Show simple item record

dc.contributor.advisorGallegos Rojas, Edgares_PE
dc.contributor.authorAguilar Calderon, Victor Hugoes_PE
dc.date.accessioned2017-12-27T21:54:14Z
dc.date.available2017-12-27T21:54:14Z
dc.date.issued2017-11-24
dc.identifier.urihttp://repositorio.unap.edu.pe/handle/20.500.14082/6027
dc.description.abstractEl objetivo de este trabajo fue diseñar un modelo de RNA para la predicción de los episodios tóxicos producidos por Dinophysis cuminata en los puntos de muestra de INTECMAR y puntos de muestra de ANFACO CECOPESCA en la Ría de Pontevedra. Las aguas del mar del Atlántico, cubren la Ría de Pontevedra perteneciente a la comunidad de Galicia, en esta región se ubica la mayor zona de producción en el mundo, el mejillón de Galicia de la especie Mytilus galloprovinciales y la otra variedad de mejillón Mytilus edulis, en esta misma región se sucede frecuentemente las floraciones algales nocivas, la principal responsable es la especie Dinophysis acuminata. La metodología utilizada para diseñar la RNA, se inicia en la recopilación y análisis de datos oceanográficos, recuento celular D. acuminata, provenientes de las estaciones P0, P1, P7 y P9 de INTECMAR; datos de velocidad y dirección de viento de MeteoGalicia, y la obtención de datos experimentales de concentración de ácido okadaico en resina adsorbente y mejillón por ANFACO CECOPESCA, para complementar el estudio se utilizó los datos de índice de afloramiento del IEO. El conjunto de datos fue validado para luego elaborar matrices de datos para el diseño de la RNA. Se utilizó el software NNT de MATLAB donde es factible cambiar los parámetros, el mejor modelo fue evaluado por el error cuadrático medio (MSE). El diseño se realizó con la matriz de datos de la estación P0, por los antecedentes de las investigaciones realizadas, se experimentó las particiones con tres diferentes porcentajes, agregando neurona en la primera y segunda capa hasta encontrar la partición y la arquitectura con el MSE más bajo, al probar su validación y funcionamiento con las matrices de datos de las otras estaciones, la RNA diseñada logró generalizar su funcionamiento, una excepción fue la matriz de datos de la estación P7. El modelo de RNA diseñada combina la inteligencia artificial con las técnicas de análisis de datoses_PE
dc.description.uriTesises_PE
dc.formatapplication/pdfes_PE
dc.language.isospaes_PE
dc.publisherUniversidad Nacional del Altiplano. Repositorio Institucional - UNAPes_PE
dc.rightsinfo:eu-repo/semantics/openAccesses_PE
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/deed.eses_PE
dc.sourceUniversidad Nacional del Altiplanoes_PE
dc.sourceRepositorio Institucional - UNAPes_PE
dc.subjectIngeniería y tecnologíaes_PE
dc.subjectSeguridad, gestión, y control en agroindustriases_PE
dc.titlePredicción de las floraciones algales nocivas (FAN) en poblaciones de Dinophysis acuminata por redes neuronales artificialeses_PE
dc.typeinfo:eu-repo/semantics/bachelorThesises_PE
thesis.degree.nameIngeniero Agroindustriales_PE
thesis.degree.disciplineIngeniería Agroindustriales_PE
thesis.degree.grantorUniversidad Nacional del Altiplano. Facultad de Ciencias Agrariases_PE
thesis.degree.levelTítulo Profesionales_PE
dc.publisher.countryPEes_PE
renati.discipline811146es_PE


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess