Show simple item record

dc.contributor.advisorCondori Alejo, Henry Ivanes_PE
dc.contributor.authorFlores Dueñas, Wari Ymberes_PE
dc.contributor.authorPari Salazar, Yumey Lesliees_PE
dc.date.accessioned2022-04-22T08:39:45Z
dc.date.available2022-04-22T08:39:45Z
dc.date.issued2022-04-22
dc.identifier.urihttp://repositorio.unap.edu.pe/handle/20.500.14082/18340
dc.description.abstractHoy en día, las entidades financieras se enfrentan a una lucha constante contra el lavado de activos y el financiamiento al terrorismo, es por ello que centran sus esfuerzos en la identificación de operaciones inusuales, utilizando las características que puedan evidenciar un comportamiento irregular al momento de realizar transacciones dentro de la entidad financiera, por ello que se crea un modelo que trabaje de forma conjunta para efectuar un análisis de los datos del cliente y con ello lograr la detección de posibles operaciones inusuales de lavado de activos, es necesario utilizar técnicas que nos permitan realizar un análisis exhaustivo y con precisión de grandes volúmenes de datos e información relevante y confiable. Para lograr este objetivo, se ha realizado un pre procesamiento de los datos y posteriormente se han aplicado algoritmos de aprendizaje automático que han surgido como una herramienta fundamental dentro del análisis y generación de conocimiento, dentro de ellos, se han utilizado los más representativos. Seguidamente, para realizar la aprobación del modelo se ha aplicado una validación cruzada de información y se obtuvo la métrica Acuracy, que es la precisión de cada modelo aplicado brinda, de esta manera, se ha obtenido una métrica que evalúa la precisión de cada uno de los modelos implementados. Finalmente, los resultados de los modelos propuestos han dado un 78.37% de precisión de confianza en el modelo. La entidad financiera deberá actualizar su información de riesgo, ya que debido a las vulnerabilidades que se exponen por diferentes delitos de LAFT, estas se incrementan de manera paulatina, es por ello que se debe mantener actualizado de los constantes delitos precedentes, para así alimentar la información del Modelo de Aprendizaje Automático.es_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectAprendizaje automáticoes_PE
dc.subjectLavado de activos y financiamiento al terrorismoes_PE
dc.subjectOperaciones inusualeses_PE
dc.subjectCRISP-DMes_PE
dc.titleModelo de aprendizaje automático para identificar operaciones inusuales de lavado de activos en una entidad financieraes_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemases_PE
thesis.degree.levelTítulo Profesionales_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.orcidhttps://orcid.org/0000-0002-1219-555Xes_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline612076es_PE
renati.jurorArcaya Coaquira, William Eusebioes_PE
renati.jurorZanabria Galvez, Aldo Hernanes_PE
renati.jurorRuelas Acero, Donia Alizandraes_PE
renati.author.dni70190194
renati.author.dni71040230
renati.advisor.dni01325355


Files in this item

No Thumbnail [100%x80]

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess