Show simple item record

dc.contributor.advisorHolguin Holguin, Edgares_PE
dc.contributor.authorPonce Illacutipa, Gerson Manueles_PE
dc.date.accessioned2022-11-09T13:36:53Z
dc.date.available2022-11-09T13:36:53Z
dc.date.issued2022-11-10
dc.identifier.urihttps://repositorio.unap.edu.pe/handle/20.500.14082/19132
dc.description.abstractEn un mundo competitivo la capacidad de una empresa para alinearse a los cambios del mercado es un factor decisivo, en una empresa donde las ventas son de vital importancia, el pronóstico de ellas juega un papel fundamental. En los últimos años existe un creciente interés en el Machine Learning, en esta investigación se presenta un modelo basado en Machine Learning que optimiza el pronóstico de ventas para la empresa Ricos Pan en la ciudad de Puno. El proceso de investigación se llevó a cabo en los años 2020 y 2021, para dicho objetivo se construyó el conjunto de datos a partir de los registros de venta que proporcionó la empresa, se realizó un preprocesamiento a los datos donde se observó registros faltantes debido a que la empresa cerro temporalmente por la pandemia Covid – 19, también se observaron ventas atípicas en los días festivos como el día de la madre, el día del padre, los fines de semana, para tratar este tipo de características se utilizaron diversos métodos como el diagrama de cajas y bigotes, rangos intercuantiles, adición de atributos entre otras técnicas de preprocesamiento, por otro lado se entrenaron y probaron modelos basados en redes neuronales recurrentes (LSTM y GRU), redes neuronales convolucionales (CNN) y un modelo basado en máquinas de vectores soporte (SVR), para la etapa de entrenamiento se probaron distintas épocas y distintos tipos de transformación de datos utilizando logaritmos y diferencia simple, llegando a la conclusión que el modelo basado en redes neuronales convolucionales tuvo mejores resultados a diferencia de otros modelos, así mismo se comparó el pronóstico manual que se realiza en la empresa con el modelo propuesto obteniendo un resultado muy superior, para medir el desempeño de cada modelo y el pronóstico manual se usó el error porcentual absoluto medio.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectSeries de tiempoes_PE
dc.subjectPronostico ventases_PE
dc.subjectMachine Learninges_PE
dc.subjectRedes neuronaleses_PE
dc.titleModelo basado en Machine Learning para optimizar el pronóstico de ventas de la empresa Ricos Pan, año 2020 - 2021es_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero de Sistemases_PE
thesis.degree.disciplineIngeniería de Sistemases_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemases_PE
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.04es_PE
renati.advisor.orcidhttps://orcid.org/0000-0003-2818-9282es_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline612076es_PE
renati.jurorArcaya Coaquira, William Eusebioes_PE
renati.jurorGonzales Paco, Magali Gianinaes_PE
renati.jurorHuanco Ramos, Fideles_PE
renati.author.dni47241159
renati.advisor.dni01320448


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess