DSpace Repository

Modelo basado en Machine Learning para optimizar el pronóstico de ventas de la empresa Ricos Pan, año 2020 - 2021

Show simple item record

dc.contributor.advisor Holguin Holguin, Edgar es_PE
dc.contributor.author Ponce Illacutipa, Gerson Manuel es_PE
dc.date.accessioned 2022-11-09T13:36:53Z
dc.date.available 2022-11-09T13:36:53Z
dc.date.issued 2022-11-10
dc.identifier.uri https://repositorio.unap.edu.pe/handle/20.500.14082/19132
dc.description.abstract En un mundo competitivo la capacidad de una empresa para alinearse a los cambios del mercado es un factor decisivo, en una empresa donde las ventas son de vital importancia, el pronóstico de ellas juega un papel fundamental. En los últimos años existe un creciente interés en el Machine Learning, en esta investigación se presenta un modelo basado en Machine Learning que optimiza el pronóstico de ventas para la empresa Ricos Pan en la ciudad de Puno. El proceso de investigación se llevó a cabo en los años 2020 y 2021, para dicho objetivo se construyó el conjunto de datos a partir de los registros de venta que proporcionó la empresa, se realizó un preprocesamiento a los datos donde se observó registros faltantes debido a que la empresa cerro temporalmente por la pandemia Covid – 19, también se observaron ventas atípicas en los días festivos como el día de la madre, el día del padre, los fines de semana, para tratar este tipo de características se utilizaron diversos métodos como el diagrama de cajas y bigotes, rangos intercuantiles, adición de atributos entre otras técnicas de preprocesamiento, por otro lado se entrenaron y probaron modelos basados en redes neuronales recurrentes (LSTM y GRU), redes neuronales convolucionales (CNN) y un modelo basado en máquinas de vectores soporte (SVR), para la etapa de entrenamiento se probaron distintas épocas y distintos tipos de transformación de datos utilizando logaritmos y diferencia simple, llegando a la conclusión que el modelo basado en redes neuronales convolucionales tuvo mejores resultados a diferencia de otros modelos, así mismo se comparó el pronóstico manual que se realiza en la empresa con el modelo propuesto obteniendo un resultado muy superior, para medir el desempeño de cada modelo y el pronóstico manual se usó el error porcentual absoluto medio. es_PE
dc.format application/pdf es_PE
dc.language.iso spa es_PE
dc.publisher Universidad Nacional del Altiplano. Repositorio Institucional - UNAP es_PE
dc.rights info:eu-repo/semantics/openAccess es_PE
dc.rights.uri https://creativecommons.org/licenses/by/4.0/deed.es es_PE
dc.source Universidad Nacional del Altiplano es_PE
dc.source Repositorio Institucional - UNAP es_PE
dc.subject Series de tiempo es_PE
dc.subject Pronostico ventas es_PE
dc.subject Machine Learning es_PE
dc.subject Redes neuronales es_PE
dc.title Modelo basado en Machine Learning para optimizar el pronóstico de ventas de la empresa Ricos Pan, año 2020 - 2021 es_PE
dc.type info:eu-repo/semantics/bachelorThesis es_PE
thesis.degree.name Ingeniero de Sistemas es_PE
thesis.degree.discipline Ingeniería de Sistemas es_PE
thesis.degree.grantor Universidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica, Electrónica y Sistemas es_PE
dc.type.version info:eu-repo/semantics/acceptedVersion es_PE
dc.publisher.country PE es_PE
dc.subject.ocde https://purl.org/pe-repo/ocde/ford#2.02.04 es_PE
renati.advisor.orcid https://orcid.org/0000-0003-2818-9282 es_PE
renati.type https://purl.org/pe-repo/renati/type#tesis es_PE
renati.level https://purl.org/pe-repo/renati/nivel#tituloProfesional es_PE
renati.discipline 612076 es_PE
renati.juror Arcaya Coaquira, William Eusebio es_PE
renati.juror Gonzales Paco, Magali Gianina es_PE
renati.juror Huanco Ramos, Fidel es_PE
renati.author.dni 47241159
renati.advisor.dni 01320448


Files in this item

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess

Search DSpace


Browse

My Account

Statistics