

UNIVERSIDAD NACIONAL DEL ALTIPLANO FACULTAD DE INGENIERÍA MECÁNICA ELÉCTRICA, ELECTRÓNICA Y SISTEMAS ESCUELA PROFESIONAL DE INGENIERÍA MECÁNICA ELÉCTRICA

DISEÑO Y EVALUACION DEL SISTEMA DE COMPENSACION REACTVA Y ARMONICOS DEL SISTEMA ELECTRICO DE LA PLANTA CALCESUR, CARACOTO SAN ROMÁN JULIACA

TESIS

PRESENTADA POR:

ABEL PERCY CANAHUIRE TORRES

LENIN HERBERT MARRÓN MENDOZA

PARA OPTAR EL TITULO PROFESIONAL DE:

INGENIERO MECANICO ELECTRICISTA

PUNO – PERÚ

2024

Página 1 of 128 - Portada

Identificador de la entrega trn:oid:::8254:416932291

ABEL PERCY CANAHUIRE TORRES LENIN HERBERT... DISEÑO Y EVALUACION DEL SISTEMA DE COMPENSACION **REACTVA Y ARMONICOS DEL SISTEMA ELECTRICO DE LA PL...**

Universidad Nacional del Altiplano

Detalles del documento

Identificador de la entrega trn:oid:::8254:416932291

Fecha de entrega 17 dic 2024, 11:20 a.m. GMT-5

Fecha de descarga 17 dic 2024, 11:24 a.m. GMT-5

Nombre de archivo ABEL PERCY CANAHUIRE TORRES_VF_2.pdf

Tamaño de archivo 3.5 MB

122 Páginas

24,300 Palabras

122,978 Caracteres

Diturnitin Página 1 of 128 - Portada

Identificador de la entrega trn:oid:::8254:416932291

Página 2 of 128 - Descripción general de integridad

Identificador de la entrega trn:oid:::8254:416932291

17% Similitud general

El total combinado de todas las coincidencias, incluidas las fuentes superpuestas, para ca...

Filtrado desde el informe

- Bibliografía
- Texto citado
- Texto mencionado
- Coincidencias menores (menos de 12 palabras)

Fuentes principales

- 15%
 Fuentes de Internet
- 4% 🛍 Publicaciones
- 10% 💄 Trabajos entregados (trabajos del estudiante)

Marcas de integridad

N.º de alerta de integridad para revisión

Texto oculto

1161 caracteres sospechosos en N.º de páginas El texto es alterado para mezclarse con el fondo blanco del documento. Los algoritmos de nuestro sistema analizan un documento en profundidad para buscar inconsistencias que permitirían distinguirlo de una entrega normal. Si advertimos algo extraño, lo marcamos como una alerta para que pueda revisarlo.

Una marca de alerta no es necesariamente un indicador de problemas. Sin embargo recomendamos que preste atención y la revise.

Maroos Jose Villanueva (*** Ingenero Mechano Blectricista C.J.P. 90138 Villanueva Cornejo

M.Sc. Felipe Condori Chambilla SUBDIRECTOR DE INVESTIGACIÓN EPIME

Página 2 of 128 - Descripción general de integridad

Identificador de la entrega trn:oid:::8254:416932291

DEDICATORIA

A DIOS:

Por ser el inspirador y darnos fuerza para continuar en este proceso de obtener uno de los anhelos más deseados.

A mis padres:

Por su amor, trabajo y sacrificio en todos estos años, gracias a ustedes hemos logrado llegar hasta aquí y convertirnos en lo que somos. Ha sido el orgullo y el privilegio de ser sus hijas, son los mejores padres.

A Mis AMIGOS Y AMIGAS:

Que nos han apoyado y han hecho que el trabajo se realice con éxito en especial a aquellos que nos abrieron las puertas y compartieron sus conocimientos.

Abel Percy Canahuire Torres.

DEDICATORIA

A DIOS:

Por ser el inspirador y darnos fuerza para continuar en este proceso de obtener uno de los anhelos más deseados.

A mis padres:

Por su amor, trabajo y sacrificio en todos estos años, gracias a ustedes hemos logrado llegar hasta aquí y convertirnos en lo que somos. Ha sido el orgullo y el privilegio de ser sus hijas, son los mejores padres.

A Mis AMIGOS Y AMIGAS:

Que nos han apoyado y han hecho que el trabajo se realice con éxito en especial a aquellos que nos abrieron las puertas y compartieron sus conocimientos.

Lenin Herbert Marrón Mendoza.

AGRADECIMIENTOS

Agradecemos a Dios por bendecirnos la vida, por guiarnos a lo largo de nuestra existencia, ser el apoyo y fortaleza en aquellos momentos de dificultad y de debilidad.

Gracias a nuestros padres, por ser los principales promotores de nuestros sueños, por confiar y creer en nuestras expectativas, por los consejos, valores y principios que nos han inculcado.

Agradecemos a nuestros docentes de la Escuela de Ingeniería Mecánica Eléctrica de la Universidad Nacional del Altiplano, por haber compartido sus conocimientos a lo largo de la preparación de nuestra profesión

ÍNDICE GENERAL

		Pág.
DED	ICATORIA	
AGR	ADECIMIENTOS	
ÍNDI	ICE GENERAL	
ÍNDI	ICE DE TABLAS	
ÍNDI	ICE DE FIGURAS	
ÍNDI	ICE DE ANEXOS	
ACR	ÓNIMOS	
RES	UMEN	17
ABS	ГКАСТ	18
	CAPITULO I	
	INTRODUCCIÓN	
1.1.	PLANTEAMIENTO DEL PROBLEMA	20
1.2.	FORMULACIÓN DEL PROBLEMA DE INVESTIGACIÓN	22
	1.2.1. Problema General	22
	1.2.2. Problemas específicos	22
1.3.	HIPÓTESIS DE LA INVESTIGACIÓN	22
	1.3.1. Hipótesis general	22
	1.3.2. Hipótesis específicas	22
1.4.	JUSTIFICACIÓN DEL ESTUDIO	23
1.4.	OBJETIVOS	23
	1.4.1. Objetivo general	23
	1.4.2. Objetivos específicos	

CAPITULO II

REVISIÓN DE LITERATURA

2.1.	ANTECEDENTES	25
	2.1.1. Antecedentes internacionales	25
	2.1.2. Antecedentes nacionales	27
	2.1.3. Antecedentes regionales	28
2.2.	MARCO TEÓRICO	28
	2.2.1. La potencia reactiva	28
	2.2.2. Evaluación de los efectos del flujo de energía reactiva	29
	2.2.3. Potencia reactiva y estabilidad de la tensión	31
	2.2.4. Necesidad de compensar la potencia reactiva	31
	2.2.5. Métodos de compensación de potencia reactiva	32
	2.2.5.1. Compensación en derivación	32
	2.2.6. Compensación en serie	33
	2.2.7. Compensadores estáticos VAR	34
	2.2.8. Compensador VAR auto conmutado	35
	2.2.9. Compensador síncrono estático (STATCOM)	35
	2.2.10. Condensador sincrónico	36
	2.2.11. Definición de calidad de la energía	37
	2.2.12. Causas de las perturbaciones en los sistemas de energía	37
	2.2.13. Clasificación de los problemas de calidad de la energía	39
	2.2.14. Factor de potencia	39
	2.2.15. Factor de potencia instantáneo.	42
	2.2.16. Factor de potencia medio	42
	2.2.17. Factor de potencia medio flotante	42

2.2.18. Fundamentos de la teoría armónica	. 43
2.2.19. Armónicos	. 44
2.2.20. Efectos de los armónicos	. 48
2.2.21. Efectos de los armónicos en los sistemas de distribución	. 49
2.2.22. Efectos térmicos en los transformadores	. 50
2.2.23. Sobrecarga del conductor neutro	. 51
2.2.24. Efectos diversos en los bancos de condensadores	. 52
2.2.25. Condiciones de resonancia	. 52
2.2.26. Distorsión de la forma de onda	. 53

CAPITULO III

MATERIALES Y MÉTODOS

3.1.	MATERIALES
	3.1.1. Tipo de investigación
	3.1.2. Técnicas de recolección de datos
	3.1.3. Técnicas de análisis de datos
	3.1.4. Herramienta computacional y horizonte de análisis
3.2.	MÉTODO 59
	3.2.1. Determinar la potencia reactiva necesaria para mejorar el factor de potencia
	de la planta 59
	3.2.1. Analizar las distorsiones de voltaje causadas por las Notas de armónicos de
	la planta de acuerdo con los límites recomendados por la Norma IEEE 519-
	2014
	3.2.1.1. Análisis de flujo de armónicos
	3.2.1.2. Mediciones de armónicos de muy corta duración
	3.2.1.3. Mediciones de armónicos de corta duración

CAPITULO IV	
3.2.1.7. Determinación de parámetros del filtro	66
3.2.1.6. Diseño del filtro de armónicos L-C	66
con una tensión nominal de 120 V a 69 kV	64
3.2.1.5. Límites de distorsión de la corriente recomendados para	sistemas
3.2.1.4. Límites de armónicos recomendados	64

RESULTADOS Y DISCUSIÓN

4.1.	ANÁLISIS DE LA POTENCIA REACTIVA NECESARIA PARA
	MEJORAR EL FACTOR DE POTENCIA70
	4.1.1. Ubicación
	4.1.2. Información utilizada
	4.1.3. Parámetros eléctricos de la red equivalente
	4.1.4 Parámetros eléctricos de transformadores de potencia de 2 devanados 72
	4.1.5. Parámetros eléctricos de transformadores de potencia de 3 devanados 73
	4.1.6. Parámetros eléctricos de Notas de armónicos de planta
	4.1.7. Parámetros eléctricos de perfil de armónicos
	4.1.8. Parámetros eléctricos de filtro de armónicos en planta
	4.1.9. Cuadro de cargas de planta
	4.1.10. Perfil de tensión en barra 22.9 kV
	4.1.11. Límites de perfil de armónicas para la planta CALCESUR 22.9 Kv 76
	4.1.12. Límites de perfil de armónicas para la planta CALCESUR 460 V76
	4.1.13. Análisis de compensación reactiva
4.2.	ANÁLISIS DE LAS DISTORSIONES DE VOLTAJE CAUSADAS POR
	LAS NOTAS DE ARMÓNICOS DE LA PLANTA DE ACUERDO CON
	LOS LÍMITES RECOMENDADOS POR LA NORMA IEEE 519- 201478

	4.2.1. Análisis de flujo de armónicos	78
	4.2.2. Resultados de los casos evaluados de armónicos de corriente	79
	4.2.3. Resultados de los casos evaluados de armónicos de tensión	80
	4.2.4. Diseño del filtro de armónicos L-C	82
	4.2.5. Parámetros necesarios para el cálculo:	83
	4.2.6. Determinación de parámetros del filtro	83
	4.2.7. Transitorios electromagnéticos de energización del filtro L-C	89
V.	CONCLUSIONES	97
VI.	RECOMENDACIONES	98
VI.	REFERENCIAS BIBLIOGRÁFICAS	99
ANEXOS 110		
Área: Eléctrica		
Tema: Compensación reactiva		

Fecha de sustentación: 27 de Diciembre de 2024

Tabla 1

Tabla 2

Tabla 3

Tabla 4

Tabla 5

Tabla 6

Tabla 7

Tabla 8

Tabla 9

Tabla 10

Tabla 11

Tabla 12

Tabla 13

Tabla 14

Tabla 15

Tabla 16

Tabla 17

Tabla 18

Tabla 19

Tabla 20

ÍNDICE DE TABLAS

Pág.
Factor K (kvar/kW)
Límites de distorsión de la tensión64
Límites de distorsión de corriente para sistemas de 120 V a 69 kV 65
Parámetros eléctricos de la red equivalente72
Parámetros eléctricos de transformadores 02 devanados72
Parámetros eléctricos de transformadores 03 devanados73
Parámetros eléctricos de Notas de armónicos de planta73
Parámetros eléctricos de perfil de armónicos74
Parámetros eléctricos de filtro de armónicos en planta74
Cargas de planta75
Cargas de planta75
Límites de perfil de armónicas para la planta CALCESUR 22.9 Kv76
Límites de perfil de armónicas para la planta CALCESUR 460 V76
Factor K, caso de estudio77
Corrección del factor de potencia78
Armónicos de corriente
Armónicos de tensión

ÍNDICE DE FIGURAS

Pág.

Figura 1	Importancia de los cambios de fase fase φ y ψ
Figura 2	Línea de transmisión con compensación en derivación
Figura 3	Línea de transmisión con compensación en serie
Figura 4	Reactor conmutado por tiristor
Figura 5	Características del SVC y del STATCOM
Figura 6	Propagación de armónicos (generados por una carga no lineal) en sistemas
	de potencia
Figura 7	Triangulo de potencia y el angulo φ
Figura 8	Forma de onda sinusoidal de 60 Hz y algunos armónicos
Figura 9	Deformación de la onda senoidal por efecto de las armónicas. 1, Onda
	senoidal fundamental, 2, Segunda armónica. 3, Tercera armónica
Figura 10	Corrientes calculadas del interruptor electrónico de un accionamiento de
	motor de CC sin escobillas de velocidad ajustable para un ángulo de fase de
	$\theta = 0^{\circ}$
Figura 11	Corrientes calculadas del motor de un accionamiento de motor de CC sin
	escobillas de velocidad ajustable para un ángulo de fase de $\theta = 0^{\circ}$
Figura 12	Corriente de fase; Tensión de línea a línea del rectificador; Tensiones de
	línea a línea del bus infinito; Tensión de salida de CC del rectificador 47
Figura 13	Tensiones de línea del rectificador, siendo Vab y Va'b las tensiones de línea
	de los dos sistemas de tensión; forma de onda sinusoidal47
Figura 14	Forma de onda de corriente medida en un ordenador personal (PC) de última
	generación (muchos períodos)
Figura 15	Analizador de redes FLUKE 435

Figura 16	Corrección del factor de potencia Cos φ_1 a Cos φ_2 ,61
Figura 17	Filtro sintonizado
Figura 18	Ubicación de la Planta Katawi RUMI y S.E. Caracoto
Figura 19	Diagrama unifilar71
Figura 20	Registro THD de corriente
Figura 21	Registro THD de corriente celda AD302
Figura 22	Armónicos del orden 5th y 7th
Figura 23	Parámetros del filtro
Figura 24	Conexión de doble estrella no aterrada
Figura 25	Curva de saturación
Figura 26	Energización del filtro L-C, a través de su propia celda
Figura 27	Reactancia de-sintonía orden 4.2th91
Figura 28	Des-energización del filtro L-C92
Figura 29	Desenergización del filtro L-C92
Figura 30	Carga del filtro93
Figura 31	Energización del filtro L-C, junto al transformador de celda AD31194
Figura 32	Corriente de energización conjunta94
Figura 33	Sobretensión en la energización95
Figura 34	Desenergización del filtro L-C
Figura 35	Sobretensiones en el interruptor

ÍNDICE DE ANEXOS

	Pág.
ANEXO 1	Matriz de consistencia
ANEXO 2	Evaluación económica111
ANEXO 3	Filtro de armónicos L-C, desintonizado a 4.2 th de 1 MVAR (22.9 kv)114
ANEXO 4	Flujo de carga sin filtro LC EN 22.9 KV 115
ANEXO 5	Registro de datos
ANEXO 6	Declaración jurada de autenticidad de tesis
ANEXO 7	Autorización el depósito de tesis en el Repositorio Institucional123

ACRÓNIMOS

Q_C :	Potencia reactiva necesaria.
h_n :	El factor de de-sintonía necesario.
Q:	Factor de calidad a frecuencia de-sintonía
<i>V</i> :	Tensión nominal.
f:	Frecuencia nominal.
n :	Representa el orden de los armónicos
i:	Es un contador simple.
sh :	Se utiliza para denotar "corto".
F :	Representa un valor eficaz.
P:	potencia activa instalada
φ_1 :	ángulo de desfase antes de la corrección
$arphi_2$:	ángulo de desfase que se quiere obtener con la corrección

RESUMEN

Con el aumento de las cargas no lineales en las instalaciones eléctricas, aparecen problemas de distorsión armónica en las señales de voltaje y de corriente, lo cual provoca pérdidas de energía y empeoramiento del factor de potencia, afectando la calidad de la energía en el sistema eléctrico de la planta industrial CALCESUR. Como solución al problema se plantea la selección de bancos de capacitores del tipo filtro de armónicos L-C desintonizados del orden 4.2. En ese sentido, en el presente proyecto de investigación, tiene como objetivos específicos determinar la potencia reactiva necesaria, con la finalidad de mejorar las caídas de tensión, presencia de armónicos y principalmente corregir el bajo factor de potencia presente en la celda AD311 (22.9 kV), por lo que se plantea la instalación de un equipo de compensación reactiva (condensador o filtro L-C) en 22.9 kV, el cual permitirá corregir el factor de potencia. Así también analizar las distorsiones de voltaje causadas por las Notas de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519- 2014. Los resultados obtenidos producto de las simulaciones realizadas con el software ETAP, confirman que es necesario instalar un filtro L-C para compensar los reactivos de la celda AD311, y nos sugiere que el equipo a instalarse debe disponer de los siguientes parámetros eléctricos: Capacitancia: 5.058 μ F / fase \rightarrow (2 Capacitores de 2.529 μ F / fase); Inductancia: 78.857 mH / fase; Orden de-sintonía: 4.2; Conexión: estrella sin aterrar, que están de acuerdo con los límites recomendados por la Norma IEEE 519-2014. Esta investigación es del tipo descriptiva correlacional.

Palabras clave: Armónicos, Caídas de tensión, Compensación reactiva, Factor de potencia, Filtro de armónicos.

ABSTRACT

With the increase of non-linear loads in electrical installations, harmonic distortion problems arise in voltage and current signals, which causes energy losses and worsening of the power factor, affecting the power quality in the electrical system of the CALCESUR industrial plant. As a solution to the problem, the selection of capacitor banks of the detuned L-C harmonic filter type of order 4.2 is proposed. In this sense, the specific objectives of this research project are to determine the necessary reactive power, in order to improve the voltage drops, presence of harmonics and mainly to correct the low power factor present in the AD311 cell (22.9 kV), so the installation of a reactive compensation equipment (capacitor or L-C filter) in 22.9 kV is proposed, which will correct the power factor. Also analyze the voltage distortions caused by the harmonic sources of the plant according to the limits recommended by the IEEE 519- 2014 Standard. The results obtained from the simulations performed with ETAP software, confirm that it is necessary to install an L-C filter to compensate the reactants of the AD311 cell, and suggests that the equipment to be installed should have the following electrical parameters: Capacitance: 5. 058 μ F / phase \rightarrow (2 Capacitors of 2.529 μ F / phase); Inductance: 78.857 mH / phase; Tuning order: 4.2; Connection: ungrounded star, which are in accordance with the limits recommended by IEEE Standard 519-2014. This research is of the descriptive correlational type.

Key words: Harmonics, Voltage drops, Reactive compensation, Power factor, Harmonic filter.

CAPITULO I

INTRODUCCIÓN

El propósito del presente estudio es diseñar el equipamiento de compensación reactiva necesaria para la planta CALCESUR, con la finalidad de mejorar las caídas de tensión, presencia de armónicos y principalmente corregir el bajo factor de potencia presente en la celda AD311 (22.9 kV).

Han surgido recientemente tecnologías de apoyo a la monitorización de la calidad de energía: en la actualidad, la medición sincronizada de la forma de onda ha atraído una gran atención en el campo de los sistemas eléctricos, dada su capacidad para realizar mediciones de alta resolución de la forma de onda (Shao et al., 2024).

Idealmente, tanto la tensión en un barraje de suministro de energía eléctrica como la corriente resultante deben presentar formas de onda perfectamente sinusoidales, en la práctica estas formas de onda están distorsionadas, por causa de los armónicos, los cuales son señales cuya frecuencia es un múltiplo entero de la fundamental, la suma de estas señales da como resultado la señal distorsionada original, siendo esta 60 Hz, y los armónicos que más se generan en los sistemas eléctricos son los de orden impar, tales como 180 Hz el tercer armónico, 300 Hz el quinto armónico, 420 Hz el séptimo armónico y así sucesivamente (Carrasquilla, 2017).

Con el creciente aumento en el uso de cargas no lineales, se han empezado a tener algunos problemas en las instalaciones eléctricas debido a los efectos de las componentes armónicas de corrientes y tensiones en el sistema eléctrico, que no se contemplaban anteriormente, entre estos están el sobrecalentamiento de cables, transformadores y

motores, corrientes excesivas en el neutro, fenómenos de resonancia entre los elementos del circuito (si se cuentan con bancos de capacitores para corrección del factor de potencia) y en general la calidad en el suministro de energía eléctrica se ha ido deteriorando por la distorsión presente en las tensiones y corrientes (Lemus, 2018).

1.1. PLANTEAMIENTO DEL PROBLEMA

Los sistemas de potencia son susceptibles a problemas de calidad de la potencia debido a la conexión de cargas reactivas, desequilibradas y no lineales. (Torres-Acevedo et al., 2017). Un problema presente en las redes eléctricas de distribución de energía es el aumento progresivo de cargas no lineales que ayudan a incrementar la invección de corrientes y tensiones armónicas, la presencia de armónicos puede originar problemas como: calentamiento en transformadores, vibraciones en motores, bajo factor de potencia, disparos indeseados en equipos de protección, excesiva corriente por el conductor neutro, entre otros (Durango et al., 2017). Actualmente, los problemas en la calidad de la energía eléctrica se han acentuado en las instalaciones eléctricas industriales, debido principalmente al incremento del uso cada vez mayor de la electrónica de potencia para el control de los procesos o cargas que tienen un comportamiento no lineal, es decir, la señal de corriente es no sinusoidal cuando se le aplica un voltaje sinusoidal . (Reyes-Trujillo E, Rodríguez-Rivas J.J., 2010). Normalmente esta perturbación se caracteriza por la tensión retenida, su duración y el salto de fase. Además, su presencia aumenta la corriente en lugares remotos de un sistema eléctrico, produce mal funcionamiento o interrupciones en equipos sensibles, lleva a interrupciones completas del proceso industrial y afecta al buen funcionamiento de los sistemas eléctricos (Rojas-Cubides et al., 2015). Existen diferentes recursos que reducen en parte algunos de los problemas generados en la red eléctrica, pero la solución más común utilizada para filtrar armónicos

y compensar el factor de potencia en aplicaciones industriales es el uso de filtros pasivos conectados en paralelo con la carga. Un filtro pasivo está constituido por un arreglo de una bobina y un capacitor (LC) con baja resistencia serie para reducir pérdidas. También en algunas aplicaciones, se utilizan bancos de capacitores para mejorar el factor de potencia. Sin embargo, en ambos casos pueden ocurrir resonancias serie o paralelo con la red, al circular a través de ella armónicos, por lo que estas distorsiones pueden ser amplificadas en vez de atenuarse con un peligro potencial de causar daños en la instalación, en los filtros LC, en los capacitores o en el propio equipo conectado a la red. (Reyes et al., 2010). La compensación de la potencia reactiva en los sistemas eléctricos de distribución consiste en la selección e instalación de bancos de capacitores en determinados puntos del circuito con el objetivo de reducir sus costos de operación anuales. (Santos et al., 2014). La compensación de potencia reactiva es un fenómeno indispensable para la mejora de la eficiencia energética de los sistemas eléctricos y son varias las ventajas que proporciona la compensación de potencia reactiva para el sistema eléctrico, pero en el caso del subsistema de distribución primaria se ve más asociado a la necesidad de reducir pérdidas de energía durante el transporte y mejorar el perfil de la tensión (Vasconcellos et al., 2012). Todo lo anterior provoca que la compensación de la potencia reactiva en un sistema de suministro eléctrico se realice con el objetivo de optimizar los costos de la energía eléctrica, estimulada en lo fundamental por la normativa de comercialización del servicio eléctrico vigente en el país, que establece, generalmente a través de una cláusula del factor de potencia, un sistema de penalización-bonificación en límites establecidos. (Vasconcellos et al., 2012). Por lo tanto el objetivo de la presente investigación es realizar el Diseño del Sistema de Compensación Reactiva del Sistema Eléctrico de la Planta Industrial CALCESUR, Caracoto San Román Juliaca.

1.2. FORMULACIÓN DEL PROBLEMA DE INVESTIGACIÓN

1.2.1. Problema General

¿Cómo mejora la calidad, seguridad y confiabilidad del sistema con el diseño del Sistema de Compensación Reactiva del Sistema Eléctrico de la Planta Industrial CALCESUR, Caracoto San Román Juliaca?

1.2.2. Problemas específicos

- ¿Cuál es la potencia reactiva necesaria para mejorar el factor de potencia de la planta?
- ¿Cuáles son las distorsiones de voltaje causadas por las Notas de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519-2014?

1.3. HIPÓTESIS DE LA INVESTIGACIÓN

1.3.1. Hipótesis general

Con el diseño del Sistema de Compensación Reactiva, del Sistema Eléctrico de la planta CALCESUR, Caracoto San Román Juliaca", se mejora la calidad seguridad y confiabilidad del sistema.

1.3.2. Hipótesis específicas

- Con la potencia reactiva necesaria se mejora el factor de potencia de la planta.
- Las distorsiones de voltaje causadas por las Notas de armónicos de la planta causan perdidas de potencia.

1.4. JUSTIFICACIÓN DEL ESTUDIO

En el sistema Eléctrico de la Planta Industrial CALCESUR, están instaladas cargas no lineales de gran capacidad las cuales generan corrientes armónicas que distorsionan la forma de onda de voltaje afectando a los equipos de control, comunicación, transformadores y equipo eléctrico diverso. En ese sentido se modela un Sistema Eléctrico de la Planta Industrial CALCESUR, el cual contiene cargas no lineales, se realiza el estudio de flujos de potencia y se determinan las soluciones para mejorar la calidad de energía, lo cual lleva a dimensionar bancos de capacitores o filtros de corrientes armónicas.

El propósito del presente estudio es diseñar el equipamiento de compensación reactiva necesaria para la planta CALCESUR, con la finalidad de mejorar las caídas de tensión, presencia de armónicos y principalmente corregir el bajo factor de potencia presente en el sistema eléctrico.

1.4. OBJETIVOS

1.4.1. Objetivo general

El presente proyecto tiene como objetivo realizar el Diseño del Sistema de Compensación Reactiva del Sistema Eléctrico de la Planta Industrial CALCESUR, Caracoto San Román Juliaca.

1.4.2. Objetivos específicos

- Determinar la potencia reactiva necesaria para mejorar el factor de potencia de la planta.

 Analizar las distorsiones de voltaje causadas por las Notas de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519- 2014.

CAPITULO II

REVISIÓN DE LITERATURA

2.1. ANTECEDENTES

2.1.1. Antecedentes internacionales

(Jia et al., 2024) Propone una estrategia integral de configuración óptima del generador estático de varistores y del filtro activo de potencia detector de tensión para la gestión de la potencia reactiva y los armónicos, la estrategia se basa en el concepto de gestión distribuida y tiene plenamente en cuenta la función de gestión de la calidad de la energía del inversor multifuncional conectado a la red. En concreto, este estudio propone en primer lugar un método de división independiente de la potencia reactiva y los armónicos basado en la sensibilidad.

(Li et al., 2024) analizan las características armónicas de las corrientes inducidas geomagnéticamente en la red eléctrica de CA/CC de ultra alta tensión (UHV) de China; en primer lugar, se establece un modelo armónico equivalente del transformador GIC y se cuantifica la inyección de armónicos en la red eléctrica de CA/CC UHV durante los eventos GIC; en segundo lugar, se establece un modelo armónico de espacio de estados combinando la teoría de la función de conmutación del convertidor de 12 pulsos con la serie exponencial de Fourier, las características de transmisión armónica y acoplamiento dinámico de GIC en la red eléctrica UHV AC/DC se analizan utilizando el modelo armónico equivalente del transformador principal GIC y el modelo armónico equivalente del transformador convertidor GIC; por último, se construye un modelo de simulación de armónicos

de la red eléctrica de CA/CC UHV bajo GIC utilizando PSCAD, y se calcula la distribución de armónicos en la red eléctrica de CA/CC UHV bajo GIC.

(Zhong et al., 2024) el objetivo de este artículo es estudiar el mecanismo de resonancia del sistema de acoplamiento entre el sistema de alimentación de tracción (EPR) y la red del tren y resolver el problema de resonancia del actual sistema de alimentación de tracción desde la perspectiva de la remodelación de la impedancia de alta frecuencia del sistema; en primer lugar, se establece la matriz de admitancia del nodo dinámico del sistema de acoplamiento RPC-red-tren. del sistema de acoplamiento RPC-red-tren; a continuación, se propone un método exhaustivo de evaluación de la resonancia para obtener los factores de impacto de resonancia (RIF) de múltiples impedancias virtuales en la estrategia de control y los parámetros de filtrado, que puede realizar la comparación y selección de cinco estrategias de remodelación de impedancias existentes para garantizar el funcionamiento seguro y estable del sistema de acoplamiento RPC-red-tren, una estrategia de optimización de ordenación multiobjetivo (MOSOS) que tiene en cuenta la supresión de resonancias, el filtrado de armónicos, el coste del filtro y la estabilidad del sistema de control finalmente, la eficacia del método propuesto se simulo en MATLAB/Simulink y el resultado experimental en la plataforma StarSim hardware-in-theloop (HIL) respectivamente.

(Kritsanasuwan et al., 2022) los armónicos son un factor importante que afecta a la calidad del sistema de transmisión de energía causados por cargas no lineales y dispositivos de conversión de potencia: en la investigación, se utilizaron varias muestras de simulación de trenes eléctricos de la línea urbana Airport Rail Link para simular los efectos de los armónicos en la subestación eléctrica (ESS)

mediante el cálculo de la distorsión armónica total de la tensión y corriente; luego se comparó con las normas IEEE519-2014 para indicar la calidad de potencia se encontró que la armónica de corriente supera la norma; además, la comparación del efecto de reducción de armónicos del tren de muestras de los diseños de filtro pasivo sintonizado único de 3^a, 5^a, 7^a y 11^a mostró que el filtro 11^a fue capaz de mantener la distorsión dentro de la norma.

2.1.2. Antecedentes nacionales

(Rojas, 2021) tiene por objetivo optimizar el sistema de compensación reactiva para mejorar la calidad de energía eléctrica en el sistema eléctrico en las unidades mineras Chungar e Islay y de acuerdo a la simulación de 5 alternativas de solución, se precisa que las alternativas 1 y 5 presentan las mismas barras candidatas en baja tensión, con la diferencia en la consigna o restricción para el OCP; en el caso de la alternativa 1 se considera una consigna por factor de potencia y en la alternativa 5 se considera una consigna por regulación de tensión; si bien es cierto, la alternativa 5 es la óptima, por fines de diseño se considera la mayor capacidad del sistema de compensación reactiva en BT, que es obtenida mediante la alternativa 1.

(Oyanguren, 2018) tuvo como objetivo determinar el diseño de filtros pasivos más adecuado, con la finalidad de minimizar los efectos armónicos, para una red eléctrica con cargas características de una zona industrial, y con compensación reactiva, ubicada dentro del área de influencia de un concesionario de distribución, en el Sistema Eléctrico Interconectado Nacional (SEIN).

2.1.3. Antecedentes regionales

(QUISPE, 2018) explica que las cargas no lineales están asociadas al deterioro de los transformadores de distribución, basándonos en la recopilación de estudios previos en cuanto a las cargas no lineales, efectos de los armónicos y el principio de transformación, posibilitando entender así porqué esta asociación causa un efecto contra producente en los transformadores de distribución, dilucidando así una de las incógnitas en el campo técnico del cual es el incremento alarmante en averías de los transformadores de distribución, gran inconveniente que representa grandes pérdidas a las empresas encargadas del suministro eléctrico.

2.2. MARCO TEÓRICO

2.2.1. La potencia reactiva

Con el progreso tecnológico, la red de distribución presenta una elevada proporción de nuevas energías y una alta proporción de equipos electrónicos de potencia, esto conduce inevitablemente a una grave contaminación armónica en la red de distribución; los problemas de calidad de la energía, como los armónicos y los excesos de tensión amenazan seriamente el funcionamiento seguro de la red de distribución; por lo tanto, la supresión de la distorsión armónica y el mantenimiento de los niveles de tensión son muy importantes para el funcionamiento seguro de la red de distribución (Jia et al., 2024).

Con el rápido avance de los sistemas eléctricos y la considerable integración de recursos energéticos caracterizados por una variabilidad e imprevisibilidad, los escenarios operativos los sistemas eléctricos son cada vez

más volátiles; en consecuencia, para mantener la seguridad y la eficiencia económica de los sistemas eléctricos modernos, cada vez son más necesarias soluciones rápidas de y posiblemente en tiempo cuasi real para la optimización de la potencia reactiva en distintos escenarios operativos (Bi et al., 2025).

La energía reactiva y la potencia reactiva representan señales básicas que están presentes en todas instalaciones de tensión alterna, debido a su naturaleza y especificidad, aunque lo hacen no producen efectos directamente útiles (luz, calor, trabajo mecánico, etc.). La mayoría del tiempo, la realización de efectos útiles no es posible sin el consumo de energía reactiva, teniendo en cuenta los procesos de magnetización que tienen lugar en el motor impulsa los núcleos de hierro y en los transformadores eléctricos. Además, los flujos de fuga correspondientes a las líneas eléctricas y a las bobinas determinan el consumo de energía reactiva. Las resistencias, utilizadas como receptores de energía eléctrica, consumen sólo energía activa, pero su transferencia a través de las instalaciones colocadas en la parte superior de la reactancia determina las pérdidas de energía y de potencia reactiva.(Mahdavi et al., 2017)

2.2.2. Evaluación de los efectos del flujo de energía reactiva

Los dispositivos eléctricos están diseñados a una cierta potencia aparente S que es proporcional a el producto entre los valores rms correspondientes al voltaje U y la corriente I. El flujo de energía en el sistema electro energético está dado, por el flujo de energía activa P, flujo de energía reactiva Q y flujo de energía distorsionada D. La única energía útil es la energía activa y se calcula su

correspondiente proporción de la potencia aparente necesaria utilizando el factor de potencia definido como:

$$fp = \frac{P}{S} = \frac{P}{\sqrt{P^2 + Q^2 + D^2}}$$
(1)

Los coeficientes de ponderación correspondientes a las potencias reactiva y distorsionada se estiman utilizando el factor reactivo ρ y el factor distorsionado τ para el estado armónico permanente, según las relaciones:

$$\rho = \frac{Q}{P} = \tan \varphi; \quad \tau = \frac{D}{\sqrt{P^2 + Q^2}} = \tan \psi \tag{2}$$

Donde los fasores P, Q, D forman un sistema de referencia de tres ortogonales, y los desplazamientos de fase φ y ψ tienen el significado que se da en la Figura 1. (Mahdavi et al., 2017)

Figura 1

Importancia de los cambios de fase fase φ y ψ

Nota: (Mahdavi et al., 2017)

2.2.3. Potencia reactiva y estabilidad de la tensión

Debido al aumento de la demanda de energía en los sistemas eléctricos, el rendimiento y las condiciones de funcionamiento de los mismos se acercan a su capacidad máxima. Estas condiciones de funcionamiento han provocado la mayoría de los problemas que han surgido en relación con la estabilidad de la tensión en los últimos años, y muchos de estos problemas han provocado el colapso de la tensión.

La estabilidad de la tensión, también llamada estabilidad de la carga, está estrechamente relacionada con la falta de potencia reactiva en el sistema. En el pasado, la corrección de la potencia reactiva se realizaba normalmente mediante la incorporación de compensadores de varilla, como las baterías de condensadores. Sin embargo, la estabilidad de la tensión puede mejorarse con equipos basados en la electrónica de potencia conocidos como Sistemas Alternativos Flexibles de Transmisión de Corriente (FACTS), además de las baterías de condensadores convencionales. Las principales características de estos dispositivos son de mejorar el perfíl de tensión de la red y el comportamiento dinámico del sistema, así como su capacidad para mejorar la calidad de la energía. La implementación de La implementación de los dispositivos FACTS suele estar justificada por su contribución dinámica de la potencia reactiva, el control de la tensión y su rápida respuesta.(Amaris et al., 2012)

2.2.4. Necesidad de compensar la potencia reactiva

La capacidad instalada de sistemas ha aumentado rápidamente los flujos de potencia provocan subidas de tensión en las redes de distribución. Se han

tomado medidas contra la subida de tensión para garantizar que las tensiones en los extremos de los clientes no se desvíen del rango adecuado especificado por la Ley del Sector Eléctrico; por lo tanto, si se tiene en cuenta la fluctuación de tensión a corto plazo, es necesario un compensador de potencia reactiva capaz de controlar a alta velocidad (Takagi et al., 2024).

La Nota de alimentación de CA genera la potencia reactiva. En el primer cuarto del ciclo de CA, el condensador o reactor almacena la potencia reactiva (VAR) y en el siguiente cuarto del ciclo, la potencia reactiva se devuelve a la Nota de CA. Así, la potencia reactiva va y viene entre la Nota de CA y el condensador o reactor a una frecuencia doble de la frecuencia nominal. Por lo tanto, para evitar el movimiento de ida y vuelta de la potencia reactiva entre la carga y la Nota, debe controlarse. Además, para ajustar el factor de potencia del sistema y mantener la estabilidad de la tensión es necesario compensar la potencia reactiva. Gracias a las técnicas de compensación de la potencia reactiva, el funcionamiento del terminal de conversión HVDC mejora y aumenta la eficiencia de la transmisión. También regula las sobretensiones estables y temporales y, por tanto, se pueden evitar los desastrosos apagones (Dudhe, 2015).

2.2.5. Métodos de compensación de potencia reactiva

2.2.5.1. Compensación en derivación

El dispositivo se conecta en paralelo con la línea de transmisión. Un compensador en derivación se conecta siempre en medio de la línea de transmisión junto con una Nota de corriente, una Nota de tensión o un

condensador. Suministra potencia reactiva al sistema. La ecuación de la tensión es la siguiente:

$$P + jQ = -\frac{j4V^2\left(1 - \frac{\cos\varphi}{2}\right)}{X} \tag{(4)}$$

Como la parte real de la potencia es 0, la potencia reactiva del sistema se añade mediante un compensador en derivación. Los reactores conectados en derivación se conectan al sistema para controlar la potencia reactiva. Al consumir la potencia reactiva, los reactores conectados en derivación reducen las sobretensiones en la línea de transmisión.

Los condensadores conectados en paralelo con la línea de transmisión también se utilizan para regular el nivel de tensión mediante el control de la potencia reactiva en la línea de transmisión. (Dudhe, 2015).

Figura 2

Línea de transmisión con compensación en derivación

Nota: (Dudhe, 2015).

2.2.6. Compensación en serie

En este caso se conecta un dispositivo en serie con la línea de transmisión, por lo que se denomina compensador en serie. Hay dos modos de funcionamiento: el modo de funcionamiento capacitivo y el modo de funcionamiento inductivo. En

la figura 2 se muestra un modelo simplificado de un sistema de transmisión con compensación en serie. Las magnitudes de tensión de los dos buses se suponen iguales como V, y el ángulo de fase entre ellos es δ . (Dudhe, 2015).

Figura 3

Línea de transmisión con compensación en serie

Nota: (Dudhe, 2015).

2.2.7. Compensadores estáticos VAR

Es un conjunto de dispositivos eléctricos para proporcionar potencia reactiva de acción rápida en las redes de transmisión.

Las características de funcionamiento de los tiristores muestran la impedancia reactiva variable del SVC. Incluye 2 componentes principales y sus combinaciones son:

- 1. Reactor controlado por tiristor y reactor conmutado por tiristor (TCR y TSR)
- 2. Condensador conmutado por tiristor (TSC).

Cuando el TSC se conecta, la potencia reactiva en el SVC aumenta. Esto indica que el SVC suministra potencia reactiva a la Nota de alimentación de CA. Del mismo modo, cuando el ángulo de disparo del TCR disminuye, la potencia

reactiva en el SVC aumenta. Esto indica que el SVC absorbe cada vez más potencia reactiva de la Nota de alimentación de CA.

Figura 4

Reactor conmutado por tiristor

Nota: (Dudhe, 2015).

2.2.8. Compensador VAR auto conmutado

Los compensadores estáticos síncronos, los controladores de flujo de potencia unificados, etc., funcionan según el principio del compensador VAR auto conmutado. Pueden generar o absorber potencia reactiva según las necesidades del sistema.

2.2.9. Compensador síncrono estático (STATCOM)

Es un dispositivo de regulación utilizado en la red de transmisión de electricidad de corriente alterna (Dudhe, 2015).

Figura 5

Características del SVC y del STATCOM

V-I characteristics of SVC and STATCOM: (a) SVC; (b) STATCOM

Nota: (Dudhe, 2015).

2.2.10. Condensador sincrónico

En un contexto de fallos a gran escala en las redes eléctricas, los dispositivos dinámicos de compensación de potencia reactiva, como los condensadores síncronos, que se distinguen por su gran capacidad de potencia reactiva, su robusta capacidad de sobrecarga y sus características de respuesta rápida, surgen como soluciones fundamentales para mitigar el riesgo de fallos de conmutación en los sistemas de transmisión, pueden aportar una potencia reactiva dinámica sustancial a la red sin consumir potencia activa y reducir el gasto y el coste de funcionamiento. Tiene importantes ventajas prácticas, sociales y económicas (Yuan et al., 2024).

Es una máquina síncrona que funciona sin motor primario ni carga mecánica y que se conecta para mejorar el factor de potencia del sistema eléctrico. Cuando están sobreexcitados, suministran potencia reactiva y cuando están infra excitados, absorben potencia reactiva. Cuando la potencia reactiva es suministrada por el condensador síncrono, la corriente en el sistema se reduce. De este modo,

se reducen las pérdidas y se consigue un mayor rendimiento. Gracias a ello, se puede suministrar una gran cantidad de potencia a la carga. (Dudhe, 2015).

2.2.11. Definición de calidad de la energía

La perturbación de la calidad de la energía contiene una gama diversa de fenómenos electromagnéticos que presentan características de tensión y corriente en un momento y lugar determinados dentro de los sistemas de energía eléctrica, el análisis de las perturbaciones se ha convertido en todo un reto debido a la gran cantidad de Notas de comportamiento variable, a los factores ambientales y a las cargas (Shao et al., 2024).

Las redes de distribución eléctrica se ve afectada por problemas de calidad de la energía, como las caídas de tensión, las subidas y los armónicos, que pueden dificultar el intercambio eficiente de energía (Shahidi & Salary, 2024)

La calidad de la energía eléctrica se ha convertido en una parte importante de los sistemas de potencia y las máquinas eléctricas. El tema ha atraído la atención de muchas universidades e industrias, y se han publicado varios libros en este apasionante y relativamente nuevo campo .(Fuchs & Masoum, 2008)

2.2.12. Causas de las perturbaciones en los sistemas de energía

Aunque existe una importante bibliografía sobre la calidad de la energía, la mayoría de los ingenieros, gestores de instalaciones y consumidores siguen sin tener claro en qué consiste un problema de calidad de la energía. Además, debido a la impedancia del sistema eléctrico, cualquier armónico de corriente (o tensión) dará lugar a la generación y propagación de armónicos de tensión (o corriente) y

afectará a todo el sistema eléctrico. La figura 6 ilustra el impacto de los armónicos de corriente generados por una carga no lineal en un sistema eléctrico típico con cargas lineales. (Fuchs & Masoum, 2008).

Figura 6

Propagación de armónicos (generados por una carga no lineal) en sistemas de

potencia.

Nota: (Fuchs & Masoum, 2008)

Los orígenes del problema de la calidad de la energía, dividen las Notas de distorsión en tres categorías: pequeñas y predecibles (por ejemplo, consumidores residenciales que generan armónicos), grandes y aleatorias (por ejemplo, los hornos de arco que producen fluctuaciones de tensión y parpadeos), grandes y predecibles (por ejemplo, los convertidores estáticos de las fundiciones y la transmisión CC de alta tensión que provocan armónicos característicos, así como inestabilidad armónica). Sin embargo, las respuestas probables a la pregunta son

imprevisibles, la empresa eléctrica, el cliente y el fabricante. (Fuchs & Masoum, 2008)

2.2.13. Clasificación de los problemas de calidad de la energía

Existen diferentes clasificaciones para los problemas de calidad de la energía calidad de la energía, cada una de las cuales utiliza una propiedad del problema. Algunas de ellas clasifican los eventos como "de estado estable" y "de estado no estable". En algunas normas (por ejemplo, ANSI C84.1) el factor más importante es la duración del evento. Otras directrices (por ejemplo, IEEE-519) utilizan la forma de la onda (duración y magnitud) de cada evento para clasificar problemas de calidad de la energía. Otras normas (por ejemplo, la CEI) utilizan el rango de frecuencia del evento para la clasificación. (Fuchs & Masoum, 2008)

2.2.14. Factor de potencia

Garantizar la estabilidad de la tensión del sistema es crucial para mantener la robustez de la red y minimizar la posibilidad de perturbaciones, colapsos o apagones, la mejora de la estabilidad de la tensión es una consideración inteligente, tiene efectos y beneficios significativos para mejorar la eficiencia del sistema, mitigar las pérdidas de energía y mejorar la fiabilidad (Saeed Qazi et al., 2024).

El factor de potencia se define como el coseno del ángulo entre la potencia activa P y la potencia aparente S, según se muestra en la figura 7 del triángulo de potencias.

Figura 7

Triangulo de potencia y el angulo ϕ

Nota: Tomado de Schneider (2019).

A partir del triángulo de potencias se observa que el $\cos \varphi$ es igual a la relación de la potencia activa entre la potencia aparente:

$$coseno \ \phi = \frac{P}{S} \tag{(}$$

Esta relación da la definición del factor de potencia como la parte de la potencia aparente que se gasta en realizar trabajo útil (Juárez, 2002).

El factor de potencia se expresa a través de las potencias activa y reactiva por la expresión siguiente (Juárez, 2002):

$$\cos\phi = \frac{P}{\sqrt{P^2 + Q^2}} \tag{(}$$

En las redes con gran contenido de armónicas se pueden utilizar tres formas para calcular el factor de potencia, pero en diversas circunstancias los resultados son diferentes, con variaciones hasta de 6% o más (Juárez, 2002).

La primera es considerando el desfasamiento entre la corriente y el voltaje.

La segunda por la fórmula siguiente:

$$\cos\phi = \frac{1}{T} \frac{\int_0^T v.\,idt}{V.\,l} \tag{6}$$

Donde:

T: periodo, segundos.

v: voltaje en valores instantáneos, V.

i: corriente en valores instantáneos, A.

V: voltaje en valor eficaz, V.

I: corriente en valor eficaz, A,

La tercera forma es usando la armónica fundamental de voltaje y corriente en valores instantáneos, con la fórmula siguiente:

$$\cos\phi = \frac{1}{T} \frac{\int_0^T v_i \cdot i_i dt}{V \cdot I}$$

V, í : voltaje y corriente de la armónica fundamental.

El factor de potencia debe ser lo más alto posible, puesto que un cos φ bajo, al aumentar considerablemente la corriente, acarrea las siguientes desventajas:

- Aumenta las pérdidas de energía activa, las cuales son proporcionales al cuadrado de la corriente.
- Aumenta la caída de tensión en alimentadores y líneas.
- El uso de la capacidad de las instalaciones se reduce, con lo que se aumentan los costos por depreciación y mayores inversiones. (Juárez, 2002).

(

2.2.15. Factor de potencia instantáneo.

Es el valor de cos φ en un instante dado. Este valor puede medirse directamente por el fasímetro o por las indicaciones en el mismo instante del amperímetro, del voltímetro y del kilowátimetro por la siguiente expresión: (Juárez, 2002)

$$\cos\phi = \frac{P\ 10^3}{\sqrt{3}.\,VI} \tag{8}$$

2.2.16. Factor de potencia medio

Es el promedio de factores de potencia medidos.

$$\cos\phi_{med.} = \frac{\cos\phi_1 + \cos\phi_2 + \dots + \cos\phi_n}{n} \tag{9}$$

Donde:

n: número de intervalos de tiempo.

2.2.17. Factor de potencia medio flotante

Es el que se determina por medio de las lecturas de los medidores de energía activa y reactiva durante un periodo determinado de tiempo (Juárez, 2002).

La fórmula empleada es:

$$\cos\phi_{med.f.} = \frac{W_n}{\sqrt{W_a^2 + W_r^2}} \tag{10}$$

Donde:

Wa, Wr: energía activa y reactiva mostrada por los medidores correspondientes en un mismo periodo de tiempo, expresadas en KWh y KVARh respectivamente. (Juárez, 2002).

2.2.18. Fundamentos de la teoría armónica

Un componente armónico en un sistema de energía de CA se define como un componente sinusoidal de una forma de onda periódica que tiene una frecuencia igual a un número entero múltiplo de la frecuencia fundamental del sistema. (Rosa, 2006)

Los armónicos en las formas de onda de voltaje o corriente pueden entonces ser concebidos perfectamente como componentes sinusoidales de frecuencias múltiples de la frecuencia fundamental:

$$f_h = (h) \times (frecuencia básica)$$
 (

Donde h es un número entero.

Figura 8

Forma de onda sinusoidal de 60 Hz y algunos armónicos.

Nota: (Rosa, 2006)

2.2.19. Armónicos

Los armónicos son generados por dispositivos de conmutación de estado sólido que conmutan durante el ciclo de onda, en lugar del cero de tensión, los controladores alimentados por ráfagas o de ciclo integral no son una Nota de armónicos, pero pueden generar parpadeos de baja frecuencia o, a la frecuencia adecuada, inestabilidad en los reguladores automáticos de tensión del generador (Macangus, 2018).

La potencia reactiva en las redes de distribución se basa principalmente en el análisis de sensibilidad de la tensión fundamental y la distancia eléctrica. Sin embargo, la distancia eléctrica basada en la sensibilidad de tensión variará con frecuencia debido al acceso de nuevos equipos de generación de energía, como los fotovoltaicos, dando lugar a cambios constantes en la partición. Por este motivo, este estudio incorpora la probabilidad de potencia de salida fotovoltaica a la distancia eléctrica para establecer una partición estable que pueda adaptarse a la volatilidad de la potencia de salida fotovoltaica. A continuación, se describe se describe a continuación:

Figura 9

Deformación de la onda senoidal por efecto de las armónicas. 1, Onda senoidal fundamental, 2, Segunda armónica. 3, Tercera armónica.

Nota: (Juárez, 2002)

Los armónicos son tensiones o corrientes sinusoidales con frecuencias que son múltiplos enteros de la frecuencia (fundamental) del sistema eléctrico (normalmente, f - 50 o 60 Hz). Por ejemplo, la frecuencia del armónico h es (hf). Las formas de onda periódicas no sinusoidales pueden someterse a series de Fourier y descomponerse en la suma de la componente fundamental y los armónicos. Las principales Notas de armónicos en los sistemas eléctricos son:

Cargas industriales no lineales (Fig. 10) como equipos electrónicos de potencia, por ejemplo, accionamientos (Fig. 11), rectificadores (Fig. 12), inversores, o cargas que generan arcos eléctricos, por ejemplo, hornos de arco, máquinas de soldar e iluminación, y cargas residenciales con Notas de

alimentación conmutadas, como televisores, ordenadores (Fig. 10) y lámparas fluorescentes y de bajo consumo. (Fuchs & Masoum, 2008)

Figura 10

Corrientes calculadas del interruptor electrónico de un accionamiento de motor de CC sin escobillas de velocidad ajustable para un ángulo de fase de $\theta = 0^{\circ}$

Nota: (Fuchs & Masoum, 2008)

Figura 11

Corrientes calculadas del motor de un accionamiento de motor de CC sin

escobillas de velocidad ajustable para un ángulo de fase de $\theta = 0^{\circ}$

Nota: (Fuchs & Masoum, 2008)

Figura 12

Corriente de fase; Tensión de línea a línea del rectificador; Tensiones de línea a

línea del bus infinito; Tensión de salida de CC del rectificador.

Nota: (Fuchs & Masoum, 2008)

Figura 13

Tensiones de línea del rectificador, siendo Vab y Va'b las tensiones de línea de

los dos sistemas de tensión; forma de onda sinusoidal.

Nota: (Fuchs & Masoum, 2008)

Figura 14

Forma de onda de corriente medida en un ordenador personal (PC) de última

generación (muchos períodos)

Nota: (Fuchs & Masoum, 2008)

2.2.20. Efectos de los armónicos

Los armónicos tienen efectos nocivos en los equipos eléctricos. Estos pueden ser detallados como siguientes:

- Fallo del banco de condensadores por sobrecarga de potencia reactiva, resonancia y amplificación de armónicos. Funcionamiento incorrecto de los fusibles.
- Pérdidas excesivas, calentamiento, pares armónicos y oscilaciones en máquinas de inducción y síncronas, que pueden dar lugar a tensiones de torsión.
- Aumento de la carga de corriente de secuencia negativa de los generadores síncronos, poniendo en peligro el circuito del rotor y los devanados.

- Generación de flujos armónicos y aumento de la densidad de flujo en los transformadores, calentamiento por corrientes parásitas, con la consiguiente reducción de potencia.
- Sobretensiones y corrientes excesivas en la red eléctrica, resultantes de la resonancia.
- Reducción de potencia de los cables debido al calentamiento adicional por corrientes parásitas y a las pérdidas por efecto de una posible ruptura dieléctrica.
- 7. Interferencia inductiva con los circuitos de telecomunicaciones.
- Interferencias en la señal y mal funcionamiento de los relés, especialmente en los sistemas de estado sólido y sistemas controlados por microprocesador.
- 9. Interferencias con los sistemas de control de onda portadora de línea eléctrica, provocando un mal funcionamiento de los sistemas que realizan la conmutación a distancia, el control de la carga y la medición. control de carga.
- Funcionamiento inestable de los circuitos de disparo basados en la detección del cruce de tensión cero y enclavamiento.
- Interferencias con los controladores de motores grandes y los sistemas de excitación de las centrales eléctricas. (Das, 2002)

2.2.21. Efectos de los armónicos en los sistemas de distribución

Algunos efectos perjudiciales de los armónicos son:

- Mal funcionamiento de los dispositivos de control,

- Pérdidas adicionales en condensadores, transformadores y máquinas rotativas,
- Ruido adicional de motores y otros aparatos, interferencias telefónicas, y
- Provocar frecuencias de resonancia en serie y en paralelo (debido al condensador de corrección del factor de potencia y a la capacitancia de los cables), lo que provoca una amplificación de la tensión incluso en un lugar alejado de la carga distorsionante.

Las soluciones recomendadas para reducir y controlar los armónicos son aplicaciones de rectificación de alto pulso, filtros pasivos, activos e híbridos, y dispositivos de potencia personalizados, como los acondicionadores de línea de potencia activa (APLC) y acondicionadores de calidad de energía unificados (UPQC). (Fuchs & Masoum, 2008)

2.2.22. Efectos térmicos en los transformadores

En los transformadores que alimentan cargas productoras de armónicos, las pérdidas por corrientes parásitas en los es el componente de pérdida más dominante en el transformador. Esta pérdida por corrientes parásitas aumenta proporcionalmente al cuadrado de la corriente armónica del producto y su frecuencia correspondiente. La pérdida total del transformador a plena carga que alimenta a una carga no lineal es el doble que para una carga lineal equivalente. Esta Esto provoca un calentamiento excesivo del transformador y degrada los materiales de aislamiento del transformador, lo que acaba provocando su avería (Macangus, 2018).

Las redes industriales y comerciales modernas están cada vez más influenciadas por cantidades significativas de corrientes armónicas producidas por una variedad de cargas no lineales como los variadores de velocidad, los hornos eléctricos y de inducción y la iluminación fluorescente. Añádase a la lista las Notas de alimentación ininterrumpida y el gran número de dispositivos de entretenimiento doméstico, incluidos los ordenadores personales.

Todas estas corrientes se alimentan a través de transformadores de servicio. Un aspecto particular de los transformadores es que, en condiciones de saturación, se convierten en una Nota de armónicos. Los transformadores conectados en triángulo atrapan las corrientes de secuencia cero que, de otro modo, sobrecalentarían los conductores del neutro. Las corrientes circulantes en el triángulo aumentan el valor eficaz de la corriente y producen calor adicional. Este es un aspecto importante que hay que vigilar. Las corrientes medidas en el lado de alta tensión de un transformador conectado en triángulo no reflejarán las corrientes de secuencia cero, pero su efecto en la producción de pérdidas de calor está ahí.

En general, las pérdidas de armónicos se producen por el aumento de la disipación de calor en los devanados y el efecto pelicular; ambos son una función del cuadrado de la corriente eficaz, así como por las corrientes parásitas y las pérdidas en el núcleo.(Rosa, 2006)

2.2.23. Sobrecarga del conductor neutro

En los circuitos monofásicos, las corrientes de retorno que llevan cantidades significativas de componentes armónicos que fluyen a través de las

conexiones del neutro del transformador, aumentan la corriente eficaz. Además, las corrientes de secuencia cero (múltiplos enteros impares de 3) se suman en fase en el neutro. Por lo tanto, el funcionamiento de los transformadores en entornos armónicos exige que se evalúen las corrientes del neutro en los transformadores conectados en estrella a tierra para evitar la posibilidad de perder la conexión a tierra como consecuencia de sobrecarga. En los sistemas trifásicos equilibrados de cuatro hilos, no hay corriente en el neutro, por lo que la presencia de corrientes de neutro en estas condiciones debe atribuirse a la circulación de armónicos de secuencia cero, que se producen sobre todo por las Notas de alimentación monofásicas. (Rosa, 2006)

2.2.24. Efectos diversos en los bancos de condensadores

El aumento de la tensión puede sobrecargar y acortar la vida de las baterías de condensadores. Las condiciones de tensión, temperatura y corriente de las baterías de condensadores son las que conducen a la rotura del dieléctrico. La potencia reactiva de salida de una batería de condensadores varía con el cuadrado de la tensión, como se describe en: (Rosa, 2006)

$$VAR = \frac{V^2}{X_c} \tag{12}$$

2.2.25. Condiciones de resonancia

La inductancia y la capacitancia en el sistema, por ejemplo, la capacitancia en la iluminación, intensificarán la distorsión de la forma de onda creando resonancia en varios puntos; es la razón por la que incluso la capacitancia de la iluminación y similares se incluyen en el modelo cuando se realiza el análisis de

armónicos, así como las Notas de mayor tamaño, como las baterías de condensadores (Macangus, 2018).

Las condiciones de resonancia implican que la reactancia de un banco de condensadores es, en algún momento de la frecuencia, igual a la reactancia inductiva del sistema de distribución, que tiene una polaridad opuesta; por lo tanto, las condiciones de resonancia pueden representar un peligro para el aislamiento sólido de los cables y los devanados de los transformadores, así como para la batería de condensadores y sus dispositivos de protección. (Rosa, 2006)

Las frecuencias de resonancia pueden anticiparse si se conoce el nivel de corriente de cortocircuito en el punto donde está instalada el banco de condensadores, mediante la ecuación:

$$h_{r} = \sqrt{\frac{KVA_{corto\ circuito}}{KVAR_{banco\ condensadores}}} \tag{13}$$

Donde

 h_r : Frecuencia de resonancia como múltiplo de la frecuencia fundamental (Rosa, 2006),

2.2.26. Distorsión de la forma de onda

La desviación en estado estable de una onda sinusoidal de la frecuencia de alimentación se denomina distorsión de la forma de onda. Hay cinco tipos principales de distorsiones de la forma de onda: Desplazamiento de CC, armónicos, Inter armónicos, muescas y ruido eléctrico. Para analizar la forma de onda no sinusoidal se suele utilizar una serie de Fourier. (Das, 2002)

En el sistema eléctrico, el método tradicional de supresión de la corriente armónica es añadir filtros LC entre la red y la carga no lineal, estos filtros se componen de inductores, condensadores y resistencias, que están en paralelo con la Nota de armónicos para derivar la corriente de armónicos de la carga no lineal, el filtro LC tiene las ventajas de una estructura simple y un bajo coste; sin embargo, sus características de compensación son sensibles a las condiciones de la red y a la variación de los parámetros, como la impedancia y la frecuencia; a veces, los filtros LC pueden inducir resonancias paralelas en el sistema, lo que puede llevar incluso a la amplificación de armónicos en los sistemas eléctricos (Chen et al., 2018).

CAPITULO III

MATERIALES Y MÉTODOS

3.1. MATERIALES

Como material de la investigación tenemos a la base de datos de estadística las cuales se muestra en tabla número 10 Tablas de carga del sistema eléctrico principal de Planta CALCESUR, consta de un conjunto de doce (12) celdas en 22.9 kV, que son alimentados eléctricamente de la subestación Caracoto 60/22.9/10 kV. La celda principal AD302 registro un consumo de potencia previo a la incorporación de LINEA 4, entre 3.80 MW a 4.40 MW a un factor de potencia de 97%. La regulación de tensión en 22.9 kV, se realiza a través del regulador automático del transformador de potencia de la S.E. Caracoto 60/22.9/10 kV, el cual actualmente está regulado al valor consigna de 100% la tensión nominal en 22.9 kV.

La planta consta de las siguientes líneas de producción:

- LINEA 1 (Celda AD300, actualmente en servicio).
- LINEA 2 (Celda AD301, actualmente fuera de servicio).
- LINEA 3 (Celdas AD303, AD304, AD307 y AD308, actualmente en servicio).
- LINEA 4 (Celdas AD306, AD309 y AD311, actualmente en servicio).

Se identifica a la celda AD301 actualmente fuera de servicio varios años atrás, como también se ubica la celda AD310, que actualmente está siendo usado para el circuito de la central térmica de emergencia, cuyo análisis no forma parte del presente estudio.

Las cargas del proyecto LINEA 4, se interconectan a la red existente de CALCESUR, a través de las siguientes celdas de 22.9 kV:

Celda AD306.- Alimenta al transformador 410TR de 2000 KVA; 22.9/0.48 KV, regulado al "TAP 2 - 23.4725 KV", con el cual se sostiene la tensión del FP410 al valor de 460 V.

Celda AD309.- Alimenta al transformador 420TR de 2000 KVA; 22.9/0.48 KV, regulado al "TAP 2 - 23.4725 KV", con el cual se sostiene la tensión del FP420 al valor de 460 V.

Celda AD311.- Alimenta al transformador TR16-50377A de 3150 KVA; 22.9/1.4/1.4/1.4 KV, regulado al "TAP 3 - 22.900 KV", quien alimenta al variador de velocidad PowerFlex7000 de tecnología 18 pulsos, que opera al motor del ventilador de 2500 KW.

3.1.1. Tipo de investigación

Para el presente proyecto de tesis el tipo de investigación en cada objetivo es cuantitativo:

El tipo cuantitativo: Parte de una idea de la cual se derivan objetivos y preguntas de investigación se revisa la literatura y se construye un marco teórico, de las preguntas se establecen variables y determinan variables, se desarrolla un plan para probarlas (diseño), se miden las variables en un determinado contexto se analizan las mediciones obtenidas (con frecuencia utilizando métodos estadísticos), se establecen una serie de conclusiones respecto de las hipótesis (Sampieri et al., 2010).

Estudios descriptivos Los estudios descriptivos buscan especificar las propiedades, las características y los perfiles de personas, grupos, comunidades,

procesos, objetos o cualquier otro fenómeno que se someta a análisis. Es decir, únicamente pretenden medir o recoger información de manera independiente o conjunta sobre los conceptos o las variables a las que se refieren, esto es, su objetivo no es indicar cómo se relacionan éstas (Sampieri et al., 2010).

Los estudios correlacionales: Los estudios correlacionales, al evaluar el grado de asociación entre dos o más variables, miden cada una de ellas (presuntamente relacionadas) y, después, cuantifican y analizan la vinculación. Tales correlaciones se sustentan en hipótesis sometidas a prueba (Sampieri et al., 2010).

De acuerdo a lo mencionado la presente tesis se ajusta dentro la investigación cuantitativa, descriptiva correlacional.

3.1.2. Técnicas de recolección de datos

La recolección de datos para la presente Investigación se obtendrá mediante el análisis documental, la observación y el uso del internet.

3.1.3. Técnicas de análisis de datos

Se requiere acumular información primaria para después analizar y cuantificarla.

Los datos obtenidos en el proceso de investigación son analizados y mostrados en las gráficas para la mejor visualización, comprensión y así poder elaborar las posibles conclusiones y recomendaciones.

Herramientas

Para el desarrollo se utilizó:

- Datos de placa recopilados en campo.
- Información técnica recibidos del cliente.
- Metrado de cables de energía principales.
- Datos de placa de variadores de velocidad tomados en campo.
- Registro de mediciones tomado de los medidores de energía.
- Registro de mediciones tomados con el analizador de redes.
- Analizador de redes FLUKE 435 Power Quality and Energy Analyzer

Figura 15

Analizador de redes FLUKE 435

Nota: elaboración propia

3.1.4. Herramienta computacional y horizonte de análisis

Las simulaciones se desarrollan con el software ETAP y el horizonte de análisis corresponde al año 2019, para el cual se toma en cuenta el equivalente eléctrico en barras 60 kV de la S.E. Juliaca, dentro del cual están incluidos los

proyectos de generación, transmisión del sistema eléctrico peruano existente y proyectados por el COES.

3.2. MÉTODO

El método planteado a para cada objetivo son los siguientes:

3.2.1. Determinar la potencia reactiva necesaria para mejorar el factor de potencia de la planta.

Para el cumplimiento de este objetivo: Determinar la potencia reactiva necesaria para mejorar el factor de potencia de la planta. Se recurrirá a información previa recopilada en campo con el fin de establecer la situación actual y poder realizar las simulaciones necesarias a fin de determinar la potencia reactiva necesaria con el fin de mejorar el factor de potencia.

A través de simulaciones de flujo de carga, considerando la cargas existentes y proyectadas, se verifica si es necesario la compensación reactiva. Las simulaciones que permiten realizar las verificaciones son:

- Caso 0: Sin proyecto Línea 4 (Operación Línea 1 y Línea 3 "Hornos 1/2/3")
- Caso 1: Con proyecto Línea 4 (Operación Línea 1 y línea 4)
- Caso 2: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1" y línea 4)
- Caso 3: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2" y línea 4)

Caso 4: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2/3" y línea 4)

Para dimensionar el banco de condensadores a instalar, hay que determinar de manera precisa el factor de potencia a partir de los consumos o del ciclo de carga de la instalación esto puede llevarse a cabo de los siguientes modos:

- Directamente, mediante medida directa por medio de un cosfimetro;
- Indirectamente, a través de la lectura de los contadores de energía activa y reactiva.

El factor de potencia medio puede ser calculado de la siguiente forma:

$$\cos\varphi = \cos\left(tg^{-1}\left(\frac{E_{Qf} - E_{Qi}}{E_{Pf} - E_{Pi}}\right)\right) \tag{4}$$

Donde:

 $E_{Pi} \ y \ E_{Qi}$: Son los valores de la energía activa y reactiva tomados al comienzo del ciclo de trabajo;

 $E_{Pf} y E_{Qf}$: Son los valores de la energía activa y reactiva tomados al término del ciclo de trabajo.

Una vez conocido el factor de potencia de la instalación $(\cos\phi 1)$ y el que se quiere obtener $(\cos\phi 2)$, es posible determinar la potencia reactiva necesaria de la batería de condensadores para alcanzar la corrección.(Rosa, 2006)

Figura 16

Corrección del factor de potencia Cos φ_1 a Cos φ_2 ,

Nota: Cuaderno técnico ABB.

Siendo:

Р	:	potencia activa instalada
$arphi_1$:	ángulo de desfase antes de la corrección
$arphi_2$:	ángulo de desfase que se quiere obtener con la corrección

La potencia del banco de condensadores Q_c es igual a:

$$Q_c = (tg\varphi_1 - tg\varphi_2) * P$$

$$Q_c = K * P$$
(
15)
(

La tabla 1 permite calcular el factor K, dado el cos\u0396 inicial, la potencia del banco de condensadores en kVar por kW instalado necesaria para obtener un determinado factor de potencia.

16)

Tabla 1

Factor K (kvar/kW)

	cosφ final												
cosφ inicial	0.80	0.85	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1
0.60	0.583	0.714	0.849	0.878	0.907	0.938	0.970	1.005	1.042	1.083	1.130	1.191	1.333
0.61	0.549	0.679	0.815	0.843	0.873	0.904	0.936	0.970	1.007	1.048	1.096	1.157	1.299
0.62	0.515	0.646	0.781	0.810	0.839	0.870	0.903	0.937	0.974	1.01 5	1.062	1.123	1.265
0.63	0.483	0.613	0.748	0.777	0.807	0.837	0.870	0.904	0.941	0.982	1.030	1.090	1.233
0.64	0.451	0.581	0.716	0.745	0.775	0.805	0.838	0.872	0.909	0.950	0.998	1.058	1.201
0.65	0.419	0.549	0.685	0.714	0.743	0.774	0.806	0.840	0.877	0.919	0.966	1.027	1.169
0.66	0.388	0.519	0.654	0.683	0.712	0.743	0.775	0.810	0.847	0.888	0.935	0.996	1.138
0.67	0.358	0.488	0.624	0.652	0.682	0.713	0.745	0.779	0.816	0.857	0.905	0.966	1.108
0.68	0.328	0.459	0.594	0.623	0.652	0.683	0.715	0.750	0.787	0.828	0.875	0.936	1.078
0.69	0.299	0.429	0.565	0.593	0.623	0.654	0.686	0.720	0.757	0.798	0.846	0.907	1.049
0.70	0.270	0.400	0.536	0.565	0.594	0.625	0.657	0.692	0.729	0.770	0.817	0.878	1.020
0.71	0.242	0.372	0.508	0.536	0.566	0.597	0.629	0.663	0.700	0.741	0.789	0.849	0.992
0.72	0.214	0.344	0.480	0.508	0.538	0.569	0.601	0.635	0.672	0.713	0.761	0.821	0.964
0.73	0.186	0.316	0.452	0.481	0.510	0.541	0.573	0.608	0.645	0.686	0.733	0.794	0.936
0.74	0.159	0.289	0.425	0.453	0.483	0.514	0.546	0.580	0.617	0.658	0.706	0.766	0.909
0.75	0.132	0.262	0.398	0.426	0.456	0.487	0.519	0.553	0.590	0.631	0.679	0.739	0.882
0.76	0.105	0.235	0.371	0.400	0.429	0.460	0.492	0.526	0.563	0.605	0.652	0.713	0.855
0.77	0.079	0.209	0.344	0.373	0.403	0.433	0.466	0.500	0.537	0.578	0.626	0.686	0.829
0.78	0.052	0.183	0.318	0.347	0.376	0.407	0.439	0.474	0.511	0.552	0.599	0.660	0.802
0.79	0.026	0.156	0.292	0.320	0.350	0.381	0.413	0.447	0.484	0.525	0.573	0.634	0.776
0.80		0.130	0.266	0.294	0.324	0.355	0.387	0.421	0.458	0.499	0.547	0.608	0.750
0.81		0.104	0.240	0.268	0.298	0.329	0.361	0.395	0.432	0.473	0.521	0.581	0.724
0.82		0.078	0.214	0.242	0.272	0.303	0.335	0.369	0.406	0.447	0.495	0.556	0.698
0.83		0.052	0.188	0.216	0.246	0.277	0.309	0.343	0.380	0.421	0.469	0.530	0.672
0.84		0.026	0.162	0.190	0.220	0.251	0.283	0.317	0.354	0.395	0.443	0.503	0.646
0.85			0.135	0.164	0.194	0.225	0.257	0.291	0.328	0.369	0.417	0.477	0.620
0.86			0.109	0.138	0.167	0.198	0.230	0.265	0.302	0.343	0.390	0.451	0.593
0.87			0.082	0.111	0.141	0.172	0.204	0.238	0.275	0.316	0.364	0.424	0.567
0.88			0.055	0.084	0.114	0.145	0.177	0.211	0.248	0.289	0.337	0.397	0.540
0.89			0.028	0.057	0.086	0.117	0.149	0.184	0.221	0.262	0.309	0.370	0.512
0.90				0.029	0.058	0.089	0.121	0.156	0.193	0.234	0.281	0.342	0.484

Nota: Cuaderno técnico ABB.

3.2.1. Analizar las distorsiones de voltaje causadas por las Notas de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519- 2014.

3.2.1.1. Análisis de flujo de armónicos

Se realiza teniendo en cuenta las recomendaciones establecidas en

la norma IEEE 519-2014.

3.2.1.2. Mediciones de armónicos de muy corta duración

Los valores armónicos de tiempo muy corto se evalúan en un intervalo de 3 segundos basado en una agregación de 15 ventanas

consecutivas de 12 ciclos para sistemas de energía de 60 Hz. Los componentes individuales de la frecuencia se agregan sobre la base de un cálculo del valor eficaz, como se muestra en la ecuación (17), (IEEE, 2014)

$$F_{n,vs} = \sqrt{\frac{1}{15} \sum_{i=1}^{15} F_{n,i}^2}$$
(17)

Donde:

F	:	Es la tensión (V) o la corriente (I),
n	:	Representa el orden de los armónicos
i	:	Es un contador simple.
vs	:	Se utiliza para denotar "muy corto".
F	:	Representa un valor eficaz.

3.2.1.3. Mediciones de armónicos de corta duración

Los valores armónicos de tiempo corto se evalúan en un intervalo de 10 minutos basado en una agregación de 200 valores consecutivos de tiempo muy corto para un componente de frecuencia específico. Los 200 valores se agregan sobre la base de un cálculo de valor eficaz, como se muestra en la ecuación (18), n representa el orden de los armónicos e i es un contador simple. (IEEE, 2014)

$$F_{n,sh} = \sqrt{\frac{1}{200} \sum_{i=1}^{200} F_{(n,vs),i}^2}$$
18)

F	:	Es la tensión (V) o la corriente (I),
n	:	Representa el orden de los armónicos
i	:	Es un contador simple.
sh	:	Se utiliza para denotar "corto".
F	:	Representa un valor eficaz.

3.2.1.4. Límites de armónicos recomendados

- Límites de tensión armónica recomendados

La tabla N° 2 se aplica a la tensión armónicas cuyas frecuencias

son múltiplos enteros de la frecuencia de potencia.

Tabla 2

Límites de distorsión de la tensión

Bus voltage V at PCC	individual harmonic (%)	Total harmonic distotion THD(%)
$V \le 1.0 \ kV$	5.0	8.0
$1 \text{kV} < \text{V} \le 69 \text{ kv}$	3.0	5.0
$69kV < V \le 161 kV$	1.5	2.5
161 kV < V	1.0	1.5a

Nota: (IEEE, 2014)

3.2.1.5. Límites de distorsión de la corriente recomendados para

sistemas con una tensión nominal de 120 V a 69 kV

Tabla 3

Maximum harmonic current distortion in percent of IL individual harmonic order (odd harminics) a,b									
ISC / IL	3≤h<11	$11 \le h \le 17$	17≤h<23	23≤ h<35	35≤ h<50	TDD			
<20	4.0	2.0	1.5	0.6	0.3	5.0			
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0			
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0			
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0			
< 1000	15.0	7.0	6.0	2.5	1.4	20.0			

Límites de distorsión de corriente para sistemas de 120 V a 69 kV

Nota: (IEEE, 2014)

Se realizan simulaciones de flujos de armónicos, teniendo en cuenta las recomendaciones de la norma IEEE 519-2014, para verificar la performance de los filtros instalados en baja tensión y verificar la presencia de armónicos en barra 22.9 kV, que pondrían poner en peligro al equipo de compensación reactiva, que se instalara en este nivel, para lo cual, se consideran los siguientes casos:

- Caso 0: Sin proyecto Línea 4 (Operación Línea 1 y Línea 3 "Hornos 1/2/3")
- Caso 1: Con proyecto Línea 4 (Operación Línea 1 y línea 4)
- Caso 2: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1" y línea 4)
- Caso 3: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2" y línea 4)
- Caso 4: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2/3" y línea 4).

3.2.1.6. Diseño del filtro de armónicos L-C

Para el diseño del filtro de armónicos se realiza los siguientes cálculos:

Parámetros necesarios para el calculo

- La potencia reactiva necesaria.
- El factor de de-sintonía necesitado.
- Factor de calidad a frecuencia de-sintonía
- Tensión nominal
- Frecuencia nominal

3.2.1.7. Determinación de parámetros del filtro

Filtros sintonizados

En los filtros sintonizados o filtros de banda de paso, ver figura 16, el circuito serie se compone de una inductancia en serie a una resistencia de bajo valor.

Figura 17

Filtro sintonizado

Nota: (Pérez Abril, 2012)

La impedancia de este filtro para la frecuencia calcula como:

$$Z_n = R + j\left(n * Xl - \frac{Xc}{n}\right) \tag{19}$$

De forma que la frecuencia de sintonía a la que ocurre el valor mínimo de impedancia coincide con la frecuencia de resonancia del filtro.

$$hn = \sqrt{\frac{Xc}{Xl}} \tag{20}$$

De esta manera, la selección de Xc y Xl conociendo la potencia reactiva nominal del condensador es muy sencilla:

$$Xc = \frac{Vn^2}{Qcn} \tag{21}$$

La reactancia del inductor esta dado por:

$$Xl = \frac{Xc}{hn^2} \tag{22}$$

Estos filtros se emplean para eliminar armónicos de orden bajo con un factor de calidad alto (Q = 20-50) que se define como:

$$Q = hn * \frac{Xl}{R} = \frac{Xc}{(hn * R)}$$
(23)

Por lo tanto, conocida XI, la resistencia se calcula mediante:

$$R = hn * \frac{Xl}{Q} \tag{24}$$

La impedancia de este filtro para la frecuencia fundamental se calcula como:

$$Z_1 = R + j(Xl - Xc) \tag{25}$$

Y la potencia reactiva que entrega el filtro a la fundamental es:

$$Q_{1} = \frac{Vn^{2}}{Xc - Xl} = \frac{Vn^{2}}{Xc\left(1 - \frac{1}{hn^{2}}\right)} = Qcn\frac{hn^{2}}{hn^{2} - 1}$$
(26)

Determinación de la potencia reactiva del filtro:

$$Q_{Filtro} = Q_C * \frac{hn^2}{(hn^2 - 1)} \tag{27}$$

Por lo tanto, Xc se calcularía aproximadamente a partir de Q₁ como: (Pérez Abril, 2012)

$$Xc = \frac{Vn^2}{Qcn} \approx \frac{Vn^2}{Q_1} \frac{hn^2}{hn^2 - 1}$$
(28)

Entonces la determinación de reactancia del capacitor esta dado por:

$$X_C = \frac{V^2}{Q_C} \tag{29}$$

La capacitancia por fase, está dado por:

$$C = \frac{1}{2\pi f X_c} \tag{30}$$

La reactancia característica, vine dado por.

$$X_n = \frac{X_C}{h_n} \tag{31}$$

Entonces la resistencia intrínseca se calcula mediante:

$$R = \frac{Xn}{Q} \tag{32}$$

La inductancia por fase, está dado por:

$$L = \frac{X_L}{2\pi f} \tag{33}$$

Donde:

- Q_C : Potencia reactiva necesaria.
- h_n : El factor de de-sintonía necesario.
- *Q* : Factor de calidad a frecuencia de-sintonía
- *V* : Tensión nominal.
- *f* : Frecuencia nominal.

Para verificar su operatividad se realiza simulaciones de flujo de carga y flujo de armónicos, para los casos:

- Caso 0: Sin proyecto Línea 4 (Operación Línea 1 y Línea 3 "Hornos 1/2/3")
- Caso 1: Con proyecto Línea 4 (Operación Línea 1 y línea 4)
- Caso 2: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1" y línea 4)
- Caso 3: Con proyecto Línea 4 (Operación Línea 1, Línea 3
 "Hornos 1/2" y línea 4)
- Caso 4: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2/3" y línea 4).

CAPITULO IV

RESULTADOS Y DISCUSIÓN

De acuerdo a los objetivos planteados en la presente tesis y con la metodología detallada en el capítulo anterior tenemos los siguientes resultados.

4.1. ANÁLISIS DE LA POTENCIA REACTIVA NECESARIA PARA MEJORAR EL FACTOR DE POTENCIA.

4.1.1. Ubicación

El proyecto se ubica en el distrito de Caracoto, provincia de San Román, departamento de Puno, a 3850 msnm.

Figura 18

Ubicación de la Planta Katawi RUMI y S.E. Caracoto.

Nota: Google Earth

4.1.2. Información utilizada

Figura 19

Diagrama unifilar

Nota: Elaboración propia

4.1.3. Parámetros eléctricos de la red equivalente.

Tabla 4

Parámetros eléctricos de la red equivalente

RED EQUIVALENTE		VOLTAJ	E Sk"(3-Ph)	Ik"(3-Ph)	V/D	Sk"(1-Ph)	Ik"(1-Ph)
JULIACA 60KV	%V	Deg.	MVA	KA	X/K	MVA	X/K KA
AVENIDA MAXIMA 2019	102	0.00	220.54	2.12	26.04	97.341	26.04 2.81
AVENIDA MINIMA 201	19 102	0.00	221.36	2.13	26.03	97.341	26.03 2.81
Nota: COES.							

4.1.4 Parámetros eléctricos de transformadores de potencia de 2 devanados

Tabla 5

Parámetros eléctricos de transformadores 02 devanados

SUB-ESTACION	POTENCIA NOMINAL (KVA)	TENSI (KV	ON NOMINAL)	TENS COR TO (SION DE TOCIRCUI %)	GRUPO DE CONEXI	
	(ONAN)	PRIMARIO (HV)	SECUNDARIO (LV)	Vcc	REF (KVA)	ÓN	
TR LINEA 1	5000	22,9±2x2.5%	2,40	5,40	5000	Ynd11	
TR MOLIENDA DE	2000	22,9±2x2.5%	0,48	7,83	5000	Dyn5	
CAL							
TR PET COKE	2000	22,9±2x2.5%	0,48	7,41	5000	Dyn5	
TR HORNO 1	2000	22,9±2x2.5%	0,48	7,58	5000	Dyn5	
TR HORNO 2	2000	22,9±2x2.5%	0,48	7,47	5000	Dyn5	
TR HORNO 3	2000	22,9±2x2.5%	0,48	7,55	5000	Dyn5	
TR S.E. 410	2000	22,9±2x2.5%	0,48	7,66	5000	Dyn5	
TR S.E. 420	2000	22,9±2x2.5%	0,48	7,67	5000	Dyn5	
TR GRUPO	2000	22,9±2x2.5%	0,46	6,15	5000	Dyn5	
ELECTROGENO							

Nota: Elaboración propia.

4.1.5. Parámetros eléctricos de transformadores de potencia de 3 devanados

Tabla 6

SUB-ESTACION	POTENCIA NOMINAL (MVA)	TENSION NOMINAL (KV)	TENSION I CORTOCIRC	DE UITO	GRUPO DE CONEXIÓN
	(ONAN/ONAF)		Vcc (%)	REF (MVA)	
	16/20	60.00±10x1% (P-Primario)	9.7% (P-S)	15	
TR CARACOTO	14/18.75	22.90 (S – Secundario)	4.3% (S-T)	4	Ynyn0d5
	4/5	10.00 (T – Terciario)	1.2% (T-P)	4	
	8/10	22.90±2x2.5% (P-Primario)	7.41% (P-S)	8	
TR – LINEA 2	6.5/8	4.16 (S – Secundario)	Sin dato (S-T)	Sin dato	Ynd5yn0
	1.5/2	0.46 (T-Terciario)	Sin dato (T-P)	Sin dato	

Parámetros eléctricos de transformadores 03 devanados

Nota: Elaboración propia.

4.1.6. Parámetros eléctricos de Notas de armónicos de planta

Tabla 7

NOTA	NIVEL (V)	UBICACION	CELDA	TECNOLOGIA	DESCRIPCION DE LA CARGA
ALLEN BRADLEY PF7000	4160	SALA 360 (LINEA 4)	AD311 / FP360	18 Pulsos	4150 Motor Ventilador
VFD ABB (ACS800)	460	FP410 (LINEA 4)	CB7 / FP410	6 Pulsos	TABLERO DE VARIADORES
VFD ABB (ACS800)	460	FP420 (LINEA 4)	VFD-4790 / FP420	6 Pulsos	4790.3 Motor Molino de Carbón
VFD ABB (ACS800)	460	FP420 (LINEA 4)	VFD-4170 / FP420	6 Pulsos	4170 Motor Ventilador Molino de Carbón
VFD ABB (ACS800)	460	FP420 (LINEA 4)	VFD-4525 / FP420	6 Pulsos	4525 Chancadora Mclanahan
VFD ABB (ACS800)	460	FP420 (LINEA 4)	VFD-4525.1 / FP420	6 Pulsos	4525.1 Motor Chan. Martillos
VFD SINAMICS S120	460	FP310 (LINEA 3)	CB4 / FP310 / FP420	6 Pulsos	TABLERO DE VARIADORES MCC312
VFD SINAMICS S120	460	FP320 (LINEA 3)	CB4 / FP320	6 Pulsos	TABLERO DE VARIADORES MCC322
VFD SINAMICS S120	460	FP330 (LINEA 3)	CB4 / FP330	6 Pulsos	TABLERO DE VARIADORES MCC332
VFD ABB (ACS800)	460	FP350 (LINEA 3)	VFD-3757 / FP350	6 Pulsos	3757 Motor soplador
VFD SANTERNO	460	FP350 (LINEA 3)	VFD-3741 / FP350	6 Pulsos	3741 Motor Molino Raymond
Variadores Varios	2400	BARRA 1 Y BARRA 2 (LINEA 1)	AD300 / FP360	6 Pulsos	Carga concentrada

Parámetros eléctricos de Notas de armónicos de planta

4.1.7. Parámetros eléctricos de perfil de armónicos

Tabla 8

	Parámetros	eléctricos	de	perfil	de	armónicos
--	------------	------------	----	--------	----	-----------

ORDEN DE ARMONICA	VFD SINAMICS S120	VFD ABB (ACS800)	VFD SANTERNO	PF700 ALLEN BRADLEY	PLANTA 1
5	23.52	42	2.60	2.06	19.1
7	6.08	14.3	1.50	1.32	13.1
11	4.57	7.9	3.70	1.32	7.2
13	4.2	3.2	3.70	1.03	5.6
17	1.8	3.7	0.50	0.19	3.3
19	1.37	2.3	0.30	0.33	2.4
23	0.75	2.3	0.10	0.47	1.2
25	0.56	1.4	0.50	0.28	0.8
29	0.49	-	-	0.05	0.2
31	0.54	-	-	0.14	0.2
35	0.4	-	-	-	0.4
37	-	-	-	-	0.5
41	-	-	-	-	0.5
43	-	-	-	-	0.5
47	-	-	-	-	0.4
49	-	-	-	-	0.4

Nota: Elaboración propia.

4.1.8. Parámetros eléctricos de filtro de armónicos en planta

Tabla 9

т	FEEDER	Dagaa	Capacitor x	Paso (Delta/480V)	Inductor
1	PANELS	Pasos	KVAR-3Ph	uF-1Ph	mH
HOPNO 1	FD310	Paso 1	30	115.23	1.425
nokito i	11510	Paso 2 al 9	60	230.46	0.713
HOPNO 2	ED220	Paso 1	30	115.23	1.425
HUKINU 2	11520	Paso 2 al 9	60	230.46	0.713
HORNO 3	ED220	Paso 1	30	115.23	1.425
	FF350	Paso 2 al 9	60	230.46	0.713
DET COVE	FP350	Paso 1	30	115.23	1.425
TETCORE	11550	Paso 2 al 11	60	230.46	0.713
	ED260	Paso 1	20	76.83	2.160
CAL	11500	Paso 2 al 6	40	153.63	1.070
SALA 410	ED/10	Paso 1, 2	25.1	96.3	1.421
SALA 410	11410	Paso 3 al 9	50.2	192.6	0.71
SALA 420	ED420	Paso 1, 2	25.1	96.3	1.421
SALA 420	11420	Paso 3 al 6	50.2	192.6	0.71

4.1.9. Cuadro de cargas de planta

Tabla 10

Cargas de planta

		FECHA	Registro de M	Mediciones			Demanda	
UBICACIÓN	CIRCUITO	DIAGRAMA	Máxima		Mínima		Para Simula	ciones
		DE CARGA	KW	FP(%)	KW	FP(%)	KW	FP(%)
LINEA 1 /	Barra 1 y 2	02-02-2019	1137.692	95.989	681.228	95.820	892	96.3
AD300								
LINEA 2 /	Fuera de Servicio) -	-	-	-	-	-	-
AD301								
LINEA 3 /	Horno 1	20-01-2019	1254.603	93.404	549.887	88.155	1176	95.0
AD303								
LINEA 3 /	Horno 2	20-01-2019	1133.709	91.704	529.307	93.580	1100	94.9
AD304								
LINEA 3 /	Horno 3	18-11-2018	885.957	94.400	538.615	93.500	866	96.7
AD305								
LINEA 4 /	Sala 410	14-02-2019	454.031	99.027	184.013	92.673	425	99.9
AD306								
LINEA 3 /	Pet coke	20-01-2019	653.000	95.000	297.869	92.626	568	98.3
AD307								
LINEA 3 /	Planta De Carbór	n20-01-2019	199.581	96.664	68.780	88.561	132	96.7
AD308								
LINEA 4 /	Sala 420	29-01-2019	657.375	95.802	305.343	97.791	573	96.6
AD309								
LINEA 4 /	4150 Ventilador	08-02-2019	1383.190	71.666	797.193	56.213	947	59.3
AD311								

Nota: Elaboración propia.

4.1.10. Perfil de tensión en barra 22.9 kV

Tabla 11

Cargas de planta

UBICACIÓ	Registr	Registro de Mediciones (KV)								
Ν	CIRCUITO	FECHA DE	Máxima Mínima						Prome	Promedio
		LECTURA	Uab	Ubc	Uca	Uab Ubc	Uca	Uab	Ubc	Uca
AD302	Barra 22.9 kV	18-11-2018	23.17	23.27	23.15	22.42 22.51	22.37	22.83	22.91	22.78
AD302	Barra 22.9 kV	19-11-2018	22.67	22.72	22.63	22.28 22.35	22.24	22.50	22.56	22.45
AD302	Barra 22.9 kV	16-02-2019	23.13	23.24	23.08	22.56 22.69	22.53	22.81	22.93	22.76

4.1.11. Límites de perfil de armónicas para la planta CALCESUR 22.9 Kv

Tabla 12

Límites de perfil de armónicas para la planta CALCESUR 22.9 Kv

UBICACIO	CIRCUITO	KV	S (KVA*)	ISC (A)	IL (A)	$ISC/IL \rightarrow$	LIMITES IEF	EE519-2014
Ν							THD-I (%)	THD-V (%)
AD300	LINEA 1	22.9	1054	2280	26.57	85.798 →	12.0	5.0
AD302	CELDA PRINCIPAL	22.9	5869	2280	147.97	$15.408 \rightarrow$	5.0	5.0
AD303	LINEA 3 - HORNO 1	22.9	1200	2280	30.26	75.359 →	12.0	5.0
AD304	LINEA 3 - HORNO 2	22.9	1279	2280	32.25	$70.705 \rightarrow$	12.0	5.0
AD305	LINEA 3 - HORNO 3	22.9	945	2280	23.83	95.694 →	12.0	5.0
AD306	LINEA 4 - SALA 410	22.9	446	2280	11.24	$202.761 \rightarrow$	15.0	5.0
AD307	LINEA 3 - PET COKE	22.9	722	2280	18.20	$125.251 \rightarrow$	15.0	5.0
AD308	LINEA 3 - MOL CAL	22.9	243	2280	6.13	$372.145 \rightarrow$	15.0	5.0
AD309	LINEA 4 - SALA 420	22.9	606	2280	15.28	$149.226 \rightarrow$	15.0	5.0
AD310	CELDA GENERACION	22.9	680	2280	17.14	132.987 →	15.0	5.0
AD311	LINEA 4 - VFD4150	22.9	1534	2280	38.68	58.951 →	12.0	5.0

Nota: Elaboración propia.

Bus voltage V at PCC	individual harmonic (%)	Total harmonic distotion THD(%)
$V \le 1.0 \ kV$	5.0	8.0
$1 \text{kV} \le 1 \text{V} \le 69 \text{ kv}$	3.0	5.0
$69kV < V \le 161 kV$	1.5	2.5
161 kV < V	1.0	1.5a

Nota:(IEEE, 2014)

4.1.12. Límites de perfil de armónicas para la planta CALCESUR 460 V

Tabla 13

Límites de perfil de armónicas para la planta CALCESUR 460 V

UBICACION	CIRCUITO	KV	S (KVA*)	ISC (A)	IL (A)	ISC/IL	\rightarrow	LIMITES IEI	EE519-2014
								THD-I (%)	THD-V (%)
FP310	HORNO 1	0.46	1200	27010	1506.18	17.933	\rightarrow	5.0	8.0
FP320	HORNO 2	0.46	1279	27880	1605.33	17.367	\rightarrow	5.0	8.0
FP330	HORNO 3	0.46	945	27680	1186.11	23.337	\rightarrow	8.0	8.0
FP350	PET COKE	0.46	722	30260	906.22	33.392	\rightarrow	8.0	8.0
FP360	MOL. CAL	0.46	243	25520	305.00	83.672	\rightarrow	12.0	8.0
FP410	SALA 410	0.46	446	27940	559.80	49.911	\rightarrow	8.0	8.0
FP420	SALA 420	0.46	606	28400	760.62	37.338	\rightarrow	8.0	8.0

Maximum harmonic current distortion in percent of IL								
individual harmonic order (odd harminics) a,b								
ISC / IL	3≤h<11	$11 \le h \le 17$	$17 \le h \le 23$	$23 \le h \le 35$	$35 \le h \le 50$	TDD		
<20	4.0	2.0	1.5	0.6	0.3	5.0		
20 < 50	7.0	3.5	2.5	1.0	0.5	8.0		
50 < 100	10.0	4.5	4.0	1.5	0.7	12.0		
100 < 1000	12.0	5.5	5.0	2.0	1.0	15.0		
< 1000	15.0	7.0	6.0	2.5	1.4	20.0		
Bus voltage V at	t PCC indiv	vidual harmon	ic (%) To	otal harmonic	distotion THD	(%)		
$V \le 1.0 \ kV$	r	5.0		:	8.0			
$1 \text{kV} \le V \le 69 \text{ kv}$		3.0		:	5.0			
$69kV \le V \le 16$	1 kV	1.5		:	2.5			

1.0

Nota: :(IEEE, 2014)

161 kV < V

4.1.13. Análisis de compensación reactiva

A través de simulaciones de flujo de carga, considerando la cargas existentes y proyectadas, se verifica que es necesario la compensación reactiva. Para determinar la potencia reactiva necesaria para la corrección del factor de potencia; se calcula en base a la potencia activa total del sistema analizado y el factor "k" el cual es seleccionado de la siguiente tabla.

1.5a

Tabla 14

Γ ucior \mathbf{n} , cuso de estudi	Factor	caso de esti	udio
--	--------	--------------	------

Fac	tor de		0.00	0.01	0.02	0.02	0.04	0.05	0.05	0.07	0.00	0.00	1.00
potenci	ia.	cos φ	0.90	0.91	0.92	0.93	0.94	0.95	0.96	0.97	0.98	0.99	1.00
DICI	ia T	tg d	0.484	0.456	0.426	0.395	0.363	0.329	0.292	0.251	0.203	0.142	0.000
INICIA		81											
cos ф	tg ф												
0.85	0.620		0.135	0.164	0.194	0.225	0.257	0.291	0.328	0.369	0.417	0.477	0.620
0.86	0.593		0.109	0.138	0.167	0.198	0.230	0.265	0.302	<u>0.343</u>	0.390	0.451	0.593
0.87	0.567		0.082	0.111	0.141	0.172	0.204	0.238	0.275	0.316	0.364	0.424	0.567
0.88	0.540		0.055	0.084	0.114	0.145	0.177	0.211	0.248	0.289	0.337	0.397	0.540
0.89	0.512		0.028	0.057	0.086	0.117	0.149	0.184	0.221	0.262	0.309	0.370	0.512
0.90	0.484			0.029	0.058	0.089	0.121	0.156	0.193	0.234	0.281	0.342	0.484
0.91	0.456				0.030	0.060	0.093	0.127	0.164	0.205	0.253	0.313	0.456
0.92	0.426					0.031	0.063	0.097	0.134	0.175	0.223	0.284	0.426
0.93	0.395						0.032	0.067	0.104	0.145	0.192	0.253	0.395
0.94	0.363							0.034	0.071	0.112	0.160	0.220	0.363
0.95	0.329								0.037	0.078	0.126	0.186	0.329
0.96	0.292									0.041	0.089	0.149	0.292
0.97	0.251										0.048	0.108	0.251

Nota: Cuaderno técnico ABB.

De esta forma se obtiene la corrección del factor de potencia de un valor inicial a un valor deseado.

Tabla 15

Corrección del factor de potencia

PARAMETROS	CASO 0	CASO 1	CASO 2	CASO 3	CASO 4	UNIDAD
	L1, L3"H1/2/3	"L1, L4	L1, L3 "H1", L4	L1, L3"H1/2", L4	L1, L3"H1/2/3", L4	
Potencia Aparente	4915.0	3309.00	5215.00	6331	7250	KVA
Potencia Activa	4723.3	2835.8	4714.4	5773.9	6677.3	KW
Cos (FDP inicial)	0.96	0.86	0.90	0.91	0.92	-
Cos (FDP final)	0.97	0.97	0.97	0.97	0.97	-
К	0.041	0.343	0.234	0.205	0.175	(según TABLA)
KVAR-3ph	193.66	972.68	1103.16	1183.64	1168.52	KVAR
Banco Elegido	250.00	1000.00	1000.00	1000.00	1000.00	KVAR

Nota: Elaboración propia

Del cuadro anterior se podría decir que es suficiente con un equipo de 1000 KVAR para poder corregir el factor de potencia a valores mayores a 96%. Cabe recordar que el bajo factor de potencia resulta de la operación de la carga máxima de 1000 KW que se alimenta de la celda AD311.

4.2. ANÁLISIS DE LAS DISTORSIONES DE VOLTAJE CAUSADAS POR LAS NOTAS DE ARMÓNICOS DE LA PLANTA DE ACUERDO CON LOS LÍMITES RECOMENDADOS POR LA NORMA IEEE 519- 2014.

Siguiendo el método propuesto en el capítulo 3 procedemos a realizar el análisis de las distorsiones de voltaje a causa de los armónicos de acuerdo con los límites recomendados por la Norma IEEE 519- 2014.

4.2.1. Análisis de flujo de armónicos

Se realizan simulaciones de flujos de armónicos, para verificar la performance de los filtros de armónicos instalados en baja tensión y verificar la

presencia de armónicos en barra 22.9 kV que pondrían poner en peligro al equipo de compensación reactiva que se instalara en este nivel, para lo cual se consideran los siguientes casos:

- Caso 0: Sin proyecto Línea 4 (Operación Línea 1 y Línea 3 "Hornos 1/2/3")
- Caso 1: Con proyecto Línea 4 (Operación Línea 1 y línea 4)
- Caso 2: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1" y línea 4)
- Caso 3: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2" y línea 4)
- Caso 4: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2/3" y línea 4).

4.2.2. Resultados de los casos evaluados de armónicos de corriente

Tabla 16

Armónicos de corriente

UBICACIÓ	ÓN	CASO 0	CASO 1	CASO 2	CASO 3	CASO 4	LIMITES THD-i / IEEE 519-214
	AD-300 (LINEA 1)	23.88	24.03	24.18	23.99	23.85	< 12.0
	AD-301 (LINEA 2)	-	-	-	-	-	-
	AD-302 (LLEGADA)	7.78	5.38	4.11	4.27	4.24	< 5.0
	AD-303 (LINEA 3- HORNO 1)	9.55	-	11.61	10.82	10.46	< 12.0
22 OKV	AD-304 (LINEA 3- HORNO 2)	9.21	-	-	10.46	10.02	< 12.0
22.9K V	AD-305 (LINEA 3- HORNO 3)	7.44	-	-	-	8.43	< 12.0
	AD-306 (LINEA 4 – SALA 410)	-	12.74	14.39	16.39	17.58	< 15.0
	AD-307 (LINEA 3- PET COKE)	14.84	-	10.91	12.25	13.02	< 15.0
	AD-308 (LINEA 3- MOLIENDA)	8.68	-	5.89	6.87	7.47	< 15.0
	AD-309 (LINEA 4- SALA 420)	-	11.92	12.78	13.67	14.14	< 15.0
	AD-310 (CENTRAL TERMICA)	-	-	-	-	-	< 15.0
	AD-311 (TRANSF. VARIADOR)	-	8.31	8.39	8.45	8.51	< 12.0

Se observa presencia de armónicos que superan el límite de 12% no compensados en el circuito de la celda AD300. Este valor fue contrastado con el registro de mediciones realizados en la celda AD300.

4.2.3. Resultados de los casos evaluados de armónicos de tensión

Tabla 17

A	rmór	iicos	de	tens	ión

UBICACIÓN	1	CASO 0	CASO 1	CASO 2	CASO 3	CASO 4	LIMITES THD-v / IEEE 519-214
22.9KV	BARRA	4.06	4.76	4.19	4.36	4.36	< 5.0
2.4KV	BARRA 1 Y 2	5.58	5.89	5.48	5.67	5.66	< 5.0
	FP310 (LINEA 3 - HORNO 1)	6.54	-	6.34	6.48	6.47	< 8.0
	FP320 (LINEA 3 - HORNO 2)	6.42	-	-	6.34	6.42	< 8.0
4.001	FP330 (LINEA 3 - HORNO 3)	5.40	-	-	-	5.47	< 8.0
460V	FP350 (LINEA 3 - PET COKE)	2.38	-	2.87	2.84	2.75	< 8.0
	FP360 (LINEA 3 - MOLIENDA)	3.86	-	3.98	4.15	4.14	< 8.0
	FP410 (LINEA 4 - SALA 410)	-	3.46	2.99	2.97	2.89	< 8.0
	FP420 (LINEA 4 - SALA 420)	-	3.57	3.09	3.08	3.00	< 8.0

Nota: Elaboración propia

Las simulaciones y registro de mediciones en celda AD300 confirman la presencia de Nota de corrientes de armónicos no filtrados en planta LINEA 1. El registro verifica que el THD de corriente es mayor a 20% según IEEE 519.

Figura 20

Nota: Elaboración propia

Las simulaciones y registro de mediciones, también confirman que en la celda principal AD302, los niveles de armónicos de corriente superan ligeramente el límite. El registro verifica que el THD de corriente es mayor a 5% según IEEE519.

Figura 21

Registro THD de corriente celda AD302

Nota: Elaboración propia

Las simulaciones y registro de mediciones confirman la presencia de armónicos del orden 5th y 7th, que superan los límites de IEEE519 (<4%), por tal motivo, se tomara el criterio de utilizar un equipo de compensación L-C, con desintonia de 4.2 th para evitar daños en este.

Nota: Elaboración propia

4.2.4. Diseño del filtro de armónicos L-C

Del análisis del flujo de carga, se ha determinado que se requiere la compensación de 1000 KVAR en 22.9 kV y del análisis del flujo de armónicos, se ha determinado que se requiere un filtro desintonizado en el orden 4.2, por consiguiente, se realiza los siguientes cálculos

4.2.5. Parámetros necesarios para el cálculo:

Los parámetros necesarios para el calculo son los siguientes:

Potencia reactiva necesaria	:	$Q_C = 1000 \; KVAR$
El factor de de-sintonía necesario	:	$h_n = 4.20.$
Factor de calidad a frecuencia de-sintonía	:	Q = 80
Tensión nominal	:	$V = 22.9 \ kV.$
Frecuencia nominal	:	f = 60 Hz .

4.2.6. Determinación de parámetros del filtro

Determinación de la potencia reactiva del filtro, utilizamos las ecuaciones planteadas en el capítulo 3:

Determinación de la potencia reactiva del filtro, utilizando la ecuación 26, calculamos:

$$Q_{Filtro} = Qcn \frac{hn^2}{hn^2 - 1} = 1000 * \frac{4.20^2}{4.20^2 - 1} = 1.060 \text{ KVAR}$$

Determinación de reactancia del capacitor, de la ecuación 29, tenemos lo siguiente:

$$Xc = \frac{Vn^2}{Qcn} = \frac{22.9 * 4.20^2}{1.060} = 524.41 \ Ohm$$

Determinación de la capacitancia por fase

$$C = \frac{1}{2\pi f X_c} = \frac{1}{2 * \pi * 60 * 524.41} = 5.058 \mu F$$

Determinación de reactancia del inductor. De la ecuación 29 tenemos:

$$X_C = \frac{V^2}{Q_C} = \frac{22.9^2}{80} = 29.73 \ Ohm$$

Determinación de la capacitancia por fase, está dado por la ecuación 30:

$$C = \frac{1}{2\pi f X_c} = \frac{1}{2\pi * 60 * 29.73} = 5.058 \mu F$$

Determinación de reactancia del inductor. La reactancia del inductor esta dado por la ecuación 22:

$$Xl = \frac{Xc}{hn^2} = \frac{29.73}{4.20^2} = 29.73 \ Ohm.$$

Determinación de la inductancia por fase, está dado por la ecuación 33:

$$L = \frac{X_L}{2\pi f} = \frac{29.73}{2 * \pi * 60} = 78.857 \, mH$$

Determinación de la reactancia característica. La reactancia característica, vine dado por la ecuación 31:

$$X_n = \frac{X_C}{h_n} = \frac{29.73}{4.20} = 124.86 \, mH$$

Determinación de la resistencia intrínseca, se calcula mediante la ecuación

32:

$$R = \frac{Xn}{Q} = \frac{124.86}{80} = 1.561 \ Ohm.$$

Nota: Elaboración propia.

Los resultados confirman que es necesario instalar un filtro L-C para compensar los reactivos de la celda AD311, cuyo equipo a instalarse debe disponer de los siguientes parámetros eléctricos:

- Capacitancia: 5.058 μ F / fase \rightarrow (2 Capacitores de 2.529 μ F / fase)
- Inductancia: 78.857 mH / fase
- Orden de-sintonía: 4.2
- Conexión: estrella sin aterrar

Se opta a la conexión de doble estrella no aterrada (Ungrounded double wye), cuyos equipos de la "CELDA+FILTRO LC" debe contar como mínimo con:

Conexión de doble estrella no aterrada

Nota: Elaboración propia.

Para verificar su operatividad se realizó simulaciones de flujo de carga y flujo de armónicos, para los casos:

- Caso 0: Sin proyecto Línea 4 (Operación Línea 1 y Línea 3 "Hornos 1/2/3")
- Caso 1: Con proyecto Línea 4 (Operación Línea 1 y línea 4)
- Caso 2: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1" y línea 4)

- Caso 3: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2" y línea 4)
- Caso 4: Con proyecto Línea 4 (Operación Línea 1, Línea 3 "Hornos 1/2/3" y línea 4)

Los resultados de las simulaciones de flujo de carga confirman que el factor de potencia se corrige a valores mayores a >96%.

Tabla 18

Simulaciones de flujo de carga

	FOURO	KV	FACTOR DE POT CASO 0	TENCIA (%) CASO 1	CASO 2	CASO 3	CASO 4
ANLA	EQUID	Κv	L1, L3"H1/2/3"	L1, L4	L1, L3 "H1", L	4 ^{L1, L3"H1/2",} L4	L1, L3"H1/2/3", L4
FXTREN	S.E. Juliaca – Salid a	^a 60	99.5	99.5	99.7	99.0	98.5
EXTREN O Sa C	CARACOTO S.E. Caracoto – Salida a CALCESUR	22.9	95.9	96.8	96.5	96.2	96.2
PLANT A	Cable AD302	22.9	96.1	96.8	96.6	96.4	96.4
	Demanda máxima er Calcesur	n Planta	4.72 MW	2.83 MW	4.71 MW	5.83 MW	6.67 MW

Nota: Elaboración propia.

Los resultados de flujo de armónicos, confirma que con la operación del filtro L-C de 22.9 kV los niveles de distorsión se mejoran, tal como se aprecia en las siguientes tablas:

Tabla 19

UBICACIÓ	<u>ÓN</u>	<u>CASO 0</u>	CASO 1 "Sin F"	CASO 1 "Con F"	CASO 2 "Sin F"	CASO 2 "Con F"	CASO 3 "Sin F"	CASO 3 "Con F"	CASO 4 "Sin F"	CASO 4 "Con F"	LIMITES THD-i/IEEE 519-214
	AD-300 (LINEA	23.88	24.03	24.25	24.18	24.40	23.99	24.24	23.85	24.12	< 12.0
	1) AD-301 (LINEA 2)	-	-	-	-	-	-	-	-	-	-
	ÁD-302 (LLEGADA)	7.78	5.38	4.45	4.11	3.31	4.27	3.38	4.24	3.29	< 5.0
	AD-303 (LINEA 3-	9.55	-	-	11.61	12.25	10.82	11.70	10.46	11.36	< 12.0
22.01711	HORNO 1) AD-304 (LINEA 3-	9.21	-	-	-	-	10.46	11.31	10.02	10.92	< 12.0
22.9KV	HORNO 2) AD-305 (LINEA 3-	7.44	-	-	-	-	-	-	8.43	9.43	< 12.0
	HORNO 3) AD-306 (LINEA 4	-	12.74	11.28	14.39	12.64	16.39	14.21	17.58	14.99	< 15.0
	– SALA 410) AD-307 (LINEA 3-	14.84	-	-	10.91	9.62	12.25	10.68	13.02	11.22	< 15.0
	PET COKE) AD-308 (LINEA 3-	8.68	-	-	5.89	4.37	6.87	5.15	7.47	5.58	< 15.0
	MOLIENDA) AD-309 (LINEA 4-	-	11.92	11.43	12.78	12.10	13.67	12.76	14.14	13.08	< 15.0
	SALA 420) AD-310										
	(CENTRAL TERMICA)	-	-	-	-	-	-	-	-	-	< 15.0
	AD-311 (TRANSF.	-	8.31	8.46	8.39	8.48	8.45	8.49	8.51	8.52	< 12.0
22.9KV	Filtro de 1 MVAR	-	-	7.87	-	10.36	-	14.03	-	16.26	< 12.0

Resultado de flujos de armónicos de corriente.

Nota: Elaboración propia

Tabla 20

Resultado de flujos de armónicos de tensión.

-											
			CASO 1	CASO 1	CASO 2	CASO	CASO 3	CASO 3	CASO 4	CASO 4	LIMITES
UBICA	CIÓN	CASO) <u>"Sin F"</u>	"Con F"	"Sin F"	2	"Sin F"	"Con F"	"Sin F"	"Con F"	THD-v/IEEE
						"Con					519-214
						F"					
22.9K	BARRA	4.06	4.76	3.35	4.19	3.25	4.36	3.43	4.36	3.50	< 5.0
v											
2.4KV	BARRA 1 Y 2	5.58	5.89	4.66	5.48	4.64	5.67	4.82	5.66	4.88	< 5.0
	FP310 (LINEA 3	6.54	-	-	6.34	5.85	6.48	5.99	6.47	6.02	< 8.0
	- HORNO 1)										
	FP320 (LINEA 3	6.42	-	-	-	-	6.34	5.69	6.42	5.81	< 8.0
	- HORNO 2)										
	FP330 (LINEA 3	5.40	-	-	-	-	-	-	5.47	4.81	< 8.0
	- HORNO 3)										
460V	FP350 (LINEA 3	2.38	-	-	2.87	2.34	2.84	2.32	2.75	2.28	< 8.0
	- PET COKE)										
	FP360 (LINEA 3	3.86	-	-	3.98	3.09	4.15	3.26	4.14	3.33	< 8.0
	- MOLIENDA)										
	FP410 (LINEA 4	-	3.46	2.54	2.99	2.41	2.97	2.42	2.89	2.39	< 8.0
	- SALA 410)										
	FP420 (LINEA 4	-	3.57	2.69	3.09	2.56	3.08	2.54	3.00	2.52	< 8.0
	SALA (20)										

Nota: "Sin F" indica la operación sin filtro L-C y "Con F" indica la operación con el filtro L-C en 22.9 kV.

4.2.7. Transitorios electromagnéticos de energización del filtro L-C

El transformador de potencia se ha modelado como parámetro concentrado y la curva de saturación es la siguiente:

Figura 25

Curva de saturación

Magnetizing Reactan	се						
Type Polynomia	əl	-	0	Core	[3	3 Limb	-
Knee Flux	1.1	p.u.					
Linear Reactance	1052.723	p.u.	200				
Saturated Reactance	0.05	p.u.					1111
Saturation Exponent	5		1.00			1	
			Li			1111	
			0.00				
			L i		1111		
			-1.00				
			l t				
			-200				
				Flus (peak) in Flus (peak) (1	p.u. wo Slope) in p.u.		Current (peak) in p.u.

- La conexión del filtro se considera con un interruptor de potencia.
- Se considera la operación fija del filtro de armónicos de 1000 KVAR.
- Las sobretensiones estándares en las maniobras de energización deben estar en el rango de 1.5 a 3.0 pu según el sumario de los niveles de sobretensión de la publicación "Coordinación de aislamiento – publicado por Centráis Eléctricas Brasileiras S.A. – ELECTROBAS en convenio con la universidad Federal de Santa María (UFSM)".
- En las simulaciones no se consideran descargadores.

Se considera los siguientes casos de simulación:

- Caso 1: Energización del filtro L-C, a través de su propia celda.
- Caso 2: Desenergización del filtro L-C, a través de su propia celda.
- Caso 3: Energización del filtro L-C, junto al transformador de celda AD311.
- Caso 4: Desenergización del filtro L-C, junto al transformador de celda AD311.
- Resultados de Caso 1 Energización del filtro L-C, a través de su propia celda.

Figura 26

Energización del filtro L-C, a través de su propia celda.

Nota: Elaboración propia.

Debido a la reactancia de-sintonía orden 4.2th, la corriente de energización resulta menor a 7 veces la nominal.

Reactancia de-sintonía orden 4.2th

Nota: Elaboración propia.

La sobretensión en la energización es menor a 1.5 veces la nominal.

- Resultados de Desenergización del filtro L-C, a través de su propia celda.

Nota: Elaboración propia.

La desenergización no presenta problemas de corriente.

Figura 29

Nota: Elaboración propia.

El filtro queda cargado con tensiones que no superan 2.0 veces la nominal, los cuales serán descargados con su resistencia de descarga.

Figura 30

Carga del filtro

Nota: Elaboración propia.

Se presentarán sobretensiones, en borne del interruptor con magnitudes menores a 2.3 veces la tensión máxima del equipo (24 kV).

 Resultados de Energización del filtro L-C, junto al transformador de celda AD311.

Energización del filtro L-C, junto al transformador de celda AD311.

Nota: Elaboración propia.

La corriente de energización conjunta, es alineada a la forma de la corriente de energización del transformador de potencia, cuya magnitud es menor a 8 veces la nominal del transformador de potencia.

Figura 32

Corriente de energización conjunta

La corriente vista en el filtro L-C es menor a 7 veces la nominal del mismo.

Nota: Elaboración propia.

La sobretensión en la energización es menor a 1.5 veces la nominal.

Resultados de Desenergización del filtro L-C, junto al transformador de celda AD311.

Figura 34

Desenergización del filtro L-C

La desenergización no presenta problemas de corriente.

Figura 35

Sobretensiones en el interruptor

Las sobretensiones, en el interruptor son menores a 1.5 veces la nominal.

V. CONCLUSIONES

- PRIMERA. Se ha determinado la potencia reactiva necesaria para mejorar el factor de potencia de la planta, los resultados confirman que es necesario instalar un filtro L-C para compensar los reactivos de la celda AD311, cuyo equipo a instalarse debe disponer de los siguientes parámetros eléctricos: Capacitancia: 5.058 µF / fase → (2 Capacitores de 2.529 µF / fase); Inductancia: 78.857 mH / fase; Orden de-sintonía: 4.2; Conexión: estrella sin aterrar, potencia reactiva necesaria de 1000 KVAR.
- SEGUNDA. Se analizo las distorsiones de voltaje causadas por las Notas de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519- 2014. Se realizo simulaciones de flujos de armónicos, para verificar la performance de los filtros de armónicos instalados en baja tensión y verificar la presencia de armónicos en barra 22.9 Kv que pondrían poner en peligro al equipo de compensación reactiva que se instalara en este nivel, para lo cual se considera 4 casos.

VI. RECOMENDACIONES

- PRIMERA. De los resultados obtenidos en la presente investigación podemos recomendar a la empresa mejorar el filtrado de armónicos en los circuitos de la celda AD301 que corresponde a la Línea 1, en cuyas redes suponemos instalados bancos de condensadores que en vez de evitar los armónicos los están amplificando.
- SEGUNDA. Antes de la puesta en servicio de los filtros de armónicos, se debe calcular, ajustar y probar las funciones de protección de la celda del filtro, como también después de la energización del filtro se debe de desarrollar mediciones de armónicas para verificar el correcto funcionamiento.
- **TERCERA**. En cuanto a la línea de investigación se debe de alentar a los egresados a continuar con este tipo de estudios para poder mejorar la calidad de la energía y las pérdidas de potencia de los servicios eléctricos de distribución de la energía.

VI. REFERENCIAS BIBLIOGRÁFICAS

- Amaris, H., Alonso, M., & Alvarez, C. (2012). Reactive Power Management of Power Networks with Wind Generation. In S. L. H. N. Y. Dordrecht (Ed.), *Media* (FIRST EDIT, Vol. 79, Issue 0). Springer London Heidelberg New York Dordrecht. http://www.springer.com/series/8874
- Bi, C., Liu, D., Zhu, L., Lu, C., Li, S., & Tang, Y. (2025). Reactive power optimization via deep transfer reinforcement learning for efficient adaptation to multiple scenarios. *International Journal of Electrical Power and Energy Systems*, 164(March 2024). https://doi.org/10.1016/j.ijepes.2024.110376
- Bunge, M. (2004). La Investigacion Cientifica Su Estrategia Y Su Filosofia. In s. a. de c. v. siglo xxi editores (Ed.), *Siglo Veintiuno* (tercera ed). siglo xxi editores, s.a. de c.v.
- Carrasquilla, S. (2017). *ANÁLISIS DE ARMÓNICOS EN REDES RESIDENCIALES* (p. 49). UNIVERSIDAD TECNOLÓGICA DE PEREIRA.
- Chen, M., Chen, Z., Xu, J., Zhu, Y., & Xu, D. (2018). Power converters for power quality improvement. In *Control of Power Electronic Converters and Systems: Volume 2*. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816136-4.00014-2
- Das, J. (2002). Power system analysis: short-circuit load flow and harmonics. In I. Marcel Dekker (Ed.), *IEEE Power Engineering Review* (1°, Vol. 22, Issue 12). Marcel Dekker, Inc. https://doi.org/10.1109/mper.2002.1098043
- Dudhe, S. (2015). Reactive Power Compensation Techniques in Transmission lines. International Journal on Recent and Innovation Trends in Computing and

Communication, *3*(May), 3224–3226.

- Fuchs, E., & Masoum, M. (2008). Power Quality in Power Systems and Electrical Machines (U. of Colorado (ed.); First Edit). University of Colorado.
- IEEE, S. (2014). IEEE Std 519-2014 (Revision of IEEE Std 519-1992), IEEE
 Recommended Practice and Requirements for Harmonic Control in Electric
 Power Systems. *IEEE Std 519-2014 (Revision of IEEE Std 519-1992)*, 2014, 1–
 29. http://ieeexplore.ieee.org/servlet/opac?punumber=6826457
- Jia, Q., Zhang, T., & Zhao, S. (2024). Distributed-based comprehensive optimal configuration strategy for reactive power and harmonic management equipment. *International Journal of Electrical Power and Energy Systems*, 162(August), 110250. https://doi.org/10.1016/j.ijepes.2024.110250
- Juárez, J. (2002). Sistemas de Distribución de Energía Eléctrica (S. S. Editores (ed.); Primera ed, Vol. 52, Issue 1). Sans Serif Editores.
- Kritsanasuwan, K., Leeton, U., & Kulworawanichpong, T. (2022). Harmonic mitigation of AC electric railway power feeding system by using single-tuned passive filters. *Energy Reports*, 8, 1116–1124. https://doi.org/10.1016/j.egyr.2022.05.276
- Li, P., Yang, P., Liu, J., Zhang, Z., Shi, X., & Liu, L. (2024). UHV AC/DC power grid geomagnetically induced currents harmonic characteristics analysis. *International Journal of Electrical Power and Energy Systems*, 160(January), 110088. https://doi.org/10.1016/j.ijepes.2024.110088
- Macangus, G. G. (2018). *Manual de Ingeniería Eléctrica Offshore* (GPP (ed.); (Segunda E, pp. 273–276). https://doi.org/10.1016/B978-0-12-385499-5.00029-7

- Mahdavi, N., Jafari, A., Bizon, N., & Blaabjerg, F. (2017). Reactive Power Control in AC
 Power Systems. In N. M. T. E. E. D. S. H. E. I. T. Iran (Ed.), *PECon 2008 2008 IEEE 2nd International Power and Energy Conference* (First Edit). Springer.
 https://doi.org/10.1109/PECON.2008.4762658
- Marulanda Durango, J. J., Escobar Mejía, A., & Alzate Gómez, L. A. (2017). Estudio comparativo de cinco estrategias de compensación de armónicos en filtros activos de potencia. *Revista Tecnura*, 21(52), 15. https://doi.org/10.14483/udistrital.jour.tecnura.2017.2.a01
- Oyanguren, F. J. (2018). Diseño de filtros para minimizar los efectos armónicos en redes eléctricas con compensación reactiva. In *Univerdidad Nacional del Callao* (p. 130). Univerdidad Nacional del Callao. http://hdl.handle.net/20.500.12952/5053
- Pérez Abril, I. (2012). Cálculo de parámetros de filtros pasivos de armónicos. *Ingeniería Energética*, *33*(2), 133–142.
- Popper, K. R. (2017). *La lógica de la investigación científica* (Oronet (ed.); 1°). ePub base r1.2.
- QUISPE, A. G. (2018). Análisis de la calidad de energía eléctrica en sistemas de distribución de baja tensión - Salida I S.E. Bellavista. In Una-Puno (pp. 1–252). UNAP. http://repositorio.unap.edu.pe/handle/UNAP/11546
- Reyes-Trujillo E, Rodríguez-Rivas J.J., R.-G. J. (2010). energía en un sistema eléctrico industrial Improving Industrial Energy Quality by an Active Current Filter. 389– 402.

Rojas-Cubides, H. E., Cruz-Bernal, A. S., & Rojas-Cubides, H. D. (2015). Analysis of

voltage sag compensation in distribution systems using a multilevel DSTATCOMinATP/EMTP.Dyna,82(192),26–36.https://doi.org/10.15446/dyna.v82n192.48566

Rojas, P. F. (2021). Optimización del sistema de compensación reactiva para mejorar la calidad de energía eléctrica en la Unidad Minera Chungar e Islay (p. 143).
 Universidad Continental.
 https://repositorio.continental.edu.pe/handle/20.500.12394/10518

- Rosa, F. (2006). Harmonics and Power Systems. In L. Taylor & Francis Group (Ed.), *Power Quality* (First Edit). Distribution Control Systems, Inc.
- Saeed Qazi, H., Ullah, Z., Alferidi, A., Alsolami, M., Lami, B., & Muhammad Abrar Akber, S. (2024). Stability analysis and voltage improvement in DG-integrated distribution networks using VCPI-based critical buses and lines detection considering uncertain power factor. *Ain Shams Engineering Journal, October*, 103142. https://doi.org/10.1016/j.asej.2024.103142
- Sampieri, R. H., Collado, C. F., & Baptista, L. M. del P. (2010). *METODOLOGÍA DE LA INVESTIGACIÓN* (S. A. D. C. . McGRAW-HILL / INTERAMERICANA EDITORES (ed.); Quinta edi). McGRAW-HILL / INTERAMERICANA EDITORES, S.A. DE C.V.
- Santos-Azevedo, M. S., Perez-Abril, I., Leon-Benitez, C. de, Cabral-Leite, J., & Holanda-Bezerra, U. (2014). Multiobjective optimization of the reactive power compensation in electric distribution systems. *Dyna*, 81(187), 175–183. https://doi.org/10.15446/dyna.v81n187.40979

- Shahidi, N., & Salary, E. (2024). Enhancing Grid-Connected Photovoltaic Systems' Power Quality through a Dynamic Voltage Restorer Equipped with an Innovative Sliding Mode and PR Control System. *E-Prime - Advances in Electrical Engineering, Electronics and Energy*, 100875. https://doi.org/10.1016/j.prime.2024.100875
- Shao, H., Henriques, R., Morais, H., & Tedeschi, E. (2024). Power quality monitoring in electric grid integrating offshore wind energy: A review. *Renewable and Sustainable Energy Reviews*, 191(November 2023), 114094. https://doi.org/10.1016/j.rser.2023.114094
- Takagi, M., Fukushima, K., Tagashira, N., Okada, K., & Asano, H. (2024). Costeffectiveness analysis method for voltage stabilization in case of combining storage battery and reactive power compensator. *Journal of Energy Storage*, 93(May), 112065. https://doi.org/10.1016/j.est.2024.112065
- Torres-Acevedo, L. E., Urrea-Quintero, J. H., & Muñoz-Galeano, N. (2017). Control de tensión en el bus DC para compensadores activos de potencia conectados en paralelo. *Informacion Tecnologica*, 28(6), 115–124. https://doi.org/10.4067/S0718-07642017000600013
- Vasconcellos, D. B., Abril, I. P., & Martínez, V. L. (2012). Modelación de los efectos de la compensación de potencia reactiva en sistemas de suministro eléctrico. *Ingeniare*, 20(2), 160–169. https://doi.org/10.4067/s0718-33052012000200003
- Yuan, X., Ma, H., Cui, C., Liu, M., & Gao, Z. (2024). Research on impact of synchronous condenser excitation strategy based on PIDA controller and feedforward voltage control on transient voltage of grid. *International Journal of Electrical Power and*

Energy Systems, *162*(October), 110262. https://doi.org/10.1016/j.ijepes.2024.110262

- Zhong, F., Xie, S., Peng, Y., & Wang, H. (2024). Harmonic resonance evaluation and suppression of railway power conditioner-network-train coupling system. *International Journal of Electrical Power and Energy Systems*, 161(August), 110182. https://doi.org/10.1016/j.ijepes.2024.110182
- Amaris, H., Alonso, M., & Alvarez, C. (2012). Reactive Power Management of Power Networks with Wind Generation. In S. L. H. N. Y. Dordrecht (Ed.), *Media* (FIRST EDIT, Vol. 79, Issue 0). Springer London Heidelberg New York Dordrecht. http://www.springer.com/series/8874
- Bi, C., Liu, D., Zhu, L., Lu, C., Li, S., & Tang, Y. (2025). Reactive power optimization via deep transfer reinforcement learning for efficient adaptation to multiple scenarios. *International Journal of Electrical Power and Energy Systems*, 164(March 2024). https://doi.org/10.1016/j.ijepes.2024.110376
- Bunge, M. (2004). La Investigacion Cientifica Su Estrategia Y Su Filosofia. In s. a. de c. v. siglo xxi editores (Ed.), *Siglo Veintiuno* (tercera ed). siglo xxi editores, s.a. de c.v.
- Carrasquilla, S. (2017). *ANÁLISIS DE ARMÓNICOS EN REDES RESIDENCIALES* (p. 49). UNIVERSIDAD TECNOLÓGICA DE PEREIRA.
- Chen, M., Chen, Z., Xu, J., Zhu, Y., & Xu, D. (2018). Power converters for power quality improvement. In *Control of Power Electronic Converters and Systems: Volume 2*. Elsevier Inc. https://doi.org/10.1016/B978-0-12-816136-4.00014-2

- Das, J. (2002). Power system analysis: short-circuit load flow and harmonics. In I. Marcel Dekker (Ed.), *IEEE Power Engineering Review* (1°, Vol. 22, Issue 12). Marcel Dekker, Inc. https://doi.org/10.1109/mper.2002.1098043
- Dudhe, S. (2015). Reactive Power Compensation Techniques in Transmission lines. International Journal on Recent and Innovation Trends in Computing and Communication, 3(May), 3224–3226.
- Fuchs, E., & Masoum, M. (2008). Power Quality in Power Systems and Electrical Machines (U. of Colorado (ed.); First Edit). University of Colorado.
- IEEE, S. (2014). IEEE Std 519-2014 (Revision of IEEE Std 519-1992), IEEE
 Recommended Practice and Requirements for Harmonic Control in Electric
 Power Systems. *IEEE Std 519-2014 (Revision of IEEE Std 519-1992), 2014*, 1–
 29. http://ieeexplore.ieee.org/servlet/opac?punumber=6826457
- Jia, Q., Zhang, T., & Zhao, S. (2024). Distributed-based comprehensive optimal configuration strategy for reactive power and harmonic management equipment. *International Journal of Electrical Power and Energy Systems*, 162(August), 110250. https://doi.org/10.1016/j.ijepes.2024.110250
- Juárez, J. (2002). Sistemas de Distribución de Energía Eléctrica (S. S. Editores (ed.); Primera ed, Vol. 52, Issue 1). Sans Serif Editores.
- Kritsanasuwan, K., Leeton, U., & Kulworawanichpong, T. (2022). Harmonic mitigation of AC electric railway power feeding system by using single-tuned passive filters. *Energy Reports*, 8, 1116–1124. https://doi.org/10.1016/j.egyr.2022.05.276
- Li, P., Yang, P., Liu, J., Zhang, Z., Shi, X., & Liu, L. (2024). UHV AC/DC power grid

geomagnetically induced currents harmonic characteristics analysis. *International Journal of Electrical Power and Energy Systems*, *160*(January), 110088. https://doi.org/10.1016/j.ijepes.2024.110088

Macangus, G. G. (2018). *Manual de Ingeniería Eléctrica Offshore* (GPP (ed.); (Segunda E, pp. 273–276). https://doi.org/10.1016/B978-0-12-385499-5.00029-7

- Mahdavi, N., Jafari, A., Bizon, N., & Blaabjerg, F. (2017). Reactive Power Control in AC
 Power Systems. In N. M. T. E. E. D. S. H. E. I. T. Iran (Ed.), *PECon 2008 2008 IEEE 2nd International Power and Energy Conference* (First Edit). Springer.
 https://doi.org/10.1109/PECON.2008.4762658
- Marulanda Durango, J. J., Escobar Mejía, A., & Alzate Gómez, L. A. (2017). Estudio comparativo de cinco estrategias de compensación de armónicos en filtros activos de potencia. *Revista Tecnura*, 21(52), 15. https://doi.org/10.14483/udistrital.jour.tecnura.2017.2.a01
- Oyanguren, F. J. (2018). Diseño de filtros para minimizar los efectos armónicos en redes eléctricas con compensación reactiva. In *Univerdidad Nacional del Callao* (p. 130). Univerdidad Nacional del Callao. http://hdl.handle.net/20.500.12952/5053
- Pérez Abril, I. (2012). Cálculo de parámetros de filtros pasivos de armónicos. *Ingeniería Energética*, *33*(2), 133–142.
- Popper, K. R. (2017). *La lógica de la investigación científica* (Oronet (ed.); 1°). ePub base r1.2.
- QUISPE, A. G. (2018). Análisis de la calidad de energía eléctrica en sistemas de distribución de baja tensión - Salida I S.E. Bellavista. In Una-Puno (pp. 1–252).

UNAP. http://repositorio.unap.edu.pe/handle/UNAP/11546

- Reyes-Trujillo E, Rodríguez-Rivas J.J., R.-G. J. (2010). energía en un sistema eléctrico industrial Improving Industrial Energy Quality by an Active Current Filter. 389– 402.
- Rojas-Cubides, H. E., Cruz-Bernal, A. S., & Rojas-Cubides, H. D. (2015). Analysis of voltage sag compensation in distribution systems using a multilevel DSTATCOM in ATP/EMTP. *Dyna*, 82(192), 26–36. https://doi.org/10.15446/dyna.v82n192.48566
- Rojas, P. F. (2021). Optimización del sistema de compensación reactiva para mejorar la calidad de energía eléctrica en la Unidad Minera Chungar e Islay (p. 143).
 Universidad Continental.
 https://repositorio.continental.edu.pe/handle/20.500.12394/10518
- Rosa, F. (2006). Harmonics and Power Systems. In L. Taylor & Francis Group (Ed.), *Power Quality* (First Edit). Distribution Control Systems, Inc.
- Saeed Qazi, H., Ullah, Z., Alferidi, A., Alsolami, M., Lami, B., & Muhammad Abrar Akber, S. (2024). Stability analysis and voltage improvement in DG-integrated distribution networks using VCPI-based critical buses and lines detection considering uncertain power factor. *Ain Shams Engineering Journal, October*, 103142. https://doi.org/10.1016/j.asej.2024.103142
- Sampieri, R. H., Collado, C. F., & Baptista, L. M. del P. (2010). *METODOLOGÍA DE LA INVESTIGACIÓN* (S. A. D. C. . McGRAW-HILL / INTERAMERICANA EDITORES (ed.); Quinta edi). McGRAW-HILL / INTERAMERICANA

EDITORES, S.A. DE C.V.

- Santos-Azevedo, M. S., Perez-Abril, I., Leon-Benitez, C. de, Cabral-Leite, J., & Holanda-Bezerra, U. (2014). Multiobjective optimization of the reactive power compensation in electric distribution systems. *Dyna*, 81(187), 175–183. https://doi.org/10.15446/dyna.v81n187.40979
- Shahidi, N., & Salary, E. (2024). Enhancing Grid-Connected Photovoltaic Systems' Power Quality through a Dynamic Voltage Restorer Equipped with an Innovative Sliding Mode and PR Control System. *E-Prime - Advances in Electrical Engineering, Electronics and Energy*, 100875. https://doi.org/10.1016/j.prime.2024.100875
- Shao, H., Henriques, R., Morais, H., & Tedeschi, E. (2024). Power quality monitoring in electric grid integrating offshore wind energy: A review. *Renewable and Sustainable Energy Reviews*, 191(November 2023), 114094. https://doi.org/10.1016/j.rser.2023.114094
- Takagi, M., Fukushima, K., Tagashira, N., Okada, K., & Asano, H. (2024). Costeffectiveness analysis method for voltage stabilization in case of combining storage battery and reactive power compensator. *Journal of Energy Storage*, 93(May), 112065. https://doi.org/10.1016/j.est.2024.112065
- Torres-Acevedo, L. E., Urrea-Quintero, J. H., & Muñoz-Galeano, N. (2017). Control de tensión en el bus DC para compensadores activos de potencia conectados en paralelo. *Informacion Tecnologica*, 28(6), 115–124. https://doi.org/10.4067/S0718-07642017000600013

- Vasconcellos, D. B., Abril, I. P., & Martínez, V. L. (2012). Modelación de los efectos de la compensación de potencia reactiva en sistemas de suministro eléctrico. *Ingeniare*, 20(2), 160–169. https://doi.org/10.4067/s0718-33052012000200003
- Yuan, X., Ma, H., Cui, C., Liu, M., & Gao, Z. (2024). Research on impact of synchronous condenser excitation strategy based on PIDA controller and feedforward voltage control on transient voltage of grid. *International Journal of Electrical Power and Energy Systems*, 162(October), 110262. https://doi.org/10.1016/j.ijepes.2024.110262
- Zhong, F., Xie, S., Peng, Y., & Wang, H. (2024). Harmonic resonance evaluation and suppression of railway power conditioner-network-train coupling system. *International Journal of Electrical Power and Energy Systems*, 161(August), 110182. https://doi.org/10.1016/j.ijepes.2024.110182

ANEXOS

ANEXO 1. Matriz de consistencia

Planteamiento del problema	Planteamiento del problema especifico	Hipótesis	Objetivos	Variables	Indicadores	Método
¿Cómo influye en la calidad el Diseño del Sistema de Compensación Reactiva del Sistema	¿Cuál es la potencia reactiva necesaria para mejorar el factor de potencia de la planta?	Con la potencia reactiva necesaria se mejorará el factor de potencia de la planta.	Determinar la potencia reactiva necesaria para mejorar el factor de potencia de la planta.	Independientes: Variable independiente (x): compensación reactiva. Dependientes: Corrección del factor de potencia en la red de distribución eléctrica.	Factor de potencia (cos Φ)	Medición de los parámetros eléctricos con el Analizador de redes FLUKE 435 Power Quality and Energy.Analyzer
Eléctrico de la Planta Industrial CALCESUR, Caracoto San Román Juliaca?	¿Cuáles son las distorsiones de voltaje causadas por las fiuentes de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519- 2014?	Las distorsiones de voltaje causadas por las fuentes de armónicos de la planta causan perdidas de potencia.	Analizar las distorsiones de voltaje causadas por las fuentes de armónicos de la planta de acuerdo con los límites recomendados por la Norma IEEE 519- 2014.	Independientes: Límites de Voltaje Dependientes: Distorsión de Voltaje	Flujo de armónicos de tensión	Medición de los parámetros eléctricos con el Analizador de redes FLUKE 435 Power Quality and Energy.Analyzer

ANEXO 2. Evaluación económica

BANCO	DE CONDEI	NSADORES	1	
СОМСЕРТО	CANTIDAD	UND	PRECIO UNIT	MONTO
Condensador 1000KVA	2.00	und	20,000.00	40,000.00
Interruptor automatico 2000/2000	1.00	und	5,000.00	5,000.00
Cable 4*185 en Cu	100.00	mts	18.00	1,800.00
Controlador de Banco	1.00	und	500.00	500.00
Transformador de corriente	1.00	und	1,500.00	1,500.00
Proteccion de Condesandores	6.00	und	3,000.00	18,000.00
Gabinete	1.00	und	2,000.00	2,000.00
Aisladores	3.00	und	500.00	1,500.00
Barras, terminales y conectores	6.00	und	100.00	600.00
Interruptor de poder manual	1.00	und	2,000.00	2,000.00
Pararrayos	1.00	und	800.00	800.00
Seccionador bajo carga	1.00	und	2,000.00	2,000.00
Seccionador de puesta a tierra	1.00	und	1,000.00	1,000.00
Reactor limitador	2.00	und	500.00	1,000.00
Filtro de armonicos	2.00	und	10,000.00	20,000.00
Pintura y galvanizado	1.00	und	1,000.00	1,000.00
Subtotal				98,700.00
IGV (18%)				17,766.00
Total				116,466.00
СОЛСЕРТО	CANTIDAD	UND	PRECIO UNIT	MONTO
Contratista	1.00	1.00	20,000.00	20,000.00
Sub total				20,000.00
IGV				3,600.00
Total				23,600.00

CALCULO DE INGRESOS CALCESUR

	POTENCIA	Y ENERGIA			
CONCEPTO	CANTIDAD	UND	PRECIO UNITARIO	UND	MONTO (S/.)
POTENCIA	3,197.00	KW	23.00	S/. / KW-mes	73,531.00
ENERGIA ACTIVA HORAS PUNTA	386,828.00	KWh	11.19	Ctm S/. /KWh	43,286.05
ENERGIA ACTIVA HORAS FUERA DE PUNTA	1,885,879.00	KWh	11.19	Ctm S/. /KWh	211,029.86
EXCESO DE ENERGIA ACTIVA HORAS PUNTA	0.00	KWh	11.19	Ctm S/. /KWh	0.00
EXCESO DE ENERGIA ACTIVA FUERA					
DE HORAS PUNTA	0.00	KWh	11.19	Ctm S/. /KWh	0.00
EXCESO DE ENERGIA REACTIVA INDUCTIVA	0.00	KVARh	5.16	Ctm S/. /KVARh	0.00
SUB TOTAL S/.					327,846.91
IGV (18%) S/.					59,012.44
TOTAL S/.					386,859.36

	POR PEAJES SP	T, SST Y OTR	OS		• •
CONCEPTO	CANTIDAD	UND	PRECIO UNITARIO	UND	MONTO (S/.)
PEAJE DE CONEXIÓN AL SISTEMA					
PRINCIPAL DE TRANSMISION	3,197.00	KW	42.000	S/. / KW-mes	134,274.00
SSITEMAS SECUNDARIOS DE TRANSMISION					
(AREA 15)	2,220,091.00	KWh	0.200	Ctm S/. /KWh	4,440.18
SSITEMAS SECUNDARIOS DE TRANSMISION					
CUC GGEE-DUP (AREA 15)	2,220,091.00	KWh	0.0070	Ctm S/. /KWh	155.41
SISTEMAS SECUNDARIOS DE TRANSMISION					
(AREA 11)	2,220,091.00	KWh	1.6100	Ctm S/. /KWh	35,743.47
CARGO FIJO MENSUAL	1.00	KWh	14.00	S/. /KWh	14.00
ALUMBRADO PUBLICO	1.00	KVARh	2,640.00	S/. /KWh	2,640.00
SUB TOTAL S/.					177,267.05
IGV (18%) S/.					31,908.07
TOTAL S/.					209,175.12

POR FISE Y MCSA											
CONCEPTO	CANTIDAD	UND	PRECIO UNITARIO	UND	MONTO (S/.)						
RECAUDACION FONDO DE INCLUSION SOCIAL											
(FISE)	2,272,707.00	KWh	0.86	S/. /KWh	19,465.74						
MECANISMOS DE COMPENSACION PARA											
SISTEMAS AISLADOS	2,272.00	MWh	8.80	S/. /MWh	19,993.60						
TOTAL S/.					39,459.34						

CALCULO DE INGRESOS CALCESUR

	POTENCIA	Y ENERGIA			
CONCEPTO	CANTIDAD	UND	PRECIO UNITARIO	UND	MONTO (S/.)
POTENCIA	3,197.00	KW	23.00	S/. / KW-mes	73,531.00
ENERGIA ACTIVA HORAS PUNTA	386,828.00	KWh	11.19	Ctm S/. /KWh	43,286.05
ENERGIA ACTIVA HORAS FUERA DE PUNTA	1,885,879.00	KWh	11.19	Ctm S/. /KWh	211,029.86
EXCESO DE ENERGIA ACTIVA HORAS PUNTA	0.00	KWh	11.19	Ctm S/. /KWh	0.00
EXCESO DE ENERGIA ACTIVA FUERA					
DE HORAS PUNTA	0.00	KWh	11.19	Ctm S/. /KWh	0.00
EXCESO DE ENERGIA REACTIVA INDUCTIVA	0.00	KVARh	5.16	Ctm S/. /KVARh	0.00
SUB TOTAL S/.					327,846.91
IGV (18%) S/.					59,012.44
TOTAL S/.					386,859.36

	POR PEAJES SP	, SST Y OTR	DS		
CONCEPTO	CANTIDAD	UND	PRECIO UNITARIO	UND	MONTO (S/.)
PEAJE DE CONEXIÓN AL SISTEMA					
PRINCIPAL DE TRANSMISION	3,197.00	KW	42.000	S/. / KW-mes	134,274.00
SSITEMAS SECUNDARIOS DE TRANSMISION					
(AREA 15)	2,220,091.00	KWh	0.200	Ctm S/. /KWh	4,440.18
SSITEMAS SECUNDARIOS DE TRANSMISION					
CUC GGEE-DUP (AREA 15)	2,220,091.00	KWh	0.0070	Ctm S/. /KWh	155.41
SISTEMAS SECUNDARIOS DE TRANSMISION					
(AREA 11)	2,220,091.00	KWh	1.6100	Ctm S/. /KWh	35,743.47
CARGO FIJO MENSUAL	1.00	KWh	14.00	S/. /KWh	14.00
ALUMBRADO PUBLICO	1.00	KVARh	2,640.00	S/. /KWh	2,640.00
SUB TOTAL S/.					177,267.05
IGV (18%) S/.					31,908.07
TOTAL S/.					209,175.12

	POR FISE	Y MCSA			
CONCEPTO	CANTIDAD	UND	PRECIO UNITARIO	UND	MONTO (S/.)
RECAUDACION FONDO DE INCLUSION SOCIAL					
(FISE)	2,272,707.00	KWh	0.86	S/. /KWh	19,465.74
MECANISMOS DE COMPENSACION PARA					
SISTEMAS AISLADOS	2,272.00	MWh	8.80	S/. /MWh	19,993.60
TOTAL S/.					39,459.34

	CALCULO VAN Y TIR P	ARA BANCO DE CONDENS	CALCULO VAN Y TIR PARA BANCO DE CONDENSADORES Y FILTRO DE ARMONICOS										
Nombre del proyecto:		MEJORANDO FACTOR											
TNA de inversión alternativa		15%											
Periodicidad	N	Iensual											
Cantidad de períodos		5											
TEA de inversión alternativa													
Tasa Efectiva Mensual													
PERÍODO	FLUJO DE FONDOS	FLUJO DE FONDOS			MEJORAN								
0	-\$ 140,066.00	-\$ 140,066.00		TIR Anual	TIR Anual TIR Anual								
1	\$ 20,374.48	\$ 61,938.99		VAN	VAN VAN								
2	\$ 20,374.48	\$ 61,938.99											
3	\$ 20,374.48	\$ 61,938.99											
4	\$ 20,374.48	\$ 61,938.99											
5	\$ 20,374.48	\$ 61,938.99											

ANEXO 5. Registro de datos

REGISTROS	TIPO	15-Set-21	16-Set-21	17-Set-21	18-Set-21	19-Set-21	20-Set-21	21-Set-21
	DE	00:00am						
MEDIDORES DE PLANTA LINEA 3	CARGA							
SALA ELECTRICA 400								
AD 300 TRAFO 5 MVA / 22.9 KV PLANTA1	GWH	51.724224	51.730881	51.737941	51.745724	51.754216	51.759056	51.76664
AD 301 TRAFO 10 MVA / 22.9 KV PLANTA 2	GWH	67.028401	67.034048	67.037512	67.039736	67.045272	67.04568	67.050264
AD 302 INT. PRINCIPAL SUBESTACION LLEGADA 22.9 KV	KWH	6342781	6395672	6455158	6514865	6581745	6636849	6695497
AD 303 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 1	GWH	34.836124	34.836744	34.837356	34.837968	34.838604	34.839164	34.83974
AD 304 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 2	MGH	42.569536	42.587164	42.610004	42.632772	42.655881	42.677912	42.698528
AD 305 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 3	MWH	25.918286	25.936584	25.952021	25.971276	25.990598	26.008896	26.026414
		21.072402	21.070146	21 080122	21.004024	22.006504	22.012622	22.022204
AD 307 TRAFO 22.9 KV PRINCIPAL AREA 200		21.973492	21.979140	21.909132	21.994934	22.000594	22.012032	22.022304
AD 300 TRAFO 22.9 KV FRINCIPAL AREA 400	MWH	0.0792932	0.0020121	0.0040700	0.0072030	0.0901121	0.0920132	0.0955100
AREA 400 INT PRINCIPAL DE SALA 460 V	MWH	7 7988248	7 8014488	7 8040168	7 8065312	7 8092576	7 8116688	7 814276
MCC 361 TRANSPORTE DE CAL 460 V	MWH	4 8133492	4 8148712	4 8164868	4 8180868	4 8198512	4 8214112	4 8229616
MCC 362 DESPACHO DE CAL 460 V.	MWH	800.36584	800.56048	800.69832	800.80144	800.96201	801.08016	801.27192
UPS 460 V.	мwн	99.458528	99.500112	99.542121	99.583824	99.627161	99.668024	99.7094
TRAFO DE ALUMBRADO 460 V.	мwн	1.2448136	1.2452319	1.2456682	1.2460852	1.2465121	1.2468826	1.247306
46								
SALA ELECTRICA 200								
AREA 200 INT. PRINCIPAL DE SALA 460 V.	MWH	21.592784	21.598514	21.608194	21.613702	21.625176	21.631204	21.640648
MCC 350 460 V.	мwн	198.36341	198.37484	198.48422	198.48772	198.64972	198.66132	198.76386
MCC 351 460 V.	мwн	911.19744	911.29112	911.67472	911.74808	912.26736	912.37456	912.79096
VENTILADOR DE GAS DE PROCESOS 3757	MWH	2.9274086	2.9274654	2.9288476	2.9288512	2.9307638	2.9309012	2.932274
MOLINO RAYMOND DE PET COKE 3741	ММН	3.5623756	3.5623988	3.5645268	3.5645312	3.5673001	3.5673668	3.5695444
BLOWER SOPLADOR TRANSPORTE 3820	MWH	564.24736	564.46444	564.67821	564.85544	565.16012	565.36568	565.57132
MCC 355 COMPRESORES 460 V.	MWH	12.577871	12.582968	12.588231	12.593252	12.598801	12.60406	12.608999
UPS 460 V.	MWH	183.06758	183.10104	183.13396	183.16628	183.20061	183.23332	183.26538
CO2 TRAFO ENERTIZACION MOLIENDA PET COKE 460 V.	KWH	31.522412	31.522412	31.522412	31.522412	31.522412	31.527826	31.537428
TRAFO ALUMBRADO 460 V.	MWH	505.84001	505.93104	506.01272	506.09096	506.18536	506.27684	506.3654
SALA ELECTRICA HORNO MAERZ 1								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	GWH	33.599561	33.600116	33.600636	33.601148	33.601701	33.602192	33.60268
MCC 310 AREA 100 ALIMENTACION CALIZA HORNO 1 460 V.	MWH	644.56684	644.77364	644.97941	645.18841	645.42316	645.6612	645.90092
MCC 311 AUXILIARES HORNO MAERZ 1 460 V.	MWH	6.0086944	6.0088084	6.0089568	6.0091024	6.0092421	6.0093116	6.0093828
MCC 312 VDF DE SOPLADORES HORNOS MAERZ 400 V.	GWH	25.02589	25.02589	25.02589	25.025891	25.025891	25.02589	25.02589
IIDS AGO V	MWH	69 198584	69 218024	69 237072	69 255664	69 275208	60 20372	69 311696
TRAFO DE ALUMBRADO 460 V	MWH	913 46721	913 62192	913 76952	913 90608	914 06568	914 22584	914 3744
THAT O DE ALOMBINDO 400 T.		510.40721	010.02102	010.10002	510.00000	014.00000	014.22004	514.0744
SALA ELÉCTRICA HORNO MAERZ 2								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	мwн	41,892812	41,910536	41,932672	41,954308	41,977061	41,999188	42.019068
MCC 321 AUXILIARES HORNO MAERZ 1 460 V.	MWH	7.6473976	7.6498736	7.6526681	7.6554008	7.6582921	7.6612416	7.6639896
MCC 322 VDF DE SOPLADORES HORNOS MAERZ 460 V.	мwн	31,426681	31,44101	31,459418	31,477381	31,496194	31,514366	31.530582
MCC 323 AREA 100 ALIMENTACION CALIZA HORNO 2 460 V.	мwн	885.34424	885.756	886.19256	886.63816	887.15376	887.64176	888.0568
UPS 460 V.	мwн	219.09416	219.17532	219.25628	219.34441	219.43491	219.51374	219.5912
TRAFO DE ALUMBRADO 460 V.	MWH	711.01864	711.15904	711.29528	711.42568	711.56921	711.72816	711.88112
SALA ELÉCTRICA HORNO MAERZ 3								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	кwн	25.954116	25.972446	25.987421	26.005661	26.024632	26.043154	26.060092
MCC 331 AUXILIARES HORNO MAERZ 1 460 V.	MWH	5.4502381	5.4544056	5.4579572	5.4621956	5.4665568	5.4708016	5.4747872
MCC 332 VDF DE SOPLADORES HORNOS MAERZ 460 V.	MWH	18.748122	18.761382	18.772042	18.758201	18.798936	18.81234	18.824476
MCC 333 AREA 100 ALIMENTACION CALIZA HORNO 2 460 V.	MWH	643.49096	643.9716	644.37592	644.83041	645.32372	645.8014	646.26048
PB 330	MWH	332.70676	332.91808	333.07556	333.27148	333.45664	333.66052	333.83466
TRAFO DE ALUMBRADO 460 V.	KWH	582.50888	582.65836	582.81901	582.95021	583.09068	583.22504	583.35384
RESPONSABLE		M.SURCO	M.SURCO	M.SURCO	Castillo	Castillo	W. Lipa	W. Lipa

REGISTROS		15-Set-21	16-Set-21	17-Set-21	18-Set-21	19-Set-21	20-Set-21	21-Set-21
MEDIDORES DE PLANTA LÍNEA 3	CARGA	00.000	00.000	00.000	00.000	00.000	00.000	00.000
	GARGA							
SALA ELECTRICA 400	CIVILI	51 704004	51 720991	51 727041	E1 74E704	E1 7E4010	E1 750050	E1 70004
AD 300 TRAFO 5 MVA / 22.9 KV PLANTA 1	GWH	51.724224	51.730881	51.737941	51.745724	51.754210	67 04569	51.70004
AD 302 INT PRINCIPAL SUBESTACION LI EGADA 22.9 KV	KWH	6342781	6395672	6455158	6514865	6581745	6636849	6695497
AD 303 TRAFO 22.9 KV PRINCIPAL HORNO MAFRZ 1	GWH	34 836124	34 836744	34 837356	34 837968	34 838604	34 839164	34 83974
AD 304 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 2	MGH	42.569536	42.587164	42.610004	42.632772	42.655881	42.677912	42.698528
AD 305 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 3	MWH	25.918286	25.936584	25.952021	25.971276	25.990598	26.008896	26.026414
AD 306 22.9 KV	КШН							
AD 307 TRAFO 22.9 KV PRINCIPAL AREA 200	MWH	21.973492	21.979146	21.989132	21.994934	22.006594	22.012632	22.022384
AD 308 TRAFO 22.9 KV PRINCIPAL AREA 400	мwн	8.0792952	8.0820121	8.0846768	8.0872856	8.0901121	8.0926152	8.0953168
AD 309 22.9 KV	MWH							
AREA 400 INT. PRINCIPAL DE SALA 460 V.	MWH	7.7988248	7.8014488	7.8040168	7.8065312	7.8092576	7.8116688	7.814276
MCC 361 TRANSPORTE DE CAL 460 V.	MWH	4.8133492	4.8148712	4.8164868	4.8180868	4.8198512	4.8214112	4.8229616
MCC 362 DESPACHO DE CAL 460 V.	MWH	800.36584	800.56048	800.69832	800.80144	800.96201	801.08016	801.27192
UPS 460 V.	MWH	99.458528	99.500112	99.542121	99.583824	99.627161	99.668024	99.7094
TRAFO DE ALUMBRADO 460 V.	MWH	1.2448136	1.2452319	1.2456682	1.2460852	1.2465121	1.2468826	1.247306
SALA ELECTRICA 200	A414/1	04 500704	04 500544	04 000404	04 04 0700	04 005470	04 004004	04.040040
AREA 200 INT. PRINCIPAL DE SALA 460 V.	MWH	21.592784	21.598514	21.608194	21.613702	21.625176	21.631204	21.640648
MCC 350 460 V.		011 10744	198.37484	198.48422	198.48772	198.64972	198.00132	198.76386
	MWH	2 027/086	2 027/65/	2 0288/76	2 0288512	2 0307638	2 0300012	2 932274
MOLINO RAYMOND DE PET COKE 3741	MWH	3 5623756	3 5623988	3 5645268	3 5645312	3 5673001	3 5673668	3 5695444
BLOWER SOPLADOR TRANSPORTE 3820	MWH	564,24736	564,46444	564.67821	564.85544	565,16012	565.36568	565.57132
MCC 355 COMPRESORES 460 V.	MWH	12.577871	12,582968	12.588231	12.593252	12,598801	12.60406	12,608999
UPS 460 V.	MWH	183.06758	183.10104	183.13396	183.16628	183.20061	183.23332	183.26538
CO2 TRAFO ENERTIZACION MOLIENDA PET COKE 460 V.	КШН	31.522412	31.522412	31.522412	31.522412	31.522412	31.527826	31.537428
TRAFO ALUMBRADO 460 V.	MWH	505.84001	505.93104	506.01272	506.09096	506.18536	506.27684	506.3654
SALA ELÉCTRICA HORNO MAERZ 1								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	GWH	33.599561	33.600116	33.600636	33.601148	33.601701	33.602192	33.60268
MCC 310 AREA 100 ALIMENTACION CALIZA HORNO 1 460 V.	MWH	644.56684	644.77364	644.97941	645.18841	645.42316	645.6612	645.90092
MCC 311 AUXILIARES HORNO MAERZ 1 460 V.	MWH	6.0086944	6.0088084	6.0089568	6.0091024	6.0092421	6.0093116	6.0093828
MCC 312 VDF DE SOPLADORES HORNOS MAERZ 460 V.	GWH	25.02589	25.02589	25.02589	25.025891	25.025891	25.02589	25.02589
MCC 313 AREA 100 APILADOR RADIAL Y RAZERTAIL 460 V.	MWH	619.48984	619.55116	619.55444	619.55756	619.56104	619.56424	619.56736
UPS 460 V.	MWH	69.198584	69.218024	69.237072	69.255664	69.275208	69.29372	69.311696
TRAFU DE ALUMBRADU 400 V.		913.46721	913.62192	913.76952	913.90608	914.06568	914.22584	914.3744
	MINU	11 202012	11 010526	11 000670	41 054209	11 077061	/1 000100	12 010069
MCC 321 ALIVILLARES HORNO MAERZ 1 460 V	MWH	7 6473076	7 6/08736	7 6526681	7 6554008	7 6582021	7 6612/16	7 6630806
MCC 322 VDE DE SOPI ADORES HORNOS MAERZ 460 V	MWH	31 426681	31 44101	31 459418	31 477381	31 496194	31 514366	31 530582
MCC 323 AREA 100 ALIMENTACION CALIZA HORNO 2 460 V	MWH	885 34424	885 756	886 19256	886 63816	887 15376	887 64176	888 0568
UPS 460 V.	MWH	219.09416	219.17532	219.25628	219.34441	219.43491	219.51374	219.5912
TRAFO DE ALUMBRADO 460 V.	MWH	711.01864	711.15904	711.29528	711.42568	711.56921	711.72816	711.88112
SALA ELÉCTRICA HORNO MAERZ 3								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	кwн	25.954116	25.972446	25.987421	26.005661	26.024632	26.043154	26.060092
MCC 331 AUXILIARES HORNO MAERZ 1 460 V.	MWH	5.4502381	5.4544056	5.4579572	5.4621956	5.4665568	5.4708016	5.4747872
MCC 332 VDF DE SOPLADORES HORNOS MAERZ 460 V.	мwн	18.748122	18.761382	18.772042	18.758201	18.798936	18.81234	18.824476
MCC 333 AREA 100 ALIMENTACION CALIZA HORNO 2 460 V.	мwн	643.49096	643.9716	644.37592	644.83041	645.32372	645.8014	646.26048
PB 330	мwн	332.70676	332.91808	333.07556	333.27148	333.45664	333.66052	333.83466
TRAFO DE ALUMBRADO 460 V.	КШН	582.50888	582.65836	582.81901	582.95021	583.09068	583.22504	583.35384
RESPONSABLE		M.SURCO	M.SURCO	M.SURCO	Castillo	Castillo	W. Lipa	W. Lipa

REGISTROS	TIPO DE	#jREF! 00:00am	#¡REF! 00:00am	#¡REF! 00:00am	#jREF! 00:00am	#¡REF! 00:00am	#;REF! 00:00am	# _i REF! 00:00am
MEDIDORES DE PLANTA LÍNEA 3	CARGA							
	GARGA							
SALA ELECTRICA 400	CIMU	54 000070	54 020020	E4 040000	54 050470	54.007044	E4 07E00	54 005570
AD 300 TRAFO 5 MVA / 22.9 KV PLANTA 1	GWH	51.829972	51.838628	51.849608	51.858476	51.867841	51.87592	51.885572
AD 301 TRAFO 10 MVA / 22.9 KV PLANTA 2	GWH	67.211408	57.238696	67.265336	67.293032	67.322944	b/.344/7b	57.373704
AD 302 INT. PRINCIPAL SUBESTACION LLEGADA 22.9 KV	GWH	24 944223	24 94479	24 945241	24 945994	24 946449	24 946064	24 947744
AD 304 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 2	MGH	42 867841	42 88948	42 911801	42 934092	42 957132	42 979304	43 001228
AD 305 TRAFO 22.9 KV PRINCIPAL HORNO MAERZ 3	мин	26.166412	26.184422	26,199821	26.218064	26.237041	26.25505	26.273252
AD 306 22.9 KV	КШН							
AD 307 TRAFO 22.9 KV PRINCIPAL AREA 200	мwн	22.086456	22.092408	22.103942	22.110371	22.122194	22.129146	22.13913
AD 308 TRAFO 22.9 KV PRINCIPAL AREA 400	мwн	8.1177112	8.125024	8.1235041	8.1263184	8.1293281	8.132444	8.135636
AD 309 22.9 KV	MWH							
AREA 400 INT. PRINCIPAL DE SALA 460 V.	MWH	7.8359121	7.8386112	7.8415168	7.8442368	7.8471504	7.850172	7.8532688
MCC 361 TRANSPORTE DE CAL 460 V.	мwн	4.8360321	4.8376864	4.8393972	4.8411261	4.8428692	4.844566	4.8463868
MCC 362 DESPACHO DE CAL 460 V.	MWH	802.77281	803.03128	803.33864	803.69104	803.95856	804.25472	804.68856
UPS 460 V.	MWH	100.04578	100.08706	100.12914	100.17093	100.21271	100.25335	100.29681
TRAFO DE ALUMBRADO 460 V.	MWH	1.2504852	1.2508675	1.2512946	1.2516538	1.2520617	1.2524242	1.2528489
46								
SALA ELECTRICA 200								
AREA 200 INT. PRINCIPAL DE SALA 460 V.	мwн	21.703661	21.709552	21.720734	21.727021	21.738611	21.745494	21.755334
MCC 350 460 V.	MWH	199.34006	199.34978	199.48188	199.49181	199.62806	199.36315	199.74284
MCC 351 460 V.	MWH	914.86128	914.93544	915.38992	915.50088	915.98496	916.07712	916.4692
VENTILADOR DE GAS DE PROCESOS 3757	MWH	2.9385298	2.9385626	2.9402306	2.9402978	2.9420134	2.9420166	2.943272
MOLINO RAYMOND DE PET COKE 3741	MWH	3.5785161	3.5785341	3.5809676	3.5809936	3.5836424	3.583646	3.5854468
BLOWER SOPLADOR TRANSPORTE 3820	MWH	567.20424	567.38521	567.61928	567.82856	568.08344	568.2898	568.55784
MCC 355 COMPRESORES 460 V.	MWH	12.650792	12.656133	12.662124	12.667728	12.673802	12.680129	12.685887
UPS 460 V.	MWH	183.53094	183.56422	183.59772	183.63094	183.66426	183.69692	183.7302
CO2 TRAFO ENERTIZACION MOLIENDA PET COKE 460 V.	KWH	31.615712	31.628426	31.642356	31.661332	31.679978	31.698588	31.712368
TRAFO ALUMBRADO 460 V.	MWH	507.06764	507.15368	507.25068	507.33901	507.43224	507.51936	507.62544
SALA ELÉCTRICA HORNO MAERZ 1								
	CMU	22.000520	22 007000	22 007470	22.007044	22 000 424	22.000004	22 000270
AREA 300 INT. PRINCIPAL DE SALA 400 V.	MWH	647 79206	649 01022	649 22722	649 45072	53.000421 649.60106	649 02099	640 19509
MCC 311 ALIVILLARES HORNO MAERZ 1 460 V	MM	6.0000561	6 0100228	6.0100056	6.0101616	6 0102241	6 0102	6 0102749
MCC 312 VDE DE SOPI ADORES HORNOS MAERZ 460 V	GWH	25 02580	25 025801	25 025801	25 025801	25 025801	25 02580	25 02580
MCC 313 AREA 100 APILADOR RADIAL Y RAZERTAL 460 V.	мин	619 59412	619 59744	619 60084	619 60408	619 60744	619 61068	619 61416
UPS 460 V.	MWH	69 462928	69 481712	69 500472	69 519184	69 538056	69 556576	69 575808
TRAFO DE ALUMBRADO 460 V.	MWH	915.55808	915.69872	915.84641	915,99321	916.13321	916.25664	916.39552
SALA ELÉCTRICA HORNO MAERZ 2								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	мwн	42.186188	42.207512	42.228876	42.250804	42.273288	42.2955	42.317292
MCC 321 AUXILIARES HORNO MAERZ 1 460 V.	мwн	7.6872096	7.6901121	7.6929561	7.6959008	7.6988704	7,7018144	7,7047952
MCC 322 VDF DE SOPLADORES HORNOS MAERZ 460 V.	мwн	31.666804	31.684281	31.701846	31,719906	31.738466	31.756796	31.774654
MCC 323 AREA 100 ALIMENTACION CALIZA HORNO 2 460 V.	мwн	891.62144	892.06961	892.50984	892.93736	893.38664	893.82512	894.28048
UPS 460 V.	мwн	220.25414	220.33622	220.42341	220.50211	220.58161	220,6608	220,74204
TRAFO DE ALUMBRADO 460 V.	мwн	713.04808	713.18681	713.32881	713.46681	713.60688	713.74552	713.88672
SALA ELÉCTRICA HORNO MAERZ 3								
AREA 300 INT. PRINCIPAL DE SALA 460 V.	кwн	26.198414	26.216166	26.230784	26.248738	26.267251	26.285364	26.303466
MCC 331 AUXILIARES HORNO MAERZ 1 460 V.	мwн	5.4955544	5.4974428	5.4990928	5.5010428	5.5029808	5.5048812	5.5067956
MCC 332 VDF DE SOPLADORES HORNOS MAERZ 460 V.	мwн	18.935076	18.950034	18.962192	18.977301	18.992964	19.008268	19.023544
MCC 333 AREA 100 ALIMENTACION CALIZA HORNO 2 460 V.	мwн	650.10336	650.58356	650.99912	651.46952	651.94841	652.42156	652.91992
PB 330	мwн	335.37974	335.59201	335.78664	336.00616	336.22904	336.45344	336.6534
TRAFO DE ALUMBRADO 460 V.	КШН	584.46208	584.61332	584.75884	584.90228	585.04576	585.19156	585.34444
RESPONSABLE		M.SURCO	M.SURCO	R. Pampa	R. Pampa	Castillo	L.Pari	

DECISTROS	TIPO	14-Set-21	15-Set-21	16-Set-21	17-Set-21	18-Set-21	19-Set-21
REGISTRUS	DE	00:00am	00:00am	00:00am	00:00am	00:00am	00:00am
LÍNEA 1	CARGA						
SUBESTACIÓN							
Trafo 600KV Planta Carbón	МШН		11175793	11175793	11175793	11175793	11175793
Planta Carbón Vulcan	МШН		6167201	6167201	6167201	6167201	6167201
TALLER ELÉCTRICO							
Molino Cemento I	MWH		0	0	0	0	0
Molino Crudo I	MWH		0	0	0	0	0
Molino Cemento II	Molino Ce	mento II	0	0	0	0	0
Molino Crudo II	KWH		0	0	0	0	0
Trafo II 600 KVA	KWH		3778896	3779148	3779410	3779664	3779908
SALA MOLINOS							
Horno Vulcan	KWH		3910347	3910420	3910499	3910574	3910648
Filtro Horno Unax	KWH		12660277	12660277	12660277	12660277	12660277
Alumbrado taller	KWH		6132921	6133599	6134342	6135045	6135748
Filtro Horno Vulcan	KWH		3850350	3850350	3850350	3850350	3850350
Horno Unax	KWH		15467555	15467555	15467555	15467555	15467555
EEAA Molino Cemento II	KWH		6730	6730	6730	6730	6730
Laboratorio	KWH		1766458	1766542	1766631	1766719	1766808
Envase -taller electrico	KWH						
SALA 0							
Alumbrado TL-01	KWH		1977346	1977525	1977754	1977911	1978036
Compresores VSK	KWH		2562618	2563181	2563782	2564363	2564945
Principal 460 V	KWH		11261755	11262575	11263471	11264300	11265080
SALA 2							
Sala 4 - Secador	KWH		1147954	1147954	1147954	1147954	1147954
Sala 3 - Chancadora Primaria	KWH		0	0	0	0	0
Silos	KWH		0	0	0	0	0
Alumbrado	KWH		649842	649855	649867	649880	649893
Aux. Molino Crudo I	KWH		0	0	0	0	0
Chancadora Secundaria - Sala 5	KWH		0	0	0	0	0
Homosilo -Sala 5	KWH		0	0	0	0	0
Aux. Molino Crudo II	KWH		0	0	0	0	0
HIDRATACIÓN Y MOLIENDA							
Área 500 - Transporte de Cal	KWH		1142347	1142365	1142384	1142404	1142436
Área 600 - Despacho de cal	KWH		150662	150664	150666	150669	150672
Área 700 - Molienda de cal	KWH		2916920	2917237	2917669	2918206	2918837
Área 700 - Ventilador de cal 750	KWH		571.49	573.26	575.25	578.09	581.85
Área 800 - Hidratación de Cal	KWH		836429	836429	836429	836429	836429

REGISTROS	TIPO	25-Dic-21	26-Dic-21	27-Dic-21	28-Dic-21	29-Dic-21	30-Dic-21	31-Dic-21
REGISTROS	DE	00:00am						
LÍNEA 1	CARGA							
SUBESTACIÓN								
Trafo 600KV Planta Carbón	MWH	0	0	0	0	0	0	0
Planta Carbón Vulcan	MWH	0	0	0	0	0	0	0
TALLER ELÉCTRICO								
Molino Cemento I	MWH	0	0	0	0	0	0	0
Molino Crudo I	MWH	0	0	0	0	0	0	0
Molino Cemento II	Molino Ce	4330422	4330422	4330422	4330422	4330422	4330422	4330422
Molino Crudo II	KWH	0	0	0	0	0	0	0
Trafo II 600 KVA	KWH	3795528	3795756	3795963	3796164	3796370	3796570	3796758
SALA MOLINOS								
Horno Vulcan	KWH	3920003	3920064	3920141	3920214	3920295	3920376	3920446
Filtro Horno Unax	KWH	12660277	12660277	12660277	12660277	12660277	12660277	12660277
Alumbrado taller	KWH	6199808	6200375	6201017	6201668	6202302	6202916	6203488
Filtro Horno Vulcan	KWH	3850350	3850350	3850350	3850350	3850350	3850350	3850350
Horno Unax	KWH	15474821	15474917	15475028	15475155	15475193	15475299	15475369
EEAA Molino Cemento II	KWH	6730	6730	6730	6730	6730	6730	6730
Laboratorio	KWH	1774293	1774361	1774434	1774511	1774587	1774668	1774745
Envase -taller electrico	KWH							
SALA 0								
Alumbrado TL-01	KWH	1995717	1995786	1996022	1996247	1996471	1996686	1996816
Compresores VSK	KWH	2607341	2607677	2608064	2608456	2608873	2609254	2609616
Principal 460 V	KWH	11329924	11330355	11330946	11331530	11332152	11332739	11333263
SALA 2								
Sala 4 - Secador	KWH	1147954	1147954	1147954	1147954	1147954	1147954	1147954
Sala 3 - Chancadora Primaria	KWH	0	0	0	0	0	0	0
Silos	KWH	0	0	0	0	0	0	0
Alumbrado	KWH	651177	651189	651202	651215	651228	651240	651253
Aux. Molino Crudo I	KWH	0	0	0	0	0	0	0
Chancadora Secundaria - Sala 5	KWH	0	0	0	0	0	0	0
Homosilo -Sala 5	KWH	0	0	0	0	0	0	0
Aux. Molino Crudo II	KWH	0	0	0	0	0	0	0
HIDRATACIÓN Y MOLIENDA								
Área 500 - Transporte de Cal	KWH	1149155	1149242	1149359	1149431	1149577	1149743	1149894
Área 600 - Despacho de cal	KWH	151220	151225	151231	151233	151241	151248	151254
Área 700 - Molienda de cal	KWH	2998170	2999128	3000004	3000625	3001691	3002485	3003335
Área 700 - Ventilador de cal 750	KWH	986.56	991.05	995.73	997.93	1003.7	1007.9	1012.8
Área 800 - Hidratación de Cal	KWH	839435	839435	839435	839435	839435	839435.12	839435
RESPONSABLE		R. Pampa	R. Pampa	R. Pampa	R. Pampa	L. Pari.	L. Pari.	L. Pari.

ANEXO 6. Declaración jurada de autenticidad de tesis

DECLARACIÓN JURADA DE AUTENTICIDAD DE TESIS

Por el presente documento, Yo LENIN HERBERT MAREON MENDOZA identificado con DNI 72/6/609 en mi condición de egresado de:

🗷 Escuela Profesional, 🗆 Programa de Segunda Especialidad, 🗆 Programa de Maestría o Doctorado

informo que he elaborado el/la 🗵 Tesis o 🗆 Trabajo de Investigación denominada:									
" <u> </u>	DISENO Y	EVA	LUACIO	N DEL S	SISTEMA E	DE 7	DITPE	NSACIÓN	REACTIMA
Y	ARMÓNI	cos	DEL	SISTEMA	ELÉCTRICO	DE	LA	PLANTA	CAZ LESUR,

(ARACOTO SAN ROMAN JULIACA

Es un tema original.

Declaro que el presente trabajo de tesis es elaborado por mi persona y **no existe plagio/copia** de ninguna naturaleza, en especial de otro documento de investigación (tesis, revista, texto, congreso, o similar) presentado por persona natural o jurídica alguna ante instituciones académicas, profesionales, de investigación o similares, en el país o en el extranjero.

Dejo constancia que las citas de otros autores han sido debidamente identificadas en el trabajo de investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, ya sea de fuentes encontradas en medios escritos, digitales o Internet.

Asimismo, ratifico que soy plenamente consciente de todo el contenido de la tesis y asumo la responsabilidad de cualquier error u omisión en el documento, así como de las connotaciones éticas y legales involucradas.

En caso de incumplimiento de esta declaración, me someto a las disposiciones legales vigentes y a las sanciones correspondientes de igual forma me someto a las sanciones establecidas en las Directivas y otras normas internas, así como las que me alcancen del Código Civil y Normas Legales conexas por el incumplimiento del presente compromiso

Puno 11 de DICIEMBRE del 20 24

Huella

FIRMA (obligatoria)

Universidad Nacional del Altiplano Puno Vicerrectorado de Investigación

DECLARACIÓN JURADA DE AUTENTICIDAD DE TESIS

Por el presente documento, Yo <u>ABEL PERCY</u> CONAHUIRE TORRES identificado con DNI <u>46622220</u> en mi condición de egresado de:

Escuela Profesional, □ Programa de Segunda Especialidad, □ Programa de Maestría o Doctorado JNGENIGRIA MECÍNICA ELÉCTEICA

informo que he elaborado el/la 🛛 Tesis o 🗆 Trabajo de Investigación denominada: <u>DISEÑO Y EVALUACIÓN DEL SISTEMA DE COMPENSACION</u> REACTIVA

Y ARMÓNICOS DEL SISTEMA ELÉCTRICO DE LO PLONTA COLLESUR, CARACOTO SAN ROMON JULIALA

Es un tema original.

Declaro que el presente trabajo de tesis es elaborado por mi persona y **no existe plagio/copia** de ninguna naturaleza, en especial de otro documento de investigación (tesis, revista, texto, congreso, o similar) presentado por persona natural o jurídica alguna ante instituciones académicas, profesionales, de investigación o similares, en el país o en el extranjero.

Dejo constancia que las citas de otros autores han sido debidamente identificadas en el trabajo de investigación, por lo que no asumiré como suyas las opiniones vertidas por terceros, ya sea de fuentes encontradas en medios escritos, digitales o Internet.

Asimismo, ratifico que soy plenamente consciente de todo el contenido de la tesis y asumo la responsabilidad de cualquier error u omisión en el documento, así como de las connotaciones éticas y legales involucradas.

En caso de incumplimiento de esta declaración, me someto a las disposiciones legales vigentes y a las sanciones correspondientes de igual forma me someto a las sanciones establecidas en las Directivas y otras normas internas, así como las que me alcancen del Código Civil y Normas Legales conexas por el incumplimiento del presente compromiso

Puno 17 de DICIENBRE del 2024

FIRMA (obligatoria)

Huella

ANEXO 7. Autorización el depósito de tesis en el Repositorio Institucional

para la obtención de 🗆 Grado, 🖾 Título Profesional o 🗆 Segunda Especialidad.

Por medio del presente documento, afirmo y garantizo ser el legitimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalía alguna a favor mío; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los indices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia:

Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: <u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>

En señal de conformidad, suscribo el presente documento.

12 PICIEMBLE de del 2074

AUTORIZACIÓN PARA EL DEPÓSITO DE TESIS O TRABAJO DE INVESTIGACIÓN EN EL REPOSITORIO INSTITUCIONAL

Por el presente documento, Yo <u>ABEL PECY CANAHUIRE TORRES</u> identificado con DNI <u>46622220</u> en mi condición de egresado de:

🛛 Escuela Profesional, 🗆 Programa de Segunda Especialidad, 🗖 Programa de Maestría o Doctorado

INGENIERIA MECÓNICA ELÉCTRICA

informo que he elaborado el/la 🛛 Tesis o 🗆 Trabajo de Investigación denominada: "DISENO Y EVALUACION DEL BISTEMA DE COMPENSACION REACTIVA

Y APHONICOS DEL SISTEMA ELECTRICO DE LA PLONTA CALCESUR

CARACOTO SAN ROMÓN JULIACA

para la obtención de 🗆 Grado, 🛛 Título Profesional o 🗆 Segunda Especialidad.

Por medio del presente documento, afirmo y garantizo ser el legítimo, único y exclusivo titular de todos los derechos de propiedad intelectual sobre los documentos arriba mencionados, las obras, los contenidos, los productos y/o las creaciones en general (en adelante, los "Contenidos") que serán incluidos en el repositorio institucional de la Universidad Nacional del Altiplano de Puno.

También, doy seguridad de que los contenidos entregados se encuentran libres de toda contraseña, restricción o medida tecnológica de protección, con la finalidad de permitir que se puedan leer, descargar, reproducir, distribuir, imprimir, buscar y enlazar los textos completos, sin limitación alguna.

Autorizo a la Universidad Nacional del Altiplano de Puno a publicar los Contenidos en el Repositorio Institucional y, en consecuencia, en el Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto, sobre la base de lo establecido en la Ley N° 30035, sus normas reglamentarias, modificatorias, sustitutorias y conexas, y de acuerdo con las políticas de acceso abierto que la Universidad aplique en relación con sus Repositorios Institucionales. Autorizo expresamente toda consulta y uso de los Contenidos, por parte de cualquier persona, por el tiempo de duración de los derechos patrimoniales de autor y derechos conexos, a título gratuito y a nivel mundial.

En consecuencia, la Universidad tendrá la posibilidad de divulgar y difundir los Contenidos, de manera total o parcial, sin limitación alguna y sin derecho a pago de contraprestación, remuneración ni regalia alguna a favor mío; en los medios, canales y plataformas que la Universidad y/o el Estado de la República del Perú determinen, a nivel mundial, sin restricción geográfica alguna y de manera indefinida, pudiendo crear y/o extraer los metadatos sobre los Contenidos, e incluir los Contenidos en los índices y buscadores que estimen necesarios para promover su difusión.

Autorizo que los Contenidos sean puestos a disposición del público a través de la siguiente licencia:

Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0 Internacional. Para ver una copia de esta licencia, visita: <u>https://creativecommons.org/licenses/by-nc-sa/4.0/</u>

En señal de conformidad, suscribo el presente documento.

de DICIEMBRE del 2024

(obligatoria)

Huella