Show simple item record

dc.contributor.advisorAlfaro Alejo, Robertoes_PE
dc.contributor.advisorVelarde Castillo, Yenifferdes_PE
dc.contributor.authorMachaca Apaza, Lianne Cadnises_PE
dc.date.accessioned2017-07-12T17:14:38Z
dc.date.available2017-07-12T17:14:38Z
dc.date.issued2016-01-20
dc.identifier.urihttp://repositorio.unap.edu.pe/handle/20.500.14082/4612
dc.description.abstractLa investigación se realizó en la cuenca del río Huancané, ubicado dentro de la región hidrográfica del lago Titicaca, el objetivo de la investigación fue estimar la evapotranspiración de referencia utilizando modelos de Redes Neuronales Artificiales en función de elementos climáticos, así mismo se estableció diferentes modelos de Redes Neuronales Artificiales (RNA) y se realizó el análisis comparativo de los resultados de la evapotranspiración de referencia (ETo) estimada por los modelos de RNA con los métodos empíricos. La información meteorológica utilizada corresponde a datos diarios de tres estaciones meteorológicas de la cuenca del río Huancané, para lo cual se planteo 56 modelos con variables de entrada de (temperatura, velocidad del viento, humedad relativa y horas de sol) y siempre con una misma variable de salida (evapotranspiración de referencia). Para el entrenamiento se utilizó el 70% de datos, para la validación el 15% de datos y para la prueba el 15% de datos, así mismo para el entrenamiento se utilizó la arquitectura Perceptrón Multicapa (MLP) y el algoritmo “backpropagation”. Para determinar el desempeño de los modelos de Redes Neuronales Artificiales, frente a los métodos empíricos se utilizo indicadores estadísticos como: el error cuadrático medio (ECM), error cuadrático medio normalizado (ECMN), el coeficiente de determinación (R2) y el coeficiente de correlación (r). Finalmente la investigación logro establecer cinco modelos de RNA en función de elementos climáticos con las mismas y menos variables que utiliza el método FAO 56 Penman Monteith. Los modelos RNA-1 (ETo= f(Tmin, Tmax, HR, Vv, HS)), RNA-3 (ETo= f(Tmin, HR, Vv HS)), RNA-2 (ETo = f(Tmax, HR, Vv HS)), RNA-7 (ETo= f(Tmax, Vv, HS)) y RNA-6 (ETo = f(Tmin, Tmax, HR, Vv)) presentaron un mejor desempeño con un porcentaje de ajuste de 93.13%, 86.73%, 84.40%, 83.90% y 83.64% respectivamente y con un coeficiente de correlación de 96.50%, 93.13%, 91.87%, 91.60% y 91.46% respectivamente. Por lo tanto se comprobó que los modelos de RNA en función de elementos climáticos muestran un mejor desempeño frente a los modelos de Hargreaves – Samani (1985) y Tanque de evaporación clase Aes_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectIngeniería y Tecnologíaes_PE
dc.subjectModelamiento hidrológicoes_PE
dc.subjectRecursos Hídricoses_PE
dc.titleEstimación de la evapotranspiración de referencia utilizando modelos de redes neuronales artificiales en función de elementos climáticos en la cuenca del rio Huancanées_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Agrícolaes_PE
thesis.degree.disciplineIngeniería Agrícolaes_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ingeniería Agrícolaes_PE
thesis.degree.levelTítulo Profesionales_PE
dc.publisher.countryPEes_PE
renati.discipline811096es_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess