,020	51		71		104	
		12.700	510	730	1,100	52		74		112	
	C	ORRECCION:	DEL ANILLO	DE CARGA	EN NEWTON						
EXP/	ANSIÓN									H _{suelo} =	127.0 mr
	TIEMPO			URA DIAL(Div):	0.010mm	0.010		ALTI	JRAS		
echa	Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
	11:10 AM	0	0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
	11:10 AM	24	2.94	2.15	1.79	0.03	2.31%	0.02	1.69%	0.02	1.41%
	11:10 AM	48	4.77	3.84	3.43	0.05	3.76%	0.04	3.02%	0.03	2.70%
5/10/23	11:10 AM	72	5.95	4.86	4.59	0.06	4.69%	0.05	3.83%	0.05	3.61%
6/10/23	11:10 AM	96	6.54	5.65	5.27	0.07	5.15%	0.06	4.45%	0.05	4.15%
RES	ULTADO	3									
	ENSAYO CB	R	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Der	nsidad Seca		1.55	1.63	1.74	Humeda	ıd óptima	17.18%	Penetración	0.1"	0.2"
	Pene	etracion: 0.1"	2.3	3.2	4.6	N	DS	1.736	100% MDS	4.6	4.4
	Pene	etracion: 0.2"	2.2	3.1	4.4	95 % d	e la MDS	1.650	95 % MDS	3.4	3.3
									-		

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

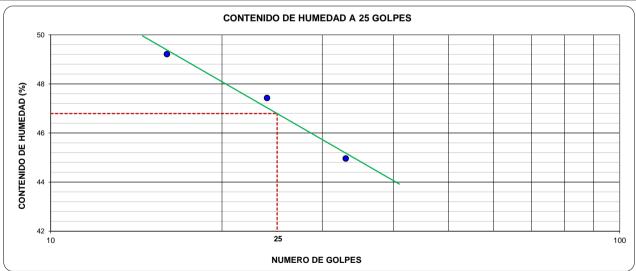
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 9 20 8 50 9 40 8 20 FUERZA [kg] 30 4 9 30 4 20 20 10 20 10 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.74 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 4.6 CBR, PENETRACION 0.2" 1.70 95% MDS 1.65 CBR, PENETRACION 0.1" 3.4 CBR, PENETRACION 0.2" 1.60 1.50 2 4 5

C.B.R [%]

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S94-CF3-C3	M 0
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	M - 2

3 LIMITE LIQUIDO								
DESCRIPCIÓN	UNIDAD	MUESTRAS						
Nº CAPSULA	ID	C-01	C-04	C-02	-			
PESO TARA + SUELO HUMEDO	(g)	51.75	48.75	53.37	-			
PESO TARA + SUELO SECO	(g)	41.79	39.64	43.87	-			
PESO DE AGUA	(g)	9.96	9.11	9.50	-			
PESO DE LA TARA	(g)	21.55	20.43	22.74	-			
PESO DEL SUELO SECO	(g)	20.24	19.21	21.13	-			
CONTENIDO DE HUMEDAD	(%)	49.21	47.42	44.96	-			
NUMERO DE GOLPES		16	24	33				

4 LIMITE PLÁSTICO					
DESCRIPCIÓN	UNIDAD		MUE	STRAS	
Nº TARRO	ID	T-06	T-04	T-11	PROMEDIO
PESO TARA + SUELO HUMEDO	(g.)	31.22	30.65	31.64	
PESO TARA + SUELO SECO	(g.)	28.64	28.01	29.14	
PESO DE LA TARA	(g.)	19.65	18.98	20.47	
PESO DEL AGUA	(g.)	2.58	2.64	2.50	
PESO DEL SUELO SECO	(g.)	8.99	9.03	8.67	
CONTENIDO DE HUMEDAD	(%)	28.70	29.24	28.84	28.92

CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%)	46.79				
LIMITE PLASTICO (%)	28.92				
INDICE DE PLASTICIDAD (%)	17.87				

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	
UBICACIÓN CALICATA 03 / PLATAFO	RMA KM 01+500 (L/I)	DOSIFICACIÓN:	S94-CF3-C3	M - 2	
MATERIAL: ARCILLA ARENOSA DE A	ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	IVI - Z	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN	: "A"				
NUMERO DE GOLPES POR CAPA	: 25				
NUMERO DE CAPAS	: 5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5980	6052	6100	6105	
PESO DE MOLDE (gr)	4190	4190	4190	4190	
PESO SUELO HÚMEDO (gr)	1790	1862	1910	1915	
VOLUMEN DEL MOLDE (cm ³)	936	936	936	936	
4 LIMITE PLÁSTICO	1.912	1.988	2.040	2.045	
DENSIDAD SECA (gr/cm3)	1.676	1.712	1.725	1.706	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE Nº	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	395.5	392.9	344.7	368.7	
PESO (SUELO SECO + TARA) (gr)	353.0	344.3	299.8	316.9	
PESO DE LA TARA (gr)	51.2	42.8	53.6	55.9	
	42.5	48.6	44.9	51.8	
PESO DE AGUA (gr)					
PESO DE AGUA (gr) PESO DE SUELO SECO (gr)	301.8	301.5	246.2	261.0	

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE
DEL CAMINO VECINAL PALLALLA – TOTOJIRA

DATOS DE	LA MUEST	RA							2. N° MUES	TRA
	N: CALICATA		ORMA KM 01	+500 (L/I)			DOSIFICACIÓN:	S94-CF3-C3		
	L: ARCILLA A			. ,		-	SF. DE SUELO:		M	- 2
DATOS PA		AYO				-			-1	
DAIGGIA						PROCTOR	HO=17.97	MDS=1.725	N°CAPAS	5
					12 G	OLPES		OLPES	56 GC	
N	DE	SCRIPCION		UND		.DE 01		DE 02	MOLI	
DENSIDAD										
	ón de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1 Peso su	elo húmedo + mo	lde		g	11,498	11,665	11,865	11,968	12,165	12,135
2 Peso de				g	7,813	7,813	7,876	7,876	7,861	7,861
E PLÁS Volumer				CC	2,112	2,112	2,122	2,122	2,119	2,119
	elo humedo, [1]-[g	3,685	3,852	3,989	4,092	4,304	4,274
	d suelo humed	o, [4]/[3]		g/cc	1.74	1.82	1.88	1.93	2.03	2.02
6 Id. Caps				-	1	2	3	4	5	6
	suelo húmedo +			g	171.32	206.35	166.54	203.65	180.02	197.79
	suelo seco + ca	psula		g	151.20	168.97	146.35	171.32	156.94	168.01
	agua, [7]-[8] la capsula			g	20.12 35.61	37.38 34.19	20.19 32.55	32.33 38.45	23.08 29.84	29.78 31.40
	suelo seco, [8]-	101		g	115.59	134.78	113.80	132.87	127.10	136.61
	do de humedad			g %	17.41	27.73	17.74	24.33	18.16	21.80
	d seca,[5]/(1+[1			g/cc	1.486	1.428	1.597	1.551	1.719	1.656
PENETRA		-j/100/		g/00	11100	11120	11007			11000
CAR		LECT	URA DE DIAL (c	livición)			EIII	ERZA (kg)		
STANDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGID
Area del	0.000	0	0	0	0	OOTH (EOID) (0	OGTATEORY	0	OOTHILOID
pistón:	0.635	90	210	290	9		21	-	29	
19.35 cm2	1.270	190	320	460	19		33	=	47	
	1.905	280	410	630	28		42		64	
70.5	2.540	360	520	790	37	34*	53	52*	81	76*
	3.175	410	610	850	42		62		87	
	3.810	430	650	930	44		66		95	
105.7	5.080	470	710	1,020	48	50*	72	74*	104	107*
	6.350	510	750	1,080	52		76	-	110	
	7.620	530	760	1,110	54		78	=	113	
	10.160	560	790	1,170	57	4	81	-	119	
	12.700	570	820	1,240	58		84		127	
	CORRECCION	DEL ANILLO	DE CARGA	EN NEWTON						
EXPANSIÓ	N								H _{suelo} =	127.0 mm
TIEMI	90	LECT	URA DIAL(Div):	0.010mm	0.010		ALT	URAS	•	
echa Hora	(Hrs)	12 GOLPES	25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
2/10/23 11:10 A		0.00	0.00	0.00	0.00	0.00%	0.00	0.00%	0.00	0.00%
3/10/23 11:10 <i>A</i>		2.47	2.06	1.77	0.02	1.94%	0.02	1.62%	0.02	1.39%
1/10/23 11:10		4.00	3.69	3.39	0.04	3.15%	0.04	2.91%	0.03	2.67%
5/10/23 11:10 /		4.99	4.66	4.54	0.05	3.93%	0.05	3.67%	0.05	3.57%
6/10/23 11:10 <i>A</i>		5.49	5.42	5.22	0.05	4.32%	0.05	4.27%	0.05	4.11%
RESULTAI										
ENSAYO	_	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR			CBR FINAL	
Densidad Se		1.46	1.57	1.73		ad óptima	17.97%	Penetración	0.1"	0.2"
	Penetracion: 0.1		3.8	5.6		IDS	1.725	100% MDS	5.6	5.2
	Penetracion: 0.2'	2.4	3.6	5.2	ı 05%.d	e la MDS	1.639	95 % MDS	4.6	4.3

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

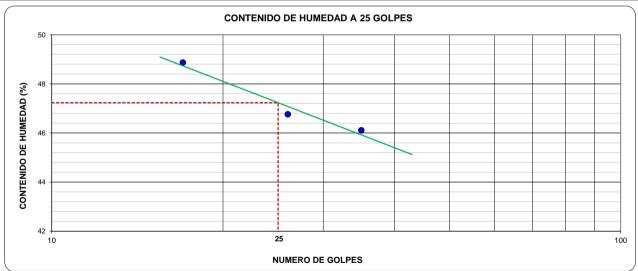
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 9 120 50 20 8 40 09 80 50 FUERZA [kg] 30 9 4 20 30 40 20 10 20 10 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.73 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 5.6 1.70 CBR, PENETRACION 0.2" 95% MDS 1.64 CBR, PENETRACION 0.1" 4.6 1.60 CBR, PENETRACION 0.2" 1.50 1.40 2 5 6

C.B.R [%]

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA	2 N° MUESTRA		
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S91-CF6-C3	
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 2

3 LIMITE LIQUIDO								
DESCRIPCIÓN	UNIDAD	UNIDAD MUESTRAS						
Nº CAPSULA	ID	C-06	C-02	C-12	-			
PESO TARA + SUELO HUMEDO	(g)	53.75	50.01	51.62	-			
PESO TARA + SUELO SECO	(g)	42.98	40.05	41.78	-			
PESO DE AGUA	(g)	10.77	9.96	9.84	-			
PESO DE LA TARA	(g)	20.94	18.75	20.44	-			
PESO DEL SUELO SECO	(g)	22.04	21.30	21.34	-			
CONTENIDO DE HUMEDAD	(%)	48.87	46.76	46.11	-			
NUMERO DE GOLPES		17	26	35				

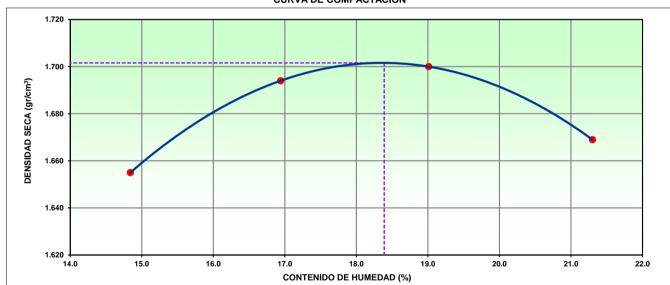
4 LIMITE PLÁSTICO								
DESCRIPCIÓN	UNIDAD	D MUESTRAS						
Nº TARRO	ID	T-07	T-02	T-04	PROMEDIO			
PESO TARA + SUELO HUMEDO	(g.)	32.25	32.20	31.94				
PESO TARA + SUELO SECO	(g.)	29.83	29.57	28.99				
PESO DE LA TARA	(g.)	21.54	20.80	19.64				
PESO DEL AGUA	(g.)	2.42	2.63	2.95				
PESO DEL SUELO SECO	(g.)	8.29	8.77	9.35				
CONTENIDO DE HUMEDAD	(%)	29.19	29.99	31.55	30.24			

CONSTANTES FISICAS DE LA MUESTRA					
LIMITE LIQUIDO (%)	47.23				
LIMITE PLASTICO (%)	30.24				
INDICE DE PLASTICIDAD (%)	16.99				

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)


PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTR	A	
UBICACIÓN CALICATA 03 / PLATAFORMA	KM 01+500 (L/I)	DOSIFICACIÓN:	S91-CF6-C3	M - 2		
MATERIAL: ARCILLA ARENOSA DE ALTA I	PLASTICIDAD	CLASF. DE SUELO:	СН			
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN :	"A"					
NUMERO DE GOLPES POR CAPA :	25					
NUMERO DE CAPAS :	5					
NÚMERO DE ENSAYO	1	2	3	4		
PESO (SUELO + MOLDE) (gr)	5970	6045	6085	6086		
PESO DE MOLDE (gr)	4190	4190	4190	4190		
PESO SUELO HÚMEDO (gr)	1780	1855	1895	1896		
VOLUMEN DEL MOLDE (cm³)	936	936	936	936		
4 LIMITE PLÁSTICO	1.901	1.981	2.024	2.025		
DENSIDAD SECA (gr/cm ³)	1.655	1.694	1.700	1.669		
4 CONTENIDO DE HUMEDAD						
RECIPIENTE Nº	1	2	3	4		
PESO (SUELO HÚMEDO + TARA) (gr)	349.5	345.3	302.8	320.8		
PESO (SUELO SECO + TARA) (gr)	310.9	302.8	262.2	273.9		
PESO DE LA TARA (gr)	50.8	51.9	48.6	53.7		
PESO DE AGUA (gr)	38.6	42.5	40.6	46.9		
	260.1	250.9	213.6	220,2		
PESO DE SUELO SECO (gr)	200.1	200.0				

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

so			O VECINAL I	PALLALLA – TE ATENCIO	TOTOJIRA.						
1. DAT	OS DE LA	A MUESTI	RA							2. N° MUES	STRA
UBICACION: CALICATA 03 / PLATAFORMA KM 01+500 (I				+500 (L/I)			DOSIFICACIÓN:	S91-CF6-C3		_	
				ICIDAD	, ,		SF. DE SUELO:		M	- 2	
3. DAT	OS PARA	EL ENSA	VO.				-				
o. DAI	OO I AIU		110				PROCTOR	HO=18.39	MDS=1.702	N°CAPAS	5
						UND 12 GOLPES MOLDE 01					<u> </u>
N		DE	SCRIPCION		UND			25 GOLPES MOLDE 02		56 GOLPES MOLDE 03	
4. DEN	SIDAD						•				**
	Condición d	le humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
		númedo + mol	de		g	10,403	10,559	10,940	11,114	11,003	11,031
	Peso del mo				g	6,618	6,618	6,890	6,890	6,744	6,744
		molde REC	3:		CC	2,128	2,128	2,131	2,131	2,121	2,121
		numedo, [1]-[2			g	3,785	3,941	4,050	4,224	4,259	4,287
		uelo humedo			g/cc	1.78	1.85	1.90	1.98	2.01	2.02
	Id. Capsula				-	1	2	3	4	5	6
7	Peso del sue	elo húmedo +	capsula		g	138.32	205.31	117.98	210.11	136.98	167.25
8	Peso del sue	elo seco + cap	sula		g	121.32	165.84	104.32	175.20	119.65	142.87
	Peso del agu				g	17.00	39.47	13.66	34.91	17.33	24.38
	Peso de la c				g	30.15	26.84	29.22	35.78	25.65	32.51
		elo seco, [8]-[1	-		g	91.17	139.00	75.10	139.42	94.00	110.36
		le humedad,	<u> </u>		%	18.65	28.40	18.19	25.04	18.44	22.09
13	Densidad se	eca,[5]/(1+[12	2]/100)		g/cc	1.499	1.442	1.608	1.585	1.695	1.655
. PEN	ETRACIO	N									
	CARGA		LECT	URA DE DIAL (c	livisión)			FU	ERZA (kg)		
STAN	DARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA
	a del	0.000	0	0	0	0		0		0	
•	tón:	0.635	90	210	350	9		21		36	
19.35	5 cm2	1.270	250	430	650	25		44		66	
	_	1.905	360	600	860	37		61		88	
70	0.5	2.540	510	790	1,100	52	46*	81	74*	112	107*
	-	3.175	560	850	1,240	57		87		127	
401	F 7	3.810	580	910	1,310	59	0 7 ±	93	4054	134	4504
10	0.1	5.080	630	1,000	1,510	64	67*	102	105*	154	156*
		6.350 7.620	670 710	1,050	1,610 1,690	68 72	1	107	 	164	
	-	10.160	710	1,100 1,150	1,780	75	1	112 117	 	173 182	
	-	12.700	754 750	1,150	1,760	75 76		122	 	195	
	L	ORRECCION:		DE CARGA	,	10	I	144	1	100	
		JINEUUIVI.	DEL ANILLO	DL CARGA	LIN INEVVIOR						
. EXPA	NSIÓN				0.048	0.5			UD 4 0	H _{suelo} =	127.0 mm
Fook-	TIEMPO	/Lles\		URA DIAL(Div):	0.010mm 56 GOLPES	0.010	0/		URAS		0/
Fecha 12/10/23	Hora	(Hrs)	12 GOLPES	25 GOLPES		mm 0.00	% 0.00%	mm	0.00%	mm 0.00	% 0.00%
13/10/23		0 24	0.00 2.27	0.00 1.72	0.00 1.45	0.00	1.79%	0.00 0.02	1.35%	0.00	1.14%
14/10/23		48	3.69	3.08	2.76	0.02	2.91%	0.02	2.43%	0.01	2.17%
	11:10 AM	72	4.60	3.08	3.70	0.04	3.62%	0.03	3.07%	0.03	2.17%
	11:10 AM	96	5.05	4.53	4.25	0.05	3.62%	0.04	3.07%	0.04	3.35%
	ULTADO		J.UJ	4.00	7.20	0.00	J.JU/0	0.00	J.JI /0	0.04	J.JJ /0
	ENSAYO CB		12 COLDEC	25 COLDES	56 GOLPES		PROCTOR		I	CBR FINAL	
ı			12 GOLPES 1.47	25 GOLPES	1.70	Humoda	nd óptima	18.39%	Donotropión	0.1"	0.2"
Den	Densidad Seca prom.			1.60			-		Penetración		7.6
Den	Don	atracion: 0 1"	3 /								
Den		etracion: 0.1" etracion: 0.2"	3.4 3.3	5.4 5.1	7.9 7.6		DS e la MDS	1.702 1.617	100% MDS 95 % MDS	7.9 5.8	5.5

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

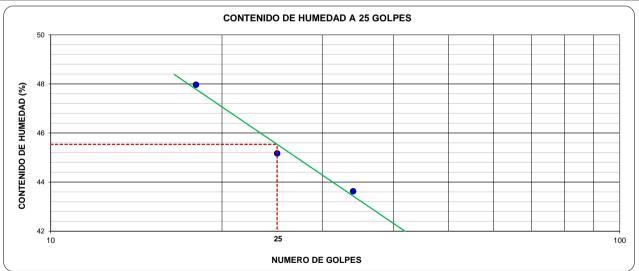
CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 200 80 180 20 20 160 9 100 140 20 120 80 FUERZA [kg] 001 40 9 80 30 9 40 20 40 20 10 20 0 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.70 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 7.9 1.70 CBR, PENETRACION 0.2" 95% MDS 1.62 CBR, PENETRACION 0.1" 5.8 1.60 CBR, PENETRACION 0.2" 1.50 1.40 3 C.B.R [%] 7 8 9

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S88-CF9-C3	M 0
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	M - 2

3 LIMITE LIQUIDO									
DESCRIPCIÓN	UNIDAD		MUE	STRAS					
Nº CAPSULA	ID	C-08	C-10	C-04	-				
PESO TARA + SUELO HUMEDO	(g)	52.69	50.08	53.02	-				
PESO TARA + SUELO SECO	(g)	41.98	40.87	43.61	-				
PESO DE AGUA	(g)	10.71	9.21	9.41	-				
PESO DE LA TARA	(g)	19.65	20.48	22.04	-				
PESO DEL SUELO SECO	(g)	22.33	20.39	21.57	-				
CONTENIDO DE HUMEDAD	(%)	47.96	45.17	43.63	-				
NUMERO DE GOLPES		18	25	34					

4 LIMITE PLÁSTICO									
DESCRIPCIÓN	UNIDAD		MUE	STRAS					
Nº TARRO	ID	T-04	T-09	T-11	PROMEDIO				
PESO TARA + SUELO HUMEDO	(g.)	30.75	35.02	33.61					
PESO TARA + SUELO SECO	(g.)	28.15	31.64	30.94					
PESO DE LA TARA	(g.)	19.84	21.58	22.74					
PESO DEL AGUA	(g.)	2.60	3.38	2.67					
PESO DEL SUELO SECO	(g.)	8.31	10.06	8.20					
CONTENIDO DE HUMEDAD	(%)	31.29	33.60	32.56	32.48				

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%)	45.54						
LIMITE PLASTICO (%)	32.48						
INDICE DE PLASTICIDAD (%)	13.06						

5.- OBSERVACIONES

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA		
UBICACIÓN CALICATA 03 / PLATAFO	RMA KM 01+500 (L/I)	DOSIFICACIÓN:	S88-CF9-C3	M - 2		
MATERIAL: ARCILLA ARENOSA DE A	ALTA PLASTICIDAD	CLASF. DE SUELO:	СН	IVI - 2	IVI - Z	
3 COMPACTACIÓN						
MÉTODO DE COMPACTACIÓN	: "A"					
NUMERO DE GOLPES POR CAPA	: 25					
NUMERO DE CAPAS	: 5					
NÚMERO DE ENSAYO	1	2	3	4		
PESO (SUELO + MOLDE) (gr)	5961	6035	6082	6081		
PESO DE MOLDE (gr)	4190	4190	4190	4190		
PESO SUELO HÚMEDO (gr)	1771	1845	1892	1891		
OLUMEN DEL MOLDE (cm³)	936	936	936	936		
4 LIMITE PLÁSTICO	1.891	1.970	2.021	2.019		
DENSIDAD SECA (gr/cm ³)	1.640	1.675	1.688	1.661		
4 CONTENIDO DE HUMEDAD						
RECIPIENTE Nº	1	2	3	4		
PESO (SUELO HÚMEDO + TARA) (gr)	356.7	357.7	303.5	330.2		
PESO (SUELO SECO + TARA) (gr)	316.1	312.5	261.7	281.2		
PESO DE LA TARA (gr)	51.6	56.4	49.6	54.3		
PESO DE AGUA (gr)	40.6	45.2	41.8	49.0		
PESO DE SUELO SECO (gr)	264.5	256.1	212.1	226.9		
(9 /			19.71	21.60		

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

. DAT	OS DE L	A MUEST	RA							2. Nº MUES	TRA
ı	UBICACION:	CALICATA (3 / PLATAF	ORMA KM 01-	+500 (L/I)		_	DOSIFICACIÓN:	S88-CF9-C3	М -	. 2
	MATERIAL:	ARCILLA AF	RENOSA DE	ALTA PLAST	ICIDAD		CLA	SF. DE SUELO:	СН	141	
DAT	OS PARA	LEL ENS	YO								
							PROCTOR	HO=19.49	MDS=1.688	N°CAPAS	5
						12 G	DLPES	25 GC	DLPES	56 GO	LPES
N		DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOLE	E 03
DEN	ISIDAD										
	Condición o	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1	Peso suelo l	númedo + mo	de		g	11,511	11,669	11,898	11,890	10,961	11,020
2	Peso del mo	lde			g	7,921	7,921	7,807	7,807	6,703	6,703
3	Volumen del	molde REC	G :		CC	2,120	2,120	2,114	2,114	2,128	2,128
4	Peso suelo l	numedo, [1]-[2	<u>?]</u>		g	3,590	3,748	4,091	4,083	4,258	4,317
5	Densidad s	uelo humedo	, [4]/[3]		g/cc	1.69	1.77	1.94	1.93	2.00	2.03
6	ld. Capsula					1	2	3	4	5	6
7	Peso del su	elo húmedo +	capsula		g	107.84	189.55	115.94	200.65	162.15	150.02
8		elo seco + cap	sula		g	95.84	156.32	102.54	166.84	140.70	129.38
9	Peso del agi	ua, [7]-[8]			g	12.00	33.23	13.40	33.81	21.45	20.64
10	Peso de la c				g	35.26	40.12	36.94	33.12	29.15	36.84
11	11 Peso del suelo seco, [8]-[10]			g	60.58	116.20	65.60	133.72	111.55	92.54	
12	Contenido de humedad, [9]/[11]				%	19.81	28.60	20.43	25.28	19.23	22.30
13	Densidad s	eca,[5]/(1+[12	?]/100)		g/cc	1.414	1.375	1.607	1.542	1.678	1.659
PEN	ETRACIO	N					,				
	CARGA		LECT	URA DE DIAL (d	livisión)			FUE	RZA (kg)		
STAN	NDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGI
	a del	0.000	0	0	0	0	00111201271	0	001111201271	0	001111201
	stón:	0.635	200	310	460	20	-	32		47	
•	5 cm2	1.270	380	630	880	39		64		90	
		1.905	540	890	1,220	55		91		125	
70	0.5	2.540	660	1,100	1,460	67	64*	112	105*	149	141*
		3.175	700	1,120	1,490	71		114		152	
		3.810	790	1,280	1,700	81		131		174	
10	5.7	5.080	890	1,430	1,920	91	95*	146	151*	196	204*
		6.350	990	1,530	2,080	101		156	-	212	
		7.620	1,060	1,620	2,230	108		165		228	
		10.160	1,130	1,740	2,450	115		178		250	
	Ì	12.700	1,200	1,832	2,670	122		187		273	
	C		DEL ANILLO	DE CARGA	EN NEWTON			-		-	
	O	OTTI LOCIOIT.	DELTITIEEO	BE Gratert	INEW TOR						
EVD	ANGIÁN	PANSIÓN		UDA DIAL (D:)	0.010mm	0.040		A 1 T 1	JRAS	H _{suelo} =	127.0 m
EXP/						0.010		ALI	JKAS		%
	TIEMPO	/Uro\		URA DIAL(Div):			0/		0/		70
echa	TIEMPO Hora	(Hrs)	12 GOLPES	25 GOLPES	56 GOLPES	mm	% 0.00%	mm	0.00%	mm 0.00	0.000/
echa 2/10/23	TIEMPO Hora 11:10 AM	0	12 GOLPES 0.00	25 GOLPES 0.00	56 GOLPES 0.00	mm 0.00	0.00%	0.00	0.00%	0.00	
echa 2/10/23 3/10/23	TIEMPO Hora 11:10 AM 11:10 AM	0 24	12 GOLPES 0.00 1.83	0.00 1.45	0.00 1.27	mm 0.00 0.02	0.00% 1.44%	0.00 0.01	0.00% 1.14%	0.00 0.01	1.00%
echa 2/10/23 3/10/23 4/10/23	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM	0 24 48	0.00 1.83 2.97	25 GOLPES 0.00 1.45 2.59	0.00 1.27 2.43	mm 0.00 0.02 0.03	0.00% 1.44% 2.34%	0.00 0.01 0.03	0.00% 1.14% 2.04%	0.00 0.01 0.02	1.00% 1.91%
Fecha 2/10/23 3/10/23 4/10/23 5/10/23	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM 11:10 AM	0 24 48 72	0.00 1.83 2.97 3.71	25 GOLPES 0.00 1.45 2.59 3.28	0.00 1.27 2.43 3.25	mm 0.00 0.02 0.03 0.04	0.00% 1.44% 2.34% 2.92%	0.00 0.01 0.03 0.03	0.00% 1.14% 2.04% 2.58%	0.00 0.01 0.02 0.03	2.56%
Fecha 2/10/23 3/10/23 4/10/23 5/10/23 6/10/23	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM 11:10 AM	0 24 48 72 96	0.00 1.83 2.97	25 GOLPES 0.00 1.45 2.59	0.00 1.27 2.43	mm 0.00 0.02 0.03	0.00% 1.44% 2.34%	0.00 0.01 0.03	0.00% 1.14% 2.04%	0.00 0.01 0.02	1.00% 1.91%
echa 2/10/23 3/10/23 4/10/23 5/10/23	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM	0 24 48 72 96	0.00 1.83 2.97 3.71 4.08	25 GOLPES 0.00 1.45 2.59 3.28 3.81	0.00 1.27 2.43 3.25 3.73	mm 0.00 0.02 0.03 0.04	0.00% 1.44% 2.34% 2.92% 3.21%	0.00 0.01 0.03 0.03	0.00% 1.14% 2.04% 2.58%	0.00 0.01 0.02 0.03 0.04	1.00% 1.91% 2.56%
Fecha 2/10/23 3/10/23 4/10/23 5/10/23 RES	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM EVLTADO ENSAYO CB	0 24 48 72 96	12 GOLPES 0.00 1.83 2.97 3.71 4.08 12 GOLPES	25 GOLPES 0.00 1.45 2.59 3.28 3.81 25 GOLPES	0.00 1.27 2.43 3.25 3.73 56 GOLPES	mm 0.00 0.02 0.03 0.04 0.04	0.00% 1.44% 2.34% 2.92% 3.21%	0.00 0.01 0.03 0.03 0.04	0.00% 1.14% 2.04% 2.58% 3.00%	0.00 0.01 0.02 0.03 0.04	1.00% 1.91% 2.56% 2.94%
Fecha 2/10/23 3/10/23 4/10/23 5/10/23 6/10/23 RES	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM EVALUATE OF THE PROPERTY OF	0 24 48 72 96 S R prom.	12 GOLPES 0.00 1.83 2.97 3.71 4.08 12 GOLPES 1.39	25 GOLPES 0.00 1.45 2.59 3.28 3.81 25 GOLPES 1.57	0.00 1.27 2.43 3.25 3.73 56 GOLPES 1.69	mm 0.00 0.02 0.03 0.04 0.04	0.00% 1.44% 2.34% 2.92% 3.21% PROCTOR ad óptima	0.00 0.01 0.03 0.03 0.04	0.00% 1.14% 2.04% 2.58% 3.00%	0.00 0.01 0.02 0.03 0.04 CBR FINAL 0.1"	1.00% 1.91% 2.56% 2.94%
Fecha 2/10/23 3/10/23 4/10/23 5/10/23 RES	TIEMPO Hora 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM 11:10 AM ENSAYO CE Insidad Seca	0 24 48 72 96	12 GOLPES 0.00 1.83 2.97 3.71 4.08 12 GOLPES	25 GOLPES 0.00 1.45 2.59 3.28 3.81 25 GOLPES	0.00 1.27 2.43 3.25 3.73 56 GOLPES	mm 0.00 0.02 0.03 0.04 0.04	0.00% 1.44% 2.34% 2.92% 3.21%	0.00 0.01 0.03 0.03 0.04	0.00% 1.14% 2.04% 2.58% 3.00%	0.00 0.01 0.02 0.03 0.04	1.00% 1.91% 2.56% 2.94%

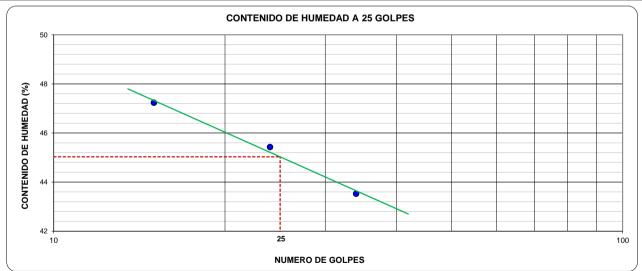
FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 140 200 180 20 250 160 100 40 200 20 80 FUERZA [kg] 150 00 9 80 100 9 40 40 20 20 20 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.80 100% MDS 1.69 DENSIDAD SECA [gr/cc] 1.70 CBR, PENETRACION 0.1" 10.3 CBR, PENETRACION 0.2" 95% MDS 1.60 1.60 CBR, PENETRACION 0.1" 8.3 CBR, PENETRACION 0.2" 1.50 1.40 1.30 5 9 10 11 LEYENDA C.B.R [%]

LIMITES DE CONCISTENCIA (LIMITE LIQUIDO - LIMITE PLASTICO ASTM D 4318)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA


SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA			2 N° MUESTRA
UBICACIÓN: CALICATA 03 / PLATAFORMA KM 01+500 (L/I)	DOSIFICACIÓN:	S85-CF12-C3	
MATERIAL: ARCILLA ARENOSA DE ALTA PLASTICIDAD	CLASF. DE SUELO:	CH	M - 2

3 LIMITE LIQUIDO									
DESCRIPCIÓN	UNIDAD		MUE	STRAS					
Nº CAPSULA	ID	C-14	C-06	C-07	-				
PESO TARA + SUELO HUMEDO	(g)	53.59	50.33	48.95	-				
PESO TARA + SUELO SECO	(g)	43.95	41.54	40.95	-				
PESO DE AGUA	(g)	9.64	8.79	8.00	-				
PESO DE LA TARA	(g)	23.54	22.19	22.57	-				
PESO DEL SUELO SECO	(g)	20.41	19.35	18.38	-				
CONTENIDO DE HUMEDAD	(%)	47.23	45.43	43.53	-				
NUMERO DE GOLPES		15	24	34					

4 LIMITE PLÁSTICO									
DESCRIPCIÓN	UNIDAD		MUE	STRAS					
Nº TARRO	ID	T-12	T-07	T-10	PROMEDIO				
PESO TARA + SUELO HUMEDO	(g.)	33.84	33.69	34.50					
PESO TARA + SUELO SECO	(g.)	30.64	30.14	31.22					
PESO DE LA TARA	(g.)	21.84	20.55	22.08					
PESO DEL AGUA	(g.)	3.20	3.55	3.28					
PESO DEL SUELO SECO	(g.)	8.80	9.59	9.14					
CONTENIDO DE HUMEDAD	(%)	36.36	37.02	35.89	36.42				

CONSTANTES FISICAS DE LA MUESTRA							
LIMITE LIQUIDO (%)	45.03						
LIMITE PLASTICO (%)	36.42						
INDICE DE PLASTICIDAD (%)	8.61						

5.- OBSERVACIONES

^{*} La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

PRÓCTOR MODIFICADO (ASTM D 1557)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO

EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA.

SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO

1 DATOS DE LA MUESTRA				2 N° MUESTRA	1
UBICACIÓN CALICATA 03 / PLATAFORMA	KM 01+500 (L/I)	DOSIFICACIÓN:	S85-CF12-C3	M - 2	
MATERIAL: ARCILLA ARENOSA DE ALTA	PLASTICIDAD	CLASF. DE SUELO:	СН	IVI - 2	
3 COMPACTACIÓN					
MÉTODO DE COMPACTACIÓN :	"A"				
NUMERO DE GOLPES POR CAPA :	25				
NUMERO DE CAPAS :	5				
NÚMERO DE ENSAYO	1	2	3	4	
PESO (SUELO + MOLDE) (gr)	5970	6031	6070	6075	
PESO DE MOLDE (gr)	4190	4190	4190	4190	
PESO SUELO HÚMEDO (gr)	1780	1841	1880	1885	
VOLUMEN DEL MOLDE (cm ³)	936	936	936	936	
4 LIMITE PLÁSTICO	1.901	1.966	2.008	2.013	
DENSIDAD SECA (gr/cm ³)	1.627	1.653	1.661	1.641	
4 CONTENIDO DE HUMEDAD					
RECIPIENTE №	1	2	3	4	
PESO (SUELO HÚMEDO + TARA) (gr)	335.6	348.3	284.8	337.0	
PESO (SUELO SECO + TARA) (gr)	293.0	300.2	244.1	285.2	
PESO DE LA TARA (gr)	40.2	46.0	48.9	56.4	
PESO DE AGUA (gr)	42.6	48.1	40.7	51.8	
PESO DE SUELO SECO (gr)	252.8	254.2	195.2	228.8	
1 200 22 00220 0200 (91)					

CURVA DE COMPACTACIÓN

5.- OBSERVACIONES

* La muestra de suelo corresponde a la calicata seleccionada en base a su relevancia para la presente investigación.

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE

DEL CAMINO VECINAL PALLALLA – TOTOJIRA.

DATOS DE LA	A MUEST	RA							2. N° MUES	STRA
		03 / PLATAFO	DDMA KM 01	. 500 (L/I)			DOSIEICACIÓN:	S85-CF12-C3		4-11-1-
-		RENOSA DE		. ,		_	ASF. DE SUELO:		M	- 2
-			ALTA PLAST	ICIDAD			ISF. DE SUELU.			
DATOS PARA	A EL ENS/	AYO								
						PROCTOR	HO=20.50	MDS=1.661	N°CAPAS	5
N	DE.	DESCRIPCION			12 G	OLPES	25 G	OLPES	56 GC	DLPES
N	DE	SCRIPCION		UND	MOL	DE 01	MOL	DE 02	MOL	DE 03
DENSIDAD										
Condición	de humedad				Normal	Saturado	Normal	Saturado	Normal	Saturado
1 Peso suelo l	húmedo + mo	de		g	11,551	11,750	12,050	12,105	12,102	12,098
2 Peso del mo	olde			g	7,813	7,813	7,910	7,910	7,823	7,823
E PLÁS Volumen de				cc	2,112	2,112	2,155	2,155	2,145	2,145
	humedo, [1]-[2			g	3,738	3,937	4,140	4,195	4,279	4,275
	uelo humedo	, [4]/[3]		g/cc	1.77	1.86	1.92	1.95	1.99	1.99
6 Id. Capsula				-	1	2	3	4	5	6
	elo húmedo +			g	119.02	152.66	105.78	137.22	144.70	128.59
	elo seco + cap	sula		g	105.84	125.68	94.88	116.48	125.64	110.87
	9 Peso del agua, [7]-[8]			g g	13.18	26.98	10.90	20.74	19.06	17.72
					42.15	35.61	40.12	38.16	32.61	33.98
	Peso del suelo seco, [8]-[10]				63.69 20.69	90.07	54.76	78.32	93.03	76.89
	Contenido de humedad, [9]/[11] Densidad seca,[5]/(1+[12]/100)					29.95	19.91	26.48	20.49	23.05
		2]/100)		g/cc	1.466	1.434	1.602	1.539	1.656	1.620
PENETRACIO	N				,					
CARGA			URA DE DIAL (,		1		ERZA (kg)		
STANDARD	mm	12 GOLPES	25 GOLPES	56 GOLPES	DIRECTA	CORREGIDA	DIRECTA	CORREGIDA	DIRECTA	CORREGID
Area del	0.000	0	0	0	0		0		0	
pistón:	0.635	270	480	660	27	_	49		67	
19.35 cm2	1.270	640	890	1,110	65		91	-	113	
70.5	1.905 2.540	810	1,120	1,410 1,690	83 111	104*	114 141	139*	144 173	167*
70.5		1,090	1,380	1,950	111	104"	162	139"	173	167"
-	3.175 3.810	1,200 1,320	1,590 1,760	2,050	135	-	180		209	
105.7	5.080	1,430	1,760	2,250	146	151*	201	206*	230	246*
100.7	6.350	1,540	2,120	2,590	157	131	216	200	264	240
-	7.620	1,600	2,120	2,810	163	1	232	-	287	
-	10.160	1,730	2,420	3,070	177		247		314	
	12.700	1,830	2,540	3,410	187		259		348	
	ORRECCION:	,	DE CARGA							
	OTTICE COTOTY.	DELTANELO	DE OFFICOR	LIV NEW TON						
EXPANSIÓN			UDA DIV. (D. :	0.040	0.010		A 1 =	II D A C	H _{suelo} =	127.0 mm
TIEMPO	(11)		URA DIAL(Div):	0.010mm	0.010	0/		URAS		0/
echa Hora	(Hrs)		25 GOLPES	56 GOLPES	mm	%	mm	%	mm	%
2/10/23 11:10 AM	0 24	0.00	0.00	0.00 1.01	0.00	0.00%	0.00	0.00%	0.00	0.00%
3/10/23 11:10 AM	48	1.57 2.55	1.35	1.01	0.02	1.24% 2.01%	0.01	1.06% 1.90%	0.01	0.80% 1.53%
	72	3.18	2.41 3.05	2.60	0.03	2.01%	0.02	2.40%	0.02	2.05%
		3.49	3.54	2.00	0.03	2.75%	0.03	2.40%	0.03	2.05%
5/10/23 11:10 AM	QK.	J.43	0.04	2.00	0.00	2.13/0	0.04	2.13/0	0.03	2.33/0
5/10/23 11:10 AM 5/10/23 11:10 AM	96									
5/10/23 11:10 AM 5/10/23 11:10 AM RESULTADO	S		T	E0.00: 275	T			II	ADD	
6/10/23 11:10 AM 6/10/23 11:10 AM RESULTADO ENSAYO CE	S BR	12 GOLPES	25 GOLPES	56 GOLPES		PROCTOR	00.5		CBR FINAL	
Densidad Seca	S BR prom.	1.45	1.57	1.66		ad óptima	20.50%	Penetración	0.1"	0.2"
5/10/23 11:10 AM 5/10/23 11:10 AM RESULTADO ENSAYO CE Densidad Seca Pen	S BR				N		20.50% 1.661 1.578	Penetración 100% MDS 95 % MDS		0.2" 12.0 10.2

FACULTAD DE INGENIERIA CIVIL Y ARQUITECTURA LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

LEYENDA

CBR DE LABORATORIO (CALIFORNIA BEARING RATIO) (ASTM D 1883)

PROYECTO: EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA. SOLICITADO: Bach. AMÉRICO COLQUE ATENCIO MUESTRA: M - 2 9. GRÁFICA 12 GOLPES 25 GOLPES **56 GOLPES** 200 180 250 160 200 40 250 120 200 150 FUERZA [kg] 001 150 80 9 9 8 40 50 20 20 PENETRACION [mm] PENETRACION [mm] PENETRACION [mm] **CBR AL 100% Y 95% DE LA MDS** 1.70 100% MDS 1.66 DENSIDAD SECA [gr/cc] CBR, PENETRACION 0.1" 12.3 CBR, PENETRACION 0.2" 1.60 95% MDS 1.58 CBR, PENETRACION 0.1" 10.4 CBR, PENETRACION 0.2" 1.50 1.40 11 12 13

C.B.R [%]

ANEXO 5: CONSTANCIA DE USO DE EQUIPOS DE LABORATORIO

N° 020-2024-LMSM-EPIC-FICA/UNAP.

CONSTANCIA DE USO DE EQUIPOS DE LABORATORIO

EL QUE SUSCRIBE JEFE DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES DE LA FICA.

Hace constar:

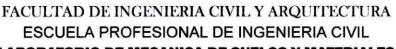
Que el tesista, Bach. AMÉRICO COLQUE ATENCIO, hizo uso de los equipos del Laboratorio de Mecánica de Suelos y Materiales - FICA, para realizar los ensayos requeridos para su proyecto de Tesis: "EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA", Conducente a la obtención del Título profesional de Ingeniero Civil.

Los ensayos que realizaron son los siguientes:

ENSAYOS DE LABORATORIO REALIZADOS

ÍTEM	ENSAYOS	NORMA	CANTI DAD	U.M.
01	Contenido de Humedad.	ASTM D-2216	12	Und.
02	Análisis Granulométrico por Lavado.	ASTM D-6913	12	Und.
03	Limite Liquido - Limite Plástico.	ASTM D-4318	20	
04	Ensayo de Proctor.	ASTM D-1557-12	10	Und.
05	Ensayo de C.B.R.	ASTM D-1883	10	Und.

Los resultados obtenidos, de los ensayos, no son responsabilidad del Laboratorio de Mecánica de Suelos y Materiales.


Se le expide la presente constancia a solicitud escrita del interesado, para adjuntar en su proyecto de Tesis.

Puno, C. U. 19 de julio del 2024.

DE SUBJEST OF STREET OF STREET

C.c. Arch./LMSyM. Adj solicitud (80 folios)

LABORATORIO DE MECANICA DE SUELOS Y MATERIALES

N° 031-2024-LMSM-EPIC-FICA/UNAP.

CONSTANCIA DE USO DE EQUIPOS DE LABORATORIO

EL QUE SUSCRIBE JEFE DE LABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES DE LA FICA.

Hace constar:

Que el tesista, Bach. AMÉRICO COLQUE ATENCIO, hizo uso de los equipos del Laboratorio de Mecánica de Suelos y Materiales - FICA, para realizar los ensayos requeridos para su proyecto de Tesis: "EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA - TOTOJIRA", Conducente a la obtención del Título profesional de Ingeniero Civil.

Los ensayos que realizaron son los siguientes:

ENSAYOS DE LABORATORIO REALIZADOS

ÍTEM	ENSAYOS	NORMA	CANTI DAD	U.M.
01	Limite Liquido - Limite Plástico.	ASTM D-4318	14	Und.
02	Ensayo de Proctor.	ASTM D-1557-12	14	Und.
03	Ensayo de C.B.R.	ASTM D-1883	14	Und.

Los resultados obtenidos, de los ensayos, no son responsabilidad del Laboratorio de Mecánica de Suelos y Materiales.

Se le expide la presente constancia a solicitud escrita del interesado, para adjuntar en su proyecto de Tesis.

Puno, C. U. 22 de octubre del 2024.

ING. SAMUEL HUAQUISTO CACERES

ABORATORIO DE MECÁNICA DE SUELOS Y MATERIALES

C.c. Arch./LMSyM. Adj solicitud (56 folios)

ANEXO 6: SOLICITUD PARA AUTORIZACIÓN DE CALICATAS

"Año de la Unidad, Paz y el Desarrollo"

SOLICITO: Autorización de análisis de suelos en el sector Callanca, para ejecución de proyecto de tesis.

Lic. RUBEN BAYLON ROQUE

ALCALDE DEL CENTRO POBLADO DE PALLALLA

Yo, Américo COLQUE ATENCIO, identificado con DNI N° 75396205, y código de matrícula N° 164358, estudiante de la Escuela Profesional de Ingeniería Civil en la Universidad Nacional del Altiplano – Puno, con código de Proyecto de Tesis N° 2023-1341, ante usted con el debido respeto y previo saludo, me presento y expongo:

Que, en aras de obtener el título profesional de INGENIERO CIVIL que se viene ejecutando el proyecto de tesis denominado EVALUACIÓN DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO VECINAL PALLALLA – TOTOJIRA, este trabajo de investigación implica la realización de 7 pozos exploratorios a cielo abierto en el camino vecinal Pallalla – Totojira exactamente en el sector Callanca con el fin de obtener muestras de suelos para su respectivo análisis de suelos en el Laboratorio de Mecánica de Suelos y Materiales de la E.P. de Ingeniería Civil, por lo cual acudo a usted para que me brinde la respectiva autorización para ingresar a la zona indicada.

Por lo expuesto:

Ruego a Usted, atender a mi solicitud.

Puno, 20 de julio del 2023

Presido Presido 20-07-23 hora 5.00 pm,

Bach. AMÉRICO COLQUE ATENCIO

Tesista

MUNICIPALIDAD DEL CENTRO POBLADO DE PALLALLA DISTRITO DE PLATERIA

Constancia.

Conste por el presente documento que el señor **Américo COLQUE ATENCIO** con DNI 75396205 solicita análisis de suelo en el Sector Callanca para ejecución de proyecto de tesis, visto la solicitud se le autoriza para siete pozos exploratorios a cielo abierto en el camino vecinal de Pallalla con dirección a la comunidad de Totojira.

Se le expide el presente documento con la finalidad de justificación ante las autoridades sectoriales.

Pallalla 21 de julio del 2023.

ANEXO 7: ESPECIFICACIONES DE CAL DE OBRA

NOMBRE DE PRODUCTO: CAL DE OBRA PARA CONSTRUCCIÓN MARTELL

TIPO DE ENVASE	PRESENTACIÓN	
Bolsa laminada	Bolsa * 20kg	

DESCRIPCIÓN:

Compuesto formado de trazas de carbonato de calcio, hidróxido de calcio o bien una mezcla de carbonato de calcio y partículas de rocas disgregadas.

COMPOSICIÓN:

Carbonato de calcio, hidróxido de calcio y óxidos.

ALMACENAMIENTO Y DISTRIBUCIÓN

- Tiempo de vencimiento 24 meses en envase cerrado si se mantiene almacenado en ambiente fresco, seco y protegido del sol directo.
- Transporte y distribución a temperatura ambiente.
- No exponer a fuentes térmicas.
- Proteger el producto de la humedad porque puede formar grumos.

CARACTERÍSTICAS:

PARAMETRO	ESPECIFACIÓN	
ASPECTO	Polvo	
COLOR	Crema / Gris	
OLOR	Inodoro	

USOS Y/O APLICACIONES:

- Marcar Campos.
- Estabilizar suelos.
- · Complementación de mortero.

MODO DE EMPLEO

- En suelos sódicos que tienen en promedio 1.56kg de Na⁺/50m², esparcir 20kg de cal de obra por cada 50m², previamente el suelo debe estar rastrillado.
- Espolvorear de manera uniforme en zanjas y suelos salitrosos: 1.5kg/m².

DOSIFICACIÓN:

Zanjas: 1.5 kg/m².

PRECAUCIONES:

- No ingerir el producto.
- Mantener alejado del alcance de los niños.
- En caso de contacto con los ojos, lavar con abundante aqua limpia.
- Mantener la bolsa herméticamente cerrada.

NOTA: LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TÉCNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACIÓN NO LIBERA A NUESTROS CLIENTES DE REALIZAR SUS PROPIOS ENSAYOS, QUEDA FUERA DE NUESTRO CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

QUIMICA MARTEU S.A.C.

HOJA DE SEGURIDAD

CAL DE OBRA MARTELL

SECCION I: IDENTIFICACION DEL PRODUCTO

Nombre del Producto : CAL DE OBRA MARTELL

Familia Química : Mezcla del calcinado de calizas con

carbonato de calcio

Nombre del proveedor : Química Martell S.A.C.

Dirección : Calle Sta. Ana Mz. E Lt. 51B

Ciudad - País : Comas- Lima - Perú

 Teléfono Del Proveedor
 : (01) 714-1840

 Teléfono De Emergencia
 : (01) 714-1841

 FAX
 : (01) 714-1840

SECCION II: COMPOSICION

Hidróxido de calcio : $Ca(OH)_2$ N° CAS : 1305-62-0

SECCION III: CLASIFICACION DE RIESGO

Generalmente no es peligroso cuando se manipula adecuadamente, sin embargo se deben adoptar buenas prácticas de trabajo.

Efectos Adversos para la salud

Ojos : El contacto con los ojos puede causar irritación

Piel: irritación

Ingestión: náuseas, vómitos, dolores abdominales.

Inhalación: Las neblinas en aire pueden causar irritación de ojos u garganta.

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES DE REALIZAR SUS PROPIOS ENSAYOS, QUEDA FUERA DE NUESTRO DE CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

QUIMICA MARTEU S.A.C.

HOJA DE SEGURIDAD

CAL DE OBRA MARTELL

SECCION IV: EMERGENCIA Y PRIMEROS AUXILIOS

PIEL: Si la cal está seca eliminar el máximo posible y después lavar abundantemente

con agua. Si la cal está húmeda, lavar abundantemente con agua. Quitar y lavar a fondo las prendas, calzado, relojes, etc., manchados antes de volver

a utilizarlos.

OJOS: No frotarse los ojos para evitar daños de la córnea. Enjuagar inmediatamente

con abundante agua, para eliminar todas las partículas y consultar a un

oftalmólogo.

INHALACION: Trasladar a la persona a un sitio donde pueda respirar aire fresco. Beber agua

para limpiar la garganta y sonarse la nariz para eliminar el polvo. Buscar

asistencia médica si los síntomas persisten.

INGESTION: No provocar el vómito. Si la persona está consciente, enjuagar la boca para

eliminar el material o polvo, darle de beber abundante agua

SECCION V: MEDIDAS CONTRA EL FUEGO

INFLAMBILIDAD No inflamable

LUCHA CONTRA INCENDIOS: Según la magnitud del incendio, puede ser necesario el

uso de trajes de protección contra el calor, equipo respiratorio autónomo, guantes, gafas protectoras o

máscaras faciales y botas.

Utilizar agentes extintores en polvo para extinguir fuegos cercanos.

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES DE REALIZAR SUS PROPIOS ENSAYOS, QUEDA FUERA DE NUESTRO DE CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

QUIMICA MARTEUL S.A.C.

HOJA DE SEGURIDAD

CAL DE OBRA MARTELL

SECCION VI: **MEDIDAS PARA CONTROLAR FUGAS O DERRAMRES**

> PROTECCION PERSONAL: Evitar la formación de polvo. No inhalar el polvo.

> Evitar la contaminación de desagües, aguas MEDIO AMBIENTE

superficiales o subterráneas, así como del suelo. En caso de producirse grandes vertidos,

informar a las autoridades competentes.

METODOS DE LIMPIEZA: Recoger en seco y proceder a la eliminación de

los residuos. Lavar después.

SECCION VII: MANIPULACION Y ALMACENAMIENTO

MANIPULACION SIN EXIGENCIAS

ALMACENAMIENTO CERRADO Y SECO

SIN LIMITACIONES

Mantener los niveles de polvo al mínimo.

Temperatura de almacenamiento: No emplear recipientes de aluminio.

CONTROL DE EXPOSICION Y PROTECCION PERSONAL SECCION VIII:

> **OCULAR** Vestir anteojos de seguridad

ROPA PROTECTORA Vestir vestimenta protectora y

guantes. Guantes de hule neopreno o PVC.

Sustituir la ropa contaminada. Lavar manos y **OTRAS MEDIDAS**

cara al finalizar el trabajo.

VENTILACION Use equipos de ventilación o ventilación natural

para mantener los niveles de polvo debajo del

Si los niveles de polvo están por encima del OEL PROTECCION RESPIRATORIA

utilice una mascarilla anti-polvo.

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES DE REALIZAR SUS PROPIOS ENSAYOS, QUEDA FUERA DE NUESTRO DE CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

QUIMICA MARTEU S.A.C.

HOJA DE SEGURIDAD

CAL DE OBRA MARTEU

SECCION IX: PROPIEDADES FISICOQUIMICAS

Temperatura de Ebullición (°C) Se descompone a óxido de calcio sobre los 580°C Temperatura de Fusión (°C) (-H2O) a 580°C, se convierte en óxido de calcio

Densidad especifica 2.85g/cm3

Estado Físico, Color y Olor sólido en forma de polvo de color entre gris y beige

Presión de Vapor (mm Hg 20°C) No Aplicable

SECCION X : ESTABILIDAD Y REACTIVIDAD

ESTABILIDAD : Estable en condiciones normales

REACCIONES PELIGROSAS : Ninguno conocido

MATERIALES A EVITAR : ácidos, sulfuro de hidrógeno, metales ligeros

SECCION XI: INFORMACION TOXICOLOGICA

No se dispone de información de intoxicación aguda por efecto del producto.

Sin embargo se debe evitar exposiciones en concentraciones elevadas.

SECCION XII : INFORMACION ECOLOGICA

No se ha determinado daños al medio ambiente.

SECCION XIII: CONSIDERACIONES SOBRE DISPOSICION FINAL

Después del fraguado, la cual puede ser eliminado igual que el resto de desperdicios de la construcción y puede ser almacenado en contenedores adecuados conforme con la

reglamentación vigente en cada caso.

SECCION XIV: INFORMACION PARA EL TRANSPORTE

Mercancía no peligrosa

SECCION XV: INFORMACION REGLAMENTARIA

Normas internacionales aplicables: IATA, IMDG

Normas nacionales aplicables: DS 021-2008-MTC

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES DE REALIZAR SUS PROPIOS ENSAYOS, QUEDA FUERA DE NUESTRO DE CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

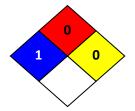
QUIMICA MARTEUL S.A.C.

HOJA DE SEGURIDAD

CAL DE OBRA MARTEU

SECCION XVI: OTRAS INFORMACIONES

GLOSARIO:


TWA: Media Ponderada en el tiempo **OEL:** Limite de exposición ocupacional

La información que se suministra en este documento se ha recopilado en base a las mejores fuentes existentes y de acuerdo con los últimos conocimientos disponibles y con los requerimientos legales vigentes sobre clasificación, envasado y etiquetado de sustancias peligrosas. Esto no implica que la información sea exhaustiva en todos los casos. Es responsabilidad del usuario determinar la validez de esta información para su aplicación en cada caso.

4 : Riesgo severo
3 : Riesgo serio
2 : Riesgo moderado
1 : Riesgo leve
0 : Riesgo mínimo

1
0
0

LAS INSTRUCCIONES DE FORMA DE USO ESTAN BASADOS EN NUESTROS CONOCIMIENTOS, EXPERIENCIA TECNICA Y NO SUPONEN COMPROMISO. ESTA INFORMACION NO LIBERA A NUESTROS CLIENTES DE REALIZAR SUS PROPIOS ENSAYOS, QUEDA FUERA DE NUESTRO DE CONTROL Y ES DE EXCLUSIVA RESPONSABILIDAD DEL USUARIO.

Precio de la Cal de Obra en su presentación de bolsas de 20 kg en tiendas PROMART

ANEXO 8: ANÁLISIS QUÍMICO DE LA CENIZA DE FONDO

FACULTAD DE INGENIERÍA QUÍMICA

LABORATORIO DE CONTROL DE CALIDAD

FIQ Nro

LQ - 2023

Nº 002508

Certificado de Análisis

ASUNTO : Análisis Químico de CENIZA DE FONDO

PROCEDENCIA

: HORNO DE LADRILLERAS DEL C.P. SALCEDO

PROYECTO

: "EVALUACION DEL USO DE CENIZA DE FONDO Y CAL COMO ADITIVO

ESTABILIZANTE DE SUELO ARCILLOSO EN LA SUBRASANTE DEL CAMINO

VECINAL PALLALLA - TOTOJIRA"

INTERESADO

: AMERICO COLQUE ATENCIO

MUESTREO

: 06/11/2023, por el interesado

ANÁLISIS

: 06/11/2023

COD. MUESTRA

: B009-000527

CARACTERISTICAS FISICO - QUIMICAS

PARAMETROS QUIMICOS	UNIDAD	RESULTADOS	
1 Contenido de humedad	%	0.98	
2 Oxido de fosforo O10P4	%	0.043	
3 Dióxido <mark>de azufre SO</mark> 2	mg/kg	6061.12	
4 Óxido de hierro FezO3	%	2.13	
5- Oxido de potasi <mark>o K2O</mark>	%	0,002	
6 Trióxido de alu <mark>minio Al2O3</mark>	%	6.25	
7 Oxido de calcio CaO	mg/kg	7482.32	
8 Oxido de magnesio MgO 9	mg/kg	98.15	
9 Oxido de silicio SiO2	%	52.78	

Puno, C.U. 13 de noviembre del 2023.

V°R°

ING. LUZ MARINA TEVES PONCE ANALSTA DE LABORATORIO DE CALIDAD FIQ. - UNA - CIP - 162393

ultad de Ingeniería Química

er B. Aparicio Aragón, M. DECANO - FIO - UNA