Show simple item record

dc.contributor.advisorRamos Cutipa, José Manueles_PE
dc.contributor.authorCallasaca Quilca, Belisarioes_PE
dc.date.accessioned2024-12-15T23:19:44Z
dc.date.available2024-12-15T23:19:44Z
dc.date.issued2024-12-18
dc.identifier.urihttps://repositorio.unap.edu.pe/handle/20.500.14082/23636
dc.description.abstractEl problema general aborda la predicción del comportamiento del sensor MAP, esencial para el control de gases de escape y la eficacia del motor, de esta manera se busca mejorar la confiabilidad de los motores a combustión interna y garantizar un control eficiente de las emisiones contaminantes, contribuyendo así al cumplimiento de las regulaciones ambientales y a la reducción del impacto ambiental negativo. El objetivo es desarrollar un modelo que prediga con precisión las acciones del sensor MAP, aumentará la confiabilidad operativa y ayudará a reducir la contaminación del aire. Según la hipótesis general que se formuló consideraba que el comportamiento del sensor MAP se puede pronosticar con la mínima cantidad de equivocaciones utilizando el modelo que se basa en la red neuronal Perceptrón Multicapa (MLP). Los resultados mostraron una gran exactitud en la predicción, respaldados por análisis estadísticos, avanzando en el conocimiento del diagnóstico de motores a combustión interna y en la aplicación práctica en la industria automotriz. El experimento consistió en el estudio del sistema de admisión y el sensor MAP, se instaló un sistema de recolección de información que se fundamenta en una Raspberry Pi que se conectara a la computadora del automóvil por el puerto OBDII, se extrajeron los datos de diferentes sensores del automóvil en diferentes condiciones de manejo obteniendo así un data confiable y robusta, por último, se evaluó las entradas hacia la red neuronal obteniendo así el valor deseado del sensor MAP.es_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.subjectModelo de predicciónes_PE
dc.subjectOBDIIes_PE
dc.subjectPythones_PE
dc.subjectPreprocesamiento de datoses_PE
dc.subjectRaspberry Pies_PE
dc.subjectRedes neuronales artificialeses_PE
dc.subjectSensor MAP.es_PE
dc.titlePredicción del comportamiento del sensor de Presión Absoluta del Múltiple de Admisión de un motor a combustión mediante redes neuronales artificialeses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Mecánico Electricistaes_PE
thesis.degree.disciplineIngeniería Mecánica Eléctricaes_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Mecánica Eléctrica Electrónica y Sistemases_PE
dc.type.versioninfo:eu-repo/semantics/acceptedVersiones_PE
dc.publisher.countryPEes_PE
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.02.01es_PE
renati.advisor.orcidhttps://orcid.org/0000-0001-5447-3362es_PE
renati.typehttps://purl.org/pe-repo/renati/type#tesises_PE
renati.levelhttps://purl.org/pe-repo/renati/nivel#tituloProfesionales_PE
renati.discipline713076es_PE
renati.jurorSalinas Mena, Mateo Alejandroes_PE
renati.jurorVerano Galindo, Carlos Albertoes_PE
renati.jurorCcama Polanco, Carlos Albertoes_PE
renati.author.dni71055289
renati.advisor.dni01342289


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess