Abstract:
El presente de trabajo de investigación se realizó con la idea de presentar una demostración detallada y comprensible de la existencia de geodésicas mínimas. Primeramente, definimos los conceptos de curvas regulares, superficies regulares, plano tangente, primera forma fundamental y segunda forma fundamental, luego se estudia la geometría intrínseca de las superficies como: geodésicas, aplicación exponencial y entornos convexos. Posteriormente con estos conceptos definimos la geometría global como: superficies conexas, superficies completas. la hipótesis de completitud es más débil que la de compacidad, donde se ocupa las relaciones de las propiedades locales y globales de una superficie regular, entonces a partir de las construcciones de las proposiciones, teoremas locales y teoremas globales se da a conocer con más detalle la demostración de la existencia de geodésica mínima, que dados dos puntos cualesquiera de la superficie y la menor longitud de las curvas parametrizadas de una superficie completa regular y superficie conexa. Para este propósito de investigación, el tema de geodésicas mínimas es el punto de partida del estudio para superficies en n-dimensiones.